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Abstract

Large Language Models (LLMs) have achieved001
remarkable success in natural language process-002
ing (NLP), particularly in single-turn question003
answering (QA) on short-text. However, their004
performance significantly declines when ap-005
plied to multi-turn QA over extra-long context006
(ELC), as they struggle to capture the logical007
correlations across multiple chunks of ELC and008
maintain the coherence of multi-turn Questions.009
To address the challenges, we propose the010
CSTree-SRI framework(Cognitive Semantic011
Tree through Summarization, Retrieval, and012
Introspection). CSTree-SRI dynamically con-013
structs the CSTree to preserve logical coher-014
ence within ELC through hierarchical synthe-015
sis and introspective validation. Then a logic-016
driven traversal strategy on CSTree is designed017
to provide efficient information retrieval for018
question answering. Additionally, we construct019
a suite of multi-turn QA datasets and an eval-020
uation benchmark tailored for ELC tasks, and021
comprehensive experiments demonstrate the022
framework’s superiority in addressing the chal-023
lenges of multi-turn QA over ELC.024

1 Introduction025

The rapid proliferation of digital information has in-026

tensified the demand for understanding extra-long027

context (ELC) in multi-turn question answering028

(MTQA) with LLM. ELC involves both single doc-029

uments (e.g., legal contracts) and cross-document030

synthesis (e.g., academic literature reviews) that031

exceed the context window of LLM (Bai et al.,032

2024b). MTQA over ELC scenarios further compli-033

cates the problem. Users often engage in iterative034

questioning, such as consulting legal clauses or ex-035

ploring academic topics. As shown in Fig. 1, such036

kind of tasks require capturing the logical correla-037

tion among multiple chunks of ELC, the coherence038

among multi-turn QA, as well as the alignment be-039

tween questions and partially overlapping retrieved040
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Figure 1: An Example of MTQA over ELC. The 1st
question of summarizing multiple papers involves the
correlation among multiple chunks of ELC, the 2nd
question of recommending the latest one involves the
coherence among multiple questions, and the follow-
ing two questions of the paper details involve partially
overlapping retrieved segments. We propose a cogni-
tive semantic tree to capture logical relationships and
coherence across MTQA over ELC.

segments (Zhu et al., 2023), thus placing higher de- 041

mands on LLMs’ ability to precisely and efficiently 042

extract key information in ELC. 043

There are mainly two kinds of approaches in pro- 044

cessing ELC (Huang et al., 2023): (1) modifying 045

LLM’s architecture to extend the context window, 046

e.g., optimizing attention mechanisms (Chen et al., 047

2023b), introducing recurrence (Borgeaud et al., 048

2022), or modifying positional encoding (Su et al., 049

2024); (2) employing external tools (e.g., RAG and 050

Agents) to assist LLM in efficient retrieval and in- 051

formation processing (Topsakal and Akinci, 2023). 052

These approaches primarily focus on single-turn 053

tasks, lacking effective mechanisms for maintain- 054

ing coherence across multi-turn interactions. 055

Research on multi-turn conversation abilities has 056

largely been confined to short-text domains, where 057

evaluation benchmarks have been well-established. 058

Traditional methods on MTQA simply concatenate 059

historical turns, where context cannot be utilized in- 060

efficiently (Zhang et al., 2018a), and noise may be 061

introduced. Moreover, when the context window is 062

exceeded, truncation mechanisms may discard crit- 063
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ical information, adversely affecting the model’s064

reasoning and comprehension.065

In summary, current research on MTQA over066

ELC exhibits three key limitations: (1) logical067

fragmentation: Existing context window exten-068

sion methods address length constraints but fail to069

preserve inter-document, across-MTQA relation-070

ships (Liao et al., 2024). (2) noise accumulation:071

Concatenating multi-turn inputs causes noise ac-072

cumulation from redundant information, and in-073

creases computational costs (Zhang et al., 2018b).074

(3) evaluation gaps: Existing benchmarks focus075

on short-text MTQA (Kwan et al., 2024; Wang076

et al., 2023; Bai et al., 2024a), lacking datasets077

and metrics for evaluating MTQA reasoning per-078

formance over ELC.079

To address these challenges, we propose080

CSTree-SRI(Cognitive Semantic Tree through081

Summarization, Retrieval, and Introspection), a082

framework for multi-turn QA over extra-long con-083

text (ELC), which dynamically constructs a hierar-084

chical Cognitive Semantic Tree (CSTree) to orga-085

nize ELC into document/paragraph/sentence nodes,086

preserving logical coherence for efficient retrieval.087

CSTree-SRI integrates four expert modules: (1)088

Retrieval Expert (RE), for relevant segments filter-089

ing; (2) Summary Expert (SE), which generates090

hierarchical summaries; (3)Introspection Expert091

(IE), which dynamically makes decisions on re-092

trieval and response optimization; and (4) Answer093

Expert (AE), produces final responses. To address094

challenge 1, CSTree-SRI first dynamically builds095

the CSTree through hierarchical synthesis and in-096

trospective validation by a collaboration of RE,097

SE, and IE. To address challenge 2, it then in-098

troduces a logic-driven hierarchical traversal strat-099

egy on CSTree to retrieve relevant information for100

the next question by RE and IE. Subsequently, the101

framework iteratively optimizes responses through102

collaboration between AE and IE, ensuring both rel-103

evance and grounding in the retrieved information.104

To address challenge 3, we construct an MTQA-105

ELC benchmark and assess LLM performance in106

extra-long context QA tasks. Our contributions107

transcend prior work in three dimensions:108

(1) Framework Innovation: CSTree-SRI is109

the first attempt to construct and utilize the110

introspection-driven CSTree through the collabora-111

tion of multiple expert modules for understanding112

ELC in MTQA precisely and efficiently.113

(2) Benchmark Rigor: We introduce the first114

MTQA-ELC benchmark, containing over 500 ar-115

ticles spanning 391k words, nearly 4k groups of 116

correlated questions, and new metrics for reasoning 117

time, accuracy, and LLM-human gaps. 118

(3) Empirical Superiority: On tasks with 256k+ 119

tokens, CSTree-SRI improves multi-turn QA per- 120

formance by an average of 21.48%, reduces in- 121

ference time by 41.11% (ETScore) compared to 122

RAG/Agent solutions while improving answer ac- 123

curacy by 44.17%. 124

2 Related Work 125

2.1 Long-Text Processing in LLMs 126

Current challenges in enhancing the long-text pro- 127

cessing capabilities of LLMs include (Huang et al., 128

2023): quadratic complexity in attention compu- 129

tation, the lack of context memory mechanisms, 130

and limitations on the maximum length of train- 131

ing samples. Existing approaches can be broadly 132

categorized into two classes: 133

Architectural Optimization. Existing ap- 134

proaches to enhance Transformer-based LLMs’ 135

long-text processing capabilities focus on the fol- 136

lowing architectural optimizations: (1) Attention 137

mechanism refinement improves computational ef- 138

ficiency through blockwise processing or hierarchi- 139

cal attention (Qiu et al., 2019; Chen et al., 2023b; 140

Yang et al., 2016), yet often sacrifices global con- 141

textual awareness; (2) Recurrent memory augmen- 142

tation integrates external memory databases to pre- 143

serve long-term dependencies (Borgeaud et al., 144

2022; Tworkowski et al., 2024), but struggles with 145

precise memory retrieval; (3) Positional encoding 146

extension employs rotary operations or NTK-aware 147

scaling to expand context windows (Su et al., 2024; 148

Chen et al., 2023a; Peng and Quesnelle, 2023), but 149

they require additional adjustments and optimiza- 150

tions, potentially increasing training difficulty. 151

Unlike existing work focused on specific Trans- 152

former optimizations, we propose CSTree-SRI that 153

enhances LLMs’ multi-turn QA over ELC beyond 154

architectural-level improvements. 155

External Tool Augmentation. These ap- 156

proaches employ LLMs as black-box processors 157

combined with external mechanisms: (1) Multi- 158

agent collaboration frameworks delegate long-text 159

processing through role specialization and interac- 160

tion protocols (Zhao et al., 2024), though coordina- 161

tion overhead increases complexity; (2) Attention 162

modification techniques like LongHeads adapt at- 163

tention patterns for extended contexts without archi- 164

tectural changes (Lu et al., 2024), but lack dynamic 165
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reasoning adaptation; (3) Retrieval-Augmented166

Generation (RAG) enhances inputs through exter-167

nal knowledge bases (Gao et al., 2023), with recent168

improvements incorporating LLM-guided retrieval169

evaluation (Li et al., 2023) and reflection mecha-170

nisms (Asai et al., 2023). While effectively circum-171

venting context window limitations, such methods172

often underutilize LLMs’ native reasoning capaci-173

ties for complex textual analysis.174

Our work combines chunked retrieval and re-175

flective analysis, leveraging multi-module experts176

and the Cognitive Semantic Tree to extract and177

maintain logical information in ELC. This enables178

efficient information filtering and organization, of-179

fering a new pathway for MTQA over ELC.180

2.2 Benchmarks for MTQA on Long-Context181

Evaluating long-context models is challenging due182

to the inherent difficulty of collecting and analyz-183

ing long texts (Li et al., 2024). Bai et al. (2024b)184

introduced the LongBench benchmark, comprising185

six major task categories and 21 tasks, covering key186

long-text application scenarios. An et al. (2024)187

proposed the L-Eval benchmark, which includes188

long documents from domains such as law, finance,189

academic papers, novels, and conferences, along190

with various tasks. However, these benchmarks191

primarily evaluate single-turn QA tasks and lack192

assessments for MTQA tasks. Zheng et al. (2023)193

developed MT-Bench, a dataset of 80 multi-turn194

questions, but each dialogue consists of only two195

turns. Kwan et al. (2024) increased the number of196

turns, proposing MT-Eval, which includes multi-197

ple task types within a single dialogue to evaluate198

LLMs’ comprehensive multi-turn dialogue capabil-199

ities. However, these benchmarks involve relatively200

short texts and do not address ELC.201

In summary, these works lack evaluations of202

LLMs’ reliability and efficiency in MTQA over203

ELC, and the distinction between evaluating mod-204

els and augmenting long-text processing with ex-205

ternal tools remains underexplored. In contrast, our206

work evaluates mainstream long-text LLMs and207

external tools (e.g., RAG, Agents) in MTQA over208

ELC, addressing gaps in existing research.209

3 CSTree-SRI 210

The input to CSTree-SRI consists of a text se- 211

quence X = {x1, x2, . . . , xl}, which can be a sin- 212

gle long document or a collection of documents, 213

and a sequence of logically dependent queries 214

Q = {q1, q2, . . . , qm} across multiple rounds. The 215

framework aims to generate answers for these 216

queries based on the input X . To handle this, 217

CSTree-SRI initially segments the input text X 218

into chunks of a predefined size sz, resulting in 219

X = {C1, C2, . . . , Ct} where t = ⌈l/sz⌉. These 220

chunks act as the fundamental processing units, en- 221

abling effective multi-turn QA (MTQA) over extra- 222

long context (ELC) by maintaining and leveraging 223

historical information throughout the queries. 224

3.1 Framework Components 225

The CSTree-SRI framework comprises a Cognitive 226

Semantic Tree (CSTree) and four expert modules. 227

The CSTree is a three-layer tree structure where 228

the nodes are classified into document-level nodes, 229

paragraph-level nodes, and sentence-level nodes. 230

Each node contains a summary or raw text, with 231

edges between the nodes of various layers formed 232

due to their common logical relationships. 233

The four Expert modules include: (1) A Re- 234

trieval Expert (RE) that filters out relevant text seg- 235

ments to reduce noise. (2) A Summary Expert (SE) 236

generates concise summaries after each QA turn 237

to maintain logical consistency. (3) An Answer 238

Expert (AE) that produces final responses. (4) An 239

Introspection Expert (IE) that dynamically refines 240

retrieval precision. The IE module will conduct 241

introspection from two aspects: retrieval precision 242

and response accuracy, with specific introspection 243

questions detailed in Table 1. 244

Specifically, for each query qi, CSTree-SRI per- 245

forms two core operations: (1) Dynamic Struc- 246

ture Construction of the tree through collabora- 247

tion among the RE, IE, and SE modules, and (2) 248

Hierarchical Information Selection on the tree 249

via collaboration between the RE and IE modules. 250

After retrieving relevant information blocks, re- 251

sponses are refined through iterative optimization 252

Type Specific Question

Relative Are the retrieved text chunks relevant to the current query qi?
NodeRetr For the summarized information of a node, is further retrieval necessary?
ExtraRetr Is the retrieved information from the CSTree sufficient, or is further retrieval from the original text needed?
Support Can the retrieved information support the AE’s answer?
Useful Does the AE’s answer effectively address qi?

Table 1: Introspection Questions for the IE Module (See Appendix C.1 for Detailed Prompts)
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(b) Hierarchical Information Selection 
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Figure 2: Expert collaborative interaction process of CSTree-SRI. The different shades of the same color in CSTree
represent the step-by-step construction of the CSTree across different QA rounds.

between the AE and IE modules to ensure enhanced253

answer precision. Appendix C.2 contains specific254

prompts for each module. The following sections255

describe how these modules interact collaboratively256

with the CSTree during each QA round qi.257

3.2 Dynamic Structure Construction258

Inspired by the hierarchical structure of human259

reading notes (paragraph-chapter-book), we pro-260

pose a dynamic CSTree construction that mimics261

cognitive processes through introspection-driven262

hierarchical synthesis. The RE, IE, and SE mod-263

ules collaborate to implement the "structured note-264

taking" approach. They retrieve context segments,265

validate logical coherence through introspection,266

and synthesize summaries at paragraph and doc-267

ument levels. This process transforms ELC into268

navigable information structures. Below, we de-269

tail the technical implementation of constructing270

paragraph-level and document-level nodes.271

Para-Level Node Construction. As shown in272

Fig. 2(a), our framework combines flat retrieval273

with introspective validation for paragraph-level274

construction. The RE first retrieves candidate275

text chunks X using the BM25 algorithm. Mean-276

while, the IE assesses whether the retrieved chunks277

truly represent the key information Ckey relevant278

to the query qi, effectively addressing the "key-279

word bias" commonly found in traditional sparse280

retrieval methods. This two-stage filtering pro-281

cess—merging statistical relevance with semantic282

introspection—ensures that only logically coherent283

fragments proceed to the synthesis phase. The SE284

then dynamically creates a hierarchical parent node285

Fpara by abstracting the relationships among the286

Ckey nodes, thereby establishing explicit edges to287

maintain content associations and provenance. 288

Doc-Level Node Construction. The framework 289

constructs Cdoc through a ratio-controlled trigger- 290

ing mechanism. When Cpara with logical rela- 291

tionships are identified during CSTree traversal, a 292

predefined 1:3 doc-to-para ratio threshold governs 293

the construction process. This ensures that the num- 294

ber of Cdoc never exceeds one-third of the Cpara, 295

preventing structural redundancy. The proportional 296

constraint activates the SE module only when suffi- 297

cient Cpara nodes exist. This activation asks the SE 298

module to generate the doc-level parent node Fdoc 299

by summarizing relationships across paragraphs. 300

This hierarchical summarization structure en- 301

ables dynamic CSTree evolution through progres- 302

sive QA interactions. Our "structured note-taking" 303

approach preserves critical relationships within the 304

ELC, enhancing QA accuracy. Additionally, the 305

CSTree improves reasoning efficiency by maintain- 306

ing the logical coherence of the text, which accel- 307

erates information retrieval. These advantages are 308

validated in our ablation studies. 309

3.3 Hierarchical Information Selection 310

Unlike conventional tree traversal methods with 311

fixed depth-first or breadth-first strategies, our ap- 312

proach introduces a logic-driven hierarchical traver- 313

sal strategy where the IE module evaluates node 314

relevance at each hierarchy level. The RE and IE 315

modules collaborate to strategically navigate the 316

CSTree, balancing retrieval depth with computa- 317

tional efficiency to address ELC challenges. This 318

logic-driven approach mirrors human top-down 319

comprehension, starting with high-level summaries 320

and drilling down to details as needed. After re- 321

trieval, CSTree-SRI uses a sufficiency validation 322
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mechanism to ensure the retrieved information323

meets query requirements. The hierarchical infor-324

mation selection process is detailed below.325

Logic-Driven Hierarchical Traversal Strat-326

egy As shown in Fig. 2(b), we have implemented327

a dynamic hierarchical traversal strategy that ad-328

justs exploration depth through semantic introspec-329

tion. The process begins with the IE module an-330

alyzing the summary information of each non-331

leaf node, and a dynamic continuation probability332

ϕ(C) = IE(qi, Cl, NodeRetr) is calculated for333

each node chunk C. The hierarchical retrieval auto-334

matically terminates at level l when ϕ(Cl) < τ , im-335

plementing principled depth control that prevents336

over-retrieval while maintaining query relevance.337

For the retrieval results across the entire CSTree,338

paragraph-level nodes Cpara will have their corre-339

sponding document-level parent nodes constructed340

as outlined in Section 3.2. For sentence-level nodes341

Csen, to prevent excessive information retrieval,342

the BM25 algorithm is employed to efficiently fil-343

ter the top-K most relevant nodes, which are then344

used as the retrieved text chunks from the CSTree.345

The entire hierarchical information screening pro-346

cess can be formalized as follows:347

ϕ(C) ≥ τ ⇒ Select(Child)348

Select(Cdoc) ⇒ Select(Cpara) ⇒ Select(Csen)349

Chunktree = BM25(qi, Csen, topk)350

Here, A ⇒ B indicates that operation B is351

performed based on the result of operation A;352

Select(·) represents the selection operation, where353

the child nodes Child of the selected node become354

the target of the next layer of retrieval; Chunktree355

refers to the text chunks retrieved from the CSTree;356

and BM25(·) denotes the retrieval operation using357

the BM25 algorithm.358

Sufficiency Validation Mechanism After com-359

pleting the CSTree retrieval, the IE module intro-360

spects the ExtraRetr to evaluate whether the re-361

trieved text chunks are sufficient to answer the362

query qi. If necessary, additional relevant text363

chunks are retrieved from the extra-long context us-364

ing the flat information retrieval strategy described365

in Section 3.2. Finally, all retrieved text chunks366

are consolidated and provided to the AE module to367

generate the final response.368

3.4 Iterative Response Optimization369

This step represents the final stage of the frame-370

work, synthesizing text chunks retrieved through371

the processes detailed in Sections 3.2 and 3.3.372

Through iterative collaboration between the IE and 373

AE modules, the response to query qi is refined. 374

The IE module evaluates the AE’s output across 375

two critical dimensions: <Support>, which en- 376

sures that the response is grounded in the retrieved 377

text chunks, and <Useful>, which assesses the re- 378

sponse’s relevance to qi. This dual-focused evalu- 379

ation facilitates iterative optimization, ultimately 380

leading to the final answer, as formalized below. 381

Resp = AE(qi, Chunktree + Chunkflat) 382

IE(qi, Resp, Support&Useful) ⇒ Iter(Resp) 383

Resp∗ = Iter(Resp) 384

Here, AE(·) denotes the generation of a re- 385

sponse by the AE, and Chunkflat represents the 386

text chunks retrieved using the flat information re- 387

trieval method. IE(Support&Useful) indicates 388

the IE module performing the <Support> and <Use- 389

ful> introspection. Iter(·) represents the itera- 390

tive process of generating and refining responses 391

through the AE and IE. Resp∗ refers to the updated 392

response generated in a new iteration. 393

4 MTQA-ELC Benchmark 394

Current benchmarks for evaluating LLMs primarily 395

focus on language modeling and generation tasks. 396

However, these benchmarks may not fully capture 397

the models’ abilities to handle complex, multi-turn 398

question-answering tasks, particularly with extra- 399

long contexts. To address this gap, we have devel- 400

oped a benchmark specifically designed to assess 401

LLM performance in information retrieval, key in- 402

formation extraction, and logical reasoning—skills 403

that are crucial for real-world applications involv- 404

ing long-text processing. 405

4.1 Data Construction 406

Table 2 shows the key statistics of MTQA-ELC. 407

Our dataset consists of reading comprehension pas- 408

sages from major exams such as the NMET, CET, 409

PGEE, and TPO. Each passage is carefully divided 410

Benchmark #words in Text #Turns
Max. Avg. Max. Avg.

LongBench(QA task) 18409 8640 1 1
L-Eval(QA task) 26918 9133 1 1
MT-Bench 330 68 2 2
MT-Eval 2574 760 12 7
MT-Bench-101 817 202 323 67

MTQA-ELC (Ours) 217273 217264 100 100

Table 2: Data Statistics. Detailed data sources are pro-
vided in Appendix A.1.
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into paragraphs, with unique identifiers added at411

the beginning and end of each segment to indicate412

the article and paragraph. This structure enables ex-413

plicit tracking of relationships between paragraphs414

when multiple segments from different articles are415

concatenated into an ELC. These identifiers allow416

benchmarks to evaluate LLMs’ ability to process417

and integrate information across paragraphs.418

To further assess the integration and reasoning419

capabilities of models, we generated multi-turn420

question sets based on texts of varying lengths (32k,421

64k, 128k, 256k). For fair evaluation, we random-422

ize paragraph order, shuffle options, and compare423

model performance with human test-taker scores,424

as detailed in Appendix A.2.425

4.2 Task Set426

Reading comprehension tasks assess various cog-427

nitive skills. To evaluate LLMs’ capabilities in428

multi-turn QA over ELC, we categorize tasks based429

on required abilities, including paragraph retrieval,430

information integration, detail/main idea compre-431

hension, and logical reasoning.432

Tasks are divided into four types: Detail Under-433

standing (DU), Semantic & Reference (SR), Main434

Idea (MI), and Inference & Judgment (IJ). The for-435

mer two tasks focus on single-paragraph retrieval436

and understanding, while the latter two require in-437

tegrating information across multiple paragraphs438

to grasp the main idea or perform complex reason-439

ing. For all tasks, the input consists of an ELC and440

a set of questions with multiple choices, and the441

output is the correct choice. Appendix D contains442

examples of various evaluation tasks.443

4.3 Metrics444

Our Benchmark evaluates LLMs using three key445

metrics: Accuracy (ACC), Effective Time Score446

(ETScore), and Human-Adjusted Overall Score.447

Accuracy is a commonly used metric, while448

ETScore and Human-Adjusted Overall Score are449

newly proposed metrics in our Benchmark.450

ETScore measures LLMs’ reasoning time and451

their ability to answer correctly within a specific452

time frame, addressing the limitation of traditional453

accuracy metrics in capturing time efficiency. The454

Human-Adjusted Overall Score compares LLM455

performance to human test-takers, highlighting456

strengths and weaknesses relative to people.457

Accuracy is calculated as:458

ACC =

N∑
i=1

Check(Oi, Ai)

N
× 100% (1)459

Here, N is the total number of questions, and 460

Check(Oi, Ai) verifies if the model’s output Oi 461

matches the correct answer Ai. 462

ETScore’s calculation formulas are as follows: 463

AvgT ime =

∑M
i=1(EndTimei − StartT imei)

M
(2) 464

ETScore = Acc× K

1 + β ×AvgT ime
(3) 465

Here, M is the number of test papers, AvgT ime 466

is the average reasoning time per question, β 467

controls time sensitivity, and K scales the score. 468

We set β = 0.002 and K = 100, with higher 469

ETScore indicating better performance. 470

Human-Adjusted Overall Score accounts for 471

task difficulty by incorporating test-taker accuracy: 472

Overall =

∑N
i=1 Wi

N
(4) 473

Wi =

∑Qi
j=1 f(pij , aij , ki)

Qi
× 100 (5) 474

f(p, a, k) = e0.5·k + aek(0.5−p)a (6) 475

aij =

{
1, Respij = Answerij
−1, Respij ̸= Answerij

(7) 476

Here, Qi is the number of questions in test paper 477

i, pij is the human accuracy for question j, and aij 478

indicates correctness (1 for correct, -1 for incor- 479

rect). Hyperparameter k adjusts sensitivity: higher 480

difficulty (pij low) increases rewards for correct 481

answers and softens penalties for mistakes, while 482

low-difficulty errors incur heavier penalties. 483

5 Experiments 484

In this section, we evaluate the performance of the 485

CSTree-SRI framework on both single-turn and 486

multi-turn QA tasks. For single-turn QA, we use 487

the LongBench benchmarks. For multi-turn QA, 488

we conduct experiments on the MTQA-ELC to as- 489

sess the capabilities of various long-text LLMs over 490

ELC. We also compare CSTree-SRI with main- 491

stream RAG and Agent methods, demonstrating its 492

superior performance in MTQA. Additionally, abla- 493

tion studies validate the contributions of individual 494

modules within the CSTree-SRI framework. 495

5.1 Experiments Setting 496

All evaluations were conducted with float16 pre- 497

cision on 4 Nvidia V100-32G GPUs. Configuration 498

details for each benchmark are described below. 499

LongBench We evaluated six English datasets 500

from LongBench: NarrativeQA, Qasper, Multi- 501

FieldQA, HotpotQA, 2WikiMQA, and Musique, 502

spanning single- and multi-document QA tasks. 503
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Model/Framework Single-Doc QA Multi-Doc QA
NQA Qspr. MulFi Avg. HQA WMQA Musq. Avg.

Llama-2-7B-chat † 18.7 19.2 36.8 24.9 25.4 32.8 9.4 22.6
-LongHeads w/NTK init † 16.87 30.32 38.59 28.59 36.04 26.72 10.21 24.32
-LongLora 17.36 28.97 38.37 28.30 34.81 32.57 12.72 26.70
-CSTree-SRI 19.42 23.34 41.25 28.00 35.73 35.21 21.23 30.72

Table 3: The results of different methods based on the Llama-2-7B-chat model on LongBench. † means the data are
sourced from the LongBench and LongHeads papers

The CSTree-SRI framework used Llama-2-7B-504

chat as the AE with gpt-3.5-turbo for SE/IE mod-505

ules. Baseline included: 1) vanilla Llama-2-7B-506

chat, 2) LongLoRA (Chen et al., 2023b, attention-507

optimized fine-tuning), and 3) LongHeads (Lu508

et al., 2024, attention head selection).509

MTQA-ELC We conducted 100-round multi-510

turn QA sessions. Vanilla LLMs processed texts511

by concatenating the first and last halves of512

their context windows due to inherent context513

window limitations. We evaluated three open-514

source LLMs with 128K context windows (GLM-515

4-9B-Chat, Llama-3.1-8B-Instruct, Qwen2.5-7B-516

Instruct), all locally deployed. Additionally, we517

tested three API-accessed models: gpt-4o-mini518

(128K), DeepSeek-chat (64K), and gpt-3.5-turbo519

(16K). External tools compared included RAG (us-520

ing jina-embeddings-v2-base-en with cosine simi-521

larity), LongAgent (with gpt-4o-mini), and CSTree-522

SRI (with gpt-4o-mini for SE/IE), all using Llama-523

3.1-8B-Instruct as the QA module. Appendix C.3524

contains prompts for evaluation tasks.525

5.2 Single-Turn QA Evaluation526

Table 3 compares our method with LongHeads and527

LongLora on single-turn QA tasks within Long-528

Bench. Our method achieves performance that is529

comparable to the baseline in single-document QA.530

However, in multi-document QA, CSTree-SRI sig-531

nificantly outperforms the others in average scores,532

demonstrating its effectiveness in handling more533

complex long-text QA tasks. This improvement534

is due to our framework’s enhanced ability to cap-535

ture the logical relationships within lengthy and536

intricate texts.537

To further validate the generalizability of our538

method across different models, we conducted ad-539

ditional experiments on the L-Eval benchmark.540

The results demonstrate consistent performance541

improvements, as detailed in Appendix B.1.542

5.3 Multi-Turn QA Evaluation543

Table 4 presents the performance comparison of544

Long-Context LLMs and external tool-enhanced545

methods on MTQA tasks across different context 546

lengths. For Long-Context LLM with a 128K na- 547

tive context window, both ACC and ETS decline 548

significantly when handling texts beyond this limit 549

(128K, 256K) compared to shorter contexts (32K, 550

64K), highlighting their constraints in extra-long 551

context processing. 552

Comparing the overall performance of CSTree- 553

SRI (with Qwen-2.5-7B-Instruct as AE) to gpt-4o- 554

mini and deepseek-chat in Table 4, our method 555

achieves the highest Overall score (213.78) while 556

maintaining consistently high ACC and ETS across 557

different context lengths. This highlights CSTree- 558

SRI’s effectiveness in mitigating performance 559

degradation in ELC scenarios. 560

Table 4 also compares models enhanced with 561

external tools. Experimental results show that tra- 562

ditional RAG methods offer minimal gains within 563

context limits and only slight improvements for 564

ELC. LongAgent improves long-text QA capability 565

but incurs high time costs due to excessive inter- 566

agent interactions, especially at longer contexts 567

(e.g., ETS of 37.13 at 256K length). In contrast, 568

CSTree-SRI outperforms these methods across all 569

context lengths, especially beyond 256K tokens, 570

boosting MTQA performance by 21.48%, reduc- 571

ing inference time by 41.11% (ETScore), and in- 572

creasing accuracy by 44.17% (calculated based on 573

CSTree-SRI with Llama-3.1-8B-Instruct as AE). 574

We attribute this improvement to the dynamic con- 575

struction of CSTree, which preserves key infor- 576

mation in multi-turn QA, and its logic-driven hi- 577

erarchical traversal strategy, effectively reducing 578

retrieval time in extra-long context scenarios and 579

leading to superior overall performance. 580

To further validate CSTree-SRI, we analyzed its 581

MTQA performance across task types and diffi- 582

culty levels. CSTree-SRI remains robust as ques- 583

tion difficulty increases and excels in complex 584

reasoning and multi-paragraph retrieval, demon- 585

strating strong logical consistency and long-range 586

dependency capture. Detailed results are in Ap- 587

pendix B.2. 588
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Model 32k 64k 128k 256k OverallACC(%) ETS ACC(%) ETS ACC(%) ETS ACC(%) ETS

Locally Deployed Models
Llama-3.1-8B-Instruct 56.00 51.11 60.33 48.26 48.00 43.31 54.33 48.94 157.75
GLM-4-9B-Chat 64.00 57.14 68.33 52.43 56.67 48.68 61.00 52.32 173.62
Qwen2.5-7B-Instruct 75.00 69.44 65.33 53.95 64.67 58.98 71.00 62.77 187.17

API-Based Models
gpt-3.5-turbo 25.67 25.50 27.33 27.11 26.00 25.77 23.33 23.20 97.66
gpt-4o-mini 84.33 83.25 86.33 84.23 75.33 73.15 74.67 69.14 208.10
deepseek-chat 93.67 90.17 87.67 84.56 77.33 72.72 75.33 70.71 210.38

Models Enhanced with External Tools
RAG 57.33 56.59 56.00 55.02 58.33 56.81 57.00 54.55 162.74
LongAgent 66.67 46.69 65.67 51.12 62.67 38.31 65.67 37.13 179.26
Ours(Llama-3.1 as AE) 72.67 65.03 76.33 68.71 78.33 70.45 78.33 69.06 202.35
Ours(GLM-4 as AE) 81.00 74.27 79.67 72.86 82.67 73.22 80.67 71.15 211.74
Ours(Qwen-2.5 as AE) 83.67 76.21 80.33 72.56 83.00 73.46 81.00 75.79 213.78

Table 4: Results of MTQA with LLMs and External Tool-Enhanced Methods under Different Context Lengths. The
best performance is shown in bold, while the second best performance is represented with an underline.

Model Setting 256k
ACC(%) ETS

CSTree-SRI 78.33 69.06

-w SE/IE use deepseek-chat 81.33(+3.8%) 73.35(+6.2%)
-w SE/IE use gpt-4o 79.33(+1.3%) 72.46(+4.9%)
-w SE/IE use gpt-3.5-turbo 73.00(-6.8%) 63.54(-8.0%)

-w/o CSTree 73.67(-6.0%) 64.84(-6.1%)
-w/o SE 70.00(-10.6%) 64.63(-6.4%)
-w/o IE 60.00(-23.4%) 58.60(-15.2%)

Table 5: Ablation Study on MTQA-ELC (256k-length)

5.4 Ablation Study589

We conducted ablation experiments to assess the590

contributions of the CSTree, SE, and IE modules.591

Experiments were performed on the MTQA-ELC592

dataset with 256K-length contexts. Results are pre-593

sented in Table 5, using Llama-3.1-8B-Instruct as594

the AE, gpt-4o-mini for SE/IE, and CSTree con-595

struction enabled as the default configuration.596

Impact of Different LLMs for Expert Mod-597

ules. Replacing gpt-4o-mini with the more power-598

ful gpt-4o or deepseek-chat in the SE/IE improves599

both ACC and ETS. Conversely, substituting these600

modules with the weaker gpt-3.5-turbo leads to a601

decline in overall performance, highlighting the602

importance of strong LLMs in expert modules.603

Impact of CSTree-SRI Modules. The abla-604

tion experiment results in Figure 6 show that re-605

moving CSTree results in declines in both ACC606

and ETS, as the framework loses logical relation-607

ships from historical information, weakening its608

ability to process multi-turn questions. Similarly,609

excluding the SE module, where non-leaf nodes610

store concatenated child node information instead 611

of summarized data, reduces accuracy by 10.6% 612

due to redundancy. This redundancy overloads the 613

IE module’s retrieval process and impairs its abil- 614

ity to determine further retrieval needs accurately. 615

Notably, removing the IE module leads to the most 616

significant performance drop, with ACC decreas- 617

ing by 23.4% and ETS by 15.2%, as this module 618

is essential for guiding the reasoning process. The 619

introspective questioning mechanism enables the 620

LLM to process ELC, ensuring successful multi- 621

turn QA efficiently. 622

Overall, these results validate the effectiveness 623

of each CSTree-SRI module in maintaining logi- 624

cal consistency, reducing retrieval redundancy, and 625

enhancing multi-turn QA performance. 626

6 Conclusion 627

In this paper, we propose CSTree-SRI, a frame- 628

work to enhance LLM performance on multi-turn 629

QA tasks over extra-long contexts. CSTree-SRI fol- 630

lows an introspection-driven way to construct and 631

search on CSTree, where logical relationships and 632

coherence within ELC are preserved, through the 633

collaboration of the Summary, Retrieval, Introspec- 634

tion and Answer expert modules. We also design 635

the MTQA-ELC benchmark and conduct compre- 636

hensive experiments. The results demonstrate the 637

effectiveness of our proposed CSTree-SRI. 638

For future work, we will refine the design of 639

each expert module and integrate mechanisms like 640

position encoding modifications, pre-training, and 641

fine-tuning techniques to further improve the accu- 642

racy and efficiency of relevant context retrieval. 643
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7 Limitations644

Dependency on External LLMs for Expert Mod-645

ules. The CSTree-SRI framework’s reliance on646

third-party LLMs (e.g., gpt-4, gpt-3.5) for criti-647

cal modules—Summary Expert (SE), Introspection648

Expert (IE), and Answer Expert (AE)—introduces649

systemic risks in terms of operational stability and650

cost efficiency. Performance bottlenecks may arise651

from API latency, model availability fluctuations,652

or unexpected service interruptions. To mitigate653

these risks, the framework’s modular design inher-654

ently supports alternative implementations, includ-655

ing open-source LLMs (e.g., Llama-3, Qwen) or lo-656

cally deployed models. This flexibility allows users657

to reduce dependency on specific vendors and en-658

hance robustness against service disruptions. How-659

ever, the financial burden of deploying high-tier660

LLMs—whether proprietary or self-hosted—could661

still render the framework economically impracti-662

cal for resource-constrained users or organizations,663

particularly in scenarios requiring frequent or large-664

scale ELC processing.665
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A Data Details808

A.1 Data Collection809

We collected a large number of English reading810

comprehension passages from publicly available811

datasets of domestic and international large-scale812

exams. For each question, we also obtained addi-813

tional data, such as the accuracy rate of test-takers.814

The annotators are three undergraduate students815

in computer science who are familiar with read-816

ing comprehension tasks and exam question types.817

The annotation process involved three independent818

annotators labeling questions based on the orig-819

inal exam materials. Conflicts in labeling were820

resolved through discussions with two senior re-821

searchers. All exam passages and questions are822

publicly available on official educational websites,823

and the annotation work was conducted by our824

research team to ensure alignment with task re-825

quirements. Detailed information about the raw826

dataset is provided in Table 6. The abbreviations827

in Table 6 are defined as follows: NMET refers828

to the National Matriculation Entrance Test, CET829

denotes the College English Test, PGEE stands for830

the Post-graduate Entrance Examination, and TPO831

represents the TOEFL Practice Online.832

Category #Passages #Words #Questions

NMET 118 50k 446
CET 150 92k 750
PGEE 97 57k 478
TPO 207 192k 2197

Total 572 391k 3871

Table 6: Raw data statistics of MTQA-ELC

A.2 Construction Methodology 833

Preventing Data Leakage. To prevent "data leak- 834

age," where test data may overlap with training 835

data, we randomized the paragraph order and shuf- 836

fled multiple-choice question options. This mini- 837

mizes the likelihood of LLMs generating answers 838

based on prior exposure, ensuring a more accurate 839

assessment of their understanding and reasoning 840

capabilities in novel contexts. 841

Ensuring Fair Evaluation Across Different 842

Lengths. To fairly evaluate model performance 843

across varying text lengths without being influ- 844

enced by data quality, we constructed three distinct 845

"test papers" for each length. Each length’s final 846

score is the average accuracy rates and reasoning 847

times across the three test sets. 848

Assessing the Gap Between LLMs and Hu- 849

man Performance. To evaluate the performance 850

gap between LLMs and humans, we used the accu- 851

racy rates of test-takers for each question as the "hu- 852

man performance score," reflecting the real-world 853

difficulty of the questions. The performance gap 854

was then calculated using a series of formulas, de- 855

tailed in Section 4.3. 856

B Additional Experiments 857

B.1 Single-Turn QA Evaluation 858

L-Eval Evaluation Setting For closed-ended tasks, 859

we selected four datasets: Coursera, QuALITY, 860

TOEFL, and SFcition. CSTree-SRI employed gpt- 861

3.5-turbo for SE/IE modules while testing three AE 862

configurations: Llama-2-7B-chat, Llama-2-13B- 863

chat and Chatglm2-6b-8k. Baseline models used 864

these vanilla models. 865

Table 7 demonstrates that our method achieves 866

an average improvement of 13.6% when applied 867

to different base models on the L-Eval benchmark. 868

This indicates that our method is broadly applicable 869

Model Crsr. QuA. TOEFL SF Avg.

Llama2-7B-chat 29.21 37.62 51.67 60.15 44.66
-CSTree-SRI 35.47↑ 43.07↑ 61.34↑ 67.19↑ 51.77↑

Llama2-13B-chat 35.75 42.57 60.96 54.68 48.49
-CSTree-SRI 40.26↑ 46.53↑ 67.82↑ 64.06↑ 54.67↑

Chatglm2-6b-8k 43.75 40.59 53.90 54.68 48.23
-CSTree-SRI 48.21↑ 45.84↑ 63.19↑ 59.34↑ 54.15↑

Table 7: The results of CSTree-SRI based on different model on L-Eval. The experimental data for the original
models are sourced from the results reported in the L-Eval paper.
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Figure 3: The radar chart represents the performance differences between models across task types. The bar chart
represents the performance improvements of CSTree-SRI across task types.

Model
DU MI IJ SR

Overall
ACC(%) ETS ACC(%) ETS ACC(%) ETS ACC(%) ETS

32k Length
Llama-3.1-7B-Instruct 67.33 61.53 50.94 46.68 54.67 50.00 88.67 80.31 180.86
-CSTree-SRI 79.00 67.33 78.87 69.67 72.00 65.97 89.33 82.26 210.21

GLM-4-9B-Chat 65.67 57.62 75.85 66.76 63.00 55.34 88.67 76.92 196.83
-CSTree-SRI 82.00 71.90 80.38 72.40 80.67 73.94 92.33 86.13 218.42

Qwen-2.5-7B-Instruct 75.33 68.28 69.06 63.81 67.00 58.19 90.00 82.30 201.08
-CSTree-SRI 85.33 69.41 81.89 74.50 78.67 61.77 92.00 85.86 219.71

gpt-4o-mini 86.33 85.29 84.91 82.95 80.00 79.12 95.67 94.42 224.40
gpt-3.5-turbo-16k 28.00 27.80 22.64 22.49 30.67 30.39 16.67 16.62 93.74

256k Length
Llama-3.1-7B-Instruct 45.33 40.87 42.33 38.17 43.67 39.40 84.00 75.58 156.35
-CSTree-SRI 78.67 67.05 71.00 61.44 71.00 63.29 89.33 83.65 204.8

GLM-4-9B-Chat 55.00 47.76 67.17 58.10 47.33 40.72 77.67 67.37 199.14
-CSTree-SRI 86.00 75.98 79.67 68.79 81.67 71.73 93.33 87.09 220.46

Qwen-2.5-7B-Instruct 61.00 55.63 54.67 49.80 56.33 51.41 87.67 79.67 179.05
-CSTree-SRI 84.00 72.99 76.00 66.73 78.67 68.86 90.33 84.43 214.56

gpt-4o-mini 69.33 67.71 62.33 61.26 65.33 63.98 90.00 88.33 192.96
gpt-3.5-turbo-16k 18.00 17.93 23.67 23.47 27.00 26.77 25.67 25.55 96.46

Table 8: Experimental Results of MTQA for Different Types of Tasks. The best performance is shown in bold,
while the second best performance is represented with an underline.
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Model NMET CET PGEE TPO avg.
OverallACC(%) ETS Overall ACC(%) ETS Overall ACC(%) ETS Overall ACC(%) ETS Overall

32k Length
Llama-3.1-7B-Instruct 66.33 61.66 182.31 58.67 54.61 170.38 69.00 64.17 197.41 47.33 42.38 139.59 172.42
-CSTree-SRI 74.33 67.43 198.72 77.00 68.19 207.54 75.67 68.93 210.91 82.00 75.43 211.30 207.12

GLM-4-9B-Chat 64.33 58.59 178.27 61.67 55.39 176.50 55.67 50.75 170.27 73.33 62.29 193.23 179.57
-CSTree-SRI 83.33 76.24 217.01 79.67 73.14 212.89 82.00 73.92 223.76 89.67 83.09 227.02 220.17

Qwen-2.5-7B-Instruct 75.67 70.69 201.42 80.67 74.83 215.17 77.67 72.87 214.93 77.67 70.37 202.29 208.45
-CSTree-SRI 79.67 73.18 209.60 81.00 72.31 215.70 81.33 71.92 222.33 86.33 77.08 220.18 216.95

gpt-4o-mini 86.67 85.60 223.75 83.00 81.82 219.83 82.67 79.84 225.09 89.67 88.47 226.98 223.91
gpt-3.5-turbo-16k 37.00 36.66 122.43 31.33 31.02 114.82 26.67 26.40 111.52 12.33 12.31 67.36 104.03

256k Length
Llama-3.1-7B-Instruct 57.33 51.64 165.01 42.00 37.91 135.65 45.00 40.59 151.67 51.67 46.51 146.49 149.71
-CSTree-SRI 68.67 60.27 188.13 72.33 62.65 197.43 67.33 58.88 196.88 88.00 79.05 221.31 200.94

GLM-4-9B-Chat 49.33 43.93 151.13 45.67 40.44 148.81 43.67 39.26 159.18 59.67 50.17 152.53 152.91
-CSTree-SRI 79.00 68.20 208.97 77.67 66.06 208.37 78.00 70.00 218.43 86.33 78.19 217.81 213.40

Qwen-2.5-7B-Instruct 70.33 63.95 191.36 56.00 51.00 164.13 58.67 53.45 179.38 74.67 67.87 193.92 182.20
-CSTree-SRI 76.67 68.94 204.34 78.67 68.40 210.30 71.33 64.81 205.05 88.33 79.82 221.94 210.41

gpt-4o-mini 69.00 67.48 188.65 65.67 64.55 183.80 62.33 60.95 186.67 81.67 80.15 208.43 191.89
gpt-3.5-turbo-16k 22.33 22.18 93.68 28.33 28.00 107.86 30.33 30.09 121.96 31.67 31.49 104.89 107.10

Table 9: Experimental Results of MTQA for Tasks of Different Difficulty Levels. The best performance is shown in
bold, while the second best performance is represented with an underline.

across various models while significantly enhanc-870

ing their QA capabilities.871

B.2 Multi-Turn QA Evaluation872

Due to DeepSeek’s widespread recognition, access873

to its API has become challenging, and therefore,874

related models were not evaluated in the experi-875

ments presented in the appendix. In future work,876

we plan to supplement the evaluation of its models.877

Fig. 3 visualizes the experimental results of dif-878

ferent models across various task types in multi-879

turn question answering, while Table 8 provides880

the detailed experimental data for this study. Most881

LLMs achieve higher accuracy and ETS scores882

on DU and SR tasks, indicating their inherent883

strength in single-paragraph retrieval. However,884

performance degrades significantly on MI and IJ885

tasks, revealing limitations in multi-paragraph re-886

trieval and cross-context reasoning. The CSTree-887

SRI framework mitigates these weaknesses, demon-888

strating substantial improvements across all task889

types—particularly for MI (31.30%↑) and IJ890

(39.77%↑) on ETScore.891

Table 9 evaluates MTQA performance on tasks892

of different difficulty levels. On the 32k-length task,893

gpt-4o-mini still achieves the highest performance;894

however, LLMs augmented with our CSTree-SRI895

demonstrate competitive results across all metrics,896

narrowing the gap with gpt-4o-mini. Notably, on897

the ELC task (256k-length), our framework outper- 898

forms gpt-4o-mini in tasks of all difficulty levels. 899
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C Prompts900

C.1 The Prompts for Introspective Question901

C.1.1 Relative902

Instruction: Please evaluate the relevance of the provided evidence to the 
question from the following aspects.

1. If the evidence relate to the same article as the question, respond with 
[Relevant]

2. If the evidence relate to the same topic, or theme as the question, respond 
with [Relevant]        

3. If the evidence provide background knowledge or context that may help in 
understanding the question or related concepts, respond with [Relevant]

4.If the evidence include information could offer relevant context or serve as a 
contrast that helps clarify the question, respond with [Relevant]

Please judge whether the evidence is relevant to the question in order 
according to my standards. If it meets the standards, please return directly to the 
[Relevant]. Otherwise, respond with [Irrelevant].

I will provide you with multiple pieces of evidence and a question. Please 
indicate whether each piece of evidence is relevant to the question, separated by 
an @ sign. The output example is [Relevant] @ [Irrelevant] @ [Irrelevant]

Instruction: {instruction}{question}
Evidence: {retrieval_content}
Judgment: 

Figure 4: The Prompt for <Relative> Introspection

C.1.2 ExtraRetr903

Instruction: Based on the multiple retrieval text I found regarding this question, 
do you think I should continue searching for more text? 

If you believe the existing text is insufficient to answer the question, please 
respond with [Yes] otherwise respond with [No].

Retrieval Text: {retrieval_content}
Question: {question}
Judgment: 

Figure 5: The Prompt for <ExtraRetr> Introspection

14



C.1.3 NodeRetr 904

Instruction: You are an intelligent information retrieval assistant. You will be 
provided an instruction and a summary of an article. Your task is to determine 
whether it is necessary to retrieve the full content of the article based on the 
provided summary. There are three cases:

- If the summary relate to the same article as the question, respond with [Yes].
- If the summary suggests some similarity to the question or indicates that the 

article may potentially answer the question, respond with [Yes].
- If the summary already sufficiently answers the question, respond with [Yes].
If the information in the [Summary] is likely to be useful for any of these 

cases, please respond with [Yes]. Otherwise, respond with [No].    

Summary: {retrieval_summary}
Instruction: {instruction}{question}
Judgment：

Figure 6: The Prompt for <NodeRetr> Introspection

C.1.4 Support 905

Instruction: You will receive an instruction, evidence, and output. Your task is to 
evaluate whether the output is supported by the information provided in the 
evidence. There are three cases:

[3-Fully supported] - All information in output is supported by the evidence, 
or extractions from the evidence. This is only applicable when the output and part 
of the evidence are almost identical.

[2-Partially supported] - The output is supported by the evidence to some 
extent, but there is some information in the output that is not discussed in the 
evidence. For instance, if the output covers multiple concepts and the evidence 
only discusses some of them, it should be considered a [Partially supported].

[1-No support] - The output completely ignores evidence, is unrelated to the 
evidence, or contradicts the evidence.

Please select from the following three options [3], [2], [1].

Instruction: {instruction}{question}
Evidence: {retrieval_content}
Output: {answers}
Judgment: 

Figure 7: The Prompt for <Support> Introspection
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C.1.5 Useful906

Instruction: You are a teacher. You will receive an instruction and an output. 
Your task is to evaluate the student‘s output based on the provided instruction.
You should score it according to the criteria outlined below.

Scoring Criteria:
[1-Unrelated answer]: Serious errors, confusing, Unclear and worthless.
[2-Partially related]: weak response, Multiple inaccuracies, misleading. 

Confusing, lacks logic.
[3-Somewhat related]: partial answer, some mistakes, Moderate clarity, 

includes vague parts.
[4-Relevant and mostly complete]: Generally accurate, no major errors, Clear 

and logical, easy to understand.
[5-Fully relevant and comprehensive answer]: Highly accurate, rich 

information, Very clear, logical, and valuable.
Additional Suggestions:
For higher scores, it is best to include examples and explanations that help 

illustrate key points. Meanwhile, Encourage thoroughness and critical thinking in 
responses. Please select from the following five options [5], [4], [3], [2], [1].

Instruction: {instruction}{question}
Output: {answers}
Score: 

Figure 8: The Prompt for <Useful> Introspection

C.2 The Prompts for Expert Modules907

C.2.1 AE Module908

Instruction: {content}{query}. Provide the answers directly, without 
any introductory phrases or explanations. 

Your Answer:

Figure 9: The Prompt for AE Module

Instruction: {content}{query}. This answer is wrong [{preanswer}]. Don't 
apologize, only provide the answers directly, without any introductory phrases 
or explanations. 

Figure 10: The Prompt for AE Module to Regenerate Response
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C.2.2 SE Module 909

Instruction: Please summarize the content in concise sentences, while retaining 
logical locators (such as unique IDs that represent paragraphs) and key 
information. 

Content: {}

Figure 11: The Prompt for SE Module

C.3 The Prompts for Dataset Evaluation 910

C.3.1 Mixed Tasks 911

Instruction: Please answer the following questions based on the following 
information. 

The content within the angle brackets <> represents paragraph IDs from 
various articles. These IDs are used to identify specific sections of text within 
different articles. 

Information: {ELC}{queries}
Provide the answers directly, without any introductory phrases or 

explanations. 
Your Answer: 

Figure 12: The Prompt for Mixed Tasks

C.3.2 DU Task 912

Instruction: Please answer the following questions based on the following 
information. 

The content within the angle brackets <> represents paragraph IDs from 
various articles. These IDs are used to identify specific sections of text within 
different articles.  

The following questions are about understanding the details of paragraphs. 
Information: {ELC}{queries}
Provide the answers directly, without any introductory phrases or 

explanations.        
Your Answer: 

Figure 13: The Prompt for DU Task
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C.3.3 MI Task913

Instruction: Please answer the following questions based on the following 
information. 

The content within the angle brackets <> represents paragraph IDs from 
various articles. These IDs are used to identify specific sections of text within 
different articles. 

The following questions require you to grasp the main idea of the entire 
article. 

Information: {ELC}{queries}
Provide the answers directly, without any introductory phrases or 

explanations.         
Your Answer: 

Figure 14: The Prompt for MI Task

C.3.4 IJ Task914

Instruction: Please answer the following questions based on the following 
information. 

The content within the angle brackets <> represents paragraph IDs from 
various articles. These IDs are used to identify specific sections of text within 
different articles. 

The following questions require you to pay attention to the logical 
relationship of the information in the paragraph, testing your reasoning ability. 

Information: {ELC}{queries}
Provide the answers directly, without any introductory phrases or 

explanations. 
Your Answer: 

Figure 15: The Prompt for IJ Task
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C.3.5 SR Task 915

Instruction: Please answer the following questions based on the following 
information. 

The content within the angle brackets <> represents paragraph IDs from 
various articles. These IDs are used to identify specific sections of text within 
different articles. 

The following questions require you to understand the meaning of phrases, 
sentences, or demonstrative pronouns, testing your comprehension of the 
entire article. 

Information: {ELC}{queries}
Provide the answers directly, without any introductory phrases or 

explanations. 
Your Answer: 

Figure 16: The Prompt for SR Task
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D Examples For Multi-turn QA over Extra-Long Context916

D.1 Example For DU Task917

Extra-Long Context: <article NMET 66 paragraph 1> In 1916, two girls of  wealthy families, best 
friends from  ...(84 words)... Dorothy Woodruff's granddaughter. </article NMET 66 paragraph 1>

...(256k words)...
<article TOEFL TPO 6 paragraph 5> In one example of organizing the allocation  ...(117 words)... 

will receive insufficient moisture. </article TOEFL TPO 6 paragraph 5>

Question1: This is a question about article TOEFL TPO 120. Please choose the correct answer 
from options A, B, C, and D below to answer the question. According to paragraph 5, Hubbell and 
Johnson determined:

A. the level of aggressiveness of each of the nine species
B. the number of colonies of each of the nine species
C. the order in which the colonies in the study area had been established
D. the distribution pattern of the nests of five of the nine species
Ground Truth: D ...

Question2: This is a question about article TOEFL TPO 120. Please choose the correct answer 
from options A, B, C, and D below to answer the question. According to paragraph 2, some species of 
stingless bees are aggressive mainly toward

A. Bees from their own colony
B. Bees of their own species from different colonies
C. Nonaggressive bees that forage on the same flowers
D. Aggressive bees of other species
Ground Truth: B ...

Question3: This is a question about article CET 119. Please choose the correct answer from 
options A, B, C, and D below to answer the question. What makes Chris Cocalis believe there is a 
greater opportunity for ebike sales?

A. The younger generation's pursuit of comfortable riding.
B. The increasing interest in mountain climbing.
C. The public's concern for their health.
D. The further lowering of ebike prices.
Ground Truth: A ...

Question4: This is a question about article CET 119. Please choose the correct answer from 
options A, B, C, and D below to answer the question. What is the prospect of the bike industry 
according to Ryan Rzepecki ?

A. It will profit from ebike sharing.
B. More will be invested in bike battery research.
C. The sales of ebikes will increase.
D. It will make a difference in people's daily lives.
Ground Truth: D ...

……

Example of DU Task 

Figure 17: The Example for DU Task
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D.2 Example For MI Task 918

Extra-Long Context: <article NMET 67 paragraph 1> Can a small group of  ...(54 
words)... on a 24/7 basis. </article NMET 67 paragraph 1>

...(256k words)
<article PGEE 68 paragraph 7> The sharp hit to growth predicted around the ...(44 words)... 

may even see progress. </article PGEE 68 paragraph 7>

Question1: This is a question about article PGEE 82. Please choose the correct answer 
from options A, B, C, and D below to answer the question. Van Oosten believes that certain 
plastic objects are

A. complex in structure.
B. immune to decay.
C. inherently flawed.
D. improperly shaped.
Ground Truth: C ...

Question2: This is a question about article PGEE 82. Please choose the correct answer 
from options A, B, C, and D below to answer the question. The author thinks that preservation 
of plastics is

A. unpopular.
B. challenging.
C. costly.
D. unworthy.
Ground Truth: B ...

Question3: This is a question about article CET 113. Please choose the correct answer 
from options A, B, C, and D below to answer the question. What does Maryanne Taylor think 
of self-imposed sleeplessness ?

A. It may symbolise one's importance and success.
B. It may be practiced only by certain tech heads.
C. It may well serve as a measure of self-discipline.
D. It may turn out to be key to a successful career.
Ground Truth: A ...

Question4: This is a question about article CET 113. Please choose the correct answer 
from options A, B, C, and D below to answer the question. How does Dr. Sophie Bostock look 
at the 20-hour daily work schedule?

A. One should not adopt it without consulting a sleep expert.
B. One must be duly self-disciplined to adhere to it.
C. The general public should not be encouraged to follow it.
D. The majority must adjust their body clock for it.
Ground Truth: C ...

……

Example of MI Task 

Figure 18: The Example for MI Task
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D.3 Example For IJ Task919

Extra-Long Context: <article CET 143 paragraph 1> Have you ever wondered ...(35 
words)... in interpersonal relationships. </article CET 143 paragraph 1>

...(256k words)
<article CET 77 paragraph 11> "We're learning that student success requires ...(43 words)... 

feedback loops." </article CET 77 paragraph 11>

Question1: This is a question about article TOEFL TPO 193. Please choose the correct 
answer from options A, B, C, and D below to answer the question. Why does the author 
mention “Indian mustard”?

A. To warn about possible risks involved in phytoremediation
B. To explain how zinc contamination can be reduced
C. To show that hyperaccumulating plants grow in many regions of the world
D. To help illustrate the potential of phytoremediation
Ground Truth: D ...

Question2: This is a question about article TOEFL TPO 193. Please choose the correct 
answer from options A, B, C, and D below to answer the question. It can be inferred from 
paragraph 6 that compared with standard practices for remediation of contaminated soils, 
phytoremediation

A. is less suitable for soils that need to be used within a short period of time
B. does not allow for the use of the removed minerals for industrial purposes
C. can be faster to implement
D. is equally friendly to the environment
Ground Truth: A ...

Question3: This is a question about article PGEE 22. Please choose the correct answer 
from options A, B, C, and D below to answer the question. The text suggests that immigrants 
now in the U.s.

A. are hardly a threat to the common culture.
B. constitute the majority of the population.
C. exert a great influence on American culture.
D. are resistant to homogenization.
Ground Truth: A ...

Question4: This is a question about article PGEE 22. Please choose the correct answer 
from options A, B, C, and D below to answer the question. Why are Arnold Schwarzenegger 
and Garth Brooks mentioned in Paragraph 5?

A. To prove their popularity around the world.
B. To show the powerful influence of American culture.
C. To reveal the public's fear of immigrants.
D. To give examples of successful immigrants.
Ground Truth: B ...

……

Example of IJ Task 

Figure 19: The Example for IJ Task
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D.4 Example For SR Task 920

Extra-Long Context: <article TOEFL TPO 154 paragraph 1> While some European 
countries ...(75 words)... to understand the sources of their success. </article TOEFL TPO 154 
paragraph 1>

...(256k words)
<article TOEFL TPO 166 paragraph 11> Regarding the appearance of celebrities ...(83 

words)... like the celebrity in question. </article TOEFL TPO 166 paragraph 11>

Question1: This is a question about article TOEFL TPO 111. Please choose the correct 
answer from options A, B, C, and D below to answer the question. The word "simultaneously" 
in the passage is closest in meaning to

A. merely
B. spontaneously
C. at the same time
D. without limits
Ground Truth: C ...

Question2: This is a question about article TOEFL TPO 111. Please choose the correct 
answer from options A, B, C, and D below to answer the question. The word "differing" in the 
passage is closest in meaning to

A. increasing
B. varying
C. high
D. necessary
Ground Truth: B ...

Question3: This is a question about article TOEFL TPO 67. Please choose the correct 
answer from options A, B, C, and D below to answer the question. The word "comprising" in 
the passage 4 is closest in meaning to

A. made up of
B. covering
C. taken from
D. suggesting
Ground Truth: A ...

Question4: This is a question about article TOEFL TPO 67. Please choose the correct 
answer from options A, B, C, and D below to answer the question. The word "crucial" in the 
passage is closest in meaning to

A. established
B. understood
C. important
D. interesting
Ground Truth: C ...

……

Example of SR Task 

Figure 20: The Example for SR Task
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