
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNLEARN AND BURN: ADVERSARIAL MACHINE UN-
LEARNING REQUESTS DESTROY MODEL ACCURACY

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine unlearning algorithms, designed for selective removal of training data
from models, have emerged as a promising approach to growing privacy concerns.
In this work, we expose a critical yet underexplored vulnerability in the deploy-
ment of unlearning systems: the assumption that the data requested for removal
is always part of the original training set. We present a threat model where an at-
tacker can degrade model accuracy by submitting adversarial unlearning requests
for data not present in the training set. We propose white-box and black-box attack
algorithms and evaluate them through a case study on image classification tasks
using the CIFAR-10 and ImageNet datasets, targeting a family of widely used un-
learning methods. Our results show extremely poor test accuracy following the
attack—3.6% on CIFAR-10 and 0.4% on ImageNet for white-box attacks, and
8.5% on CIFAR-10 and 1.3% on ImageNet for black-box attacks. Additionally,
we evaluate various verification mechanisms to detect the legitimacy of unlearning
requests and reveal the challenges in verification, as most of the mechanisms fail
to detect stealthy attacks without severely impairing their ability to process valid
requests. These findings underscore the urgent need for research on more robust
request verification methods and unlearning protocols, should the deployment of
machine unlearning systems become more relevant in the future.

1 INTRODUCTION

Unlearn

Model DeployerData Owner

Test accuracy of funlearn: 90%

Unlearn

Valid examples

ftarget funlearn

Attacker

Test accuracy of funlearn: 0%

Adversarially crafted

Machine

unlearning

adv

Model Deployer

ftarget funlearn
Machine

unlearning

adv

Figure 1: Machine unlearning allows data owners to remove their training data from a target model without
compromising the unlearned model’s accuracy on examples not subject to unlearning requests, such as test
data (left). However, we demonstrate that adversarially crafted unlearning requests, though visually similar to
legitimate ones, can lead to a catastrophic drop in model accuracy after unlearning (right).

Machine unlearning (e.g., Cao & Yang, 2015; Garg et al., 2020; Cohen et al., 2023) is a notion
formulated to address a critical challenge in contemporary machine learning systems: the selective
removal from trained models of information pertaining to a given subset of training examples. This
capability has become increasingly important as machine learning models are frequently trained
on large datasets, which often unintentionally include private (Carlini et al., 2021) and copyrighted
(Henderson et al., 2023; Lee et al., 2024; He et al., 2024) material. The need to “unlearn” specific
data points is not merely a technical challenge; it is also a response to escalating privacy concerns
and evolving legal frameworks, such as the General Data Protection Regulation (GDPR, European
Parliament & Council of the European Union).

At its core, the goal of machine unlearning is to provide a protocol for data owners to request the
removal of their data from a model. Specifically, letDtrain be a training set, and ftarget := L(Dtrain) be
a model returned by the learning algorithm L. A machine unlearning algorithm U takes the trained
model ftarget and a forget set Dforget ⊂ Dtrain, and produces a new model funlearn := U(ftarget,Dforget)
that is not influenced by Dforget. The most straightforward unlearning algorithm is to retrain from
scratch, i.e., to compute fretrain := L(Dtrain \ Dforget). However, this is generally impractical not
only because it requires saving an entire copy of Dtrain, but also because the cost of training from

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

scratch has become prohibitively expensive for many modern neural network models. As a result,
there have been numerous efforts in the literature proposing novel unlearning algorithms (Ginart
et al., 2019; Liu et al., 2020; Wu et al., 2020; Bourtoule et al., 2021; Izzo et al., 2021; Gupta et al.,
2021; Sekhari et al., 2021; Ye et al., 2022), some of which achieve better practical efficiency by
relaxing the strong guarantees required in exact unlearning. This has lead to extensive research and
a continuous evolution of the formulation of the unlearning protocol that can better accommodate
such considerations.

Our contributions. In this paper, we continue this line of research by systematically studying
one critical component of the current unlearning protocol. Specifically, the interface of an unlearn-
ing algorithm U is defined as a mapping from (ftarget,Dforget) to funlearn, where it is assumed that
Dforget ⊂ Dtrain. However, it is rarely considered (Q1) what could go wrong when the assumption
is violated (i.e., Dforget ̸⊂ Dtrain), and (Q2) is it possible to verify this assumption via defensive
mechanisms robustly. Both of these questions have significant implications for the real-world de-
ployment of unlearning systems; addressing them will reveal potential risks of current designs. We
evaluate various ways to improve the unlearning protocol that can potentially mitigate these risks.
Specifically, we formulate a threat model and propose concrete attack algorithms in § 2; we study
Q1 in § 3; and study Q2 in § 4. To summarize, our main contributions are:

1. We identify a critical assumption (Dforget ⊂ Dtrain) in machine unlearning protocols that is gen-
erally overlooked in the literature, and formulate a threat model (§ 2.1) where an attacker can
compromise model performance by exploiting this assumption, i.e., submitting unlearning re-
quests that do not belong to the original training set.

2. Inspired by meta-learning (Finn et al., 2017), we propose an attack algorithm (§ 2.2) to identify
adversarial perturbations of the forget set examples by computing gradients through the unlearn-
ing updates using Hessian-vector Product (Dagréou et al., 2024). We further extend our algorithm
to the black-box setting with zero-th order gradient estimation.

3. To answer Q1, we evaluate our attack algorithms on three mainstream unlearning algorithms for
image classification tasks with the state-of-the-art base models on the CIFAR-10 and ImageNet
datasets (§ 3). Our results show extremely poor test accuracy following the attack—3.6% on
CIFAR-10 and 0.4% on ImageNet for white-box attacks, and 8.5% on CIFAR-10 and 1.3% on
ImageNet for black-box attacks. Moreover, we show that the identified adversarial forget sets
can sometimes transfer across models.

4. To answer Q2, we consider attack algorithms with an additional stealth objective that submit
unlearning requests that are only slightly perturbed from true training images. We evaluate six
verification schemes and found that none of them can effectively filter out malicious unlearning
requests without severely compromising the ability to handle benign requests (§ 4).

5. We provide discussion and ablation studies of different variations of threat models (§ 5).
6. We present theoretical insights for the proposed attack (§ C), where we construct a formal setting

of unlearning for linear models, and prove the existence of an attack wherein the unlearned model
on a Dforget consisting of slightly perturbed examples misclassifies all examples in Dretain.

Our findings highlight the need for stronger request verification schemes in machine unlearning
protocols, especially as their real-world deployment may become more prevalent in the future.

2 MACHINE UNLEARNING WITH ADVERSARIAL REQUESTS

In this section, we formulate a threat model (§ 2.1) in which the violation of the assumptionDforget ⊂
Dtrain is not verified when fulfilling an unlearning request, and propose attack methods that generate
malicious unlearning requests (§ 2.2).

2.1 THREAT MODEL
We focus on a data owner-side adversary who submits unlearning requests with the intent of causing
performance failure in the unlearned model. The adversary’s goal and capabilities are detailed below.

Adversary’s goal. The attacker aims to generate a set Dadv
forget of strategically crafted examples

with a crucial property that we refer to as performance-degrading: After undergoing the unlearning
process, these examples result in an unlearned model, f adv

unlearn, with significantly worse performance
(measured by metrics like accuracy in classification tasks) compared to a non-maliciously generated
unlearned model funlearn, when evaluated on data not intended for removal, such as the retain set
Dretain or any held-out dataset Dholdout. The performance degradation can occur in two ways:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• General, where the degradation affects all examples.
• Targeted, similar to a backdoor attack (Chen et al., 2017), where the model’s performance is

specifically degraded on a subset of examples (e.g., a specific class in classification tasks).

Optionally, another potentially desirable property is being stealthy, meaning the crafted examples
closely resemble valid training data. This would make it harder for model deployers to detect without
implementing careful detection mechanisms. We leave consideration of the stealthy property to the
discussion of detection mechanisms in § 4.

Threat model. We assume the attacker has access to a subset of the training data, Dtrain
1.We also

assume that the attacker knows the unlearning algorithm used by the model. In § 5, we discuss
relaxing both assumptions and demonstrate that the attack can still be very effective even if the
attacker lacks access to Dtrain or lacks full knowledge of the unlearning algorithm.

Regarding the attacker’s knowledge of or access to the model, we consider two settings:

• White-box: The attacker has full access to the model, allowing them to perform back-propagation
through the model.

• Black-box: The attacker has query-only access to the model’s loss on a set of arbitrarily chosen
examples, without knowledge of the model weights or architecture. We note that this is less
restrictive than the setting where the attacker can access only the model’s outputs.

2.2 WHITE-BOX AND BLACK-BOX ATTACK METHODS

The attacker’s goal is to identify an adversarial forget set Xadv
forget that, when fed into the unlearning

algorithm, could maximize the degradation of the unlearned model’s performance on the retain set.
We propose an attacking framework to find Xadv

forget with gradient-based local search. Specifically,
let g(Xadv

forget) := Lretain(U(ftarget, {Xadv
forget, yforget},Dretain)) denote the retain loss after we run the

unlearning algorithm U with Xadv
forget as the forget set. We run gradient ascent on g(Xadv

forget) to identify
the (local) optimal Xadv

forget. The main challenge is to compute gradient through the execution of the
unlearning algorithm U. In the following, we describe how to do this in two different access models.

White-box attack. With full access to the model, a white-box attacker can (hypothetically) construct
a computation graph that realizes the unlearning update U to the underlying model, and compute the
gradient∇g(Xadv

forget) by back-propagating through this computation graph. Note that many common
unlearning algorithms U are implemented with gradient updates as well, therefore this hypotheti-
cal computation graph unrolling can be realized via gradient-through-gradient, which is supported
by most modern deep learning toolkits2 with the auto differentiation primitive of Hessian-vector
Products (Dagréou et al., 2024). We note that a similar technique has been used in meta learning
algorithms such as MAML (Finn et al., 2017). However, the setup is quite different as MAML
operates in the weight space, while we search in the model input space. Specifically, MAML tries
to identify the best base model that could minimize the target loss when a fine-tuning algorithm is
executed. Whereas, our algorithm tries to identify the best unlearning inputs that could maximize
the target loss when an unlearning algorithm is executed, based on the unlearning inputs.

Algorithm 1 White-box attack.
1: Input: original model ftarget, a collection X ⊂ Dtrain of training examples, retain set Dretain, un-

learning method U, attack step size ηadv, optimizing steps Tadv, access to loss function g(Xadv
forget) :=

Lretain(U(ftarget, {Xadv
forget, yforget},Dretain)), i.e., the loss over Dretain after unlearning with Xadv

forget.
2: Initialize Xadv

forget ← X
3: for t = 1→ Tadv do
4: Compute gradient∇g(Xadv

forget) /* Using the gradient-through-gradient technique */
5: Xadv

forget ← Xadv
forget + ηadv∇g(Xadv

forget) /* Update adversarial forget set to maximize retain loss */
6: end for
7: Return: (Xadv

forget, yforget)

1This is a reasonable assumption, as it would naturally apply if the attacker is a data owner who has already
contributed to training.

2In this paper, we use the higher library designed for PyTorch to implement this computation.

3

https://github.com/facebookresearch/higher

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

A formal description is shown in Algorithm 1. For simplicity, we initialize the gradient-based attack
with a valid forget set (Line 2 in Algorithm 1). However, as we later demonstrate in § 5, the attacker
could start with any arbitrary collection of datapoints, even random pixels.

Black-box attack. In the black-box setting, the attacker can only access the value of the loss
g(Xadv

forget) and cannot directly compute its gradients. Consequently, instead of computing the gra-
dient explicitly, we use a gradient estimator from zeroth-order optimization literature (Duchi et al.,
2015; Nesterov & Spokoiny, 2017), namely, we draw random noise ∆ (of unit length for simplicity),

and compute an estimate of the gradient as ∇g(Xadv
forget) ≈

g(Xadv
forget+∆)−g(Xadv

forget−∆)

2 ∆. Furthermore,
we implement the following heuristic to improve the local search: (i) Instead of directly optimiz-
ing for Xadv

forget, given a benign forget set X , we search for an adversarial perturbation z and set
Xadv

forget = X + z; (ii) We simultaneously optimize m different randomly initialized adversarial per-
turbations and return the best one at the end of the algorithm; (iii) In each step, we independently
sample p random ∆’s for gradient estimation for each of the m perturbations. This results in mp
updated perturbations (some bad ones are removed, Line 18 of Algorithm 2), and we remove all but
the top-m of them at the end of the step. The full description is shown in Algorithm 2.

Algorithm 2 Black-box attack.
1: Input: original model ftarget, a collection X ⊂ Dtrain of training examples, retain set Dretain, un-

learning method U, attack step size ηadv, optimization steps Tadv, access to loss function g(Xadv
forget) :=

Lretain(U(ftarget, {Xadv
forget, yforget},Dretain)), hyperparameters p,m.

2: Initialize Xadv
forget ← X and initialize a random noise candidate set NoiseCandidates of size 1

3: for t = 1, · · · , Tadv do
4: for z ∈ NoiseCandidates do
5: for i = 1, . . . , p do
6: z′ ← ESTIMATEGRADIENTS(z, g) /* Call to gradient estimation procedure */
7: Append z′ to NoiseCandidates
8: end for
9: end for

10: Keep the top m noises in NoiseCandidates (based on loss function g)
11: end for
12: Choose the best z in NoiseCandidates
13: Return: (Xforget + z, yforget)

14: procedure ESTIMATEGRADIENTS(z, g) /* Estimate the gradient and update noise */
15: Draw random unit noise ∆
16: Compute g(Xforget + z+∆) and g(Xforget + z−∆)
17: if g(Xforget + z+∆) ≤ g(Xforget + z) and g(Xforget + z−∆) ≤ g(Xforget + z) then
18: Return: ∅ /* If no improvement, skip this estimator */
19: end if
20: Estimate gradient∇g(z)← g(Xforget+z+∆)−g(Xforget+z−∆)

2
∆

21: Update noise: z′ ← z+ ηadv∇g(z)
22: Return: updated noise z′

23: end procedure

3 EXPERIMENTS

We describe our experimental setup in § 3.1 and present results for white-box and black-box attacks
in § 3.2 and § 3.3, respectively.

3.1 EXPERIMENTAL SETUP

Datasets and models. We evaluate the proposed attack on image classification tasks, one of the most
common applications of machine unlearning (Bourtoule et al., 2021; Graves et al., 2021; Gupta et al.,
2021; Chundawat et al., 2023; Tarun et al., 2023). We perform experiments across two testbeds:

• CIFAR-10: We use the model provided by the Machine Unlearning Challenge at NeurIPS
2023 (Triantafillou et al., 2023) as the target model ftarget. This model is a ResNet-18 (He et al.,
2016) trained on the CIFAR-10 dataset (Krizhevsky et al., 2009). We randomly select examples

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

from the CIFAR-10 training set to form the forget set Dforget, while the rest of the training data
forms the retain set Dretain. The CIFAR-10 test set is used as Dholdout.

• ImageNet: We construct a larger-scale testbed using ImageNet. Here, we use a ResNeXt-50
model (Xie et al., 2017) pretrained on ImageNet (Deng et al., 2009) as the target model ftarget.
Similar to CIFAR-10, we randomly select examples from the ImageNet training set to create the
forget set Dforget, with the remaining data forms Dretain. The ImageNet test set is used as Dholdout.

Unlearning algorithms. Our evaluation focuses on Gradient Ascent (GA) and two of its variants,
which perform unlearning by continuing to train on the forget set (and optionally the retain set). The
main difference among these methods lies in their objective functions:

• Gradient Ascent (GA). GA maximizes the cross-entropy loss on the forget set Dforget, denoted by
Lforget. GA is notably one of the most popular unlearning algorithms, as demonstrated by its use
as a baseline in the Machine Unlearning Challenge at NeurIPS 2023 (Triantafillou et al., 2023).

• Gradient Ascent with Gradient Descent on the Retain Set (GAGDR; Liu et al., 2022; Maini et al.,
2024; Zhang et al., 2024). GAGDR minimizes the opposite of the forget loss plus the retain loss, de-
noted by−Lforget+Lretain, whereLretain is the cross-entropy of the retain setDretain. The motivation
is to train the model to maintain its performance on Dretain.

• Gradient Ascent with KL Divergence Minimization on the Retain Set (GAKLR; Maini et al., 2024;
Zhang et al., 2024). GAKLR encourages the unlearned model’s probability distribution pfunlearn(·|x)
to be close to the target model’s distribution pftarget(·|x) on inputs from the retain set x ∈ Dretain.
Specifically, the objective loss to minimize is −Lforget +KLretain, where KLretain is the KL Diver-
gence between pfunlearn(·|x) and pftarget(·|x) with x from the retain set.

For all unlearning algorithms, we use SGD as the optimizer, with a momentum of 0.9 and a weight
decay of 5× 10−4. The (un)learning rate is set to 0.02 for CIFAR-10 and 0.05 for ImageNet. Each
unlearning process is run with a batch size of 128 for a single epoch.3

Measuring attack performance. We quantify attack effectiveness by measuring the accuracy
degradation introduced by the adversarial forget set on the unlearned model. For a given for-
get set Dforget, we create two models: (i) funlearn, by applying the unlearning algorithm to Dforget,
and (ii) f adv

unlearn, by generating an adversarial forget set Dadv
forget of the same size using our at-

tack, and applying the unlearning algorithm to Dadv
forget. We quantify the attack’s performance as

the maximum accuracy degradation observed across a grid search of hyperparameters, defined as
∆AccD := maxλ

(
Acc(funlearn;D)− Acc(f adv

unlearn;D)
)
, where λ denotes the attack’s hyperparame-

ters (detailed in § A), and D represents the evaluation dataset. In our evaluation, for general attacks,
we report the accuracy drop on the retain and holdout sets, referred to as ∆Accretain and ∆Accholdout.
For targeted attacks, we report the accuracy drop on a targeted set of examples.

We vary the size of the forget set, |Dforget|, from 10 to 100 in our evaluation. To ensure the statistical
significance of our results, for each evaluated |Dforget|, we randomly select five different subsets for
Dforget and report both the maximum and mean measurements. The runtime of our attack is provided
in § A.

3.2 WHITE-BOX ATTACK

We start with results for the white-box attack described in Algorithm 1.

Accuracy degradation consistently reaches 90% across varying sizes of the forget set. As shown
in Table 1, the unlearned model experiences substantial accuracy degradation under the white-box
attack. The maximum accuracy drop on the retain set Dretain consistently hits around 90% for both
CIFAR-10 and ImageNet (§ B.2 details the attack’s performance across different hyperparameters).
However, when the forget set is smaller (e.g., |Dforget| ≤ 10), the variability in accuracy degradation
increases across forget sets sampled with different random seeds. This variability likely arises from
the unlearning algorithm’s sensitivity when dealing with a small forget set. In other words, this
reveals a new vulnerability where an attacker might experiment with different forget set sizes to
identify the most effective one for compromising the unlearning pipeline.

For reference, Figure 2 visualizes the forget sets before and after the attack on CIFAR-10 and Ima-
geNet. The changes in adversarial forget sets are visually minimal.

3Note that if the forget set size is smaller than 128, this would be equivalent to a single-step unlearning.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Accuracy drop of the unlearned model under white-box attacks on Dretain and Dholdout across varying
sizes of forget set Dforget. For each size, 5 random forget sets were sampled, and hyperparameter search was
conducted to optimize attack performance. The table reports the maximum, mean, and standard deviation of
the accuracy drop across these sets. Consistent and significant accuracy degradation is observed.

|Dforget| ∆Accretain: Accuracy drop on Dretain (%) ∆Accholdout: Accuracy drop on Dholdout (%)
Max Mean Std Max Mean Std

CIFAR-10
10 93.73 90.68 2.76 82.26 80.20 2.63
20 95.12 93.23 1.13 84.66 82.29 1.31
50 94.37 91.92 1.25 83.26 80.84 1.34
100 95.45 92.39 1.65 84.40 81.47 1.67

ImageNet
10 70.56 31.98 26.79 78.40 34.57 35.16
20 96.37 79.63 21.25 86.88 69.32 21.66
50 96.81 94.79 2.07 88.64 86.23 2.25
100 96.88 96.68 0.26 88.68 88.30 0.52

(a) CIFAR-10, Dforget, Retain accuracy: 99.44% (b) CIFAR-10, Dadv
forget, Retain accuracy: 4.32%

(c) ImageNet, Dforget, Retain accuracy: 96.41% (d) ImageNet, Dadv
forget, Retain accuracy: 0.04%

Figure 2: Visualization of the original forget setDforget (a, c) and adversarial forget setsDadv
forget (b, d) for CIFAR-

10 and ImageNet. Although the adversarial forget sets appear visually similar to the original valid forget set,
they lead to catastrophic accuracy failure in the unlearned model.

Theoretical insights. In § C, we provide theoretical insights into our empirical findings. Specif-
ically, we demonstrate that in a theoretical setting of unlearning for linear models, there exists an
attack wherein the predictor returned by a GA-like unlearning algorithm applied on a small pertur-
bation of Dforget misclassifies all examples in Dretain.

Airp
lan

e

Auto
mob

ileBird Cat
Dee

r
Dog Frog

Hors
e

Ship
Tru

ck

Target class

10

20

50

100

|
fo

rg
et

|

87.3 24.7 60.2 56.2 72.2 89.3 91.6 56.9 44.8 91.3

85.3 17.1 51.8 71.9 66.9 85.3 73.2 88.0 33.1 78.9

78.3 50.8 71.2 93.6 85.3 83.6 87.6 87.3 55.9 84.9

92.3 86.6 77.9 87.0 66.6 85.6 54.5 80.9 58.5 85.6
0

20

40

60

80

100

Figure 3: Accuracy drop (%) across different tar-
geted classes in CIFAR-10 after targeted attack,
with impact on non-targeted classes kept < 10%.

Targeted attacks are also highly effective. We
then craft an adversarial forget set to induce a tar-
geted accuracy drop in the unlearned model by
modifying our attack algorithm to compute the
target loss using examples from the same class.
We apply this attack to CIFAR-10, and report the
resulting accuracy drop across different targeted
classes in Figure 3 (with the accuracy drop on non-
targeted classes kept below 10%). The attack con-
sistently causes a significant accuracy degradation
in targeted classes.

Table 2: Accuracy drop (%) on retain set of CIFAR-
10 using adversarial forget sets, found in the shadow
model and applied to target model. Adversarial for-
get sets show transferability across models.

Max Mean Std
10 68.04 48.36 13.48
20 37.41 29.38 7.93
50 14.24 11.63 3.39
100 3.91 3.63 0.30

Transferability across models. We also explore
the transferability of adversarial forget sets across
different models. We consider two models:
• Target model: the CIFAR-10 model from the un-

learning competition (Triantafillou et al., 2023),
with training details unknown.

• Shadow model: a ResNet-18 we train on
CIFAR-10 using SGD for 50 epochs (learning
rate 0.01, momentum 0.9).

We then generate the adversarial forget set on the shadow model and test its transferability to the
target model. Table 2 shows that these sets still cause a significant accuracy drop in the target model.
This transferability is more effective with smaller forget sets.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Maximum accuracy drop (%) with (of 5
randomly selected forget sets for each size) under
white-box attacks on Dretain. The attack is consis-
tently effective across different unlearning methods.

|Dforget| CIFAR-10 ImageNet
GAGDR GAKLR GAGDR GAKLR

10 91.91 92.66 93.95 94.99
20 93.55 94.01 93.69 93.71
50 93.45 91.97 96.62 96.79
100 89.26 92.79 96.69 96.67

Generalization to other unlearning methods.
We also evaluate the effectiveness of our white-
box attack against other unlearning methods,
specifically GAGDR and GAKLR (see §3.1). As
shown in Table 3, our attack remains highly effec-
tive, even when the unlearning algorithm includes
regularization terms: These terms are intended ei-
ther to preserve the model’s performance on the
retained set by penalizing any increase in loss
(GAGDR) or to prevent the unlearned model from
deviating too much from the original (GAKLR).

3.3 BLACK-BOX ATTACK

In the black-box attack setting, the attacker only has query access to the model without knowing its
weights. They must estimate the gradient of the retain loss after running the unlearning algorithm
with adversarial examples to improve their generation of those examples (see Algorithm 2).

Despite this, as shown in Table 4, the attack remains highly effective, causing up to an 42% drop in
retain accuracy on CIFAR-10 and 80.3% on ImageNet. However, we also observe that the black-
box attack is generally more effective with smaller forget sets. This observation is likely consistent
with previous research on zeroth-order optimization. Specifically, as shown by previous works (e.g.,
Duchi et al. (2015)), the variance of the gradient estimators scale up as the dimension increases,
which demonstrates that its performance deteriorates in high-dimensional settings. A possible solu-
tion is drawing more samples before taking an average to offset the impact of increased dimension-
ality at the cost of increased computation.

Table 4: Accuracy drop of the unlearned model under black-box attacks on Dretain and Dholdout across varying
sizes of forget set Dforget. For each size, 5 random forget sets were sampled, and hyperparameter search was
conducted to optimize attack performance. The table reports the maximum, mean, and standard deviation of
the accuracy drop across these sets.

|Dforget| ∆Accretain: Accuracy drop on Dretain (%) ∆Accholdout: Accuracy drop on Dholdout (%)
Max Mean Std Max Mean Std

CIFAR-10
10 42.06 38.97 4.36 37.96 35.60 3.34
20 35.01 27.02 11.31 31.74 24.65 10.03
50 20.32 15.59 6.68 17.74 14.20 5.01
100 15.30 11.89 2.49 12.84 10.13 2.03

ImageNet
10 80.32 69.03 16.64 72.10 62.42 13.78
20 92.83 59.54 42.86 84.42 53.82 38.41
50 94.61 55.80 45.55 86.32 50.41 44.88
100 56.04 26.43 29.55 49.72 23.68 25.88

4 EXPLORATION OF DEFENSIVE MECHANISMS

In this section, we explore potential defenses that model deployers could implement to detect ad-
versarial unlearning requests. We consider two scenarios: (1) when the deployer cannot store all
training examples due to practical limitations such as storage constraints (§ 4.1), and (2) when the
deployer has access to all training examples (§ 4.2).

4.1 DEFENSES WITH LIMITED ACCESS TO TRAINING EXAMPLES

When storage constraints prevent retaining full copies of training data, a possible defense is to store
hashes or embeddings of the original examples instead and compare them to incoming unlearning
requests; a request is considered invalid if its distance from any stored hash or embedding is above
a threshold τ .

Evaluation setup. We evaluate the effectiveness of these detection mechanisms using a forget set
consisting of 100 CIFAR examples. Adversarial examples are generated either without constraints
or by applying an ℓ2 norm limit (via projection onto the ℓ2 ball during each adversarial optimization

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e Average hashing

Quality=20, AUC=0.84
Quality=50, AUC=0.92
Quality=80, AUC=0.96

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Perceptual hashing

Quality=20, AUC=0.94
Quality=50, AUC=0.98
Quality=80, AUC=0.99

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Difference hashing

Quality=20, AUC=0.92
Quality=50, AUC=0.98
Quality=80, AUC=0.99

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Wavelet hashing

Quality=20, AUC=0.80
Quality=50, AUC=0.89
Quality=80, AUC=0.93

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
LPIPS Embedding

Quality=20, AUC=0.99
Quality=50, AUC=1.00
Quality=80, AUC=1.00

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Pixel l2

Quality=20, AUC=0.87
Quality=50, AUC=0.98
Quality=80, AUC=1.00

(a) Non-stealthy attack, ∆Accretain : 92.8%

0.00 0.25 0.50 0.75 1.00

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e Average hashing
Quality=20, AUC=0.20
Quality=50, AUC=0.29
Quality=80, AUC=0.40

0.00 0.25 0.50 0.75 1.00

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Perceptual hashing

Quality=20, AUC=0.13
Quality=50, AUC=0.29
Quality=80, AUC=0.43

0.00 0.25 0.50 0.75 1.00

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Difference hashing

Quality=20, AUC=0.07
Quality=50, AUC=0.21
Quality=80, AUC=0.31

0.00 0.25 0.50 0.75 1.00

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Wavelet hashing

Quality=20, AUC=0.18
Quality=50, AUC=0.28
Quality=80, AUC=0.37

0.00 0.25 0.50 0.75 1.00

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
LPIPS Embedding

Quality=20, AUC=0.00
Quality=50, AUC=0.00
Quality=80, AUC=0.00

0.00 0.25 0.50 0.75 1.00

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Pixel l2

Quality=20, AUC=0.00
Quality=50, AUC=0.00
Quality=80, AUC=0.00

(b) Stealthy attack (w/ projection norm = 10), ∆Accretain : 84.1%

Figure 4: ROC curves for various detection methods under (a) non-stealthy attacks and (b) stealthy attacks,
where adversarial changes are projected onto a valid input space constrained by an ℓ2 ball. The stealthiness
of adversarial forget sets makes them harder to differentiate from benign requests with natural perturbations,
resulting in lower AUC.

step) to enhance stealthiness. To ensure the detection mechanism can also accommodate benign
user requests, which may involve slight variations (e.g., a re-encoded version of the original image),
we simulate benign modifications by re-encoding the image data with a standard JPEG encoder.
Specifically, for each image in the forget set, we use a saved copy of it using standard JPEG encoder4

with different quality parameters5. A lower quality value generally results in more information
loss, making the encoded image less similar to the original pixel values. Therefore, allowing benign
requests becomes more challenging at lower quality levels, as the mechanism must tolerate greater
deviations from the original images while maintaining accuracy in detection.

We evaluate four image hashing methods—average hashing, perceptual hashing, difference hashing,
and wavelet hashing (Little, 2024)—as well as one image embedding method, LPIPS (Zhang et al.,
2018). We report the AUROC across different distance thresholds τ for each method. Higher AU-
ROC values indicate better detection of adversarial requests while maintaining tolerance for benign
user perturbations.

Stealthy attack can easily escape the detection. As shown in Figure 4a, detection methods are
fairly effective when adversarial modifications to the original images are unbounded, with AUROC
values exceeding 0.7 in most cases. However, when the attacker increases stealth by limiting the
adversarial modifications’ ℓ2 norm (see Figure 4b), although this slightly reduces the attack’s ef-
fectiveness, it allows the attack to evade most detection mechanisms, often causing the AUROC to
drop well below 0.5, meaning the adversarial forget sets become more similar to the original forget
set than naturally perturbed sets (i.e., those generated by image compression). Interestingly, while
LPIPS is highly effective when stealth is not enabled, it becomes the weakest method once stealthy
tactics are applied.

4.2 DEFENSES WITH FULL ACCESS TO TRAINING EXAMPLES

When deployers have access to the complete set of training examples, their defensive capabilities
are significantly enhanced. We consider two approaches:

Distance checking: Similar to the detection methods discussed in § 4.1, the deployer can directly
compute pixel-wise ℓ2 distances between incoming unlearning requests and stored training images.
A request is considered invalid if its pixel distance from any stored image is above a threshold τ .
However, as shown in Figure 4, stealthy attacks can still evade this pixel-based checker.

Similarity searching and indexing: To address the limitations of simple distance checking in cap-
turing adversarial requests, we propose an alternative unlearning protocol: Instead of directly accept-
ing incoming images, the deployer performs a similarity search against stored training images and
retrieves the closest matches for use in the unlearning process. This protocol prevents adversarial
examples from directly entering the unlearning pipeline.

4We use the Python Imaging Library.
5Note JPEG is a lossy image codec—data loss could occur even with quality=100. Commonly used value

ranges balancing storage and quality are 70–80. For example, libjpeg-turbo set the default quality=75 for the
command line tool example.

8

https://github.com/python-pillow/Pillow
https://github.com/libjpeg-turbo/libjpeg-turbo

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

10 20 50 100
| forget|

0

20

R
et

ai
n

Er
ro

r (
%

) 30.9

9.5

2.1 1.1
3.8

1.3 0.7 0.60.5 0.5 0.5 0.5

max
mean
min

Figure 5: The attacker can optimize the selection
of examples in a valid forget set to degrade perfor-
mance. We report the maximum, mean, and mini-
mum retain error on CIFAR-10 for varying |Dforget|,
with 3000 random selections per size.

However, this protocol still has a potential vulner-
ability: attackers may optimize the selection of ex-
amples in the forget set to maximize negative im-
pact on model performance. As shown in Figure 5,
such attacks remain feasible on GA when the forget
set is small. For instance, with a forget set contain-
ing only ten examples, an adversarially selected set
could result in a retain error of 30.9%, while a nor-
mal forget set gives a retain error of 3.8%. In other
words, even when the assumption Dforget ⊂ Dtrain
holds, attackers could still exploit other avenues to
compromise the unlearning process. We also in-
vestigate this vulnerability for exact unlearning in
§ B.3 and find it becomes more sensitive when the
forget set is large.

5 DISCUSSIONS

Finally, we discuss how relaxing the threat model described in § 2.1 could affect the attack’s perfor-
mance. In general, our findings below indicate that the attack can succeed even under weaker threat
models. This versatility makes developing an effective defense even more challenging.

5.1 SUCCESSFUL ATTACK EVEN WITHOUT KNOWING THE EXACT UNLEARNING ALGORITHM.

Table 5: Transferability of adversarial forget sets
across unlearning algorithms used to generate
them (rows) and the actual unlearning algorithms
(columns). Numbers in the table are the maximum
accuracy drop (%) with |Dforget| = 20 under white-
box attacks on Dretain. Diagonal entries represent
cases where the attacker knows the exact algorithm.

GA GAGDR GAKLR

GA 95.12 93.52 93.75
GAGDR 94.20 93.55 94.01
GAKLR 93.52 91.30 93.07

In § 2.1, we assume the attacker has the knowl-
edge of the unlearning algorithm getting deployed.
Here, we consider a more relaxed scenario where
the attacker is unaware of the specific algorithm in
use. Specifically, the attacker designs a malicious
unlearning request for algorithm A (one of GA or
GAGDR or GAKLR), while the actual system imple-
ments algorithm B (also one of GA or GAGDR or
GAKLR). As shown in Table 5, even without knowl-
edge of the exact unlearning algorithm, the attack
still results in an accuracy drop of approximately
90% on the retain set.

5.2 SUCCESSFUL ATTACK EVEN WITHOUT ACCESS TO TRAINING DATASET

Another assumption is that the attacker is a data owner within the system and has access to a col-
lection of examples they previously submitted, which were used in training. We now explore the
feasibility of the attack when the attacker is not part of the training process and, therefore, does not
have access to any portion of the training dataset.

Table 6: Accuracy drop (%) on Dretain for
CIFAR-10, with adversarial forget sets ini-
tialized from non-training examples.

|Dforget| Random pixels CIFAR-100
10 67.14 30.69
20 65.31 26.63
50 44.16 14.46
100 20.89 8.63

We randomly select images from CIFAR-100 (Krizhevsky
et al., 2009) or even use randomly initialized pixels to
launch the black-box attack. As shown in Table 6, even
when the attacker initializes their adversarial forget sets
with examples not present in the training set, the attack
remains effective. However, we note that detection mech-
anisms discussed in § 4 would likely catch these attempts.

6 RELATED WORK

Machine unlearning. Machine unlearning is an emerging research area motivated by privacy regu-
lations like GDPR (European Parliament & Council of the European Union) and their ethical consid-
erations, such as the right to be forgotten. It focuses on enabling models to “forget” specific training
data, and has been studied in image classification, language models, and federated learning (Cao &
Yang, 2015; Garg et al., 2020; Liu et al., 2020; Meng et al., 2022; Huang et al., 2022; Che et al.,
2023; Cohen et al., 2023; Wu et al., 2023). Exact unlearning guarantees that the unlearned model
is indistinguishable from the model retrained without the forget set. This is generally only feasible

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

for simple models like SVMs and naive Bayes classifiers (Cauwenberghs & Poggio, 2000; Tveit
et al., 2003; Romero et al., 2007; Karasuyama & Takeuchi, 2010). For more complex models such
as neural networks, efficient exact unlearning remains an open question. Approximate unlearning
offers a more practical solution here, aiming to erase the influence of the forget set without formal
guarantees. For example, a widely used family of unlearning algorithms problems performs gradient
ascent on the training loss computed on the forget data (Guo et al., 2020; Izzo et al., 2021).

Side effects of machine unlearning. Recent studies have raised concerns about various side effects
of machine unlearning. Carlini et al. (2022) introduce the privacy onion effect, where removing the
most vulnerable data points exposes deeper layers of previously safe data to attacks. Di et al. (2022)
show that a camouflaged poisoning attack can be enabled via carefully designed unlearning re-
quests. Hayes et al. (2024) highlight how inexact unlearning often overestimates privacy protection.
Shi et al. (2024) show that unlearning methods might still exhibit partial memorization of unlearned
data, providing a false sense of security regarding privacy guarantees. Shumailov et al. (2024) intro-
duces “ununlearning” and shows how previously unlearned knowledge can be reintroduced through
in-context learning. Łucki et al. (2024) demonstrate that recent unlearning methods proposed for
model safety only superficially obscure harmful knowledge rather than fully removing it. Our work
focuses on a different potential vulnerability in the current machine unlearning protocol, showing
that adversarially perturbed forget sets can severely degrade model performance. Furthermore, we
show the challenge of efficiently and robustly verifying the authenticity of unlearning requests.

Adversarial examples. Szegedy (2013) show that neural networks could be easily misled by
slightly perturbing the input images, causing models to make incorrect predictions with high confi-
dence. This phenomenon has been extensively studied from both the attack and defense sides (e.g.,
Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2017; Mądry et al., 2018; Kurakin et al., 2018).
Our attack also adds adversarial noise to images but with the more challenging goal of fooling a
future model produced by unlearning the adversarially perturbed examples.

Data poisoning attack. Prior works (e.g., Muñoz-González et al., 2017; Shafahi et al., 2018) have
explored meta-learning approaches for data poisoning attacks, where the adversary optimizes poi-
soned training samples to achieve specific malicious objectives, like causing specific misclassifica-
tions or maximizing the overall classification error, when models are trained on the contaminated
dataset. Meta-learning poisoning attacks typically involve a bi-level optimization framework, where
the outer loop optimizes the poisoned samples, and the inner loop simulates model training to eval-
uate their impact. For example, Geiping et al. (2020) proposed a gradient-matching method to craft
poisoned samples by aligning their gradients with the attacker’s objective during training; Huang
et al. (2020) introduced a meta-learning framework, "Metapoison," which iteratively optimizes poi-
soned data to influence the model’s decision boundaries while maintaining clean-label properties.

7 CONCLUSION

In this work, we reveal a critical vulnerability in machine unlearning systems, where adversaries can
significantly degrade model accuracy by submitting unlearning requests for data not in the training
set. Our case study on GA and its variants, a family of widely used unlearning methods, shows
that after the attack, test accuracy drops to 3.6% on CIFAR-10 and 0.4% on ImageNet (white-box),
and 8.5% on CIFAR-10 and 1.3% on ImageNet (black-box). Moreover, even advanced verification
mechanisms fail to detect these attacks without hindering legitimate requests, highlighting the need
for stronger verification methods to secure unlearning systems.

We also recognize several limitations in our work and suggest directions for future research. First,
we focus on image classification, and future research could explore the attack’s transferability to
unlearning for language models (Eldan & Russinovich, 2023; Zhang et al., 2024; Maini et al., 2024;
Shi et al., 2024). Second, our work targets GA-based unlearning, and future research could examine
the applicability of our findings to other approaches, including non-differentiable methods such as
task vectors (Ilharco et al., 2023). Lastly, while we have explored various defense mechanisms, there
may be additional strategies that warrant investigation for their potential robustness.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

Our work examines a critical vulnerability in machine unlearning systems, specifically how adver-
sarial unlearning requests can potentially degrade model accuracy. A potential concern would be
that an adversarial attacker could deploy our algorithm to attack an existing system with machine
unlearning capabilities. However, we believe the risk at the current moment is low because while
machine unlearning is being actively researched on as a promising paradigm, it has not yet been
widely deployed. For future deployments, our work is actually important for improving the security.
Specifically, by exploring these security risks, we aim to 1) disclose and highlight potential threats,
and 2) advance understanding and call for improvements such as stronger verification mechanisms
for making unlearning protocols safer and more robust.

All our experiments, including white-box and black-box attacks, were conducted strictly for aca-
demic purposes in order to better understand the security of machine unlearning methods. We have
not engaged in any malicious activities, and the datasets used (CIFAR-10 and ImageNet) are publicly
available, and widely used for research purposes.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results.

• We provide detailed descriptions of our attack algorithms, including the white-box attack (Algo-
rithm 1) and the black-box attack (Algorithm 2) in § 2.2. For the ImageNet testbed, we further
explain modifications to the black-box attack in Algorithm 3 to increase its effectiveness.

• All technical details of our experiments, including dataset descriptions and split details (for both
CIFAR-10 and ImageNet), evaluation metrics, and the specific configurations for unlearning and
our attacks, are provided in § 3.1. Additional information about our hyperparameter choices can
be found in § A.2.

• For all results, we report the mean/average measurements of five independent runs to ensure sta-
tistical significance. We also include the running time of our experiments in § A.1 for reference.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In S & P, 2021.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In S & P,
2015.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In USENIX Security, 2021.

Nicholas Carlini, Matthew Jagielski, Chiyuan Zhang, Nicolas Papernot, Andreas Terzis, and Florian
Tramer. The privacy onion effect: Memorization is relative. NeurIPS, 2022.

Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector machine
learning. In NeurIPS, 2000.

Tianshi Che, Yang Zhou, Zijie Zhang, Lingjuan Lyu, Ji Liu, Da Yan, Dejing Dou, and Jun Huan.
Fast federated machine unlearning with nonlinear functional theory. In ICML, 2023.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot machine
unlearning. IEEE Transactions on Information Forensics and Security, 2023.

Aloni Cohen, Adam Smith, Marika Swanberg, and Prashant Nalini Vasudevan. Control, confiden-
tiality, and the right to be forgotten. In CCS, 2023.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. How to compute Hessian-
vector products?, 2024. URL https://iclr-blogposts.github.io/2024/blog/bench-hvp/.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Jimmy Z Di, Jack Douglas, Jayadev Acharya, Gautam Kamath, and Ayush Sekhari. Hidden poison:
Machine unlearning enables camouflaged poisoning attacks. In NeurIPS ML Safety Workshop,
2022.

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. TOIT, 2015.

Ronen Eldan and Mark Russinovich. Who’s Harry Potter? Approximate Unlearning in LLMs. arXiv
preprint arXiv:2310.02238, 2023.

European Parliament and Council of the European Union. Regulation (EU) 2016/679 of the Euro-
pean Parliament and of the Council. URL https://data.europa.eu/eli/reg/2016/679/oj.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, 2017.

Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Vasudevan. Formalizing data deletion in the
context of the right to be forgotten. In TCC, 2020.

Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, and
Tom Goldstein. Witches’ brew: Industrial scale data poisoning via gradient matching. arXiv
preprint arXiv:2009.02276, 2020.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making AI forget you: Data
deletion in machine learning. In NeurIPS, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. ICLR, 2015.

12

https://iclr-blogposts.github.io/2024/blog/bench-hvp/
https://data.europa.eu/eli/reg/2016/679/oj

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In AAAI, 2021.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. In ICML, 2020.

Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris Waites.
In NeurIPS, 2021.

Jamie Hayes, Ilia Shumailov, Eleni Triantafillou, Amr Khalifa, and Nicolas Papernot. Inexact
unlearning needs more careful evaluations to avoid a false sense of privacy. arXiv preprint
arXiv:2403.01218, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Luxi He, Yangsibo Huang, Weijia Shi, Tinghao Xie, Haotian Liu, Yue Wang, Luke Zettlemoyer,
Chiyuan Zhang, Danqi Chen, and Peter Henderson. Fantastic copyrighted beasts and how (not)
to generate them. arXiv preprint arXiv:2406.14526, 2024.

Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A Lemley, and Percy
Liang. Foundation models and fair use. JMLR, 2023.

W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. Metapoison: Prac-
tical general-purpose clean-label data poisoning. Advances in Neural Information Processing
Systems, 33:12080–12091, 2020.

Yangsibo Huang, Chun-Yin Huang, Xiaoxiao Li, and Kai Li. A dataset auditing method for collab-
oratively trained machine learning models. IEEE TMI, 2022.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. In ICLR, 2023.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion
from machine learning models. In AISTATS, 2021.

Masayuki Karasuyama and Ichiro Takeuchi. Multiple incremental decremental learning of support
vector machines. IEEE Transactions on Neural Networks, 2010.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
In Artificial Intelligence Safety and Security. 2018.

Katherine Lee, A. Feder Cooper, and James Grimmelmann. Talkin’ ’bout AI generation: Copyright
and the generative-AI supply chain, 2024.

Benjamin Little. Imagehash: A perceptual image hashing library. https://github.com/
bjlittle/imagehash, 2024. Accessed: 2024-09-10.

Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning. In Conference on
Lifelong Learning Agents, 2022.

Gaoyang Liu, Xiaoqiang Ma, Yang Yang, Chen Wang, and Jiangchuan Liu. Federated unlearning.
arXiv preprint arXiv:2012.13891, 2020.

Jakub Łucki, Boyi Wei, Yangsibo Huang, Peter Henderson, Florian Tramèr, and Javier Rando. An
adversarial perspective on machine unlearning for AI safety. arXiv preprint arXiv:2409.18025,
2024.

Aleksander Mądry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary Chase Lipton, and J. Zico Kolter. TOFU:
a task of fictitious unlearning for LLMs. In COLM, 2024.

13

https://github.com/bjlittle/imagehash
https://github.com/bjlittle/imagehash

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. In NeurIPS, 2022.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In CVPR, 2017.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,
Emil C Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with back-gradient
optimization. In Proceedings of the 10th ACM workshop on artificial intelligence and security,
pp. 27–38, 2017.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 2017.

Enrique Romero, Ignacio Barrio, and Lluís Belanche. Incremental and decremental learning for
linear support vector machines. In ICNN, 2007.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386, 1958.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. In NeurIPS, 2021.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks.
Advances in neural information processing systems, 31, 2018.

Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao
Liu, Luke Zettlemoyer, Noah A Smith, and Chiyuan Zhang. Muse: Machine unlearning six-way
evaluation for language models. arXiv preprint arXiv:2407.06460, 2024.

Ilia Shumailov, Jamie Hayes, Eleni Triantafillou, Guillermo Ortiz-Jimenez, Nicolas Papernot,
Matthew Jagielski, Itay Yona, Heidi Howard, and Eugene Bagdasaryan. Ununlearning: Un-
learning is not sufficient for content regulation in advanced generative AI. arXiv preprint
arXiv:2407.00106, 2024.

C Szegedy. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet effective
machine unlearning. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Eleni Triantafillou, Fabian Pedregosa, Jamie Hayes, Peter Kairouz, Isabelle Guyon, Meghdad Kur-
manji, Gintare Karolina Dziugaite, Peter Triantafillou, Kairan Zhao, Lisheng Sun Hosoya, Julio
C. S. Jacques Junior, Vincent Dumoulin, Ioannis Mitliagkas, Sergio Escalera, Jun Wan, So-
hier Dane, Maggie Demkin, and Walter Reade. Neurips 2023 - machine unlearning. https:
//kaggle.com/competitions/neurips-2023-machine-unlearning, 2023.

Amund Tveit, Magnus Lie Hetland, and Håavard Engum. Incremental and decremental proximal
support vector classification using decay coefficients. In International Conference on Data Ware-
housing and Knowledge Discovery, 2003.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Sci-
ence. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
2018.

Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi Xiong.
Depn: Detecting and editing privacy neurons in pretrained language models. EMNLP, 2023.

Yinjun Wu, Edgar Dobriban, and Susan Davidson. Deltagrad: Rapid retraining of machine learning
models. In ICML, 2020.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In CVPR, 2017.

14

https://kaggle.com/competitions/neurips-2023-machine-unlearning
https://kaggle.com/competitions/neurips-2023-machine-unlearning

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jingwen Ye, Yifang Fu, Jie Song, Xingyi Yang, Songhua Liu, Xin Jin, Mingli Song, and Xinchao
Wang. Learning with recoverable forgetting. In ECCV, 2022.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catas-
trophic collapse to effective unlearning, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Appendices

A Experimental details 17

A.1 Compute Configuration . 17

A.2 Hyperparameters . 17

A.3 Black-box Attack Algorithm for ImageNet . 17

B More experimental results 19

B.1 Benign Unlearning Results . 19

B.2 Effect of Attack Hyperparameters . 19

B.3 Indexing Attack for Exact Unlearning . 19

C Theoretical Demonstration of Attack 20

C.1 The Existence Results . 20

C.2 Discussion . 22

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

We provide more experimental details as follow.

A.1 COMPUTE CONFIGURATION

We conduct all the experiments on NVIDIA A100-64GB GPU cards with 4 CPUs. The typical av-
erage runtime for different experiments are listed in Table 7 with five random drawn forget datasets.
For white-box attack, we report the average runtime with Tadv = 1000. For black-box attack, we
report the runtime with Tadv = 1000,m = 1, p = 1, d = 5.

Table 7: Average runtime (in GPU seconds) for the attack across five independent runs, reported under different
forget set sizes. The standard deviations are shown in parentheses.

|Dforget| White-box Attack Black-box attack

10 71.72 552.98
20 71.30 544.54
50 71.41 548.54

100 72.20 549.60

(a) CIFAR-10

|Dforget| White-box attack Black-box attack

10 808.27 944.86
20 794.51 1052.99
50 1095.13 1497.13
100 1758.28 2200.38

(b) ImageNet

A.2 HYPERPARAMETERS

Hyperparameters for unlearning. The hyperparameters for unlearning are selected to ensure that
the unlearning process on benign Dforget is effective, resulting in a roughly 10% to 20% drop in
accuracy, closely aligning with the model’s performance on non-training examples from Dforget. At
the same time, it induces only a minimal accuracy reduction on Dretain.accuracy drop on Dretain.

Hyperparameters for our attacks. We also provide the hyperparameter settings for white-box and
black-box attacks used in our experiments in Table 8.

Table 8: Hyperparameter settings for white-box and black-box attacks used in our experiments.

CIFAR-10 ImageNet
White-box attack

Forget set size (|Dforget|) {10, 20, 50, 100} {10, 20, 50, 100}
Adversarial step size (ηadv) {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0}

Adversarial optimization steps (Tadv) {10, 20, 50, 100, 200, 500, 1000, 2000, 5000}
Black-box attack

Forget set size (|Dforget|) {10, 20, 50, 100} {10, 20, 50, 100}
Adversarial step size (ηadv) {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0}

Adversarial optimization steps (Tadv) {10, 20, 50, 100, 200, 500, 1000, 2000, 5000}
of gradient estimators for each noise candidate (p) {1, 2, 3, 4, 5} {1, 2, 3}

Candidate noise set size (m) {1, 2, 3} {1, 2, 3}

A.3 BLACK-BOX ATTACK ALGORITHM FOR IMAGENET

We make slight adjustments to the black-box algorithm for ImageNet, which we describe in Algo-
rithm 3. The main differences between Algorithm 2 and Algorithm 3 are as follows:

• Stopping condition: in Algorithm 2, the update process for noise stops, and the loop proceeds
to the next iteration if the conditionsg(Xforget + z + ∆) ≤ g(Xforget + z) and g(Xforget + z −
∆) ≤ g(Xforget + z) are both satisfied. In contrast, we found this condition frequently occurs
for ImageNet (Algorithm 3), so we allow the algorithm to continue without stopping, making the
process more robust to such scenarios.

• Gradient estimation parameter: In Algorithm 3, we introduce an additional hyperparameter d
to control the number of gradient estimators. Specifically, d gradient estimators are drawn and

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

averaged to obtain the final gradient. This adjustment is made because white-box attacks tend
to perform well on ImageNet, and averaging over a larger d improves the quality of the gradient
estimate.

Algorithm 3 Black-box attack for ImageNet

1: Input: original model ftarget, a collection of training examples X ⊂ Dtrain, retain set Dretain,
unlearning method U, adversarial step size ηadv, training steps Tadv, access to loss function
g(Xadv

forget) := Lretain(U(ftarget, {Xadv
forget, yforget},Dretain)), hyperparameters p,m, d.

2: Initialize Xadv
forget ← X

3: Initialize noise candidate set NoiseCandidates of size m
4: for t = 1, · · · , Tadv do
5: for z ∈ NoiseCandidates do
6: z′ ← EstimateGradientsImagenet(z, p, d, g) /* Call to the new ImageNet gradient

estimation procedure */
7: Append z′ to NoiseCandidates
8: end for
9: Keep the top m noises in NoiseCandidates (based on loss function g)

10: end for
11: Choose the best z in NoiseCandidates
12: Return: (Xforget + z, yforget)

13: procedure ESTIMATEGRADIENTSIMAGENET(z, p, d, g) /* Estimate the gradient and update
noise for ImageNet */

14: for i = 1, · · · , p do /* Repeat p times for noise candidates */
15: for j = 1, · · · , d do /* draw d samples and compute the average for higher accuracy */
16: Draw random unit noise ∆
17: Compute g(Xforget + z+∆) and g(Xforget + z−∆)

18: Estimate gradient∇gj(z)← g(Xforget+z+∆)−g(Xforget+z−∆)
2 ∆

19: end for
20: Compute the average gradient estimator∇g(z) = 1

d

∑d
j=1∇gj(z)

21: Update noise: z′ ← z+ ηadv∇g(z)
22: end for
23: Return: updated noise z′

24: end procedure

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B MORE EXPERIMENTAL RESULTS

B.1 BENIGN UNLEARNING RESULTS

Table 9 reports the accuracy for the forget, retain, and test sets under benign unlearning requests of
various sizes. As shown, the accuracy on the forget set is roughly comparable to the test set after
unlearning, while the accuracy on the retain set remains high.

Table 9: Accuracy on forget, retain and test sets under benign unlearning request.

|Dforget| funlearn, Forget accuracy funlearn, Retain accuracy funlearn, Test accuracy

10 83.15± 14.82 97.93± 4.78 86.88± 3.92
20 89.01± 7.76 99.09± 1.04 87.89± 0.95
50 86.18± 3.74 99.21± 2.85 88.03± 0.24
100 86.72± 2.05 99.36± 6.18 88.29± 0.17

B.2 EFFECT OF ATTACK HYPERPARAMETERS

We further examine the performance of the white-box attack under different hyperparameter con-
figurations. Results shown in Figure 6 reveal a clear trend: lower attack step sizes (ηadv) are more
effective for attacks targeting smaller forget sets, while higher attack step sizes and increased opti-
mization steps (Tadv) improve attacks on larger forget sets.

0 1000 2000 3000 4000 5000

Adv. optimization
 steps (Tadv)

0

20

40

60

80

100

R
et

ai
n

Ac
cu

ra
cy

 (%
) | forget|: 10

0 1000 2000 3000 4000 5000

Adv. optimization
 steps (Tadv)

0

20

40

60

80

100
| forget|: 20

0 1000 2000 3000 4000 5000

Adv. optimization
 steps (Tadv)

0

20

40

60

80

100
| forget|: 50

0 1000 2000 3000 4000 5000

Adv. optimization
 steps (Tadv)

0

20

40

60

80

100
| forget|: 100

Adv. step size (adv): 0.05 0.1 0.5 1.0 5.0

Figure 6: Retain accuracy after white-box attack on CIFAR-10 for various combinations of Tadv and ηadv.
Attacking a larger Dforget typically requires a higher ηadv and larger Tadv.

B.3 INDEXING ATTACK FOR EXACT UNLEARNING

Earlier in § 4.2, we discuss another potential protocol for unlearning: instead of directly accepting
incoming images, the deployer performs a similarity search against stored training images and re-
trieves the closest matches for use in the unlearning process. However, we show that this protocol is
still vulnerable in a sense that attackers may optimize the selection of examples in the forget set to
maximize negative impact on model performance. For GA, the attack is most effective when Dforget
is small.

We also investigate this vulnerability for exact unlearning in Figure 7 and find that its vulnerability
slightly increases with a larger forget set. This is because, with a larger forget set, exact unlearning
excludes more data points, making it slightly easier for certain selections of the forget set to cause a
more significant accuracy drop.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

100 500 1000 5000
| forget|

8

10

12

14

R
et

ai
n

Er
ro

r (
%

)
12.8

13.9 13.7 13.9

11.2 11.2 11.3 11.4

10.1 9.9 9.8 9.8

max mean min

(a) Retain error

100 500 1000 5000
| forget|

15.0

17.5

20.0

22.5

25.0

Te
st

 E
rro

r (
%

)

20.7
22.0 21.9 22.0

19.3 19.3 19.5
20.1

18.0 18.2 18.2 18.7

max mean min

(b) Test error

Figure 7: The attacker can optimize the selection of examples in a valid forget set to degrade performance. We
report the maximum, mean, and minimum retain error on CIFAR-10 with exact unlearning for varying |Dforget|,
with 500 random selections per size.

C THEORETICAL DEMONSTRATION OF ATTACK

In this section, we discuss a theoretical setting of a learning algorithm, an unlearning algorithm
(that achieves perfect unlearning), and formally show that there exist adversarial perturbations of
the forget set that can make the unlearning algorithm yield a predictor that performs poorly on the
retain set.

C.1 THE EXISTENCE RESULTS

Our goal is to construct a simple setting where it is easy to conceptually understand why such an
attack can exist. We use an unlearning algorithm similar to the GA-family algorithms studied in
our experiments, but we acknowledge a number of assumptions such as Gaussian inputs and linear
models do not fully match the settings of our empirical results. Nonetheless, the formal results
provide theoretical intuition on why such attacks are possible. We discuss possible future directions
to study more such constructions in § C.2.

For data (x, y) drawn i.i.d. from a distribution P , a learning algorithm, abstractly speaking, is a
(randomized) method L : (X × Y)∗ → H that maps sequences Dtrain = ((x1, y1), . . . , (xn, yn))
of examples to a predictor h ∈ H. We measure the quality of the learning algorithm in terms
of its empirical and population loss, namely for ℓ : H × (X × Y) → {0, 1}, we would
like to minimize the population loss L(h;P) := E(x,y)∼P ℓ(h;x, y) or even the empirical loss
L(h;Dtrain) :=

1
|Dtrain|

∑
(x,y)∈Dtrain

ℓ(h;x, y).

An unlearning algorithm is a (randomized) method U : H× (X ×Y)∗ × (X ×Y)∗ → H that maps
the current predictor h ∈ H, a forget set Dforget ∈ (X × Y)∗ and a retain set Dretain ∈ (X × Y)∗
to an updated predictor h̃ ∈ H. A desirable property of the unlearning algorithm U is that
when invoked on h being the output of the learning algorithm on input Dtrain = Dforget ◦ Dretain,
U(L(Dforget ◦ Dretain),Dforget,Dretain) has the same distribution as, or at least is “close to”, the distri-
bution L(Dretain); we say that (L,U) is a perfect learning-unlearning pair if this holds. A trivial way
to achieve perfect learning-unlearning is by setting U(L(Dforget◦Dretain),Dforget,Dretain) = L(Dretain).
However, this method of unlearning is not desirable as it can be computationally inefficient to per-
form learning on Dretain from scratch. Instead, it is desired that U(L(Dforget ◦ Dretain),Dforget,Dretain)
has a computational complexity that is significantly less compared to that of L(Dretain).

We will now consider a specific realization of the learning and unlearning algorithms as follows.

Data Distribution. We consider the data distribution Ph∗ defined over Rd×{−1, 1}, parameterized
by h∗ ∈ Rd, obtained by sampling x ∼ N (0, 1

dId) and setting y = sign(⟨h∗, x⟩). We will consider
the high dimensional regime where n≪ d.
Loss Function. We use the 0-1 loss function for halfspaces, ℓ(h;x, y) := 1{y ̸= sign(⟨h, x⟩)}.
Learning Algorithm. We consider a perceptron-like6 learning algorithm, defined as L(Dtrain) :=∑

(x,y)∈Dtrain
yi · xi.

6The Perceptron algorithm (Rosenblatt, 1958) operates on the examples one at a time, by choosing an
example (xi, yi) that is misclassified by the current predictor h, and adds yixi to h. Here, we instead perform
a single step on all examples at once.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Unlearning. We consider the unlearning algorithm U(ĥ,Dforget,Dretain) := ĥ−
∑

(x,y)∈Dforget
y · x.

Observe that in fact, the algorithm does not even use Dretain, and thus is more efficient to compute
than computing L(Dretain) from scratch.
ε-Perturbations. We say that D′ = ((x′

1, y1), . . . , (x
′
n, yn)) is an ε-perturbation of D =

((x1, y1), . . . , (xn, yn)) if for all i, it holds that ∥x′
i − xi∥2 ≤ ε.

We now present the main result of this section that shows the existence of ε-perturbations of the
forget set that makes the unlearning algorithm return a predictor that misclassifies all examples in
the retain set.

Theorem C.1 (Adversarial Forget Sets). For all ε, β > 0 and n <
√
d/ log(d/β) there exists

m = O(
√
n/ε) such that for Dtrain sampled i.i.d. from Ph∗ with |Dtrain| = n, Dforget being a

randomly chosen subset ofDtrain with |Dforget| = m andDretain := Dtrain \Dforget, all of the following
hold with probability 1− β over randomness of sampling the data:

1. L(L(Dtrain),Dtrain) = 0. In other words, the learnt predictor achieves perfect accuracy on the
training dataset.

2. U(L(Dforget◦Dretain),Dforget,Dretain) = L(Dretain). In other words, (L,U) forms a perfect learning-
unlearning pair.

3. There exists an ε-perturbation D′
forget of Dforget such that L(h′;Dretain) = 1 for h′ :=

U(L(Dtrain),D′
forget,Dretain). In other words, when provided a perturbation of Dforget, the pre-

dictor after unlearning misclassifies the entire retain set Dretain.

We rely on the following concentration bound on the norms and inner products of random Gaussian
vectors, which follow from simple applications of Bernstein’s inequality for sub-exponential random
variables.

Fact C.2 (See, e.g., Vershynin (2018)). For x, y ∼ N (0, σ2Id), it holds that

Pr[|∥x∥22 − dσ2| > εdσ2] ≤ 2exp
(
−ε2d/4

)
,

Pr[|⟨x, x′⟩| > εdσ2] ≤ 2exp
(
−ε2d/4

)
.

Proof of Theorem C.1. We first note that for x1, . . . , xn ∼ N (0, 1
dId), we have from Fact C.2 that

with probability 1− β, all of the following hold:

∥xi∥22 ≥ 1−
√

log(n/β)
d , (1)

∥xi∥22 ≤ 1 +
√

log(n/β)
d , (2)

|⟨xi, xj⟩| ≤ 3
√

log(n/β)
d . (3)

We now proceed to prove each of the claimed parts, by conditioning on Eqs. (1), (2), and (3) holding.
We use the notation Dtrain = ((x1, y1), . . . , (xn, yn)).

1. We have L(Dtrain) = ĥ :=
∑

i yi ·xi. From Eqs. (1) and (3), we have that with probability 1−β,
it holds for all (x, y) ∈ Dtrain, that

y · ⟨ĥ, x⟩ = ∥x∥2 +
∑

(x′,y′)∈Dtrain\{(x,y)} yy
′ · ⟨x, x′⟩

≥ 1−
√

log(n/β)
d − 3(n− 1)

√
log(n/β)

d > 0,

where we use that n < O(
√
d/ log(d/β)). Thus, with probability 1 − β, we have that all

examples in Dtrain are correctly classified by ĥ.
As an aside, we also note that under Eqs. (2) and (3), it holds that

∥ĥ∥2 =
∑

i ∥xi∥2 +
∑

i ̸=j yiyj · ⟨xi, xj⟩

≤ n ·
(
1 +

√
log(n/β)

d

)
+ n(n−1)

2 ·
√

log(n/β)
d ≤ O(n),

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

2. This is immediate since U(L(Dtrain),Dforget,Dretain) =
∑

(x,y)∈Dtrain
y · x −

∑
(x,y)∈Dforget

y · x =∑
(x,y)∈Dretain

y · x, which is precisely L(Dretain).

3. We consider the following ε-perturbation D′
forget of Dforget, obtained by including (x′ = x+ εy ·

ĥ
∥ĥ∥

, y) in D′
forget for all (x, y) ∈ Dforget. Note that this requires only knowledge of ĥ and the

forget set Dforget; we do not need any information about the examples in Dretain.
The unlearning algorithm on this perturbed set would return: h̃ = ĥ−

∑
(x,y)∈Dforget

y ·x− εm
∥ĥ∥2

ĥ.

Thus, for a suitable m = O(
√
n/ε), we then have that h̃ = cĥ for c < 0, and hence yi·⟨h̃, xi⟩ < 0

for all (xi, yi) ∈ Dtrain, and in particular, the returned predictor h̃ will misclassify the entire retain
set.

C.2 DISCUSSION

In summary, Theorem C.1 shows that for the learning-unlearning pair considered, small perturba-
tions on a forget set that is much smaller than the training set size can cause the unlearning algorithm
to return a predictor that misclassifies the entire training set. However, we note the following limi-
tations of Theorem C.1, that we leave for future work to address.

First and foremost, the theorem is about a linear model, which does not capture the complex non-
linearity of a neural network. Thus, it does not immediately provide any specific insight into the
experiments we perform on neural networks in this paper.

Another limitation, is that we do not show that the learnt predictor achieves small population loss.
This is in fact impossible in the regime when n ≪ d as we consider. It would more desirable to
have a learning-unlearning setting where the learning algorithm also achieves small population loss.
However, we do note that the learning algorithm we consider is still “reasonable” in the sense that
it does have generalization guarantees with n ≫ d, on the family of distributions {Ph∗ : h∗ ∈ Rd}
that we consider.

We suspect that the reason why the phenomenon occurs in neural networks is that small perturbations
in feature (e.g. pixels) space can cause larger perturbations to the corresponding gradients. Whereas,
in the setting of Theorem C.1, the attack arguably arises because the retain set examples are quite
diverse from each other, and so a small forget set of size only O(

√
n/ε) can perform a “coordinated

attack” to push the predictor in a bad region.

Finally, another gap between our theoretical example and our experiments is that in the latter, we
did not need a large forget set to execute an attack. In particular, the unlearning algorithm used
averaged gradients over the forget set, so the attack could not have benefited just from the forget set
being large.

22

	Introduction
	Machine Unlearning with Adversarial Requests
	Threat Model
	White-box and Black-box Attack Methods

	Experiments
	Experimental Setup
	White-box Attack
	Black-box Attack

	Exploration of Defensive Mechanisms
	Defenses with Limited Access to Training Examples
	Defenses with Full Access to Training Examples

	Discussions
	Successful attack even without knowing the exact unlearning algorithm.
	Successful attack even without access to training dataset

	Related Work
	Conclusion
	Appendices
	Experimental details
	Compute Configuration
	Hyperparameters
	Black-box Attack Algorithm for ImageNet

	More experimental results
	Benign Unlearning Results
	Effect of Attack Hyperparameters
	Indexing Attack for Exact Unlearning

	Theoretical Demonstration of Attack
	The Existence Results
	Discussion

