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Abstract

The use of Large Language Models (LLMs),001
which demonstrate impressive capabilities in002
natural language understanding and reasoning,003
in Embodied AI is a rapidly developing area.004
As a part of an embodied agent, LLMs are typ-005
ically used for behavior planning given natu-006
ral language instructions from the user. How-007
ever, dealing with ambiguous instructions in008
real-world environments remains a challenge009
for LLMs. Various methods for task disam-010
biguation have been proposed. However, it is011
difficult to compare them because they work012
with different data. A specialized benchmark is013
needed to compare different approaches and014
advance this area of research. We propose015
AmbiK (Ambiguous Tasks in Kitchen Environ-016
ment), the fully textual dataset of ambiguous017
instructions addressed to a robot in a kitchen018
environment. AmbiK was collected with the019
assistance of LLMs and is human-validated. It020
comprises 500 pairs of ambiguous tasks and021
their unambiguous counterparts, categorized022
by ambiguity type (human preference, common023
sense knowledge, safety), with environment de-024
scriptions, clarifying questions and answers,025
and task plans, for a total of 1000 tasks.026

1 Introduction027

Recent studies have shown that Large Language028

Models (LLMs) perform well in behavior planning029

tasks (Huang et al., 2022a; Ahn et al., 2022; Huang030

et al., 2022b). However, the task can be challenging031

for an agent, as some natural language instructions032

(NLI) from humans are ambiguous because of the033

natural language limitations in application to real034

world complex environment.035

A separate line of research is the development of036

models capable of requesting and processing feed-037

back from the user, which is necessary when the038

task is ambiguous and would also be challenging039

for the humans. However, humans do not always040

ask clarifying questions when NLIs are ambiguous041

Figure 1: Ambiguity types in the Ambik dataset. We
expect the robot to behave differently depending on the
type of ambiguity. Previous works often do not fully
consider this point.

because they rely on common sense knowledge 042

and cooperative principles in conversation (Grice, 043

1975), including providing enough information but 044

not more than necessary, and assuming that the 045

conversational partner has some knowledge about 046

the world. 047

Some works in robot behavior planning (Ren 048

et al., 2023; Liang et al., 2024) utilize conformal 049

prediction (CP) (Vovk et al., 2005) to derive a 050

subset from multiple options, ensuring the cor- 051

rect option lies within a certain user-defined prob- 052

ability. If conformal prediction narrows down to 053

a single action, the robot executes it; otherwise, 054

it requests user clarification on the action to per- 055

form. This method is model-agnostic and compat- 056

ible with various uncertainty estimation methods 057

(see an overview of uncertainty estimation methods 058

in (Fadeeva et al., 2023)). If there is no access to the 059

logits of the underlying LLM these approaches can- 060

not calculate the uncertainty directly, hence they 061

are often trained to ask questions using prompt- 062

ing (Huang et al., 2022b). 063

To compare the performance of these meth- 064

ods with the focus on ambiguous tasks, spe- 065

cialized benchmarks are needed. Datasets such 066

KnowNo (Ren et al., 2023), DialFred (Gao et al., 067

2022) and TEACh (Padmakumar et al., 2022) con- 068
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tain ambiguous tasks and can be used to compare069

some disambiguation methods, but they cannot be070

used as universal and fully textual benchmarks for071

the embodied agents. Since the human-robot in-072

teraction pipeline usually involves many subparts,073

including but not limited to an LLM, it is crucial074

to measure the LLM performance separately to075

improve the model’s ability to deal with unclear076

instructions.077

In our work, we propose AmbiK (Ambiguous078

Tasks in Kitchen Environment), the English lan-079

guage fully textual dataset for ambiguity resolution080

in kitchen environment. Our dataset allows to com-081

pare different methods, including that with and082

without conformal prediction. AmbiK consists of083

500 paired tasks that include a description of the084

environment, the type of ambiguity based on the085

knowledge needed to resolve the ambiguity (human086

preferences, safety, common sense knowledge), an087

unambiguous counterpart of the task, a clarifying088

question and an answer on it, and a task plan. The089

full dataset, an environment list, the prompts used090

in data collection are available online1.091

We also evaluate two methods which are based092

on conformal prediction (KnowNo (Ren et al.,093

2023) and LofreeCP (Jr. and Manocha, 2024)) on094

the proposed AmbiK dataset. The experiments are095

conducted on popular open-source models LLaMA-096

2 and Gemma 7B (Mesnard et al., 2024).097

The main contributions of our paper are as fol-098

lows:099

1. We proposed AmbiK, the English language100

fully textual dataset for ambiguity resolution101

in kitchen environment.102

2. We evaluated popular methods on the pro-103

posed dataset using open-source LLMs.104

2 Related Work105

2.1 Datasets with Ambiguous NLI106

Clarification requests are a part of many datasets:107

SIMMC2.0. (Kottur et al., 2021), ClarQ (Kumar108

and Black, 2020), ConvAI3 (ClariQ) (Aliannejadi109

et al., 2020) for general questions. However, as110

highlighted in (Madureira and Schlangen, 2024),111

clarification exchanges do not normally appear in112

non-interactive data, they consist about 4% of spon-113

taneous conversations, in comparison with 11%114

in instruction-following interactions (Benotti and115

1https://anonymous.4open.science/r/
AmbiK-dataset/

Table 1: Comparison of datasets with ambiguous NLI.

KnowNo DialFRED TEACh SaGC AmbiK

Fully
textual? ✓ ✗ ✗ ✓ ✓

Household
tasks

300 25 12 1639 1000

Ambiguous
tasks

170
✗ ✗

636 500

Different
ambiguity
types

✓ ✗ ✗ ✗ ✓

Clarification
questions ✗ ✓partly ✓partly ✗ ✓

Can be used
as a textual
benchmark?

✗ ✗ ✗ ✗ ✓

Blackburn, 2021; Madureira and Schlangen, 2023). 116

Specialized datasets for interactive environments 117

include Minecraft Dialogue Corpus (Narayan-Chen 118

et al., 2019) and IGLU (Kiseleva et al., 2022). In 119

DialFRED (Gao et al., 2022) and TEACh (Pad- 120

makumar et al., 2022) datasets interactions occur 121

in simulated kitchen environments, in CoDraw 122

game (Kim et al., 2017) the interaction is on the 123

canvas for drawing. All these datasets have the 124

same dialogue participants: an architect who gives 125

instructions and a builder who executes actions. 126

The KnowNo dataset (Ren et al., 2023) con- 127

tains ambiguous tasks, but they are a small part 128

of the dataset (170 samples), and more impor- 129

tantly, they do not come with questions to re- 130

solve ambiguity or other other hints for the model. 131

The questions are not necessary for tasks of type 132

safety or winograd (Winograd, 1972), resolution 133

of anaphora (Morgenstern and Ortiz, 2015), (as we 134

expect abilities to understand corresponding tasks 135

from the model by default), but are unavailable 136

for preferences. As the language model has no 137

opportunity to reason and can only guess the user 138

intent, this subpart of the dataset cannot be used as 139

a benchmark. 140

In CLARA (Park et al., 2023), a Situational 141

Awareness for Goal Classification in Robotic Tasks 142

(SaGC) dataset was presented. It consists of high- 143

level goals paired with scene descriptions, anno- 144

tated with three types of uncertainties and allows 145

to evaluate the situation-aware uncertainty of the 146

robotic tasks. However, SaGC is intended to be 147

used for distinguishing between certain, infeasible, 148

and ambiguous tasks. The infeasibility of the task 149

is evaluated based on the robot’s purpose (cooking, 150

cleaning or massage robot). 151

The existing datasets are not suitable for com- 152
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paring methods of LLM uncertainty, if using only153

textual data that includes ambiguous commands.154

We propose the dataset called AmbiK for filling155

this gap. A comparison of datasets with ambigu-156

ous NLI is shown in Table 1. We also distinguish157

between types of ambiguity (human preferences,158

safety, common sense knowledge) based on the159

knowledge required to resolve them (see Figure 1).160

2.2 Disambiguation Methods161

The majority of methods solving the problem when162

to ask for clarification rely on model’s logits. In163

some works (Gao et al., 2022; Chi et al., 2020)164

uncertainty is measured through heuristics, for in-165

stance, the difference in confidence scores (entropy166

or another metric) between the top 2 predictions —167

if it falls below a user-defined threshold, the model168

should seek clarification.169

A separate line of works is devoted to applying170

conformal prediction (Vovk et al., 2005) for measur-171

ing LLM uncertainty and making decisions regard-172

ing clarifications. Conformal prediction (CP) is a173

model-agnostic and distribution-free approach for174

deriving a subset from multiple options, ensuring175

the correct option lies within a certain user-defined176

probability (see (Angelopoulos and Bates, 2022)177

for the justification). CP is now widely used in NLP178

tasks such as part-of-speech prediction (Dey et al.,179

2021) and fact verification (Fisch et al., 2021).180

As in (Ren et al., 2023; Liang et al., 2024), if181

the conformal prediction narrows down the choice182

of actions to a single one, the robot executes it;183

otherwise, it requests user clarification of the ac-184

tion to be performed. This method is compatible185

with various uncertainty estimation methods (see186

an overview of uncertainty estimation methods in187

(Fadeeva et al., 2023)), but in most cases SoftMax188

scores are used as an uncertainty measure.189

Although a heuristic uncertainty is needed for190

conformal prediction, the recent work (Su et al.,191

2024) proposed an approach based on conformal192

prediction which is compatible with logit-free mod-193

els. It samples responses for a certain number of194

times and uses frequency of each response as the195

rankings proxy. The final nonconfirmity score is196

calculated based on frequency and two fine-grained197

uncertainty notions (normalized entropy and se-198

mantic similarity). This approach outperforms199

logit-based and logit-free baselines.200

3 AmbiK Dataset 201

3.1 AmbiK structure 202

AmbiK comprises 500 pairs of ambiguous tasks 203

and their unambiguous counterparts, categorized by 204

ambiguity type (human preference, common sense 205

knowledge, safety), with environment descriptions, 206

clarifying questions and answers, and task plans. 207

The full structure of the dataset with examples is 208

presented in the Table 2. 209

The dataset structure is detailed and thus AmbiK 210

enables testing different disambiguation methods 211

both before and after human-robot dialogue, in 212

which ambiguity should be resolved. AmbiK is 213

also suitable for methods which rely on the full list 214

of objects in the environment (such as Affordance- 215

Based Uncertainty (Jr. and Manocha, 2024)). 216

Every ambiguous task has its unambiguous coun- 217

terpart, for instance, the task: 218

“Kitchen Robot, please make a hot chocolate 219

by using the coffee machine to heat up milk. Then 220

pour it into a mug.” 221

has an unambiguous pair: 222

“Kitchen Robot, please make a hot chocolate 223

by using the coffee machine to heat up milk. Then 224

pour it into a ceramic mug”. 225

Each task is represented in the form of two un- 226

ambiguous formulations and one ambiguous for- 227

mulation. There are following unambiguous tasks: 228

• Unambiguous direct: the task with the exact 229

names of all objects 230

• Unambiguous indirect: the task with the in- 231

accurate names of some objects, including 232

paraphrasing (Coke instead of cola), using 233

reference (that bottle instead of cola) and hy- 234

ponymes (the drink instead of cola), and an- 235

other formulation of the instruction parts 236

Comparing LLM performance on two types of 237

unambiguous tasks allows us to test the general 238

language ability of the LLM separately from its 239

ability to plan the kitchen robot’s actions. For un- 240

ambiguous tasks, the good LLM for the embodied 241

agent demonstrates low uncertainty and near-zero 242

help rate. 243

In total, AmbiK tasks contain 279 unique ob- 244

jects. The number of objects on one environment 245

is presented in Figure 2. In Table 3, the diversity of 246

words in AmbiK tasks is given. Type-Token ratio 247

is calculated as the total number of different words 248
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Table 2: AmbiK structure with examples. Values needed for testing disambiguation methods are highlited.

AmbiK lable Description Example
Environment
short

environment in a natural language de-
scription

plastic food storage container, glass food stor-
age container, shepherd’s pie, pumpkin pie, ap-
ple pie, cream pie, key lime pie, muesli, corn-
flakes, honey

Environment
full

environment in the form of a list of
objects

a plastic food storage container, a glass food
storage container, shepherd’s pie, pumpkin pie,
apple pie, cream pie, key lime pie, muesli, corn-
flakes, honey

Unambiguous
direct

unambiguous task with exact names
of objects

Fill the glass food storage container with honey
for convenient storage.

Unambiguous
indirect

reformulated unambiguous task Robot, please fill the glass container with honey
for storage.

Ambiguous
task

an ambiguous pair to unambiguous
direct task

Fill the food storage container with honey.

Ambiguity
type

type of knowledge needed for disam-
biguation

preferences

Ambiguity
shortlist

only for preferences: a set of objects
between which ambiguity is elimi-
nated

plastic food storage container, glass food stor-
age container

Variants only for preferences: a set of objects
between which ambiguity is elimi-
nated

plastic food storage container, glass food stor-
age container

Question a clarifying question to eliminate am-
biguity

Which type of food storage container should I
use to fill with honey?

Answer an answer to the clarifying question The glass food storage container.
Plan for unam-
biguous task

a detailed plan for the unambiguous
task

1. Locate the glass food storage container.
2. Locate the honey.
3. Carefully open the honey jar or bottle.
4. Pour honey into the glass food storage con-
tainer until it is full.
5. Close the honey jar or bottle.

Plan for am-
biguous task

a detailed plan for the ambiguous
task

1. Locate the food storage container.
2. Locate the honey.
3. Carefully open the honey jar or bottle.
4. Pour honey into the food storage container
until it is full.
5. Close the honey jar or bottle.

Start of ambi-
guity

a number of plan point where ambi-
guity starts (Python-like indexing, 0
for the first point of the plan)

0
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Figure 2: Distribution of numbers of objects in the
environments across ambiguous tasks.

Table 3: Diversity of words in AmbiK tasks.

Statistic Unamb. direct Unamb. indir. Amb.

Number of
words (aver-
age)

42.38 39.47 27.19

Unique
words
(total)

1168 1216 862

Type-Token
Ratio

0.055 0.062 0.063

(types) divided by the number of unique words (to-249

kens). Statistics on actions in the AmbiK task plans250

is given in Table 4. On average, the task of any type251

has 5 actions in the plan.252

3.2 Ambiguity types253

The dataset includes various ambiguity task types254

to be challenging for LLMs: preferences, common255

sense knowledge and safety which are presented in256

the Figure 1.257

Preferences Task: Kitchen Robot, please pour a258

glass of milk from the milk bottle into a glass and259

place it on the kitchen table.260

Options: A) pour cow’s milk from the glass milk261

bottle into a glass, B) pour oat milk from the oat262

Table 4: Statistics on plans in AmbiK tasks.

Statistic Unamb. tasks Amb. tasks

Minimal number of
actions in plans

1 1

Maximal number of
actions in plans

12 13

Average number of
actions in plans

5.468 5.076

Median number of
actions in plans

5 5

Figure 3: Types of ambiguous tasks in AmbiK

milk bottle into a glass 263

Common Sense Knowledge Task: Kitchen 264

Robot, please toast the bread until it is golden 265

brown on both sides, then take it out and spread 266

some mixed fruit jam on top. 267

Options: A)muse the toaster to toast the bread, 268

B) use the oven to toast the bread 269

Safety Task: Kitchen Robot, please slice the cu- 270

cumber and tomato into thin pieces and place them 271

on a ceramic salad plate. 272

Options: A) wash the cucumber and tomato be- 273

fore slicing them, B) slice the cucumber and tomato 274

into thin pieces without washing them 275

These task types differ in how the potentially 276

good model should deal with them. For pref- 277

erences, the model should ask a question in all 278

the cases (except for the case of sustainable hu- 279

man preference which was declared so earlier and 280

should be noted by the robot). For safety and com- 281

mon sense knowledge, the model should not ask 282

questions frequently, as humans don’t do it. In 283

preparation of these task types, we proceeded from 284

the assumption that the humans interact with em- 285

bodied agents nearly as they interact with other hu- 286

mans and that they consider cooperative principles, 287

also called Grice’s maxims of conversation (Grice, 288

1975). Cooperative principles describe how people 289

achieve effective conversational communication in 290

common social situations and are widely used in 291

linguistics and sociology. According to Grice, we 292

are informative (maxim of quantity (content length 293

and depth)), truthful (maxim of quality), relevant 294

(maxim of relation) and clear (maxim of manner), 295

if we are interested in the communicative task com- 296

pletion. 297

As embodied agents should be convenient for hu- 298

mans, we assume cooperative principles in AmbiK 299

benchmark and, for example, do not expect good 300

LLMs to ask whether vegetables should be washed 301

before making a salad: normally they do, and if a 302

human prefers a salad from unwashed vegetables, 303
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it is their communicative responsibility to inform304

robot about it. For this reason, AmbiK contains305

only feasible commands: we expect humans to ask306

a kitchen robot household tasks.307

Before disambiguation (considering information308

from the question-answer pair), to all ambiguous309

tasks correspond from 2 to 4 various correct possi-310

ble actions in the given environment and on condi-311

tion of already executed actions (according to the312

plan given). On average, the number of variants is313

2.192.314

3.3 Data collection315

The data was collected with the assistance of Chat-316

GPT (OpenAI, 2023) and Mistral (Jiang et al.,317

2023) models and is human-validated. Firstly, we318

manually created a list of above 250 kitchen items319

and food grouped by objects’ similarity (e.g. dif-320

ferent types of yogurt constitute one group).321

After that, we randomly sampled from the full322

environment (from 2 to 5 food groups + from 2 to323

5 kitchen item groups) to get 1000 kitchen environ-324

ments. From every group, the random number of325

items (but not less than 3) is included in the scene.326

Some kitchen items (a fridge, an oven, a kitchen327

table, a microwave, a dishwasher, a sink and a tea328

kettle) are present in every environment by design.329

Secondly, for every scene, we asked Mistral to330

generate an unambiguous task. See A for the full331

prompts we used on different data collection steps.332

We manually checked the generated examples and333

choose 500 best tasks without hallucinations.334

Thirdly, for every unambiguous task, we asked335

ChatGPT to come up with an ambiguous task and a336

question-answer pair for disambiguation. We used337

three different prompts which correspond to three338

ambiguity types in AmbiK. For instance, for Com-339

mon sense knowledge the prompt ended as <...>340

Reformulate the task to make it ambiguous in the341

given environment, but easily completed by humans342

based on their common sense knowledge. Change343

as few words as possible. Introduce a question-344

answer pair which would make the ambiguous task345

unambiguous for the robot.346

With ChatGPT, we created ambiguous tasks for347

all three ambiguity types and then manually se-348

lected the ambiguity type which seems to be the349

best (the most natural) for the task.350

In contrast to previous datasets with ambiguous351

NLI such as KnowNo (Ren et al., 2023) tasks in352

AmbiK are often long and complex. However, the353

application of uncertainty-based methods of task354

disambiguation is only meaningful for low-level 355

actions of the plan. We used ChatGPT to generate 356

plans for unambiguous and ambiguous tasks sepa- 357

rately and then automatically compared the plans. 358

The Python index of the first action which does 359

not match both plans. In most cases, the ambiguity 360

starts with the first action of the plan, as it concerns 361

objects which the robot should operate with. 362

Apart from that, we asked ChatGPT to come up 363

with a reformulation of every unambiguous task. 364

Finally, we manually reviewed all Mistral’s and 365

ChatGPT’s answers according to specially created 366

instruction. 367

4 Evaluation 368

4.1 Baselines 369

For demonstration of AmbiK application we im- 370

plemented three methods of deciding whether the 371

robot needs help: KnowNo (Ren et al., 2023) and 372

LoFree (Su et al., 2024). These and many other 373

methods are based on conformal prediction (CP) 374

(Vovk et al., 2005). 375

CP is as a distribution-free and model-agnostic 376

approach to uncertainty quantification (Angelopou- 377

los and Bates, 2022) which transforms any notion 378

of uncertainty from any model into a statistically 379

rigorous one. A result of CP is a narrowed set of 380

options (any answer variants) whose uncertainty no- 381

tions are lower than the CP value calculated during 382

the calibration stage of CP. In tasks for embodied 383

agents with LLMs, CP is used for decision whether 384

LLM is uncertain between different variants of ac- 385

tions. If the set of options includes only one action 386

after applying CP, the robot should execute the ac- 387

tion. If the set consists from more than one option, 388

the robot should ask a clarifying question. The 389

methods we used as baselines for AmbiK differ in 390

how initial notions of uncertainty are calculated. 391

KnowNo (Ren et al., 2023) This method was the 392

first popular method that used conformal prediction 393

on kitchen tasks with LLM in embodied agents. 394

In KnowNo, LLM is asked to generate multiple 395

answer options and, with another prompt, to choose 396

the letter of the best option. SoftMax of logprobs 397

which correspond to all option letters are utilized 398

as inputs for CP. 399

LoFree (Su et al., 2024) The LoFree method is 400

an alternative for most CP-based methods, as it is 401

does not require logit access. Uncertainty notions 402

for CP are calculated based on using both coarse- 403
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grained and fine-grained uncertainty notions such404

as sample frequency (on multiple generations), se-405

mantic similarity and normalized entropy. In this406

work, we firstly applied LoFree for the kitchen407

tasks.408

For all baselines, the few-shot prompting was409

used for generating options by LLM, see Ap-410

pendix A.411

4.2 Methods412

We evaluate planner’s performance based on rele-413

vancy of requests for additional clarification from414

user as well as quality of predictions with multiple415

options using the following metrics:416

• Success Rate (SR): How often the planner’s417

set of predictions for an ambiguous task match418

the user’s intent, calculated as the percentage419

of cases where the predicted actions include420

the correct intent.421

• Help Rate (HR): The fraction of cases where422

the planner asks user for help for all types of423

tasks, followed by a similar fraction for each424

task type separately.425

• Ambiguity Detection (AD): How often plan-426

ner correctly chooses whether to ask for clari-427

fications from user, calculated as the percent-428

age of cases with ambiguous preferences type429

where model asked for further clarifications430

and cases with other types where model did431

not require any assistance.432

4.3 Models433

We conducted experiments on two LLMs: LLaMA-434

2 7B 2 and Gemma 7B 3 (Mesnard et al., 2024).435

In the experiment with KnowNo, the Flan T5436

model4 (Chung et al., 2022) model was used for437

answer generation (choosing between 4 options438

suggested by the first LLM). Evert experiment was439

conducted on 1 H100 GPU.440

4.4 Results441

The results of LoFree experiments on Ambik are442

presented in Tables 5 and 6.443

2Accessed via HuggingFace: hhttps://huggingface.
co/meta-llama/Llama-2-7b-chat-hf

3Accessed via HuggingFace: https://huggingface.co/
google/gemma-7b

4Accessed via HuggingFace: https://huggingface.co/
google/flan-t5-base

Figure 4: The results of the KnowNo method for each
metrics at different levels of CP.

Table 5: Results for LoFree + Gemma on Ambik.

Ambiguity
type

Success
Rate

Help Rate Ambiguity
Detection

Preferences 0.357 0.981 0.974
Common
Sense
Knowledge

0.333 1.0 1.0

Safety 0.0 0.5 0.5

For preferences tasks, the help rate (HR) and 444

ambiguity detection (AmbD) mean the ability of 445

the robot to ask for help in case it is impossible to 446

resolve ambiguity by himself. For other types of 447

tasks, the lower HR and AmbD scores indicate the 448

model’s ability to apply knowledge about the world 449

to kitchen tasks and, followingly, the robot’s ability 450

not to ask questions in the case humans would not 451

do it. 452

In Figure 4 the results for KnowNo + Gemma 453

with different CP values are presented. The value 454

of 0.8 is calculated during the calibration proce- 455

dure as it is implied in KnowNo method. However, 456

as LLMs struggle with generating valid options 457

for ambiguous tasks and are uncertain in their gen- 458

erations, only few options remain in CP set, and, 459

consequently, the metric values on KnowNo are 460

extremely low for all the types. With ignoring the 461

validation stage of CP procedure and lowing the 462

CP value to 0.2, higher scores can be obtained, but 463

these results still indicate that there is a large room 464

for improvement of LLM performance on AmbiK 465

tasks. 466

Both Gemma and LLaMa-2 models with no- 467

tions of uncertainty calculated with LoFree method 468

demonstrate nearly 1.0 performance in detecting 469

ambiguity and asking for help on preferences tasks. 470

However, success rate is quite low with both mod- 471

els (LLaMA-2 performs better than Gemma, but 472
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Table 6: Results for LoFree + LLaMA-2 on Ambik.

Ambiguity
type

Success
Rate

Help Rate Ambiguity
Detection

Preferences 0.556 1.0 1.0
Common
Sense
Knowledge

0.261 1.0 1.0

Safety 0.5 1.0 1.0

has near 0.55 SR), which means that sets of gener-473

ated options rarely contain the correct option. The474

1.0 help rate in Common Sense Knowledge tasks in-475

dicates that these tasks are challenging for Gemma476

+ LoFree: the robot which such a model would ask477

humans about obvious things. The results on Safety478

tasks differ for Gemma and LLaMA: Gemma de-479

tects ambiguity in half of the tasks, but does not suc-480

ceed in predicting correct answers, while LLaMA-481

2 detect ambiguity betterm but asks for help when482

it is probably not always needed. However, as this483

ambiguity type is the minor one in AmbiK dataset,484

there is probably a need for more data to ensure the485

results.486

5 Conclusion487

In this paper, we propose a fully textual dataset,488

AmbiK, for testing natural language instruction dis-489

ambiguation methods for Embodied AI. AmbiK490

contains 500 pairs of ambiguous tasks and their491

unambiguous counterparts, categorized by ambi-492

guity type (human preferences, safety, common493

sense knowledge), with environment descriptions,494

clarifying questions and answers, and task plans,495

for a total of 1000 tasks. We also evaluated two496

CP-based disambiguation methods on the proposed497

dataset and found out that they perform weak with498

tested LLMs, as conformal prediction needs higher499

certainty scores, which can not be received because500

LLMs struggle with generating valid actions for an501

embodied agent in the kitchen environment. In the502

future, we would like to collect more data for safety503

ambiguity type, to expand the dataset on other do-504

mains and test mor emethods on AmbiK. We hope505

that our work will stimulate further research in this506

area.507

6 Ethical Considerations508

Some risks associated with the use of LLMs in509

text generation include possible toxic and abusive510

content, displays of intrinistic social biases and511

hallucinations. However, the nature of data (tasks512

for embodied agents in the kitchen environment) 513

minimizes the risks. Moreover, AmbiK data was 514

human-validated by the authors. Despite that, we 515

warn the users of AmbiK that there are possible 516

biases in data which we have not discovered yet. 517

7 Limitations 518

While the AmbiK dataset provides a valuable re- 519

source for advancing research in handling ambigu- 520

ous tasks in kitchen environments, there are several 521

limitations that must be acknowledged: 522

Focus on Uncertainty Handling. Our experi- 523

ments primarily utilized few-shot prompting tech- 524

niques, where the model is given minimal examples 525

before being tested on new tasks. This approach 526

has shown its limitations, particularly in handling 527

the complexity and variability of ambiguous in- 528

structions. While few-shot learning is useful for 529

rapid prototyping, it often falls short in scenarios 530

requiring deep understanding and nuanced disam- 531

biguation. Training the model may yield better 532

performance and more reliable handling of ambi- 533

guities. 534

Few-Shot Evaluation Limitations. The pri- 535

mary objective of the AmbiK dataset is to eval- 536

uate a model’s ability to handle uncertainty and 537

ambiguity in instructions rather than to develop a 538

comprehensive plan for a given task. This focus 539

means that the dataset and associated evaluations 540

are designed to test how well a model can iden- 541

tify and resolve ambiguities, rather than its overall 542

task planning capabilities. While this is a critical 543

aspect of Embodied AI, it does not address other 544

important elements of task execution and planning. 545

Domain Constraints. The dataset is limited to 546

actions performed by a robot in a kitchen environ- 547

ment. This narrow focus restricts the generalizabil- 548

ity of the findings to other domains where ambi- 549

guity and uncertainty might be handled differently. 550

The addition of other household tasks (cleaning the 551

room, helping with other chores) and other environ- 552

ments (working in the garage, grocery store, etc.) 553

we consider important for further research. 554

Cultural and Linguistic Variability. The in- 555

structions and tasks in the AmbiK dataset are based 556

on English language and cultural norms commonly 557

found in kitchen environments. This cultural and 558

linguistic specificity may limit the applicability of 559

the dataset to non-English speaking contexts or cul- 560

tures with different culinary practices and norms. 561
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A Example Appendix 764

A.1 Prompt for generating unambiguous 765

tasks. 766

Imagine there is a kitchen robot. In the kitchen, 767

there is also a fridge, an oven, a kitchen table, a 768

microwave, a dishwasher, a sink and a tea kettle. 769

Apart from that, in the kitchen there is <SCENE IN 770

NATURAL LANGUAGE>. If possible, generate 771

an interesting one-step task for the kitchen robot 772

in the given environment. The task should not be 773

ambiguous. You can mention only food and objects 774

that are in the kitchen. If there are no interesting 775

tasks to do, write what objects or food are absent 776

to create an interesting task and what concrete task 777

would it be. 778
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A.2 Prompt for generating ambiguous tasks:779

preferences.780

Imagine there is a kitchen robot. In the kitchen,781

there is also a fridge, an oven, a kitchen table, a782

microwave, a dishwasher, a sink and a tea kettle.783

Apart from that, in the kitchen there is scene in784

natural language. The task for the robot is: the785

task. Reformulate the task to make it ambiguous786

in the given environment. Change as few words as787

possible. Introduce a question-answer pair which788

would make the ambiguous task unambiguous.789

A.3 Prompt for generating ambiguous tasks:790

common sense knowledge.791

Imagine there is a kitchen robot. In the kitchen,792

there is also a fridge, an oven, a kitchen table, a793

microwave, a dishwasher, a sink and a tea kettle.794

Apart from that, in the kitchen there is scene in795

natural language. The task for the robot is: the796

task. Reformulate the task to make it ambiguous797

in the given environment, but easily completed798

by humans based on their common sense knowl-799

edge. Change as few words as possible. Introduce800

a question-answer pair which would make the am-801

biguous task unambiguous for the robot.802

A.4 Prompt for generating ambiguous tasks:803

safety.804

Imagine there is a kitchen robot. In the kitchen,805

there is also a fridge, an oven, a kitchen table, a806

microwave, a dishwasher, a sink and a tea kettle.807

Apart from that, in the kitchen there is scene in808

natural language. The task for the robot is: the809

task. Reformulate the task to make it ambiguous810

in the given environment, but easily completed811

by humans based on their knowledge of kitchen812

safety regulations. Introduce a question-answer813

pair which would make the ambiguous task unam-814

biguous for the robot. A question should be asked815

by the robot.816

A.5 Prompt for generating indirect817

unambiguous tasks.818

Imagine there is a kitchen robot. In the kitchen,819

there is also a fridge, an oven, a kitchen table, a820

microwave, a dishwasher, a sink and a tea kettle.821

Apart from that, in the kitchen there is scene in822

natural language. Other objects do not exist in the823

environment. The task for the robot is: the task.824

Please formulate the task in other words. Replace825

as many words as possible. You can use pronouns,826

hyponyms, synonyms etc. (for example, "cola"827

instead of "Coke"). You can address the robot in 828

different ways. The task should be clear and unam- 829

biguous for the human in the given environment. 830

Please, be creative! 831

A.6 Prompt for generating options of actions 832

We: You are a robot operating in an office kitchen. 833

In the kitchen, there is a fridge, an oven, a kitchen 834

table, a microwave, a dishwasher, a sink and a tea 835

kettle. 836

We: Apart from that, in the kitchen there is a fry- 837

ing pan, a grill pan, a sauce pan, a vegetable peeler, 838

a potato masher, canned olives, a greek yogurt 839

cup, a vanilla yogurt cup, a strawberry yogurt cup, 840

cream cheese, cheddar cheese slices, mozarella 841

sticks and cottage cheese. We: You have received 842

the task “Prepare a Cheesy Greek Yogurt Dip.” You 843

created a plan to compete the task. Your previous 844

actions were: 1. Take a bowl from the kitchen table. 845

2. Take a Greek yogurt cup from the fridge. 3. Pour 846

the Greek yogurt into the bowl. Your next action is: 847

4. Take a package of cheese from the fridge. You: 848

A) pick up the greek yogurt cup from the fridge B) 849

pick up cheddar cheese slices from the fridge C) 850

pick up cottage cheese from the fridge D) pick up 851

cream cheese from the fridge 852

We: Apart from that, in the kitchen there is pa- 853

per towels, a bottle opener, frozen mushroom pizza, 854

frozen vegetable pizza, frozen pepperoni pizza, gin- 855

ger biscuits, digestive biscuits, crackers, chocolate 856

teacakes, honey, a vanilla yogurt cup and a greek 857

yogurt cup. We: You have received the task “Add 858

honey to vanilla yogurt.” You created a plan to com- 859

pete the task. Your previous actions were: You: 1. 860

Take the bottle of honey from the kitchen table. 2. 861

Place the bottle of honey on the kitchen table. Your 862

next action is: 3. Open the bottle of honey. You: 863

A) use the bottle opener to open the bottle of honey 864

B) use paper towels to open the bottle of honey C) 865

open the bottle of honey without any tools D) use 866

crackers to open the bottle of honey 867

We: Apart from that, in the kitchen there is a 868

bread knife, a paring knife, a butter knife, a cut- 869

ting board, a vegetable peeler, a potato masher, a 870

plastic food storage container, a glass food storage 871

container, a lemon, a banana, grapes, an apple, an 872

orange, a peach, canned olives and a peeler. We: 873

You have received the task “Kitchen Robot, please 874

use the vegetable peeler to peel the skin off the 875

lemon in one continuous spiral, creating a lemon 876

peel garnish for a cocktail or dessert.” You created 877

a plan to compete the task. Your first action is: 1. 878
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Take the lemon from the kitchen table. You: A)879

pick up the banana from the kitchen table B) pick880

up the lemon from the kitchen table C) pick up881

canned olives from the kitchen table D) pick up882

glass food storage container from the kitchen table883

_task_ We: Apart from that, in the kitchen there884

is <DESCRIPTION>. We: You have received the885

task “<TASK>“ You created a plan to compete the886

task. <PREFIX> Your next action is: <ACT> You:887

A.7 Prompt for defining the action in the plan888

where the ambiguity begins889

We: You are a robot operating in an office kitchen.890

In the kitchen, there is a fridge, an oven, a kitchen891

table, a microwave, a dishwasher, a sink and a tea892

kettle.893

We: Apart from that, in the kitchen there is <EN-894

VIRONMENT DESCRIPTION>. You are given a895

plan to complete the task "<TASK>": <PLAN>896

Please minimally rewrite this plan to make it897

correct for a slightly different task: "Spread a layer898

of yogurt onto a slice of toasted bread using the899

stainless steel dinner knife."900
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