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Abstract

Early diagnosis of gastrointestinal (GI) cancers remains challenging due to non-
specific symptom presentation and the limitations of existing risk stratification tools
in primary care. Current models are predominantly static, failing to capture how
patient trajectories evolve within electronic health records (EHRs). We present GI-
Clust, a predictive deep clustering framework designed for irregular, multivariate
EHR time series. GI-Clust employs a dual-encoder architecture: an LSTM-based
attention encoder for temporal features with an integrated interpretability frame-
work, and a lightweight MLP encoder for baseline risk factors, fused via a gated
mechanism. Latent embeddings are clustered using a Gumbel-Softmax layer, en-
abling differentiable optimisation. The framework jointly optimises prediction
and clustering objectives to uncover clinically interpretable patient subgroups.
Evaluated on 210,970 UK primary care patients from the QResearch database,
GI-Clust outperforms strong baselines, including XGBoost, LSTM-Encoder, and
CAMELOT, achieving AU-ROC 0.870 and F1 0.380, while identifying phenotype-
specific feature—time dependencies (e.g., haemoglobin in the six months prior to
diagnosis across GI cancer subtypes). Crucially, the model generalises well to
geographically distinct test regions, demonstrating robustness. To our knowledge,
this is the first predictive clustering approach applied to longitudinal UK primary
care data for cancer detection.

1 Introduction

Nearly half of all cancer cases in England were diagnosed at stage III or IV in 2018, with rates
even higher for gastrointestinal (GI) cancers [} 2. These four GI cancers alone represent over
15% of new UK cancer cases, yet their vague symptoms make early detection particularly difficult,
contributing to some of the poorest colorectal survival rates in Europe [3} 4]. Existing NHS risk
tools, such as QCancer [5 6], provide only static, cross-sectional estimates and fail to capture how
patient symptoms and blood test results evolve over time. Temporal electronic health records (EHRs)
offer a opportunity to capture this temporal dynamics and enable earlier diagnosis by providing rich
longitudinal information on demographics, symptoms, and laboratory tests. However, they also pose
technical challenges due to their heterogeneity, irregular sampling, and missingness.

In this paper, we present GI-Clust, Figure[T] a predictive clustering framework tailored for irregular,
multivariate EHR time-series. Our model includes a novel encoder that incorporates an interpretability
framework, combining an LSTM-based attention encoder for temporal features with a lightweight
MLP encoder for baseline risk factors, fused through a gated mechanism. Cluster assignments are
modelled using a Gumbel-Softmax layer to enable differentiable optimisation of discrete subgroups.
We evaluate GI-Clust on 210,970 UK primary care patients from the QResearch database and
outperform strong baselines while providing phenotype-specific risk profiles for GI cancer subtypes.
Our phenotypes highlight clinically relevant feature—time pairs linked to early GI cancer detection.
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Figure 1: Overview of the GI-Clust architecture.

2 Related Work

GI cancer detection. Most existing approaches rely on imaging modalities (endoscopy, CT, pathol-
ogy) with CNN-based models achieving strong performance [4}[7, |8]. Risk models such as QCancer
[5 16, 9] and CRISP [10] use logistic regression or decision trees with static covariates, but rarely
incorporate temporal dynamics or routine primary care data.

Mixed temporal EHR data modelling. Deep learning models using LSTMs and GRUs [[11} [12]
131 [14]] capture sequential dependencies but model static and temporal variables together, which can
be particularly detrimental in sparse primary care data, as static features may dominate and obscure
subtle temporal features. Recent methods that encode data types separately [15, (16} [17, 18] improve
prediction but remain limited in interpretability and robustness to irregular sampling.

Phenotype discovery. Clustering methods like SOM-VAE [19], AC-TPC [12]], and CAMELOT
[L1] uncover patient subgroups, but are mainly applied to hospital datasets and often overlook noise,
missingness, and heterogeneity in primary care records.

3 Method

We propose GI-Clust, a predictive clustering framework for irregular EHR time series that jointly
models baseline risk factors and temporal trajectories to discover clinically interpretable subgroups.
The framework, Figure[T] consists of three components: an attention-based dual encoder with an
interpretability framework, a Phenotype Discovery Network (PDN), and an Qutcome Network.

Encoder Network. Baseline covariates (e.g., age, sex, ethnicity) are processed by a shallow MLP,
while temporal features are encoded using an LSTM with attention. The LSTM Encoder consists
of a stacked LSTM block and a custom attention layer. The LSTM-based encoder, inspired by [[L1],
combines a stacked LSTM with a custom attention block. The LSTM captures temporal dependencies,
while the attention block, a dense layer block, disentangles feature contributions by projecting each
input into time-independent latent representations. Following the notation of [11]], the adapted output
from the attention block for temporal features can be described as follows:

Rt = O'(D ® Xdyn,t =+ B) (1)

where R} is the collection of the temporal feature representations at time ¢, D € R**¥" the learnable
attention block kernel, B € R!*F the learnable attention block bias, where [ is the latent dimension
and F' the number of temporal features, and 4y, € R¥ the temporal feature input at time ¢. The
LSTM encoder output can be written as: [o1, . . ., o] with the state at time 4, 0; € R!, where T is the
time observation window, so the two outputs can be combined through the following approximation:

O ~ Rt g, (2)

with oy computed as the least-squares solution. Finally, the temporal embedding Z is derived as:

Zi =) Bio, 3)
t



69
70
71
72
73

74
75

76
77
78
79

80
81

82
83
84

85
86
87
88
89
90
91
92
93

94

95
96
97
98
99
100

101
102
103

104
105
106
107
108

110
111
112
113

where 6, is the optimal solution from [2]and attention weights 3, are learnt to emphasise informative
time steps. To ensure that we don’t leak future inputs from the temporal data in the custom attention
block, we additionally apply a mask to the input data directly. The mask also prevents the model
from over-emphasising missing or irregular observations. Finally, the two representations are fused
via a gated mechanism that adaptively balances static and dynamic embeddings:

Z=g0Z +(1-g) 0Z, )

where Z; and Zj, are the temporal and projected baseline embeddings, g € [0, 1]” is a learnt gate,
and © denotes element-wise multiplication.

Predictive clustering. The fused representation Z is passed to the PDN, an MLP that outputs cluster
assignment probabilities over K trainable cluster representations (cy,...,ck). To make cluster
assignment differentiable, we apply the Gumbel-Softmax trick [20, 21]], which relaxes categorical
sampling as:
exp ( log pi-+o )
Pk = ; &)
Zf:l exp (longﬁgj)

where py, is the cluster probability, gr ~ Gumbel(0, 1), and 7 is the temperature hyperparameter.
Here, we set 7 = 0.5. At inference, patients are assigned to their most likely cluster.

Outcome prediction. The selected cluster representation cy is passed to the Outcome Network,
which predicts a probability distribution over the five clinical outcomes (Colon, Rectal, Gastric,
Oesophageal, No Cancer).

Model training and optimisation. GI-Clust is trained in two stages: pre-clustering and fine-
tuning. In the pre-clustering stage, the Encoder and Outcome Network are first trained in an
encoder—predictor setup [[12}[11]. Latent embeddings Z are then clustered with k-means to initialise
K cluster representations, which in turn supervise the PDN. During fine-tuning, the learning rate
is reduced and the full model is trained end-to-end. Unlike Aguiar et al. [[11]], which relies on
staged initialisation, we train all sub-networks until convergence, a strategy better suited to sparse
primary care data. Different from [12]], GI-Clust jointly optimises all sub-networks with a unified
objective. Optimisation combines classification and clustering losses, including the loss targeting
cluster collapse in [[11]], with tunable weights to balance tasks.

4 Results

We evaluated GI-Clust on the QResearch primary care database, comprising 210,970 patients (8,118
with GI cancer across colon, rectal, gastric, and oesophageal subtypes, matched to controls). Records
include up to five years of 43 clinically relevant features 5,16} |9] including demographics, diagnoses,
symptoms, and blood tests. We provide the cohort selection and preprocessing strategies, full list of
variables, and summary statistics in the Appendix [Al Evaluation is performed on a geographically
distinct region (South East and South West of England).

We implemented GI-Clust in TensorFlow 2.10 and trained on a single Tesla V100 PCIe 32GB GPU,
using fixed random seeds for reproducibility and stratified cross-validation for robustness. We provide
the full model and training hyperparameters for GI-Clust and our benchmarks in the Appendix [C]

We compare against four benchmarks: CAMELOT [[11], the state-of-the-art for interpretable cluster-
ing of time-series EHR data; XGBoost, widely used in clinical settings for its interpretability and
strong performance on tabular data; a simple LSTM Encoder, included to directly test the usefulness
of our clustering framework beyond sequence modelling; and TSKM [22], the state of the art in
time-series clustering, used here to confirm that the raw data does not contain trivial clustering
patterns.

Two tasks were considered: (1) Clinical outcome prediction, a five-class classification problem
(Colon, Rectal, Gastric, Oesophageal, No Cancer); and (2) Phenotype discovery, evaluating whether
cluster assignments reveal clinically interpretable patient subgroups. Performance was assessed using
AU-ROC, AU-PRC, F1, Recall, and Precision, computed via macro-averaging across classes to target
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imbalance, the results are shown in Table E} Results are reported as the mean and standard deviation
over five random seeds.

Table 1: Classification performance across five clinical outcome categories: Colon, Rectal, Oe-
sophageal, Gastric, and No Cancer. The best value for each metric is shown in bold. For all reported
metrics, higher values indicate better performance.

Method AUROC AUPRC F1 Recall Precision
XGB 0.817(£0.003) 0.314(%0.002) 0.253(4+0.002) 0.467(+0.006) 0.245(£0.001)
LSTMClassifier  0.769(£0.126)  0.247(£0.028)  0.243(£0.031)  0.334(40.087)  0.235(£0.026)
TSKM 0.553(£0.002)  0.248(%+0.010) 0.196(+£0.0) 0.2(£0.0) 0.192(£0.0)
CAMELOT 0.858(£0.011)  0.322(+0.009) 0.311(40.038) 0.298(£0.041)  0.448(+£0.033)
GI-Clust (ours) 0.870(+0.009) 0.337(40.009) 0.380(£0.026) 0.425(£0.039) 0.382(£0.019)

Beyond classification, GI-Clust discovers clinically meaningful subgroups, shown in Figure [d]in the
Appendix. The learnt clusters correspond to distinct GI cancer profiles (e.g. cancer vs. no cancer,
rectal- vs. gastric/oesophageal-dominant), while the attention maps, Figure 5] highlight early risk
signals such as haemoglobin in the months before diagnosis.

5 Discussion

Classification results show that GI-Clust outperforms the benchmarks, demonstrating that our novel
encoder and predictive clustering framework are well suited for capturing temporal dynamics in
sparse primary care records and improving early GI cancer detection. Importantly, the model not
only improves prediction but also reveals clinically meaningful patient phenotypes, as the discovered
clusters map onto distinct GI cancer subtypes, Figure d] These findings indicate that GI-Clust
works well with highly imbalanced datasets and is learning temporal dependencies that align with
established clinical knowledge, Figure[5|and Table[6] Our model highlight relevant clinical features
in the 6 months before diagnosis which is consistent with the clinical knowledge and highlights the
difficulty of the clinical task.

6 Conclusion

In this paper, we introduced GI-Clust, a semi-supervised clustering framework for temporal EHR
data applied to early GI cancer detection. Methodologically, the use of separate baseline and temporal
encoders with gated fusion, combined with Gumbel-Softmax clustering, enables learning from sparse
and irregular primary care records and improves classification accuracy over strong benchmarks.
Clinically, GI-Clust uncovers interpretable patient subgroups that align with established cancer
phenotypes and highlights subtype-specific temporal signals, offering a pathway toward earlier
screening and stratified monitoring. Future work will extend validation to external datasets and
explore multimodal integration to enrich phenotype discovery.

Key takeaway: GI-Clust uses a novel dual-encoder with gated fusion and predictive clustering to
learn from sparse multivariate EHR time series, boosting early cancer detection while uncovering
meaningful, interpretable patient subgroups.

References

[1] Cancer Research UK. Cancer statistics for the uk, 2017. URL https://www,
cancerresearchuk.org/health-professional/cancer-statistics-for-the-ukl

[2] Cancer Research UK. Cruk: Early diagnosis hub, 2017.
crukcancerintelligence.shinyapps.io/EarlyDiagnosis/|

URL https://

[3] Marzieh Araghi and et al. Colon and rectal cancer survival in seven high-income countries
2010-2014: variation by age and stage at diagnosis (the icbp survmark-2 project). Gut, 70(1):
114-126, 2021. doi: https://doi.org/10.1136/gutjnl-2020-320625.


https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk
https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk
https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk
https://crukcancerintelligence.shinyapps.io/EarlyDiagnosis/
https://crukcancerintelligence.shinyapps.io/EarlyDiagnosis/
https://crukcancerintelligence.shinyapps.io/EarlyDiagnosis/

150
151
152

153
154
155

156
157

159
160

161
162
163

164
165
166

167
168

170

171
172
173
174

175
176
177

178
179
180
181

182
183
184

185
186
187

189
190
191

192
193
194
195

196
197
198

(4]

(5]

(6]

(7]

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Ganji Purnachandra Nagaraju and et al. Artificial intelligence in gastrointestinal cancers:
diagnostic, prognostic, and surgical strategies. Cancer Letters, 612:217461, 2025. doi: https:
//doi.org/10.1016/j.canlet.2025.217461.

Julia Hippisley-Cox and Carol Coupland. Symptoms and risk factors to identify men with
suspected cancer in primary care: derivation and validation of an algorithm. The British Journal
of General Practice, 63(606):e1, 2012. doi: https://doi.org/10.3399/bjgp13X660724.

Julia Hippisley-Cox and Carol Coupland. Symptoms and risk factors to identify women with
suspected cancer in primary care: derivation and validation of an algorithm. The British Journal
of General Practice, 63(606):e11, 2012. doi: https://doi.org/10.3399/bjgp13X660733.

Runnan Cao and et al. Artificial intelligence in gastric cancer: applications and challenges.
Gastroenterology Report, 10:goac064, 2022. doi: https://doi.org/10.1093/gastro/goac064.

Sreetama Mukherjee, Sunita Vagha, and Pravin Gadkari. Navigating the future: a comprehensive
review of artificial intelligence applications in gastrointestinal cancer. Cureus, 16(2):e54467,
2024. doi: https://doi.org/10.7759/cureus.54467.

Julia Hippisley-Cox and Carol Coupland. Development and external validation of prediction
algorithms to improve early diagnosis of cancer. Nature Communications, 16(1):1-11, 2025.
doi: https://doi.org/10.1038/s41467-025-57990-5.

Jon D. Emery and et al. The colorectal cancer risk prediction (crisp) trial: a randomised
controlled trial of a decision support tool for risk-stratified colorectal cancer screening. British
Journal of General Practice, 73(733):e556—e565, 2023. doi: https://doi.org/10.3399/BJGP.2022.
04380.

Henrique Aguiar, Mauro Santos, Peter Watkinson, and Tingting Zhu. Learning of cluster-
based feature importance for electronic health record time-series. In Proceedings of the 39th
International Conference on Machine Learning, volume 162, pages 161-179, Baltimore, MD,
USA, july 2022. PMLR.

Changhee Lee and Mihaela Van Der Schaar. Temporal phenotyping using deep predictive
clustering of disease progression. In Proceedings of the 37th International Conference on
Machine Learning, ICML’20, Virtual, 2020. JMLR.

Yuchao Qin, Mihaela van der Schaar, and Changhee Lee. T-phenotype: Discovering phenotypes
of predictive temporal patterns in disease progression. In Proceedings of The 26th International
Conference on Artificial Intelligence and Statistics, volume 206, pages 3466-3492, Valencia,
Spain, 2023. PMLR.

Changhee Lee, Jem Rashbass, and Mihaela Van der Schaar. Outcome-oriented deep temporal
phenotyping of disease progression. IEEE Transactions on Biomedical Engineering, 68(8):
2423-2434, 2021. doi: https://doi.org/10.1109/TBME.2020.3041815.

Anna Leontjeva and Ilya Kuzovkin. Combining static and dynamic features for multivariate
sequence classification. In 2016 IEEE International Conference on Data Science and Advanced
Analytics, DSAA, pages 21-30, Montreal, QC, Canada, 2016. IEEE.

Cristébal Esteban, Oliver Staeck, Stephan Baier, Yinchong Yang, and Volker Tresp. Predicting
clinical events by combining static and dynamic information using recurrent neural networks. In
2016 IEEE International Conference on Healthcare Informatics, ICHI, pages 93-101, Chicago,
IL, USA, 2016. IEEE.

Pu Zhang and et al. Simulation model of vegetation dynamics by combining static and dynamic
data using the gated recurrent unit neural network-based method. International Journal of
Applied Earth Observation and Geoinformation, 112:102901, 2022. doi: https://doi.org/10.
1016/j.jag.2022.102901.

Molla Hafizur Rahman, Shuhan Yuan, Charles Xie, and Zhenghui Sha. Predicting human
design decisions with deep recurrent neural network combining static and dynamic data. Design
Science, 6:¢15, 2020. doi: https://doi.org/10.1017/dsj.2020.12.



199
200
201

202
203
204

205
206

207
208
209

210
211
212

[19] Vincent Fortuin, Matthias Hiiser, Francesco Locatello, Heiko Strathmann, and Gunnar Ritsch.
Som-vae: Interpretable discrete representation learning on time series, 2018. URL https:
//doi.org/10.48550/arXiv.1806.02199.

[20] Chris J. Maddison, Daniel Tarlow, and Tom Minka. A* sampling. In Proceedings of the 28th
International Conference on Neural Information Processing Systems - Volume 2, volume 27 of
NIPS’ 14, page 3086-3094, Cambridge, MA, USA, 2014. MIT Press.

[21] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax,
Nov 2016. URL https://doi.org/10.48550/arXiv.1611.01144|

[22] Tavenard Romain and et al. Tslearn, a machine learning toolkit for time series data. Journal
of Machine Learning Research, 21(118):1-6, 2020. URL http://jmlr.org/papers/v21/
20-091.html.

[23] Julia Hippisley-Cox, David Stables, and Mike Pringle. Qresearch: a new general practice
database for research. Informatics in Primary Care, 12(1):49-50, 2004. doi: https://doi.org/10.
14236/jhi.v12i1.108.


https://doi.org/10.48550/arXiv.1806.02199
https://doi.org/10.48550/arXiv.1806.02199
https://doi.org/10.48550/arXiv.1806.02199
https://doi.org/10.48550/arXiv.1611.01144
http://jmlr.org/papers/v21/20-091.html
http://jmlr.org/papers/v21/20-091.html
http://jmlr.org/papers/v21/20-091.html

213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

230
231
232

234
235
236
237

A QResearch Dataset

QResearch [23]] is a UK primary care database containing anonymised EHRs from over 35 million
patients, linked at the individual level to the National Cancer Registry, Death Registry, and Hospital
Episode Statistics. For this work, we used a random 25% subset covering 13 million patients in
England (2010-2019), providing demographics, prescriptions, diagnoses, laboratory tests, and cancer
registry information (diagnosis, grade, stage). This large, diverse dataset is well suited for early
cancer detection, while also reflecting the typical challenges of EHRs: heterogeneity, missingness,
and irregular sampling. We constructed a case—control cohort from QResearch comprising four
GI cancer types (colon, rectal, gastric, oesophageal), defined using ICD-10 codes and excluding
non-melanoma skin cancers. Eligible patients were 20—100 years old with at least two years of
GP registration prior to entry (2015-2019). Cancer cases were restricted to first diagnoses within
this period, excluding prior cancers, multiple synchronous cancers, or diagnoses recorded only at
death. Controls were cancer-free up to 2019 and matched to cases 1:25 (to reflect the national cancer
prevalence) by sex and general practice, with a maximum age difference of 10 years. The final cohort
included 8,118 GI cancer cases and 210,970 patients overall. Table@] shows the breakdown of the
number of patients per cancer type and the diagnostic codes used for extraction, revealing a highly
imbalanced dataset. Figure[2]shows the cohort extraction flowchart.

QResearch Cohort:
3,396,403 patients

I
| l

Control Cohort: Cancer Cohort:
3,118,745 patients 262,872 patients

\_1

8,118 Gl cancer
patients

I

Case-Control Match:
1:25
Total: 210,970

Figure 2: Cohort selection from the QResearch database: The flowchart shows the extraction process
used to define the case—control cohort. A total of 8,118 GI cancer cases were identified and matched
to controls in a 1:25 ratio, based on sex and general practice, with a maximum age difference of 10
years. When more than 25 matches were available, controls were ranked by age proximity. Controls
could be matched to multiple cases, but differing index dates limited exposure window overlap.

Table 2: Cancer coding and case distribution: The table lists the ICD-10 codes used to identify cases
of gastrointestinal cancer in the study cohort, along with the number of patients per cancer type.

Cancer Type  Colon Rectal Gastric  Oesophageal

ICD-10 Code C18 CI19,C20 Cl6 CI15
Cases 3,926 1,966 893 1,333

Preprocessing involved standardising units across blood tests, removing extreme outliers (outside the
0.1-99.9th percentiles) and clipping values beyond three standard deviations. Age was fixed at cohort
entry, while other baseline covariates remained static. Time-varying features (risk factors, symptoms,
blood tests) were aggregated into 6-month intervals (maximum 10 per patient). Continuous measures
(e.g., blood tests, BMI, alcohol intake) were averaged per interval, while symptoms are binary.
Missing data were imputed using last observation carried forward, population means (for entirely
missing features), or an “Unknown” category (for categorical variables). Finally, features were
min—max and batch normalised. The full list of used clinical variables is provided in Table 3]



Table 3: Overview of clinical variables from the QResearch dataset: The table presents the full list
of clinical variables extracted from the QResearch database, grouped into four clinically relevant
categories: baseline characteristics, risk factors, symptoms, and blood test results. Where applicable,
we report the percentage of missing values in the study population. For binary variables (excluding
sex), a value of 1 indicates the presence of the feature and O its absence. As such, symptoms do
not have missingness. Sex is encoded as 1 for male and O for female. All symptoms are time-
varying binary variables, and all blood test results are continuous and time-varying. For baseline
characteristics and risk factors, we include additional columns describing each feature’s nature
(static or time-varying) and type (binary, categorical, or continuous). Where applicable, the median
and missingness of each variable are reported after outlier clipping. Group Code IDs used for
variable extraction are available on the QResearch website at https://www.qresearch.org/
data/qcode-group-library/, which includes SNOMED-CT and ICD-10 mappings. Group
codes used in multiple variables are listed as: Multiple!: 561, 6282, 6285, 17064—17070; and
MultipleQ: 2238, 2239, 2242-2244, 7527. ALT - alanine aminotransferase test. CRP - C-reactive
protein. ESR - erythrocyte sedimentation rate. GGT - gamma-glutamyl] transferase. MCV - mean
corpuscular volume. WBC - white blood cell.

Baseline Characteristics

Variable Group Code ID Nature Category Median(Range) Missingness [%]
Age N/A Static Continuous 68.0 (20 - 98) 0.00
Sex (Male) N/A Static Binary 58.83 % 0.00
Ethnicity N/A Static Categorical N/A 36.85
Study Practice N/A Static Categorical N/A 0.00
Strategic Health Authority (SHA) N/A Static Categorical N/A 0.00
Townsend deprivation quantile N/A Static Categorical 2.0(1.0-4.0) 0.22
Risk Factors
Variable Group Code ID Nature Category Median(Range) Missingness [%]
Alcohol Intake Multiple 1 Time-varying Continuous 2.0413.0 (0.0 - 279.6) 59.97
Body Mass Index (BMI) 200 Time-varying Continuous 27.745.6 (8.3 -47.1) 25.07
Crohn’s disease 45 Static Binary 871 (0.41%) -
Irritable Bowel Syndrome (IBS) 17179 Time-varying Binary 3,010 -
Family History of non-GI Cancer 2527 Static Binary 1,809 -
Family History of GI cancer 1345 Static Binary 20,403 -
Smoking Category Multiple? Time-varying Categorical - 15.49
Ulcerative Colitis (UC) 46 Time-varying Binary 1,846 -
Symptoms
Variable Group Code ID [%] with > 1 entry per observation window Red Flag Symptom (YES/NO)
Abdominal Mass 4968 0.66 NO
Abdominal Pain 135 14.55 YES
Appetite Loss 1393 0.98 YES
Back Pain (Non-Sciatica) 2374 2247 NO
Bowel Change 1845 2.49 NO
Constipation 141 7.62 NO
Diarrhea 107 8.56 NO
Dysphagia 1385 1.76 YES
Heartburn 2065 9.97 YES
Indigestion 2066 4.79 YES
Nausea 2375 2.07 NO
Pelvic Pain 2376 0.32 NO
Rectal Bleed 279 4.02 YES
Sciatica 2374 4.26 NO
Tiredness 605 10.82 NO
‘Weight Loss 1397 2.67 YES
Blood Test Results
Variable Group Code ID Median (Range) Missingess [%]
Albumin 4990 41.043.9 (25.6 -54.0) 20.90
ALT 1297 20.0£11.18 (4.0 - 84.0) 20.06
Bilirubin 1446 9.0+4.8 (2.0-32.8) 18.13
CRP 2367 504163 (2.0 -114.5) 68.41
ESR 2366 10.7£14.9 (2.0 - 85.8) 65.11
Ferritin 1400 76.0£115.0 (2.0 - 718.0) 65.33
GGT 1299 28.0+45.0 (3.0 - 380.0) 68.62
Haemoglobin (Hb) 1410 137.0415.2 (75.0 - 197.7) 19.31
Tron Level 17236 13.5+6.4 (0.8 — 40.5) 93.19
MCV 1411 91.1£5.5 (68.2 - 114.0) 19.39
Platelet 1447 237.5467.15 (21.0 - 781.0) 19.35
Cholesterol 405 33£1.0(1.0-7.9) 25.40
WBC 2069 6.91+1.9 (1.5 -16.0) 19.33
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(c) Patient distribution by Townsend deprivation
quintile. 1 indicates the least deprived and 5 the
most deprived. Townsend deprivation quintiles
indicate that the cohort skews toward lower depri-
vation, with the majority of patients falling into the
least deprived categories (1 and 2).

= N
@ o I}
S S o

3
S

Number in 1,000s

40

20

«@ A\ e N o Q0 A e
R T aliIPE UIVC S R C g
A A S s 2 e o
GO oo o

Ethnicity

(b) Ethnicity distribution of the extracted QRe-
search cohort. Ethnicity distribution reveals pre-
dominantly White cohort, with substantially fewer
patients from minority ethnic backgrounds.

50

w S
S S

N
S

Number in 1,000s

10

0

x X N x © < & x ©
e 2% o @ P & o2 o 22" &
PN IV S R P S N
‘\o“ oo 0\)@ oo ‘“@_"\'\ e ‘0((9 W ’o"‘\'\
) N 2 <
& <
o

Strategic Health Authority

(d) Patient distribution per Strategic Health Au-
thority (SHA). Distribution by Strategic Health
Authority (SHA) shows most patients are regis-
tered in practices located in the North West, South
East, and London regions.

Figure 3: Summary of cohort demographics and socioeconomic characteristics. Descriptive statistics
for the extracted QResearch cohort. Patients missing ethnicity or Townsend deprivation quintile are
omitted from the plots. No patients were missing age or Strategic Health Authority (SHA).
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C Hyper-Parameters

Model Training. Standard Benchmarks. The complete list of hyperparameters used for the grid
search optimisation of the benchmarking models is shown in Table[d] The best parameters are shown
in bold.

Table 4: Grid search hyperparameter ranges for the benchmark models. The table presents the
parameters used for TSKM and XGBoost during model tuning. Best-performing values are shown in
bold.

Parameter TSKM XGB

~ / {0.1,0.2, 0.5}
kernel {"soft-DTW", "DTW" "eucl"} /

init {"random", "km++""} /

C /

method / {"per feat", "all"'}
n-estimators / {50, 100, 200}
depth / {1,3,5,10}
min-child-weight / {1,2,5,7}

K {5,6,7, 8} /

Model Training. Deep learning models. The full list of hyperparameters used for grid search
optimisation of LSTMClassifier, CAMELOT, and GI-Clust is shown in Table E} The best parameters
are shown in bold. We run the clustering models for 50 epochs and use Early Stopping with patience
of 3 epochs and tolerance A=0.0001. The models were optimised using the Adam optimiser and
the ReduceLROnPlateau learning rate scheduler, monitoring the validation loss. In addition, we
conducted an ablation study to determine the optimal training parameters. We tested batch sizes
bs € {64, 128, 256, 512}, learning rates Ir_init € {1e-6, le-5, le-4, le-3, le-2}, and initialisation
learning rates Ir € {1e-5, le-4, 1e-3, le-2}. We trained the models for the number of classes K
€ {5,6,7,8} and latent dimension latent_dim € {32, 64}, hidden layers hidden_layers € {1, 2, 3}.
The loss coefficients a1, s, az, and 3 were chosen from {0.5, 0.1, 0.05, 0.01, 0.005, 0.001}. The
best values are indicated in the table below.

Table 5: Final selected hyperparameters for the deep learning models. Hyperparameter configurations
for LSTMClassifier, CAMELOT, and GI-Clust models after grid search optimisation. These include
learning rates, architecture depths, and loss weighting coefficients.

Parameter LSTMClassifier CAMELOT GI-Clust
bs 512 512 64
Ir_init / 0.001 0.0001
Ir 0.001 le-5 le-5
latent_dim 8 32 32
hidden_layers (LSTM-Encoder) 1 2 1
hidden_nodes (LSTM-Encoder) 8 32 16
hidden_layers (Baseline Encoder) / / 2
hidden_nodes (Baseline Encoder) / / 8
hidden_layers (Fusion) / / 1
hidden_nodes (Fusion) / / 16
a1 / 0.5 0.01
Qo / 0.01 0.05
a3 / 0.5 0.05
I} / 0.01 0.001
K / 11 12

10
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D Visualisations

D.1 GI-Clust

To further examine GI-Clust, we visualise patient distributions across the learnt clusters, Figure (4]
Each subplot shows the outcome-normalised proportion of patients per cancer subtype. Distinct
patterns emerge: Cluster 1 concentrates gastric (22%) and oesophageal (42%) cancers, Cluster 3
contains the majority of “No Cancer” patients (37%), Cluster 4 mixes Colon and Gastric, and Cluster
5 is dominated by Rectal cancer. Important to note, assignment to a cluster does not imply diagnosis,
but indicates that a patient’s trajectory resembles those of patients later diagnosed with that outcome,
supporting risk stratification for screening or monitoring.
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Figure 4: Distribution of clinical outcomes across identified clusters in GI-Clust. For each cluster,
the bar plot represents the percentage of patients per each of the five outcome classes: Colon,
Rectal, Gastric, Oesophageal, and No Cancer. Each subplot is labelled Cluster 1 through Cluster 5,
corresponding to the cluster numbers assigned by the model.

To validate these phenotypes, we also visualise the associated attention heatmaps, shown in Figure
[l Averaged attention heatmaps reveal that the most informative signals often occur in the last six
months before cohort exit. We extract the five most important feature-time pairs for each cluster
from these heatmaps and summarise them in Table [6] For example, haemoglobin receives high
attention across clusters: persistently low Hb values mark cancer subgroups, while normal values
help distinguish non-cancer cases with similar symptoms. Thus, attention maps provide interpretable
insight into which clinical signals guide stratification, even when the direction of values differs.
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Figure 5: Attention heatmaps for each cluster learnt by GI-Clust. For each cluster, the attention maps
show the class-weighted averaged attention scores across time-varying features and time windows.
The weights are normalised to a 0.0 to 1.0 range. Higher attention indicates that changes in those
feature—time pairs played a greater role in the model’s decision to assign patients to that cluster. The
x-axis shows clinical features, the y-axis shows time to cohort exit in 6-month intervals (top = most
recent). The most highly attended features for each cluster are summarised in Table |§|

Table 6: Top five features with the highest attention scores in the final 6-month window per cluster.
Table shows the five feature—time pairs with the highest attention scores in the 6-month window prior
to cohort exit, listed for each cluster. Attention scores are derived from the cluster-specific attention
maps in Figure[5] Cluster indices (K) correspond to those shown in the attention plot. Dysphagia was
excluded from the table due to its consistent high ranking across all clusters. Abbreviations for clinical
variables are provided in Table 3] Higher attention indicates that changes in those feature—time pairs
played a greater role in the model’s decision to assign patients to that cluster.

K  Variables

Tiredness, Platelet, CRP, Bilirubin, Hb

Hb, Platelet, Bowel Change, IBS, Back Pain
Platelet, Hb, ESR, Back Pain, CRP

Bowel Change, IBS, WBC, BMI, Sciatica
WBC, Indigestion, UC, Cholesterol, IBS

DW=

D.2 CAMELOT

For completeness, we present the visualisations for our baseline comparison, CAMELOT. Figure 6]
displays the distribution of clinical outcomes across the identified clusters (phenotypes), revealing
two clusters (0 and 4) that contain few cancer patients. Clusters 1, 2, and 3 show a heterogeneous mix
of all five outcomes, reflecting uncertainty in their feature profiles. This is further supported by the
attention heatmaps in Figure|/| which show consistent temporal feature importance patterns across
clusters, with highest attention values concentrated in the months immediately prior to cohort exit.
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Figure 6: Distribution of clinical outcomes across identified clusters in CAMELOT. For each cluster,
the bar plot represents the percentage of patients per each of the five outcome classes: Colon,
Rectal, Gastric, Oesophageal, and No Cancer. Each subplot is labelled Cluster 1 through Cluster 5,
corresponding to the cluster numbers assigned by the model. Clusters 0 and 4 show few cancer cases,
while Clusters 1, 2, and 3 display a mixed distribution. Cluster 3 has the highest proportion of cancer
to non-cancer cases, potentially indicating a patient group at elevated risk of gastrointestinal cancer.
Similarly, Cluster 2 shows a higher proportion of rectal cancer cases relative to non-cancer cases,
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suggesting a subgroup at increased risk of rectal cancer.

Cluster 1

Time to cohort exit [months]

Figure 7: Attention heatmaps for each cluster learnt by CAMELQOT. For each cluster, the attention
maps show the class-weighted averaged attention scores across time-varying features and time
windows. The weights are normalised to a 0.0 to 1.0 range. Higher attention indicates that changes
in those feature—time pairs played a greater role in the model’s decision to assign patients to that
cluster. The x-axis shows clinical features, the y-axis shows time to cohort exit in 6-month intervals
(top = most recent). Higher attention is concentrated in the final 6 months prior to exit. The most
highly attended features are consisted across the five clusters and are Alcohol Intake, Age, Tiredness,
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277 E  Cluster Contingency Matrices

278 Contingency Matrices. Table[§|and [7]show the empirical number of outcome distributions observed
279 for each cluster learnt by the proposed model and CAMELQOT, respectively. We suppress (*) counts
280 where the number of patients is smaller or equal to 5 for privacy and data protection reasons.

Table 7: Contingency matrix for each learnt cluster for GI-Clust.

Cluster 1 2 3 4 5
Colon 22 438 34 315 168
Rectal 7 180 * 45 183
Gastric 40 69 * 55 12
Oseophageal 134 121 6 29 7

No Cancer 582 26,805 17,713 1,135 593

Table 8: Contingency matrix for each learnt cluster for CAMELOT.

Cluster 1 2 3 4 5
Colon 21 230 224 490 12
Rectal * 92 219 104 *
Gastric * 26 34 116 *
Oesophageal * 39 69 184 *

No Cancer 8,118 12,836 12,454 4,439 8,981
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