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Abstract

Early diagnosis of gastrointestinal (GI) cancers remains challenging due to non-1

specific symptom presentation and the limitations of existing risk stratification tools2

in primary care. Current models are predominantly static, failing to capture how3

patient trajectories evolve within electronic health records (EHRs). We present GI-4

Clust, a predictive deep clustering framework designed for irregular, multivariate5

EHR time series. GI-Clust employs a dual-encoder architecture: an LSTM-based6

attention encoder for temporal features with an integrated interpretability frame-7

work, and a lightweight MLP encoder for baseline risk factors, fused via a gated8

mechanism. Latent embeddings are clustered using a Gumbel-Softmax layer, en-9

abling differentiable optimisation. The framework jointly optimises prediction10

and clustering objectives to uncover clinically interpretable patient subgroups.11

Evaluated on 210,970 UK primary care patients from the QResearch database,12

GI-Clust outperforms strong baselines, including XGBoost, LSTM-Encoder, and13

CAMELOT, achieving AU-ROC 0.870 and F1 0.380, while identifying phenotype-14

specific feature–time dependencies (e.g., haemoglobin in the six months prior to15

diagnosis across GI cancer subtypes). Crucially, the model generalises well to16

geographically distinct test regions, demonstrating robustness. To our knowledge,17

this is the first predictive clustering approach applied to longitudinal UK primary18

care data for cancer detection.19

1 Introduction20

Nearly half of all cancer cases in England were diagnosed at stage III or IV in 2018, with rates21

even higher for gastrointestinal (GI) cancers [1, 2]. These four GI cancers alone represent over22

15% of new UK cancer cases, yet their vague symptoms make early detection particularly difficult,23

contributing to some of the poorest colorectal survival rates in Europe [3, 4]. Existing NHS risk24

tools, such as QCancer [5, 6], provide only static, cross-sectional estimates and fail to capture how25

patient symptoms and blood test results evolve over time. Temporal electronic health records (EHRs)26

offer a opportunity to capture this temporal dynamics and enable earlier diagnosis by providing rich27

longitudinal information on demographics, symptoms, and laboratory tests. However, they also pose28

technical challenges due to their heterogeneity, irregular sampling, and missingness.29

In this paper, we present GI-Clust, Figure 1, a predictive clustering framework tailored for irregular,30

multivariate EHR time-series. Our model includes a novel encoder that incorporates an interpretability31

framework, combining an LSTM-based attention encoder for temporal features with a lightweight32

MLP encoder for baseline risk factors, fused through a gated mechanism. Cluster assignments are33

modelled using a Gumbel-Softmax layer to enable differentiable optimisation of discrete subgroups.34

We evaluate GI-Clust on 210,970 UK primary care patients from the QResearch database and35

outperform strong baselines while providing phenotype-specific risk profiles for GI cancer subtypes.36

Our phenotypes highlight clinically relevant feature–time pairs linked to early GI cancer detection.37
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Figure 1: Overview of the GI-Clust architecture.

2 Related Work38

GI cancer detection. Most existing approaches rely on imaging modalities (endoscopy, CT, pathol-39

ogy) with CNN-based models achieving strong performance [4, 7, 8]. Risk models such as QCancer40

[5, 6, 9] and CRISP [10] use logistic regression or decision trees with static covariates, but rarely41

incorporate temporal dynamics or routine primary care data.42

Mixed temporal EHR data modelling. Deep learning models using LSTMs and GRUs [11, 12,43

13, 14] capture sequential dependencies but model static and temporal variables together, which can44

be particularly detrimental in sparse primary care data, as static features may dominate and obscure45

subtle temporal features. Recent methods that encode data types separately [15, 16, 17, 18] improve46

prediction but remain limited in interpretability and robustness to irregular sampling.47

Phenotype discovery. Clustering methods like SOM-VAE [19], AC-TPC [12], and CAMELOT48

[11] uncover patient subgroups, but are mainly applied to hospital datasets and often overlook noise,49

missingness, and heterogeneity in primary care records.50

3 Method51

We propose GI-Clust, a predictive clustering framework for irregular EHR time series that jointly52

models baseline risk factors and temporal trajectories to discover clinically interpretable subgroups.53

The framework, Figure 1, consists of three components: an attention-based dual encoder with an54

interpretability framework, a Phenotype Discovery Network (PDN), and an Outcome Network.55

Encoder Network. Baseline covariates (e.g., age, sex, ethnicity) are processed by a shallow MLP,56

while temporal features are encoded using an LSTM with attention. The LSTM Encoder consists57

of a stacked LSTM block and a custom attention layer. The LSTM-based encoder, inspired by [11],58

combines a stacked LSTM with a custom attention block. The LSTM captures temporal dependencies,59

while the attention block, a dense layer block, disentangles feature contributions by projecting each60

input into time-independent latent representations. Following the notation of [11], the adapted output61

from the attention block for temporal features can be described as follows:62

Rt = σ(D⊙ xdyn,t +B). (1)

where Rt is the collection of the temporal feature representations at time t, D ∈ Rl×F the learnable63

attention block kernel, B ∈ Rl×F the learnable attention block bias, where l is the latent dimension64

and F the number of temporal features, and xdyn,t ∈ RF the temporal feature input at time t. The65

LSTM encoder output can be written as: [o1, . . . , oT ] with the state at time i, oi ∈ Rl, where T is the66

time observation window, so the two outputs can be combined through the following approximation:67

ot ≈ Rtαt, (2)

with αt computed as the least-squares solution. Finally, the temporal embedding Zt is derived as:68

Zt =
∑
t

βtôt, (3)
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where ôt is the optimal solution from 2 and attention weights βt are learnt to emphasise informative69

time steps. To ensure that we don’t leak future inputs from the temporal data in the custom attention70

block, we additionally apply a mask to the input data directly. The mask also prevents the model71

from over-emphasising missing or irregular observations. Finally, the two representations are fused72

via a gated mechanism that adaptively balances static and dynamic embeddings:73

Z = g ⊙ Zt + (1− g)⊙ Z′
b, (4)

where Zt and Z′
b are the temporal and projected baseline embeddings, g ∈ [0, 1]L is a learnt gate,74

and ⊙ denotes element-wise multiplication.75

Predictive clustering. The fused representation Z is passed to the PDN, an MLP that outputs cluster76

assignment probabilities over K trainable cluster representations (c1, . . . , cK). To make cluster77

assignment differentiable, we apply the Gumbel-Softmax trick [20, 21], which relaxes categorical78

sampling as:79

p̃k =
exp

(
log pk+gk

τ

)
∑K

j=1 exp
(

log pj+gj
τ

) , (5)

where pk is the cluster probability, gk ∼ Gumbel(0, 1), and τ is the temperature hyperparameter.80

Here, we set τ = 0.5. At inference, patients are assigned to their most likely cluster.81

Outcome prediction. The selected cluster representation ck is passed to the Outcome Network,82

which predicts a probability distribution over the five clinical outcomes (Colon, Rectal, Gastric,83

Oesophageal, No Cancer).84

Model training and optimisation. GI-Clust is trained in two stages: pre-clustering and fine-85

tuning. In the pre-clustering stage, the Encoder and Outcome Network are first trained in an86

encoder–predictor setup [12, 11]. Latent embeddings Z are then clustered with k-means to initialise87

K cluster representations, which in turn supervise the PDN. During fine-tuning, the learning rate88

is reduced and the full model is trained end-to-end. Unlike Aguiar et al. [11], which relies on89

staged initialisation, we train all sub-networks until convergence, a strategy better suited to sparse90

primary care data. Different from [12], GI-Clust jointly optimises all sub-networks with a unified91

objective. Optimisation combines classification and clustering losses, including the loss targeting92

cluster collapse in [11], with tunable weights to balance tasks.93

4 Results94

We evaluated GI-Clust on the QResearch primary care database, comprising 210,970 patients (8,11895

with GI cancer across colon, rectal, gastric, and oesophageal subtypes, matched to controls). Records96

include up to five years of 43 clinically relevant features [5, 6, 9] including demographics, diagnoses,97

symptoms, and blood tests. We provide the cohort selection and preprocessing strategies, full list of98

variables, and summary statistics in the Appendix A. Evaluation is performed on a geographically99

distinct region (South East and South West of England).100

We implemented GI-Clust in TensorFlow 2.10 and trained on a single Tesla V100 PCIe 32GB GPU,101

using fixed random seeds for reproducibility and stratified cross-validation for robustness. We provide102

the full model and training hyperparameters for GI-Clust and our benchmarks in the Appendix C.103

We compare against four benchmarks: CAMELOT [11], the state-of-the-art for interpretable cluster-104

ing of time-series EHR data; XGBoost, widely used in clinical settings for its interpretability and105

strong performance on tabular data; a simple LSTM Encoder, included to directly test the usefulness106

of our clustering framework beyond sequence modelling; and TSKM [22], the state of the art in107

time-series clustering, used here to confirm that the raw data does not contain trivial clustering108

patterns.109

Two tasks were considered: (1) Clinical outcome prediction, a five-class classification problem110

(Colon, Rectal, Gastric, Oesophageal, No Cancer); and (2) Phenotype discovery, evaluating whether111

cluster assignments reveal clinically interpretable patient subgroups. Performance was assessed using112

AU-ROC, AU-PRC, F1, Recall, and Precision, computed via macro-averaging across classes to target113
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imbalance, the results are shown in Table 1. Results are reported as the mean and standard deviation114

over five random seeds.115

Table 1: Classification performance across five clinical outcome categories: Colon, Rectal, Oe-
sophageal, Gastric, and No Cancer. The best value for each metric is shown in bold. For all reported
metrics, higher values indicate better performance.

Method AUROC AUPRC F1 Recall Precision

XGB 0.817(±0.003) 0.314(±0.002) 0.253(±0.002) 0.467(±0.006) 0.245(±0.001)
LSTMClassifier 0.769(±0.126) 0.247(±0.028) 0.243(±0.031) 0.334(±0.087) 0.235(±0.026)
TSKM 0.553(±0.002) 0.248(±0.010) 0.196(±0.0) 0.2(±0.0) 0.192(±0.0)
CAMELOT 0.858(±0.011) 0.322(±0.009) 0.311(±0.038) 0.298(±0.041) 0.448(±0.033)
GI-Clust (ours) 0.870(±0.009) 0.337(±0.009) 0.380(±0.026) 0.425(±0.039) 0.382(±0.019)

Beyond classification, GI-Clust discovers clinically meaningful subgroups, shown in Figure 4 in the116

Appendix. The learnt clusters correspond to distinct GI cancer profiles (e.g. cancer vs. no cancer,117

rectal- vs. gastric/oesophageal-dominant), while the attention maps, Figure 5, highlight early risk118

signals such as haemoglobin in the months before diagnosis.119

5 Discussion120

Classification results show that GI-Clust outperforms the benchmarks, demonstrating that our novel121

encoder and predictive clustering framework are well suited for capturing temporal dynamics in122

sparse primary care records and improving early GI cancer detection. Importantly, the model not123

only improves prediction but also reveals clinically meaningful patient phenotypes, as the discovered124

clusters map onto distinct GI cancer subtypes, Figure 4. These findings indicate that GI-Clust125

works well with highly imbalanced datasets and is learning temporal dependencies that align with126

established clinical knowledge, Figure 5 and Table 6. Our model highlight relevant clinical features127

in the 6 months before diagnosis which is consistent with the clinical knowledge and highlights the128

difficulty of the clinical task.129

6 Conclusion130

In this paper, we introduced GI-Clust, a semi-supervised clustering framework for temporal EHR131

data applied to early GI cancer detection. Methodologically, the use of separate baseline and temporal132

encoders with gated fusion, combined with Gumbel-Softmax clustering, enables learning from sparse133

and irregular primary care records and improves classification accuracy over strong benchmarks.134

Clinically, GI-Clust uncovers interpretable patient subgroups that align with established cancer135

phenotypes and highlights subtype-specific temporal signals, offering a pathway toward earlier136

screening and stratified monitoring. Future work will extend validation to external datasets and137

explore multimodal integration to enrich phenotype discovery.138

Key takeaway: GI-Clust uses a novel dual-encoder with gated fusion and predictive clustering to139

learn from sparse multivariate EHR time series, boosting early cancer detection while uncovering140

meaningful, interpretable patient subgroups.141
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A QResearch Dataset213

QResearch [23] is a UK primary care database containing anonymised EHRs from over 35 million214

patients, linked at the individual level to the National Cancer Registry, Death Registry, and Hospital215

Episode Statistics. For this work, we used a random 25% subset covering 13 million patients in216

England (2010–2019), providing demographics, prescriptions, diagnoses, laboratory tests, and cancer217

registry information (diagnosis, grade, stage). This large, diverse dataset is well suited for early218

cancer detection, while also reflecting the typical challenges of EHRs: heterogeneity, missingness,219

and irregular sampling. We constructed a case–control cohort from QResearch comprising four220

GI cancer types (colon, rectal, gastric, oesophageal), defined using ICD-10 codes and excluding221

non-melanoma skin cancers. Eligible patients were 20–100 years old with at least two years of222

GP registration prior to entry (2015–2019). Cancer cases were restricted to first diagnoses within223

this period, excluding prior cancers, multiple synchronous cancers, or diagnoses recorded only at224

death. Controls were cancer-free up to 2019 and matched to cases 1:25 (to reflect the national cancer225

prevalence) by sex and general practice, with a maximum age difference of 10 years. The final cohort226

included 8,118 GI cancer cases and 210,970 patients overall. Table 2 shows the breakdown of the227

number of patients per cancer type and the diagnostic codes used for extraction, revealing a highly228

imbalanced dataset. Figure 2 shows the cohort extraction flowchart.229

Figure 2: Cohort selection from the QResearch database: The flowchart shows the extraction process
used to define the case–control cohort. A total of 8,118 GI cancer cases were identified and matched
to controls in a 1:25 ratio, based on sex and general practice, with a maximum age difference of 10
years. When more than 25 matches were available, controls were ranked by age proximity. Controls
could be matched to multiple cases, but differing index dates limited exposure window overlap.

Table 2: Cancer coding and case distribution: The table lists the ICD-10 codes used to identify cases
of gastrointestinal cancer in the study cohort, along with the number of patients per cancer type.

Cancer Type Colon Rectal Gastric Oesophageal

ICD-10 Code C18 C19, C20 C16 C15
Cases 3,926 1,966 893 1,333

Preprocessing involved standardising units across blood tests, removing extreme outliers (outside the230

0.1–99.9th percentiles) and clipping values beyond three standard deviations. Age was fixed at cohort231

entry, while other baseline covariates remained static. Time-varying features (risk factors, symptoms,232

blood tests) were aggregated into 6-month intervals (maximum 10 per patient). Continuous measures233

(e.g., blood tests, BMI, alcohol intake) were averaged per interval, while symptoms are binary.234

Missing data were imputed using last observation carried forward, population means (for entirely235

missing features), or an “Unknown” category (for categorical variables). Finally, features were236

min–max and batch normalised. The full list of used clinical variables is provided in Table 3.237
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Table 3: Overview of clinical variables from the QResearch dataset: The table presents the full list
of clinical variables extracted from the QResearch database, grouped into four clinically relevant
categories: baseline characteristics, risk factors, symptoms, and blood test results. Where applicable,
we report the percentage of missing values in the study population. For binary variables (excluding
sex), a value of 1 indicates the presence of the feature and 0 its absence. As such, symptoms do
not have missingness. Sex is encoded as 1 for male and 0 for female. All symptoms are time-
varying binary variables, and all blood test results are continuous and time-varying. For baseline
characteristics and risk factors, we include additional columns describing each feature’s nature
(static or time-varying) and type (binary, categorical, or continuous). Where applicable, the median
and missingness of each variable are reported after outlier clipping. Group Code IDs used for
variable extraction are available on the QResearch website at https://www.qresearch.org/
data/qcode-group-library/, which includes SNOMED-CT and ICD-10 mappings. Group
codes used in multiple variables are listed as: Multiple1: 561, 6282, 6285, 17064–17070; and
Multiple2: 2238, 2239, 2242–2244, 7527. ALT - alanine aminotransferase test. CRP - C-reactive
protein. ESR - erythrocyte sedimentation rate. GGT - gamma-glutamyl transferase. MCV - mean
corpuscular volume. WBC - white blood cell.

Baseline Characteristics

Variable Group Code ID Nature Category Median(Range) Missingness [%]

Age N/A Static Continuous 68.0 (20 – 98) 0.00
Sex (Male) N/A Static Binary 58.83 % 0.00
Ethnicity N/A Static Categorical N/A 36.85
Study Practice N/A Static Categorical N/A 0.00
Strategic Health Authority (SHA) N/A Static Categorical N/A 0.00
Townsend deprivation quantile N/A Static Categorical 2.0 (1.0 – 4.0) 0.22

Risk Factors

Variable Group Code ID Nature Category Median(Range) Missingness [%]

Alcohol Intake Multiple 1 Time-varying Continuous 2.0±13.0 (0.0 – 279.6) 59.97
Body Mass Index (BMI) 200 Time-varying Continuous 27.7±5.6 (8.3 – 47.1) 25.07
Crohn’s disease 45 Static Binary 871 (0.41%) -
Irritable Bowel Syndrome (IBS) 17179 Time-varying Binary 3,010 -
Family History of non-GI Cancer 2527 Static Binary 1,809 -
Family History of GI cancer 1345 Static Binary 20,403 -
Smoking Category Multiple2 Time-varying Categorical - 15.49
Ulcerative Colitis (UC) 46 Time-varying Binary 1,846 -

Symptoms

Variable Group Code ID [%] with ≥1 entry per observation window Red Flag Symptom (YES/NO)

Abdominal Mass 4968 0.66 NO
Abdominal Pain 135 14.55 YES
Appetite Loss 1393 0.98 YES
Back Pain (Non-Sciatica) 2374 22.47 NO
Bowel Change 1845 2.49 NO
Constipation 141 7.62 NO
Diarrhea 107 8.56 NO
Dysphagia 1385 1.76 YES
Heartburn 2065 9.97 YES
Indigestion 2066 4.79 YES
Nausea 2375 2.07 NO
Pelvic Pain 2376 0.32 NO
Rectal Bleed 279 4.02 YES
Sciatica 2374 4.26 NO
Tiredness 605 10.82 NO
Weight Loss 1397 2.67 YES

Blood Test Results

Variable Group Code ID Median (Range) Missingess [%]
Albumin 4990 41.0±3.9 (25.6 – 54.0) 20.90
ALT 1297 20.0±11.18 (4.0 – 84.0) 20.06
Bilirubin 1446 9.0±4.8 (2.0 – 32.8) 18.13
CRP 2367 5.0±16.3 (2.0 – 114.5) 68.41
ESR 2366 10.7±14.9 ( 2.0 – 85.8) 65.11
Ferritin 1400 76.0±115.0 (2.0 – 718.0) 65.33
GGT 1299 28.0±45.0 (3.0 – 380.0) 68.62
Haemoglobin (Hb) 1410 137.0±15.2 (75.0 – 197.7) 19.31

Iron Level 17236 13.5±6.4 (0.8 – 40.5) 93.19
MCV 1411 91.1±5.5 (68.2 – 114.0) 19.39
Platelet 1447 237.5±67.15 (21.0 – 781.0) 19.35
Cholesterol 405 3.3±1.0 (1.0 – 7.9) 25.40
WBC 2069 6.9±1.9 (1.5 – 16.0) 19.33
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B Summary Statistics238

(a) Age distribution of the extracted QResearch
cohort at the point of cohort entry. Age distribution
at cohort entry is right-skewed, with most patients
between 50 and 80 years old.

(b) Ethnicity distribution of the extracted QRe-
search cohort. Ethnicity distribution reveals pre-
dominantly White cohort, with substantially fewer
patients from minority ethnic backgrounds.

(c) Patient distribution by Townsend deprivation
quintile. 1 indicates the least deprived and 5 the
most deprived. Townsend deprivation quintiles
indicate that the cohort skews toward lower depri-
vation, with the majority of patients falling into the
least deprived categories (1 and 2).

(d) Patient distribution per Strategic Health Au-
thority (SHA). Distribution by Strategic Health
Authority (SHA) shows most patients are regis-
tered in practices located in the North West, South
East, and London regions.

Figure 3: Summary of cohort demographics and socioeconomic characteristics. Descriptive statistics
for the extracted QResearch cohort. Patients missing ethnicity or Townsend deprivation quintile are
omitted from the plots. No patients were missing age or Strategic Health Authority (SHA).
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C Hyper-Parameters239

Model Training. Standard Benchmarks. The complete list of hyperparameters used for the grid240

search optimisation of the benchmarking models is shown in Table 4. The best parameters are shown241

in bold.242

Table 4: Grid search hyperparameter ranges for the benchmark models. The table presents the
parameters used for TSKM and XGBoost during model tuning. Best-performing values are shown in
bold.

Parameter TSKM XGB

γ / {0.1, 0.2, 0.5}
kernel {"soft-DTW", "DTW" "eucl"} /
init {"random", "km++"} /
C / /
method / {"per feat", "all"}
n-estimators / {50, 100, 200}
depth / {1, 3, 5, 10}
min-child-weight / {1, 2, 5, 7}
K {5, 6, 7, 8} /

Model Training. Deep learning models. The full list of hyperparameters used for grid search243

optimisation of LSTMClassifier, CAMELOT, and GI-Clust is shown in Table 5. The best parameters244

are shown in bold. We run the clustering models for 50 epochs and use Early Stopping with patience245

of 3 epochs and tolerance ∆=0.0001. The models were optimised using the Adam optimiser and246

the ReduceLROnPlateau learning rate scheduler, monitoring the validation loss. In addition, we247

conducted an ablation study to determine the optimal training parameters. We tested batch sizes248

bs ∈ {64, 128, 256, 512}, learning rates lr_init ∈ {1e-6, 1e-5, 1e-4, 1e-3, 1e-2}, and initialisation249

learning rates lr ∈ {1e-5, 1e-4, 1e-3, 1e-2}. We trained the models for the number of classes K250

∈ {5, 6, 7, 8} and latent dimension latent_dim ∈ {32, 64}, hidden layers hidden_layers ∈ {1, 2, 3}.251

The loss coefficients α1, α2, α3, and β were chosen from {0.5, 0.1, 0.05, 0.01, 0.005, 0.001}. The252

best values are indicated in the table below.253

Table 5: Final selected hyperparameters for the deep learning models. Hyperparameter configurations
for LSTMClassifier, CAMELOT, and GI-Clust models after grid search optimisation. These include
learning rates, architecture depths, and loss weighting coefficients.

Parameter LSTMClassifier CAMELOT GI-Clust

bs 512 512 64
lr_init / 0.001 0.0001
lr 0.001 1e-5 1e-5
latent_dim 8 32 32
hidden_layers (LSTM-Encoder) 1 2 1
hidden_nodes (LSTM-Encoder) 8 32 16
hidden_layers (Baseline Encoder) / / 2
hidden_nodes (Baseline Encoder) / / 8
hidden_layers (Fusion) / / 1
hidden_nodes (Fusion) / / 16
α1 / 0.5 0.01
α2 / 0.01 0.05
α3 / 0.5 0.05
β / 0.01 0.001
K / 11 12
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D Visualisations254

D.1 GI-Clust255

To further examine GI-Clust, we visualise patient distributions across the learnt clusters, Figure 4.256

Each subplot shows the outcome-normalised proportion of patients per cancer subtype. Distinct257

patterns emerge: Cluster 1 concentrates gastric (22%) and oesophageal (42%) cancers, Cluster 3258

contains the majority of “No Cancer” patients (37%), Cluster 4 mixes Colon and Gastric, and Cluster259

5 is dominated by Rectal cancer. Important to note, assignment to a cluster does not imply diagnosis,260

but indicates that a patient’s trajectory resembles those of patients later diagnosed with that outcome,261

supporting risk stratification for screening or monitoring.262

Figure 4: Distribution of clinical outcomes across identified clusters in GI-Clust. For each cluster,
the bar plot represents the percentage of patients per each of the five outcome classes: Colon,
Rectal, Gastric, Oesophageal, and No Cancer. Each subplot is labelled Cluster 1 through Cluster 5,
corresponding to the cluster numbers assigned by the model.

To validate these phenotypes, we also visualise the associated attention heatmaps, shown in Figure263

5. Averaged attention heatmaps reveal that the most informative signals often occur in the last six264

months before cohort exit. We extract the five most important feature-time pairs for each cluster265

from these heatmaps and summarise them in Table 6. For example, haemoglobin receives high266

attention across clusters: persistently low Hb values mark cancer subgroups, while normal values267

help distinguish non-cancer cases with similar symptoms. Thus, attention maps provide interpretable268

insight into which clinical signals guide stratification, even when the direction of values differs.269
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Figure 5: Attention heatmaps for each cluster learnt by GI-Clust. For each cluster, the attention maps
show the class-weighted averaged attention scores across time-varying features and time windows.
The weights are normalised to a 0.0 to 1.0 range. Higher attention indicates that changes in those
feature–time pairs played a greater role in the model’s decision to assign patients to that cluster. The
x-axis shows clinical features, the y-axis shows time to cohort exit in 6-month intervals (top = most
recent). The most highly attended features for each cluster are summarised in Table 6

Table 6: Top five features with the highest attention scores in the final 6-month window per cluster.
Table shows the five feature–time pairs with the highest attention scores in the 6-month window prior
to cohort exit, listed for each cluster. Attention scores are derived from the cluster-specific attention
maps in Figure 5. Cluster indices (K) correspond to those shown in the attention plot. Dysphagia was
excluded from the table due to its consistent high ranking across all clusters. Abbreviations for clinical
variables are provided in Table 3. Higher attention indicates that changes in those feature–time pairs
played a greater role in the model’s decision to assign patients to that cluster.

K Variables

1 Tiredness, Platelet, CRP, Bilirubin, Hb
2 Hb, Platelet, Bowel Change, IBS, Back Pain
3 Platelet, Hb, ESR, Back Pain, CRP
4 Bowel Change, IBS, WBC, BMI, Sciatica
5 WBC, Indigestion, UC, Cholesterol, IBS

D.2 CAMELOT270

For completeness, we present the visualisations for our baseline comparison, CAMELOT. Figure 6271

displays the distribution of clinical outcomes across the identified clusters (phenotypes), revealing272

two clusters (0 and 4) that contain few cancer patients. Clusters 1, 2, and 3 show a heterogeneous mix273

of all five outcomes, reflecting uncertainty in their feature profiles. This is further supported by the274

attention heatmaps in Figure 7, which show consistent temporal feature importance patterns across275

clusters, with highest attention values concentrated in the months immediately prior to cohort exit.276
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Figure 6: Distribution of clinical outcomes across identified clusters in CAMELOT. For each cluster,
the bar plot represents the percentage of patients per each of the five outcome classes: Colon,
Rectal, Gastric, Oesophageal, and No Cancer. Each subplot is labelled Cluster 1 through Cluster 5,
corresponding to the cluster numbers assigned by the model. Clusters 0 and 4 show few cancer cases,
while Clusters 1, 2, and 3 display a mixed distribution. Cluster 3 has the highest proportion of cancer
to non-cancer cases, potentially indicating a patient group at elevated risk of gastrointestinal cancer.
Similarly, Cluster 2 shows a higher proportion of rectal cancer cases relative to non-cancer cases,
suggesting a subgroup at increased risk of rectal cancer.

Figure 7: Attention heatmaps for each cluster learnt by CAMELOT. For each cluster, the attention
maps show the class-weighted averaged attention scores across time-varying features and time
windows. The weights are normalised to a 0.0 to 1.0 range. Higher attention indicates that changes
in those feature–time pairs played a greater role in the model’s decision to assign patients to that
cluster. The x-axis shows clinical features, the y-axis shows time to cohort exit in 6-month intervals
(top = most recent). Higher attention is concentrated in the final 6 months prior to exit. The most
highly attended features are consisted across the five clusters and are Alcohol Intake, Age, Tiredness,
Haemoglobin (Hb), and Crohn’s disease.
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E Cluster Contingency Matrices277

Contingency Matrices. Table 8 and 7 show the empirical number of outcome distributions observed278

for each cluster learnt by the proposed model and CAMELOT, respectively. We suppress (*) counts279

where the number of patients is smaller or equal to 5 for privacy and data protection reasons.280

Table 7: Contingency matrix for each learnt cluster for GI-Clust.
Cluster 1 2 3 4 5

Colon 22 438 34 315 168
Rectal 7 180 * 45 183
Gastric 40 69 * 55 12
Oseophageal 134 121 6 29 7
No Cancer 582 26,805 17,713 1,135 593

Table 8: Contingency matrix for each learnt cluster for CAMELOT.
Cluster 1 2 3 4 5

Colon 21 230 224 490 12
Rectal * 92 219 104 *
Gastric * 26 34 116 *
Oesophageal * 39 69 184 *
No Cancer 8,118 12,836 12,454 4,439 8,981
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