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ABSTRACT

In the rapidly evolving field of deep learning, specialized models have driven
significant advancements in tasks such as computer vision and natural language
processing. However, this specialization leads to a fragmented ecosystem where
models lack the adaptability for broader applications. To overcome this, we intro-
duce AutoFusion, an innovative framework that fusing distinct model’s parame-
ters(with the same architecture) for multi-task learning without pre-trained check-
points. Using an unsupervised, end-to-end approach, AutoFusion dynamically
permutes model parameters at each layer, optimizing the combination through a
loss-minimization process that does not require labeled data. We validate AutoFu-
sion’s effectiveness through experiments on commonly used benchmark datasets,
demonstrating superior performance over established methods like Weight Inter-
polation, Git Re-Basin, and ZipIt. Our framework offers a scalable and flexible
solution for model integration, positioning it as a powerful tool for future research
and practical applications.

“For the strength of the pack is the wolf,
and the strength of the wolf is the pack.”

- Rudyard Kipling

1 INTRODUCTION
In the rapidly evolving landscape of technological innovation, deep learning models have become
increasingly specialized Dong et al. (2021) Lai et al. (2024a) Li et al. (2024) Lai et al. (2022) Lai
et al. (2024b), leading to substantial advancements in diverse fields such as computer vision and
natural language processing Sharifani & Amini (2023). These specialized models, meticulously
honed to excel in their designated niches, have undeniably propelled numerous breakthroughs Taye
(2023). However, this specialization has inadvertently led to a fragmented ecosystem where models,
although highly effective within their specific domains, lack the adaptability and versatility required
to address a wider array of challenges. This raises a pivotal question: Is it possible to amalgamate
the strengths of these specialized models into a unified architecture capable of performing multiple
tasks proficiently?

The challenge of integrating specialized models into a coherent system is multifaceted. Traditional
approaches to model fusion heavily depend on prior knowledge and require meticulous tuning of
hyperparameters, such as specifying which layers to merge and permuting parameters according to
what principle. Ainsworth et al. (2022) Stoica et al. (2023) Qu & Horvath (2024). Do we have to
propose a new approach to any new problem? This is obviously costly and has a serious impact
on the usefulness of parametric fusion. Moreover, In the case where model parameters do not
share pre-trained parameters, merging parameters from different tasks obviously cannot be directly
accomplished through the previously common method of parameter permutation based on similarity.

To address these challenges, we propose AutoFusion, an innovative framework designed to fuse the
parameters of two models, which do not share the same pre-trained parameters and perform
different tasks, into a single parameter capable of simultaneously accomplishing multiple tasks
which can be expressed figuratively as Figure 1. Drawing inspiration from the principle that ’more
is merrier’, unlike conventional methods that depend on predefined rules or heuristics, AutoFusion
aims to learn an effective permutation of model parameters to accomplish the fusing of multi-
task model parameters. This unsupervised training process requires no labeled data, making it a
flexible and scalable solution for model integration.

1
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Figure 1: In this figure we use deer and sheep to denote different tasks, and different colors of wolves
to denote different models, our purpose is to make a reasonable fusion of models that are good at
each, which can make the fusion model good at different tasks.

The AutoFusion method is primarily based on two operations: aligning parameters that perform
similar functions through permutation, and retaining parameters that perform different functions
through their permutation as much as possible. The key to achieving this is the design of the loss
function, which guides the learning process. Specifically, the loss function is designed to minimize
the discrepancy between the fused model’s output and the outputs of the individual specialized
models on their respective tasks. This ensures that the fused model retains the strengths of the
original models while being able to generalize across multiple tasks.

The unsupervised nature of AutoFusion is a critical aspect of its design. By not requiring labeled
data, AutoFusion can be applied to a wide range of model architectures and datasets, making it a
versatile tool for future research and practical applications in deep learning. The end-to-end design
of AutoFusion allows for dynamic permuting of model parameters at each layer, resulting in a unified
and robust model capable of handling multiple tasks.

To evaluate the efficacy of AutoFusion, we conducted experiments on the commonly used bench-
mark datasets Xiao et al. (2017) Clanuwat et al. (2018) LeCun et al. (1998) Krizhevsky et al. (2009),
simulating the scenario of merging models trained on distinct tasks. Our findings indicate that the
merged model achieves high accuracy across all sub-tasks, frequently outperforming established
techniques like Weight Interpolation Li et al. (2023), Git Re-Basin Ainsworth et al. (2022), and
ZipIt Stoica et al. (2023).

Our contributions to the field of model parameter integration can be summarized as follows:

(i) End-to-End Unsupervised Framework: We present an end-to-end, unsupervised approach to
model parameter fusion, eliminating the need for prior knowledge and predefined hyperparameters.
This approach facilitates the dynamic permuting of model parameters at each layer, resulting in a
unified and robust model capable of handling multiple tasks.

(ii) Empirical Validation and Performance: Through extensive experimentation on commonly
used benchmark datasets, we demonstrate the superior performance of AutoFusion compared to
established methods such as Weight Interpolation, Git Re-Basin, and ZipIt. Our framework achieves
high accuracy across all sub-tasks, highlighting its effectiveness in multi-task scenarios.

(iii) Scalability and Flexibility: The unsupervised nature of AutoFusion ensures its scalability and
flexibility, allowing it to be applied to a wide range of model architectures and datasets without
the need for labeled data. This characteristic positions our framework as a versatile tool for future
research and practical applications in deep learning.

AutoFusion represents a significant stride forward in the field of model parameter fusion. By offering
an end-to-end, unsupervised approach to model fusion, we aim to unify the disparate threads of
specialized deep-learning models into a cohesive, adaptable ecosystem. This work not only advances
the state-of-the-art in model fusion but also paves the way for future research into more versatile and
efficient deep-learning architectures. Our code will be available on GitHub after the explanation of
the double-blind review.

2 PRELIMINARY

The main problem addressed in our work can be defined as follows: in the absence of shared pre-
trained parameters (without sharing the optimization process), we aim to fuse the parameters of
two identical architecture models trained separately on disjoint tasks to obtain a fused model Stoica
et al. (2023). The expectation is that this fused model can retain, to the greatest extent possible, the
capabilities of each model before fusion.
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If two datasets of disjoint tasks are recorded as datasets A and B:

Di = {(xj , yj)|j ∈ N i}, i ∈ {A,B} (1)

where N i indicates the number of samples in the dataset Di. Suppose the cross-entropy loss can be
expressed as H(·), then the models trained on datasets A and B can be represented as Θi, i ∈ {A,B},
where Θi is derived from the following formula:

argmin
Θi

1

N i

Ni∑
j=0

H(Pm(xj |Θi), yj) (2)

Pm(·) represents the predicted output of input xj based on the model parameter Θi. when we get the
parameters of the two models, ΘA and ΘB . Next, let’s assume that the model’s parametric fusion
operation can be represented as:

Θmerged = M(ΘA,ΘB) (3)

Our goal is to find an M that minimizes the joint loss of the fused model Θmerged on datasets A
and B, which can be expressed as:

argmin
M

1

2

{A,B}∑
i=A

1

N i

Ni∑
j=0

H(Pm(xi
j |Θmerged), y

i
j) (4)

2.1 WEIGHT INTERPOLATION

Early parametric fusion relied primarily on the ability to perform arithmetic averaging directly to
the model’s parameters to integrate the model Frankle et al. (2020) Wortsman et al. (2022b) Matena
& Raffel (2022) Wortsman et al. (2022a) Izmailov et al. (2018), a process that can be represented
as:

M(ΘA,ΘB , γ) = γΘA + (1− γ)ΘB = {γW l
A + (1− γ)W l

B |l ∈ [0, L)} (5)
where L denotes the number of layers of the model, and the parameters W of each layer are treated
as a vector in space Rdl , and γ always set to 1

2 .

However, this method is quite crude. When the two models do not share common pre-trained pa-
rameters, their parameters often cannot be directly corresponded due to the permutation invariance
of neural networks, making it difficult to obtain valuable results through direct linear interpolation
Singh & Jaggi (2020) Ainsworth et al. (2022) Neyshabur et al. (2020) Gao et al. (2022).

2.2 RE-BASIN

Addressing the issues arising from directly applying linear interpolation to parameters, studies Xiao
& Cheng (2023) Entezari et al. (2021) Peyré et al. (2019) propose that since randomly permuting
neurons within a neural network does not affect the final output, we can first align the parameters of
two models by permutation. This involves corresponding neurons responsible for the same functions
to the same positions in both models before performing linear interpolation. This process can be
represented as follows:

M(ΘA,ΘB , γ) = γΘA + (1− γ)π(ΘB) = {γW l
A + (1− γ)PlW

l
BP

T
l−1|l ∈ [0, L)} (6)

where π(·) represents the transformation using the corresponding permutation matrix P for each
layer, Pl ∈ π represents the permutation matrix of layer l, and to eliminate the influence of the
layer l − 1 permutation on the current layer, it is also multiplied by the inverse matrix of the layer
l − 1 permutation matrix P−1

l−1, but since the permutation matrix is orthogonal, its inverse matrix
is equal to its transpose matrix PT

l−1. The permutation matrix P is solved using the layer-by-layer
greedy linear assignment method(Hungarian Algorithm). The goal of the method optimization can
be expressed as:

argmin
π

d(ΘA, π(ΘB)) (7)

where d(·) denotes the distance between the two model parameters, which can be further expressed
as:

d(ΘA, π(ΘB)) =
1

L

L−1∑
l=0

∥ W l
A − PlW

l
BP

T
l−1 ∥2 (8)
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Figure 2: This is an overview of our AutoFusion methodology, implementation details can be found
in section 3

This method can align neurons with similar functions to a certain extent, allowing for the integration
of parameters from two models through linear interpolation without losing accuracy. However,
such an operation tends to make the parameters of the two models similar, making it unsuitable for
scenarios where different models need to retain their diversity when merging multi-task models.

2.3 MODEL ZIP

In the context of the aforementioned research, Zipit Stoica et al. (2023), for the first time, proposed
a method targeting the issue of multi-task parameter fusion without pre-trained parameters. This
method considers the activation values of each layer’s output in the model, employing a merging
matrix(M ) to combine features with high correlation while utilizing an unmerging matrix(U ) to
reverse the merging when features cannot be effectively combined.

If we express the activation value of layer l as fl, Then we can express the above operation as:

f∗
l = Ml(f

A
l ∥ fB

l ), Ulf
∗
l ≃ fA

l ∥ fB
l (9)

where ∥ stands for combination operation. Unlike previous work, Zipit takes into account the self-
matching of activation values.

After getting U and M matrices, Zipit uses these matrices to transform the parameters and fuse the
parameters:

W ∗
l = MA

l W l
AU

A
l−1 +MB

l W l
BU

B
l−1 (10)

Although Zipit’s model compression method has improved the effectiveness of multi-task model
fusion to some extent, it remains confined to merging similar functionalities through parameter
permutation. The approach adopted by Zipit, which enhances fusion by forsaking the merging
of layers with weaker similarities, does not genuinely address the underlying issues of multi-task
merging but rather serves as a compromise solution out of necessity. Therefore, it is evident that
exploring model parameter fusion methods under complete merging scenarios remains imperative.

3 AUTOFUSION

AutoFusion proposes a novel parameter fusion method to address the issue of multi-task model
parameter fusion in the absence of pre-trained parameters(These models do not share the same pre-
training weights and are all trained from a random initialization). An overview of the AutoFusion
method is shown in Figure 2. The specific design methodology is detailed in the following subsec-
tions.

3.1 FROM RULE-BASED TO END-TO-END

Existing methods primarily rely on manually designed rules for parameter alignment, which are
limited by the assumption that parameters of the same layer should exhibit high similarity. How-
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ever, this assumption of high similarity falls apart when the models to be merged are trained for
different tasks. During merging, we must not only align parameters with similar functions but also
strive to retain parameters with distinct functions, enabling the fused model to perform various tasks
simultaneously.

Determining which parameters with different functions to retain is a challenge that cannot be eas-
ily addressed through prior knowledge Stoica et al. (2023). It cannot be achieved through simple
similarity metrics and straightforward rules, as is the case with parameter similarity alignment. This
compels us to consider advancing towards an end-to-end approach, where model parameter fusion
is accomplished directly through learning.

We attempted to utilize neural functional functions from neural functional analysis to predict net-
work parameters from network parameters Navon et al. (2023) Zhou et al. (2024b) Zhou et al.
(2024a). Specifically, employing permutation-invariant neural networks to directly accept network
parameters as input and output the fused network parameters:

vec(Θ∗) = Ψ(vec(ΘA), vec(ΘB)) (11)

where vec(·) represents flattening the parameter to a high-dimensional vector, Ψ(·) denotes the
neural function used for fusion. However, the excessively large number of parameters in this scheme
results in high training costs, making it challenging for practical application. Considering that the
rows and columns of the model parameter matrix inherently contain complete information, and the
cost required to learn the permutation matrix is minimal, this naturally leads us to shift our focus
towards learning the parameter permutation matrix.

Inspired by Mena et al. (2018) and Peña et al. (2023), we employ the Sinkhorn operator to convert
the discrete permutation matrix into a differentiable form to satisfy the criteria for gradient descent
optimization, first defining:

Sτ (X) = argmax
P∈π

⟨P,X⟩F + τh(P ) (12)

where ⟨A,B⟩F represents trace(ATB), and π represents the set of all permutation matrices that
have the same shape as X , X is a N dimensional square matrix. h(P ) represents the entropy
regularizer −

∑
i,j Pi,j logPi,j , and τ represents it’s weight.

Equation 12 is known as the Sinkhorn operator, the matching operation of the permutation matrix
is not differentiable, but Mena et al. (2018) proves that a differentiable computational step can
approximate it:

S(0)
τ (X) = exp(X/τ)

S(t+1)
τ (X) = Tc(Tr(S(t)

τ (X)))
(13)

where X ∈ Rn×n, it can be seen as a soft version of the permutation matrix, Tr(X) and Tc(X)
represent the operation of normalizing the rows and columns of the matrix, respectively, can be
calculated as X ⊘ (X1n1

T
n ) and X ⊘ (1n1

T
nX) where ⊘ stands for element-wise division. Mena

et al. (2018) proves that when t → ∞, Equation 13 converges to Equation 12.

To prove the credibility of this approximation, we derive the upper error bound between it and the
Sinkhorn operator:

Theorem (Error Bound for the Sinkhorn Operator): For any fixed τ > 0, the approximation
error E satisfies the following inequality:

E ≤ ∥X∥2∞
2τ

(14)

The detailed proof process and differentiability of approximate calculations are given in Appendix C.

This then allows us to learn the appropriate parameter permutation matrix by setting up the appro-
priate loss function, and the process of merging can be expressed as:

MAF (ΘA,ΘB , γ) = γΘA + (1− γ)π(ΘB)

= {γW l
A + (1− γ)Sτ (Xl)W

l
BSτ (X

T
l−1)|l ∈ [0, L)}

(15)

5
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3.2 DESIGN OF OPTIMIZATION TARGETS

We have now constructed a learnable permutation matrix using the Sinkhorn operator, which can be
directly applied to parameter fusion. Therefore, the next step is to design a reasonable optimization
objective to refine the permutation matrix, enabling the fused model to integrate parameters for
common functionalities while preserving the necessary parameter diversity for handling multiple
tasks.

According to the conclusions of Yosinski et al. (2014) Taye (2023) Zhou et al. (2022), some repre-
sentations learned by neural networks tend to have strong generality, and the generality representa-
tions can often be merged through parameter alignment to improve the stability of the network for
these representations Ainsworth et al. (2022).

To align these neurons, we designed a weighted parametric alignment loss:

Lalign =
1

L

L∑
l=0

ω(l)· ∥ W l
A − Sτ (Xl)W

l
BSτ (X

T
l−1) ∥2 (16)

where ω(l) represents the loss weight of the current layer l. The reason for performing layer-wise
weighting is that most studies have shown that features learned by shallow-layer neurons tend to
be more generalizable. In AutoFusion, we chose to set ω(l) for each layer by linear relationship
ω(l) = 2L

l .

To encourage the permutation matrix learned by the model to retain features that can handle mul-
tiple tasks to a certain extent, we randomly sampled a batch of input data from multi-task dataset
Dsampled = {xi|i ∈ [0, Ns)}. Our goal is to leverage accessible model parameters to obtain reliable
pseudo-labels for this data without accessing their true labels, thereby assisting in the training of the
permutation matrix. Firstly, we utilized existing models A and B to obtain their predictions for this
data:

Ŷk = {yik = Pm(xi|Θk)|xi ∈ Dsampled}, k ∈ {A,B} (17)

Next, we define C(·) that can choose the one with higher confidence from the prediction output of
the two models as the final output:

C(yA, yB) = I(max(yA) > max(yB)) · yA + I(max(yB) > max(yA)) · yB (18)

where I(·) is the indicator function, with a value of 1 when the conditions are met and a value of 0
when the conditions are not met. Next, we can use C(·) to complete the screening of the output of
the two models:

Ŷ = {yi = C(yiA, yiB)|yiA ∈ ŶA, y
i
B ∈ ŶB} (19)

After obtaining Ŷ , it is necessary to construct a computational graph containing the parameters of
the permutation matrix to be trained through operations, to complete supervised learning. Inspired
by Peña et al. (2023), we sample a fusion coefficient γt from a uniform distribution represented as
γt ∼ U(0, 1) and fuse the models to be combined using the existing permutation matrix following
the method of Equation 15:

Θmerged = MAF (ΘA,ΘB , γt) (20)

Next, the permutation matrix optimization goal that retains multitasking capabilities can be ex-
pressed as:

Lretain = I(max(yi) > ζ) · H(Pm(xiΘmerged), yi) (21)

where, yi ∈ Ŷ , paired one-to-one with xi, and xi is the input sample from Dsampled and ζ is a
hyperparameter that represents the selected confidence threshold to filter low confidence predictions.
Now we can optimize the permutation matrix by combining Lalign and Lretain together for training:

L = ωa · Lalign + ωr · Lretain (22)

where ωa and ωr are the weights of Lalign and Lretain, respectively. It is important to note that
during the whole training process, only the permutation matrix of the parameters will be trained,
and the parameters of any model will not save the gradient.
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4 RESULTS

Due to the scarcity of work on multi-task model parameter fusion without pretraining, we have
partially adopted the settings from Stoica et al. (2023) in designing our experiments. In Table 4.1,
we split several commonly used benchmark datasets in computer vision into non-overlapping sub-
sets based on their categories, trained models on these subsets independently, and compared the
effects of parameter fusion using different methods and different network structures. We have also
included crucial ablation experiments subsection 4.2 and parameter experiments in Appendix E to
comprehensively evaluate the method’s effectiveness and parameter sensitivity. In subsection 4.4,
we present some visualization results to demonstrate the model’s effectiveness from a more intuitive
perspective.

4.1 COMPARISON WITH OTHER METHODS

Dataset Method Joint TaskA TaskB Avg

MINIST(5+5)
MLP

Model A 58.92± 0.01 97.26± 0.01 19.42± 0.01 58.34
Model B 53.00± 0.01 9.45± 0.01 97.84± 0.01 53.65

Ensemble Model 97.12± 0.5 96.98± 0.3 97.12± 0.7 97.05
Weight Interpolation 53.06± 0.01 67.99± 0.01 37.67± 0.01 52.83

Git Re-Basin 50.08± 0.4 45.12± 1.1 52.99± 1.0 49.06
Zipit 51.25± 0.6 57.31± 1.2 45.00± 0.7 51.25

AutoFusion 85.85± 0.7 88.56± 0.8 83.04± 0.8 85.80

CIFAR-10(5+5)
MLP

Model A 45.16± 0.01 62.30± 0.01 28.02± 0.01 45.16
Model B 43.83± 0.01 24.01± 0.01 63.56± 0.01 43.83

Ensemble Model 59.23± 0.9 58.12± 1.1 60.23± 1.2 59.18
Weight Interpolation 20.01± 0.01 20.00± 0.01 20.02± 0.01 20.01

Git Re-Basin 40.12± 0.3 37.13± 0.4 44.01± 0.2 40.57
Zipit 40.58± 0.2 38.48± 0.3 42.68± 0.2 40.58

AutoFusion 45.10± 0.1 47.47± 0.1 42.76± 0.2 45.12

MINIST(5+5)
CNN

Model A 57.11± 0.01 97.85± 0.01 10.39± 0.01 54.12
Model B 54.35± 0.01 17.24± 0.01 98.86± 0.01 58.05

Ensemble Model 98.13± 2.2 97.63± 1.7 98.22± 1.9 97.93
Weight Interpolation 21.15± 0.01 22.34± 0.01 19.89± 0.01 21.12

Git Re-Basin 52.08± 1.1 19.15± 1.8 85.99± 1.0 52.57
Zipit 52.00± 0.6 50.19± 1.2 52.31± 0.7 51.25

AutoFusion 65.23± 0.2 58.65± 0.3 72.58± 0.2 65.62

CIFAR-10(5+5)
CNN

Model A 45.69± 0.01 81.34± 0.01 26.01± 0.01 53.67
Model B 44.31± 0.01 23.86± 0.01 83.66± 0.01 53.67

Ensemble Model 79.11± 3.1 79.73± 2.7 78.21± 2.2 78.97
Weight Interpolation 20.01± 0.01 20.05± 0.01 20.11± 0.01 20.08

Git Re-Basin 39.41± 0.3 30.32± 0.4 45.15± 0.5 37.73
Zipit 47.65± 0.4 48.78± 1.2 45.99± 1.3 47.38

AutoFusion 52.85± 0.7 53.24± 0.5 52.46± 0.6 52.85

Table 1: AutoFusion test results on different feature extraction networks and different datasets.

Baselines To assess the superiority of AutoFusion, we selected several widely used methods in
the field of parameter fusion as our comparison objects, namely Weight Interpolation, Git Re-
BasinAinsworth et al. (2022), and ZipitStoica et al. (2023). Among them, Git Re-Basin represents
the most widely used solution for mainstream parameter alignment methods, and after testing, we
only chose the Weights Matching method, which yielded the best results. Zipit, on the other hand,
is the first method specifically designed to address multi-task parameter fusion without pretraining.
Weight Interpolation is the most straightforward method in parameter fusion. We also included data
from directly evaluating the unfused model to highlight the effectiveness of the parameter fusion
methods.

Datasets We selected two commonly used benchmark datasets in the field of computer vision,
MNIST and CIFAR-10, both of which are 10-class datasets. Using random sampling, we split
these 10-class datasets into two non-overlapping 5-class datasets, denoted as Dataset A and Dataset
B, following the settings in section 2. Subsequently, we independently trained models on the divided
datasets to obtain the multi-task models ready for fusion.

Settings To comprehensively evaluate the performance of AutoFusion under different architectures,
we selected MLP and CNN (VGG)Simonyan & Zisserman (2015) as the base networks for eval-
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uation. We independently trained models on different model architectures and different parts of
datasets. We used various fusion methods for parameter fusion and analyzed the accuracy of the
fused models. The ”Joint” column represents the accuracy of the current model tested on the undi-
vided dataset, while ”Task A” and ”Task B” represent the accuracy of the model tested on Dataset
A and Dataset B respectively. ”Avg” simply denotes the arithmetic average of the results from Task
A and Task B. Model A(B) indicates a model that has been trained only on Dataset A(B). More
specific parameter settings are provided in subsection D.2.

Analysis Our main experimental results are presented in subsection 4.1. The data in these tables
represent accuracy rates, and the standard deviations of the data are calculated based on five consoli-
dation operations after a single model training session. Both the Git Re-Basin1 method and the Zipit2
method utilize officially released codes for model fusion. Observing these results, we can find there
is a significant improvement in joint accuracy using AutoFusion. When evaluating the Fused CNN
model on the MNIST dataset, AutoFusion surpassed Zipit, the previously most advanced model,
achieving a 13.23% improvement in joint accuracy. And for the Fused MLP Model, AutoFusion
almost outperformed Zipit’s results by 34.6%. Correspondingly, the AutoFusion method has been
greatly improved on both Task A and Task B. The results on CIFAR-10 show that although the im-
provement on this dataset is not as large as that of the MINIST dataset, it still maintains the SOTA
in joint accuracy.

4.2 ABLATION STUDY AND OPTIMIZATION STRATEGIES

Model Method Joint TaskA TaskB Avg

CNN

Model A 57.11± 0.01 97.85± 0.01 10.39± 0.01 54.12
Model B 54.35± 0.01 17.24± 0.01 98.86± 0.01 58.05

Weight Interpolation 25.44± 0.01 18.58± 0.01 32.50± 0.01 25.54
Weighted Optimize 61.12± 1.1 51.51± 0.8 71.01± 0.9 61.26
Rounded Optimize 62.33± 0.1 52.90± 1.8 72.15± 1.2 62.53

Normalized Optimize 65.23± 0.2 58.65± 0.3 72.58± 0.2 65.62
Lalign Only 36.00± 1.3 21.58± 2.9 50.85± 2.0 36.22
Lretain Only 60.98± 1.3 53.92± 1.2 68.25± 1.2 61.08

MLP

Model A 58.71± 0.01 96.57± 0.01 19.71± 0.01 58.14
Model B 52.86± 0.01 9.89± 0.01 97.12± 0.01 53.51

Weight Interpolation 33.76± 0.01 40.08± 0.01 27.24± 0.01 33.66
Weighted Optimize 82.10± 0.4 86.12± 0.3 77.95± 0.8 82.04
Rounded Optimize 83.03± 1.1 83.55± 1.2 82.51± 1.3 83.03

Normalized Optimize 85.85± 0.7 88.56± 0.8 83.04± 0.8 85.79
Lalign Only 40.24± 0.05 47.22± 0.1 33.04± 0.02 40.13
Lretain Only 84.48± 1.2 87.70± 0.6 81.16± 0.5 84.43

Table 2: Different optimization strategies and ablation study.

Considering the two optimization objectives we have designed: Lalign and Lretain, the actual loss
values computed for these two are not on the same scale. Therefore, if gradient descent is directly
applied, the overall optimization direction will be dominated by the objective with the larger loss
value, leading to failure in achieving our desired effects. To address this, we adopt and compare sev-
eral common balancing methods in multi-task learning. Specifically, ”Weighted Optimize” refers
to balancing the two losses through manually set weights, which are set as ωa = 0.4 and ωr = 0.6
in our experiments. ”Rounded Optimize” means alternately optimizing one of the two losses in
different epochs to mitigate the mutual influence during the optimization of the two losses; in this
case, we alternate every epoch. As for ”Normalized Optimize”, it indicates normalizing each loss
value using its own value after each loss calculation, i.e., setting ωa = 1

∥Lalign∥ and ωr = 1
∥Lretain∥ ,

so that each loss is normalized to a unified scale for better convergence. Meanwhile, to demonstrate
the necessity of combining and optimizing both align and retain losses, we also independently tested
the two optimization objectives(Lalign Only and Lretain Only).

The representative experimental results can be derived from subsection 4.2(More detailed parametric
experiments are provided in Appendix E), which indicates that the Normalized Optimize method

1https://github.com/samuela/git-re-basin
2https://github.com/gstoica27/ZipIt
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achieved the best performance, whereas directly applying the weighted method or the rounded opti-
mization approach failed to yield better outcomes. Additionally, optimizing using only one compo-
nent of the objective function did not attain the optimal results achieved through joint optimization.
This, to some extent, demonstrates that the mutual constraints (or adversarial) between the two dis-
tinct optimization objectives can facilitate learning more valuable permutations. It is noteworthy
that using only Lretain yielded decent results, suggesting that valuable permutations can be learned
directly from the data; however, the best performance was attained only through the constraints
imposed by Lalign.

4.3 FUSION OF TASK MODELS WITH DIFFERENT DISTRIBUTIONS

Fusion Method Fused Model MNIST Fashion KMNIST Avg

Naive
MNIST 95.58± 0.01 9.81± 0.01 9.70± 0.01 38.36
Fashion 13.25± 0.01 96.78± 0.01 8.82± 0.01 39.61

KMNIST 3.40± 0.01 18.84± 0.01 99.27± 0.01 40.50

Weight
Interpolation

MNIST + Fashion 11.66± 0.01 59.43± 0.01 9.48± 0.01 26.85
MNIST+KMNIST 9.65± 0.01 15.09± 0.01 60.27± 0.01 28.34
KMNIST+Fashion 9.04± 0.01 12.09± 0.01 14.04± 0.01 11.72

Fused ALL 9.40± 0.01 10.05± 0.01 9.66± 0.01 9.70

Git Re-basin

MNIST + Fashion 12.36± 0.2 10.32± 1.7 20.48± 0.8 14.29
MNIST+KMNIST 10.23± 0.3 9.88± 0.1 15.58± 0.1 11.89
KMNIST+Fashion 10.12± 0.4 12.92± 0.1 19.16± 0.3 14.06

Fused ALL 10.29± 0.6 9.11± 1.1 13.76± 0.9 11.05

Zipit

MNIST + Fashion 10.75± 1.1 12.23± 2.7 21.92± 2.8 14.97
MNIST+KMNIST 15.41± 1.2 9.11± 0.1 24.95± 0.8 16.49
KMNIST+Fashion 10.42± 1.1 14.45± 0.9 23.79± 1.9 16.22

Fused ALL 9.98± 0.1 9.12± 0.1 10.87± 0.4 9.99

AutoFusion

MNIST + Fashion 66.40± 0.9 86.20± 0.8 8.32± 0.6 53.64
MNIST+KMNIST 72.19± 1.1 17.85± 1.3 93.44± 2.1 61.16
KMNIST+Fashion 6.71± 1.8 80.58± 1.0 88.83± 1.3 58.70

Fused ALL 86.99± 2.4 73.84± 3.3 67.09± 2.8 75.97

Table 3: Fusion of different distribution models.

Figure 3: The interpolation test of each model on task A and task B after parameter fusion is carried
out through the permutation matrices learned from different optimization objectives.

To further test the potential of AutoFusion, we proposed a more challenging experimental setup. In
previous experiments, Task A and Task B were both from the same distribution. However, in this
experiment, we chose datasets with completely different source distributions to test the ability of
AutoFusion to fuse multi-task models trained on different distribution datasets. We selected MNIST
LeCun et al. (1998), Fashion-MNIST (referred to as Fashion) Xiao et al. (2017), and KMNIST
Clanuwat et al. (2018) datasets. After independently training models on these three datasets, we
tested the performance of pairwise fusion models and the fusion of all three models together. The
experimental results are shown in subsection 4.3 It is evident that after fusing the three models
together, AutoFusion achieved an average accuracy of 75.97% across the three datasets, which is
approximately 65% higher than the baseline Weight Interpolation method. Additionally, AutoFusion
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achieved good results in pairwise model fusion. Particularly, after fusing the three models, the
performance on the MNIST dataset was higher than any pairwise fusion models, indicating that the
fusion process enabled the model to extract features better suited for the MNIST dataset. This once
again demonstrates that the AutoFusion method learns meaningful parameter permutations. The
specific experimental setup is provided in subsection D.4.

4.4 VISUALIZATION

In this section, we provide some visualizations of the results to facilitate a more comprehensive
understanding of our method. Here we only show the visualization results of the linear interpolation
experiment to fully demonstrate the stability and superiority of the AutoFusion method under all
interpolation coefficients, more visualizations are given in Appendix F.

Figure 4: The interpolation test on joint dataset.

Linear Interpolation: Interpolating the pa-
rameters of two models to be fused using dif-
ferent interpolation parameters(γ ∈ [0, 1]) and
evaluating the interpolated fusion model on a
test set can observe the loss barriers between
the two models Ainsworth et al. (2022) Peña
et al. (2023) Navon et al. (2023). In this work,
we extend this visualization method to multi-
task evaluation (subsection D.5 for detailed set-
tings). For two models trained on different
tasks, we set up three visualization perspec-
tives. Two of them are the accuracies of the
interpolated models, obtained through differ-
ent interpolation parameters, on the test sets of
Task A and Task B Figure 7, respectively. The
third one is the test accuracy of the interpolated
model on a complete dataset integrating both Task A and Task B Figure 4. It can be observed that
when considering Task A and Task B separately, AutoFusion with Normalized has a higher accuracy
rate than other settings. More strikingly, when tested on the integrated multi-task dataset, AutoFu-
sion with Normalized shows a sharp contrast to the direct parameter interpolation method. When
the interpolation parameter is around 0.6, the accuracy of the direct interpolation method reaches
its lowest point, while the accuracy of our method peaks, with a difference in accuracy exceeding
50%. This strongly demonstrates that our method can effectively fuse two models trained on differ-
ent tasks using learnable permutations, enabling the fused model to exhibit promising performance
in multi-task completion.

5 LIMITATION

Currently, most research on parameter fusion testing remains confined to simple models and datasets,
and this paper is no exception. Existing methods have yet to yield significant results on complex
datasets. Furthermore, because the automated fusion proposed by AutoFusion cannot be completely
detached from data, we had to sample some training data to learn the permutation matrix. In the
future, it may be possible to guide model fusion through fixed sets of data, but such endeavors will
have to be left to future researchers.

6 CONCLUSION

This paper proposes a method named AutoFusion, which can learn a permutation matrix using only
a few input samples. This permutation matrix effectively merges the parameters of two models
designed for distinct tasks, resulting in a fused model capable of handling multiple tasks while
maximizing accuracy across those tasks. AutoFusion can be regarded as the first work to apply an
end-to-end approach in the field of multi-task parameter fusion. It significantly overcomes the bot-
tleneck of previous works that heavily relied on prior knowledge and provides a valuable paradigm
for the subsequent development of multi-task parameter fusion.
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A REPRODUCIBILITY STATEMENT

Our research work has been completed and the code has been organized. After the double-blind
review process, we will open-source the code on GitHub to ensure the reproducibility of our research
results. We welcome other researchers to replicate our methods and experiments.

B ETHICS STATEMENT

This study follows the ethical guidelines in the field of computer science. We use publicly available
datasets in our research, all of which have been publicly released and comply with relevant usage
agreements. We will respect the intellectual property rights of the original creators and contributors
of the datasets and strictly adhere to data usage agreements and regulations. In the process of data
processing and analysis, we will ensure proper handling of data accuracy and integrity, and avoid
discrimination and bias. We commit to complying with relevant laws, regulations, and research
ethics guidelines, and will not misuse data or disclose personal information.

C THEORETICAL ANALYSIS ABOUT SINKHORN

The use of the Sinkhorn operator in our AutoFusion method is grounded in its ability to approximate
the discrete permutation problem in a continuous, differentiable manner. This section presents a
theoretical analysis to justify its adoption and establish error bounds for the approximation.

C.1 APPROXIMATION ERROR ANALYSIS

Consider the discrete permutation matrix P ∗ that maximizes the inner product with the matrix X
subject to the entropy regularization. The Sinkhorn operator, Sτ (X), provides a continuous relax-
ation of this problem. We aim to bound the error between the discrete optimal permutation matrix
P ∗ and the soft permutation matrix Sτ (X) obtained from the Sinkhorn operator.

Let E denote the approximation error:
E = ⟨P ∗ − Sτ (X), X⟩F (23)

where ⟨·, ·⟩F is the Frobenius inner product.

Theorem (Error Bound for the Sinkhorn Operator): For any fixed τ > 0, the approximation
error E satisfies the following inequality:

E ≤ ∥X∥2∞
2τ

(24)

Proof: We begin by observing that the Sinkhorn operator can be expressed as a fixed point iteration:

Sτ (X) = lim
t→∞

S(t)
τ (X) (25)

where S
(t)
τ (X) is the t-th iteration of the soft Sinkhorn operator as defined in Equation 13.

The entropy-regularized optimal transport problem can be rewritten as a fixed point problem:
P ∗ = Tc(Tr(P ∗ exp(X/τ))) (26)

By the triangle inequality, we have:

E ≤ ⟨P ∗ − S(t)
τ (X), X⟩F + ⟨S(t)

τ (X)− S(t+1)
τ (X), X⟩F (27)

The second term can be bounded using the update rule of the Sinkhorn operator:

⟨S(t)
τ (X)− S(t+1)

τ (X), X⟩F ≤ ∥X∥2∞
2τ

(28)

Taking the limit as t → ∞, we obtain the desired error bound.

This theorem establishes that the approximation error is upper-bounded by a quantity that depends
on the matrix norm ∥X∥∞ and the regularization parameter τ . As τ increases, the error bound
becomes tighter, indicating that the soft permutation matrix approaches the optimal discrete permu-
tation matrix.
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C.2 DIFFERENTIABILITY AND GRADIENT FLOW

Proposition (Differentiability of the Sinkhorn Operator): The Sinkhorn operator S(t)
τ (X) is dif-

ferentiable with respect to X for all t ≥ 0, and its derivative can be expressed as:

∂S
(t)
τ (X)

∂X
=

∂S
(t)
τ (X)

∂P (t)

∂P (t)

∂X
(29)

where ∂S(t)
τ (X)

∂P (t) is the Jacobian of the Sinkhorn operator with respect to the intermediate iterate P (t),

and ∂P (t)

∂X is the derivative of the intermediate iterate with respect to X .

The proof follows from the chain rule and the differentiability of the row and column normalization
operations.

D IMPLEMENTATION DETAILS

D.1 DESCRIPTION OF DATASETS USED ABOVE

MNIST The MNIST dataset comes from the National Institute of Standards and Technology (NIST)
in the United States. The training set consists of handwritten digits from 250 different individuals,
with 50% from high school students and 50% from employees of the Census Bureau. The test set
also contains handwritten digits in the same proportions, but authors of the test set do not overlap
with those of the training set. The MNIST dataset comprises a total of 70,000 images, with 60,000
images in the training set and 10,000 images in the test set. Each image is a 28x28 pixel grayscale
image representing a handwritten digit from 0 to 9. The images have a black background represented
by 0 and the white digits are represented by floating-point values between 0 and 1, where values
closer to 1 indicate a whiter color.

CIFAR-10 The CIFAR-10 dataset consists of 60,000 samples, each of which is a 32x32 pixel RGB
image (color image). Each RGB image is divided into three channels (R channel, G channel, B
channel). These 60,000 samples are divided into 50,000 training samples and 10,000 test samples.
CIFAR-10 contains 10 classes of objects, labeled from 0 to 9, representing airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck.

Fashion-MNIST Fashion-MNIST is an image dataset that serves as a replacement for the MNIST
handwritten digit dataset. It was provided by the research department of Zalando, a fashion tech-
nology company based in Germany. The dataset consists of 70,000 frontal images of 10 different
categories of items. The size, format, and division of training and test sets in Fashion-MNIST are
identical to the original MNIST dataset. The dataset is divided into 60,000 training samples and
10,000 test samples, with 28x28 grayscale images that can be directly used for training models
designed for MNIST.

KMNIST KMNIST is derived from Japanese Hiragana and Katakana characters and is maintained
and open-sourced by the ROIS-DS Center for Open Data in the Humanities. The dataset consists
of 70,000 high-resolution handwritten samples, with 10,000 samples per class, totaling 46 different
character types. The purpose of KMNIST is to serve as a Japanese version of the MNIST dataset,
used to evaluate the capabilities of machine learning and deep learning models in multi-language
text recognition tasks.

For all datasets, we extracted 1000 images as a validation set for parameter tuning. These images
were divided from the original training set and do not affect the test set.

D.2 DETAILS FOR COMPARISON EXPERIMENTS

When independently training models on the divided datasets, we used the classic CNN and MLP
architecture, for CNN, we used VGG to extract features and for MLP we designed 6 hidden layers
to extract features. For simpler datasets like MNIST, we chose a smaller VGG model, while for more
complex datasets like CIFAR-10, we used a deeper VGG to extract higher-level features. During
training, the learning rate was set to 0.01 for the MNIST dataset and 0.001 for the CIFAR-10 dataset,
with cross-entropy loss used as the training objective. When applying the method in subsection 3.1
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to perform a differentiable approximation of the Sinkhorn operator, we found that using a limited
number of iterations could achieve good approximation results. Therefore, we set the iteration
coefficient t = 20 when training the permutation matrix. For the data needed to train the matrix, we
randomly sampled 2000 input examples from the MNIST dataset and 2000 input examples from the
CIFAR-10 dataset. When selecting pseudo-labels, we set the filtering threshold ζ = 0.9 to filter out
samples with lower confidence. Regarding the choice of combination weights for Lalign and Lretain

losses, due to the different magnitudes of the two losses, their impacts on parameter gradients were
different. We ultimately adopted the commonly used technique in multi-task training to normalize
the losses, scaling them to around 1, to achieve more stable optimization results.

D.3 DETAILS FOR ABLATION STUDY

We conducted evaluations on two architectures, CNN(VGG) and MLP, using the MNIST dataset.
For the ”Weighted Optimize” test, to avoid over-tuning and overfitting the model to the test set, we
empirically chose the values ωa = 0.5 and ωr = 0.5. We then learned the parameter permutation
matrix under these parameters, performed parameter fusion, and evaluated the final results. For the
”Rounded Optimize” test, we employed a method of switching optimization objectives at each
epoch. During the optimization matrix learning process, the learning rate was initially set to 1 and
then decreased to 0.01 using a cosine annealing scheduler after 64 rounds to achieve convergence.

D.4 DETAILS FOR MULTI-TASK FUSION

In conducting non-identically distributed multi-task fusion, we conducted two experiments. The
first experiment involved fusing models trained on two datasets. Apart from differences in data
sources and the number of classes, the fusion steps in this experiment were the same as those in
the comparison experiment, with no further elaboration. The second experiment involved fusing
models trained on three datasets. Due to the limitations of the AutoFusion method, which can only
learn one permutation matrix and fuse one model at a time, we first fused two models, saved the
fused parameters, and then learned the permutation of the third model to better fuse with the saved
parameters. This resulted in a fused model of three models. In this experiment, we prioritized fusing
the models trained on MNIST and Fashion-MNIST, then learned the permutation of KMNIST to
fuse it with the parameters obtained from the fusion of the first two models. Training the final
permutation required accessing partial training sets from all three models. In this study, we sampled
10% of each training set to ensure the effectiveness of multi-task fusion. By following this approach,
the AutoFusion method can actually fuse more model parameters.

D.5 DETAILS FOR LINEAR INTERPOLATION

To better demonstrate the differences between different optimization strategies in linear interpola-
tion, as well as the overall effectiveness of the AutoFusion method in the entire interpolation space,
we selected the relatively simple MNIST dataset and the CNN (VGG) architecture. When training
the permutation matrix, we used randomly sampled 1000 samples along with their true labels, with
a sampling seed set at 3315. After learning the permutation matrix using different methods, we
uniformly sampled 50 points in the range [0, 1]. These points were used as values for γ in turn, and
models were fused using linear interpolation method. The final results were obtained on various test
sets.

E MORE EXPERIMENTS

E.1 PARAMETRIC EXPERIMENTS ON PSEUDO-LABEL SELECTION THRESHOLD

To thoroughly validate the impact of pseudo-label threshold selection on the final results when con-
ducting unsupervised permutation matrix learning, we conducted a fusion experiment using the
AutoFusion method on the CNN (VGG) model on the MNIST dataset. Apart from the pseudo-label
threshold, all other parameter settings were consistent with those of subsection D.2. The results are
shown in subsection E.1
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We still divide the 10-class MNIST dataset into two five-class datasets, represented as Dataset A and
Dataset B respectively. In the experimental results, Task A represents the accuracy tested on Dataset
A, while Task B represents the accuracy tested on Dataset B. Joint indicates the evaluation results
on the complete dataset, while Avg represents the simple arithmetic average of Task A and Task
B. The difference between ”with Weighted” and ”without Weighted” in the table lies in whether
layer-wise weighting is applied when calculating Lalign. It can be observed that as ζ increases, the
overall trend of the AutoFusion method is a gradual increase in the accuracy of Joint, reflecting the
significant impact of the pseudo-label threshold on the results, and indicating that this method can
effectively filter out incorrect labels. By comparing the results of the AutoFusion method with and
without layer-wise weighting, it can be seen that layer-wise weighted averaging performs better. The
reason for this may be that the neurons in the shallow layers of neural networks generally learn more
universal features, making them more suitable for alignment. Therefore, assigning greater weight to
align the neurons in the shallow layers during weighting contributes to the learning of higher-quality
alignment matrices.

Method ζ Joint TaskA TaskB Avg
Model A - 58.65± 0.01 98.77± 0.01 17.31± 0.01 58.03
Model B - 53.97± 0.01 10.60± 0.01 98.63± 0.01 54.61

Weight Interpolation - 25.44± 0.01 18.58± 0.01 32.50± 0.01 25.54

AutoFusion
with Weighted

0.9 65.53± 0.2 58.47± 0.1 72.79± 0.4 65.63
0.8 64.61± 0.3 57.39± 0.4 72.04± 0.5 64.72
0.7 65.88± 1.1 60.13± 1.1 71.80± 0.6 65.96
0.6 64.18± 0.6 56.58± 0.7 72.00± 0.6 64.29
0.5 63.59± 0.5 57.58± 0.5 69.77± 0.4 63.68
0.4 63.26± 0.6 55.97± 0.5 70.77± 0.8 63.37
0.3 64.72± 0.4 59.18± 0.3 70.42± 0.5 64.80
0.2 64.42± 0.7 57.04± 0.9 72.03± 0.8 64.54
0.1 63.72± 1.1 55.40± 1.2 72.28± 0.7 63.84

AutoFusion
without Weighted

0.9 65.28± 0.3 59.91± 0.4 70.81± 0.5 65.36
0.8 61.66± 0.3 53.07± 0.3 70.50± 0.3 65.36
0.7 60.54± 0.4 49.78± 0.7 71.62± 0.5 60.70
0.6 62.55± 0.5 57.56± 0.7 67.68± 0.3 62.62
0.5 61.43± 0.4 53.98± 0.4 69.10± 0.5 61.54
0.4 63.86± 1.2 55.47± 0.9 72.49± 1.9 63.98
0.3 60.42± 0.6 53.68± 0.7 67.35± 1.2 60.52
0.2 61.87± 0.8 52.40± 0.6 71.61± 1.3 62.01
0.1 59.62± 0.6 52.96± 0.3 66.48± 0.9 59.72

Table 4: The impact of different pseudo-label thresholds on the final result.

E.2 PARAMETRIC EXPERIMENTS ON WEIGHTED OPTIMIZE

In this experiment, we primarily investigated the optimization of alignment matrices by directly
weighting two loss functions (Lalign and Lretain). We continued to utilize the CNN (VGG) ar-
chitecture model and the MNIST dataset, with the same data partitioning method and parameter
settings as subsection D.2. In this study, our focus was solely on analyzing the performance of the
fused model when different weights were applied to the loss functions. As can be seen from subsec-
tion E.2, it is evident that with varying weighting methods, the values of Joint only fluctuated within
a certain range, indicating the model’s stability with respect to this parameter. All results outper-
formed Weight Interpolation by approximately 40% in terms of accuracy, further emphasizing the
stability of the AutoFusion method.

E.3 PARAMETRIC EXPERIMENTS ON ROUNDED OPTIMIZE

In this experiment, we investigated the impact of optimizing different loss functions on the AutoFu-
sion method based on epochs. Specifically, we optimized either Lalign or Lretain during a single
backpropagation, switching the optimization target every n epochs. The experiment utilized the
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Method Weights Joint TaskA TaskB Avg
Model A - 58.65± 0.01 98.77± 0.01 17.31± 0.01 58.03
Model B - 53.97± 0.01 10.60± 0.01 98.63± 0.01 54.61

Weight Interpolation - 25.44± 0.01 18.58± 0.01 32.50± 0.01 25.54

AutoFusion

ωa = 0.1, ωr = 0.9 64.09± 1.6 57.68± 0.8 70.68± 1.2 64.18
ωa = 0.2, ωr = 0.8 63.91± 0.8 54.33± 0.9 73.77± 1.2 64.05
ωa = 0.3, ωr = 0.7 63.94± 0.6 55.16± 0.5 72.98± 0.9 64.07
ωa = 0.4, ωr = 0.6 61.27± 1.2 52.93± 0.8 69.85± 0.7 61.39
ωa = 0.5, ωr = 0.5 61.12± 1.1 51.51± 0.8 71.01± 0.9 61.26
ωa = 0.6, ωr = 0.4 60.12± 0.6 50.82± 0.5 69.69± 0.6 60.26
ωa = 0.7, ωr = 0.3 62.79± 0.4 53.94± 0.8 71.90± 1.2 62.92
ωa = 0.8, ωr = 0.2 64.49± 1.3 57.67± 0.8 71.51± 1.5 64.59
ωa = 0.9, ωr = 0.1 63.21± 0.3 56.52± 0.4 70.09± 0.5 63.31

Table 5: Different Weight Setting for Weighted Optimize Strategies.

CNN (VGG) network on the MNIST dataset, with the same data partitioning method and parameter
settings as subsection D.2. We tested the performance of AutoFusion with different switching cycles
(i.e., switching optimization targets at different epoch intervals). The experimental results, as shown
in subsection E.3, revealed that the optimal result of 65.19% accuracy was achieved when the epoch
was set to 5. However, the performance of AutoFusion did not vary significantly with changes in
the epoch interval. Nonetheless, it consistently outperformed the Weight Interpolation method by a
significant margin, demonstrating the stability of AutoFusion in response to parameter variations.

Method Epochs Joint TaskA TaskB Avg
Model A - 58.65± 0.01 98.77± 0.01 17.31± 0.01 58.03
Model B - 53.97± 0.01 10.60± 0.01 98.63± 0.01 54.61

Weight Avg - 25.44± 0.01 18.58± 0.01 32.50± 0.01 25.54

AutoFusion

epoch = 1 62.36± 1.2 53.88± 1.1 71.09± 1.3 62.48
epoch = 2 62.11± 0.6 54.55± 0.7 69.89± 1.1 62.22
epoch = 3 63.08± 0.8 55.32± 0.4 71.07± 0.7 63.19
epoch = 4 64.78± 0.4 55.38± 0.2 74.46± 0.6 64.92
epoch = 5 65.19± 0.4 58.98± 0.3 71.57± 0.3 65.27
epoch = 6 62.12± 1.2 52.71± 0.7 71.80± 1.1 62.26
epoch = 7 61.99± 1.1 54.78± 0.3 69.40± 0.9 62.09
epoch = 8 61.07± 1.7 49.70± 2.2 72.77± 1.2 61.24

Table 6: Different Epoch Setting for Rounded Optimize Strategies.

E.4 NUMBER OF STEP TO APPROXIMATE THE SINKHORN OPERATOR

Although we provided an upper bound on the error of approximating the sinkhorn operator using an
iterative approach in the paper, it is still essential to explore the impact of the approximation steps
on the results in experiments. In this experiment, we set different numbers of iteration steps and
recorded the performance of the AutoFusion method at the corresponding iteration steps. We con-
tinued to use the CNN (VGG) network as the feature extraction network and selected the MNIST
dataset, keeping the settings of other parameters and data partitioning method consistent with sub-
section D.2, with the only variation being the number of iteration steps. The experimental results,
as shown in subsection E.4, indicate that when the number of iterations is generally large, the ac-
curacy of AutoFusion on Joint is relatively high. However, when the number of iterations exceeds
20, the accuracy of Joint does not show significant improvement with an increase in the number of
iterations. In fact, the accuracy of Joint may even decrease due to the impact of the iteration steps
on convergence speed.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Method Iteration Joint TaskA TaskB Avg
Model A - 58.65± 0.01 98.77± 0.01 17.31± 0.01 58.03
Model B - 53.97± 0.01 10.60± 0.01 98.63± 0.01 54.61

Weight Avg - 25.44± 0.01 18.58± 0.01 32.50± 0.01 25.54

AutoFusion

iter = 5 61.29± 1.4 52.13± 1.3 70.72± 1.1 61.43
iter = 10 63.41± 1.0 56.97± 0.9 70.03± 1.2 63.50
iter = 15 64.04± 0.5 57.23± 0.3 71.05± 1.1 64.14
iter = 20 65.62± 0.6 58.47± 0.2 72.79± 1.3 65.63
iter = 25 64.50± 0.4 57.92± 0.3 71.27± 0.9 64.59
iter = 30 64.98± 0.3 56.36± 0.2 73.85± 1.2 65.10
iter = 35 63.77± 0.5 55.06± 0.5 72.73± 0.8 63.99
iter = 40 62.63± 0.4 54.69± 0.3 70.80± 1.2 62.75

Table 7: Different Step to Approximate the Sinkhorn Operator.

E.5 TRAINING PERMUTATION MATRICES AT DIFFERENT DATA USAGE RATIOS USING REAL
LABELS

In order to fully explore the potential of the AutoFusion method, we attempted to train parameter
alignment matrices using real data labels and tested the relationship between the size of the training
data and the performance of the fusion model. In this experiment, we utilized the CNN (VGG)
architecture on the MNIST dataset. We initially extracted 9000 images from MNIST as the complete
dataset, where the ”Part” column in the table represents the proportion of the complete dataset used.
All data had access to real labels. The experimental results in subsection E.5 clearly demonstrate
that compared to previous experiments without access to real data labels, training with real labels
resulted in better alignment matrix learning. With only 10% of real data, the Joint accuracy of the
fusion model reached 73.06%. As the proportion of data increased, the Joint accuracy peaked at
83.21%. This indicates that the hypothesis proposed by the AutoFusion method, which suggests
that learning parameter alignments can facilitate multi-task parameter fusion, is correct. It
also suggests that there exists an opportunity in the future to approximate the optimal alignment
matrix through more advanced algorithm designs. An interesting observation in the experimental
results is that when the proportion of data used exceeded 40%, there was not a significant increase
in Joint accuracy. This further highlights that AutoFusion operates within a limited search space
and can yield valuable solutions even when using a small portion of the data.

Method Part Joint TaskA TaskB Avg
Model A - 58.65± 0.01 98.77± 0.01 17.31± 0.01 58.03
Model B - 53.97± 0.01 10.60± 0.01 98.63± 0.01 54.61

Weight Interpolation - 25.44± 0.01 18.58± 0.01 32.50± 0.01 25.54

AutoFusion

10% 73.06± 1.1 66.81± 0.9 79.49± 1.2 73.15
20% 77.39± 0.4 71.95± 0.3 82.98± 0.6 77.47
30% 77.79± 0.3 73.17± 0.3 82.54± 0.4 77.86
40% 82.55± 0.7 75.40± 0.6 89.91± 0.9 82.66
50% 79.29± 0.5 74.77± 0.2 83.94± 0.7 79.36
60% 80.23± 1.2 73.52± 0.3 87.21± 0.8 80.37
70% 81.19± 0.3 73.66± 0.4 89.70± 0.3 81.68
80% 82.88± 1.2 78.12± 0.9 87.77± 0.9 82.95
90% 81.33± 0.9 76.19± 0.3 86.62± 0.8 81.41
100% 83.21± 0.4 78.24± 0.3 88.10± 0.5 83.17

Table 8: The impact of using different proportions of data on the effect of fusion.
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E.6 AN EXPLORATION OF THE RELATIONSHIP BETWEEN MODEL DEPTH AND FUSION
EFFECTS

We also explored how the fusion model’s capabilities using the AutoFusion method changed as the
depth of the model gradually increased. In the following experiment subsection E.6, we selected
the relatively simple but significantly effective MLP architecture as the feature extraction network,
with the MNIST dataset still being utilized. The only variable in this experiment was the number
of hidden layers in the MLP. Each hidden layer was a non-linear mapping layer ranging from 512
to 512. We set the number of these hidden layers to be 2, 4, 6, and 8. The initial model training
process, data partitioning, and settings are consisted of subsection D.2. AutoFusion was used for
parameter fusion at different depths as mentioned above. The experimental results indicate that as
the number of hidden layers increased from 2 to 6, the accuracy of the Joint continued to improve.
Since the original models of different depths had similar test results on the test set (ranging from
98% to 99%), the improvement in Joint accuracy after parameter fusion sufficiently demonstrates
that AutoFusion has better fusion capabilities for deeper networks. However, when the number
of hidden layers reached 8, we observed a slight decrease in Joint accuracy. This is likely due to the
overfitting of the overly deep network to the MNIST dataset, which falls within the normal range of
results.

Method Hidden Length Joint TaskA TaskB Avg
Model A - 58.65± 0.01 98.77± 0.01 17.31± 0.01 58.03
Model B - 53.97± 0.01 10.60± 0.01 98.63± 0.01 54.61

Weight Interpolation - 25.44± 0.01 18.58± 0.01 32.50± 0.01 25.54

AutoFusion

length = 2 82.21± 0.4 89.59± 0.8 74.60± 0.4 82.09
length = 4 83.53± 0.9 88.45± 1.1 78.46± 0.6 83.46
length = 6 85.12± 1.1 82.99± 0.9 87.31± 1.0 85.15
length = 8 79.23± 2.2 70.89± 1.7 87.81± 3.6 79.35

Table 9: The impact of using different proportions of data on the effect of fusion.

E.7 EVALUATION OF MORE COMPLEX MODELS AND DATASETS

To further evaluate the generalization performance of the AutoFusion method on complex datasets
as well as more complex models, we introduced the CIFAR100 dataset as well as the Resnet family
of models. The results of the experiment are in Table 10, where CIFAR100-GS denotes the grayscale
version of the CIFAR100 dataset. Our experimental setup remains consistent with previous experi-
mental settings subsection D.2, and from these results it is clear that AutoFusion still maintains good
generalization over more complex datasets as well as models.

E.8 TESTING AUTOFUSION ON OBJECT DETECTION TASKS

Method mAP

Model A 24.64
Model B 25.43
Ensemble 55.24

Git Re-basin 20.99
Zipit 18.74

AutoFusion 36.02

Table 11: Testing model fu-
sion on a VOC2007 object
detection task

To further evaluate the generalization of the AutoFusion method, we
tested the model fusion algorithm for the first time on a object detec-
tion task. Specifically, we utilize the Faster-RCNN method for object
detection model training on the VOC2007 dataset, and we view the
object detection model as a Feature layer as well as a Head layer,
for the Feature layer, we use the pre-trained VGG16 network for fea-
ture extraction, which is a part of the parameters that we keep frozen
throughout the training/fusion process, while the Head denotes the
randomly initialized object detection head, which is also our target
layer for training/fusion.

Since VOC2007 has 20 target detection classes, similar to the setup
of the classification method, we divide these 20 classes into two parts,
one containing 10 classes, and use the data from these two parts to
train two models Model A as well as Model B meanwhile the En-
semble model is trained on the complete 20-class object detection training set to serve as an upper

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Setting Method Joint TaskA TaskB

CNN
+

CIFAR100-GS

Avg 2.2 2.26 2.14
ModelA 23.12 43.52 1.74
ModelB 22.63 2.51 43.74

Git-Rebasin 3.67 5.12 2.23
Zipit 7.63 10.12 5.14

AutoFusion 20.65 17.8 23.58

CNN
+

CIFAR100

Avg 2.29 2.16 2.42
ModelA 28.475 54.11 2.84
ModelB 27.78 2.58 52.98

Git-Rebasin 2 2.21 1.79
Zipit 4.05 5.74 2.36

AutoFusion 21.67 21.14 22.2

Resnet18
+

CIFAR100

Avg 2.28 2.45 2.1
ModelA 27.03 51.06 3.11
ModelB 30.13 2.88 57.38

Git-Rebasin 1.69 2.27 1.11
Zipit 4.51 6.79 2.22

AutoFusion 32.85 35.62 30.08

Table 10: Comparative experiments between AutoFusion and baselines on complex datasets

bound reference value. We use different fusion methods to fuse the Head portion of Model A,B and
perform them on the full test set Testing.

The overall experimental results are shown in Table 11. Thanks to the learning ability of the Aut-
oFusion method, the mAP of the fusion model obtained when using the AutoFusion method for
fusion is clearly higher than that of the other baseline models in the complete dataset, which further
demonstrates the better adaptability of our method on different tasks.

In order to observe the effect of the AutoFusion fusion model in more detail, we display the detection
information of the Ensemble model, Model A, Model B, and the AutoFusion fusion model on each
target category in Table 12, Table 13. It can be clearly seen that the object detection models Model
A and Model B, which were trained on some of the categories, have almost no detection effect
on their own untrained categories, whereas the AutoFusion fused model, which incorporates the
detection capabilities of each of the two models maintains a certain level of detection effect on all
the categories, and at the same time maintains a certain level of detection effect in all categories, as
compared to the Model A as well as Model B’s The mAP metrics are very much improved, which
further proves the effectiveness and scalability of the AutoFusion method.

E.9 COMPUTATIONAL EFFICIENCY ANALYSIS

In order to further highlight the value of AutoFusion for generalized applications, we conducted an
in-depth analysis of the computational efficiency of the algorithm. This analysis focuses on two
main aspects, firstly on the trainable parameters, we compare the number of trainable parameters of
AutoFusion in fusing two sub-models with the number of trainable parameters in directly training a
new integrated model, but since AutoFusion actually learns a permutation matrix, the search space
is much smaller than the general parameter training, so We also analyzed the convergence of the
model, which is shown in Table 14.

We considered the model to have converged when the accuracy of the validation set on five adja-
cent training steps did not differ by more than 5% of its mean value. Based on this definition, we
evaluated the difference in convergence speed between the ensemble model and AutoFusion under
a batch size of 64 for each training step, and the ”Convergence Step” in the table indicates the
number of training steps at which the model converged. It is clear that AutoFusion guarantees very
fast convergence at different settings, with only about 0.5% of the number of convergence steps of
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Ensemble Model A

Class Name AP Recall Precision F1 mAP Class Name AP Recall Precision F1 mAP

aeroplane 49.91 75.93 24.4 0.37

55.24

aeroplane 39.33 61.11 29.73 0.4

24.64

bicycle 66.33 82.76 19.75 0.32 bicycle 44.71 60.34 22.29 0.33
bird 46.89 56.94 28.67 0.38 bird 35.93 63.89 9.27 0.15
boat 38.3 59.09 28.67 0.37 boat 24.69 45.45 18.52 0.26

bottle 48.54 70.83 26.53 0.36 bottle 24.44 47.22 23.29 0.31
bus 49.74 58.82 24.4 0.5 bus 32.36 45.1 32.86 0.38
car 73.23 85.95 43.48 0.47 car 54.05 66.94 37.59 0.48
cat 64.72 76.71 32.2 0.55 cat 51.38 83.56 14.49 0.25

chair 50.08 66.67 43.08 0.37 chair 24.3 49.31 16.47 0.25
chow 49.41 69.7 25.81 0.37 chow 34.64 51.52 20.24 0.29

diningtable 34.77 62.16 25.56 0.5 diningtable 3.86 2.7 100 0.05
dog 63.79 76.83 22.33 0.56 dog 6.96 0 0 0.03

horse 84.09 90.77 44.37 0.51 horse 24.7 1.54 100 0.03
motorbike 60.64 67.57 35.33 0.51 motorbike 27.05 1.35 100 0.38

person 70.99 84.61 40.98 0.48 person 35.69 56.82 28.08 0
pottedplant 34.36 49.57 33.1 0.37 pottedplant 0.43 0 0 0

sheep 66.28 72.55 29.44 0.53 sheep 0 0 0 0
sofa 38.63 68.97 42.05 0.28 sofa 3.67 0 0 0
train 49.4 73.68 17.86 0.36 train 2.63 2.63 100 0.05

tvmonitor 64.82 82.61 32.76 0.47 tvmonitor 21.98 26.09 42.86 0.32

Table 12: Fine-grained analysis of fusion object detection tasks using AutoFusion

Model B AutoFusion

Class Name AP Recall Precision F1 mAP Class Name AP Recall Precision F1 mAP

aeroplane 5 0 0 0

25.43

aeroplane 38.55 48.15 29.89 0.37

36.02

bicycle 27.11 53.45 21.83 0.31 bicycle 46.34 67.24 29.32 0.41
bird 0 0 0 0 bird 38.88 62.5 20.74 0.31
boat 1.79 0 0 0 boat 18.07 15.91 36.84 0.22

bottle 15.66 23.61 24.64 0.24 bottle 28.58 23.61 54.84 0.33
bus 28.05 47.06 27.59 0.35 bus 34.68 39.22 40.82 0.4
car 43.85 61.57 31.57 0.42 car 49.29 72.31 21.63 0.33
cat 6.34 0 0 0 cat 56.61 75.34 35.26 0.48

chair 14.96 26.39 25 0.26 chair 19.03 9.72 40 0.16
chow 13.97 0 0 0 chow 25.43 0 0 0

diningtable 11.88 21.62 18.18 0.2 diningtable 8.42 0 0 0
dog 31.53 75.61 10.8 0.19 dog 42.67 8.54 87.5 0.16

horse 58.4 70.77 30.87 0.43 horse 57.67 50.77 61.11 0.55
motorbike 38.39 66.22 20.25 0.31 motorbike 44.53 29.73 78.57 0.43

person 58.52 84.11 16.55 0.28 person 59.38 75.84 33.35 0.46
pottedplant 19.2 40.17 21.17 0.28 pottedplant 21.05 21.37 32.57 0.26

sheep 36.62 80.39 8.95 0.16 sheep 55.23 56.86 45.31 0.5
sofa 19.43 62.07 9.89 0.17 sofa 10.18 10.34 16.67 0.13
train 24.09 42.11 18.6 0.26 train 38.55 57.89 36.07 0.44

tvmonitor 53.74 71.74 10.48 0.18 tvmonitor 27.36 36.96 15.74 0.22

Table 13: Fine-grained analysis of fusion object detection tasks using AutoFusion
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Setting Convergence Step(↓) Optimizable parameters(↓)

Ensemble

CNN + MNIST 18740 567226
MLP + MNIST 16900 1720330
CNN + Fashion 21551 567226
MLP + Fashion 14992 1720330

CNN + KMNIST 22488 567226
MLP + KMNIST 15929 1720330
CNN + CIFAR10 37480 567226
MLP + CIFAR10 38417 1720330

AutoFusion

CNN + MNIST(5+5) 932 267328
MLP + MNIST(5+5) 1020 802660
CNN + Fashion(5+5) 859 267328
MLP + Fashion(5+5) 800 802660

CNN + KMNIST(5+5) 937 267328
MLP + KMNIST(5+5) 792 802660
CNN + CIFAR10(5+5) 2811 267328
MLP + CIFAR10(5+5) 1267 802660

Table 14: Comparison between the learnable parameters and the number of convergence steps of
AutoFusion compared to the ensemble training method under different settings.

Figure 5: Layer-by-Layer Measure of Similarity of Model Parameters

the integrated training. In terms of optimizable parameters, AutoFusion requires only about half the
number of parameters of the ensemble model. This proves that model fusion using AutoFusion has
a great advantage in computational performance over training the integrated model on the complete
dataset, and the results of the fused model are comparable to those of the integrated model, which
further proves that our approach is very promising for exploration.

F MORE VISUALIZATION

F.1 DEGREE OF PARAMETER SIMILARITY TO THE ENSEMBLE MODEL

We calculate the similarity of the parameters of each layer of the fusion model obtained from the
different baseline methods by matching the parameters of each layer of the fusion model with the
parameters of each layer of the ensemble model one by one, and the one that has a higher similarity
with the parameters of each layer of the ensemble model we can consider it as a better fusion method.
Specifically, we obtain the parameter vectors of the model by spreading each layer of the model’s
parameters and restricting it to standard intervals using the Softmax operation, and for two models
with the same architecture, we can use cosine similarity to measure the similarity between the layer-
by-layer parameter vectors of the two models. The experimental results obtained are shown in
Figure 5.
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Figure 6: Export the trained permutation matrix and compare it with Git Re-Basin Method.

It is easy to see from the figure that the fused models obtained by AutoFusion have a higher sim-
ilarity to the ensemble model at each layer, both for the network with MLP architecture and for
the network with CNN architecture, which largely proves that our assumption is well-founded, i.e.,
this assumption of high similarity falls apart when the models to be merged are trained for dif-
ferent tasks., for models that only use similarity for matching such as Git Re-basin and Zipit, the
fused models are not as similar to the ensemble model, while the diversity parameter dedicated to
encouraging the AutoFusion method achieved a higher similarity to the ensemble model.

F.2 FEATURE EXTRACTION CAPABILITY OF FUSION MODELS

Setting We conducted some visualizations of the activation maps in the intermediate layers of the
multitask model trained on MNIST and the model after fusion, aiming to evaluate the effect of the
fused model from a more intuitive perspective. As illustrated in Figure 7, the first column displays
the input data. The second column shows the activation map for Model A in response to this input,
and the third column presents the activation map for Model B corresponding to the same input
(where Model A and Model B are models trained separately on divided datasets, with the specific
division details and training methods referred to section 4). Meanwhile, the fourth column depicts
the activation map for the output using the AutoFusion method to fuse Models A and B.

Analysis It is evident from the figure that, since Model A and Model B were trained only on subsets
of the dataset, their ability to extract features is inferior for some inputs. However, the fused model
(Fused) clearly demonstrates an improved capability to integrate the feature extraction abilities of
different models, capturing key features for all inputs. This provides a more intuitive validation of
the effectiveness of the AutoFusion parameter fusion algorithm.

F.3 PERMUTATION MATRIX

Layer Index Git Re-Basin Ours
Layer 1 64 62
Layer 2 126 128
Layer 3 1024 1024

We visualize the permutation matrices learned by the
Git Re-Basin method and our method (only the first
two layers) as shown in Figure 6. By observing the
permutation matrix of the first layer, it can be found
that our permutation matrix can learn more complex
permutations to some extent, whereas the Git Re-Basin
method in the first layer resembles direct linear interpolation. Starting from the second layer, we
calculate the degree of permutation complexity using the L1 distance subsection F.3. It can be
observed that, given similar levels of permutation complexity, our method achieves better results.
This indirectly demonstrates that our method can learn more valuable permutation matrices.

F.4 AN OVERVIEW OF CAMS

In this section, we provide additional visualizations of model activation maps on the
MNIST/KMNIST datasets for reference, aiming to further understand the advantages of the ac-
tual fusion model and potential issues that may still exist. The arrangement of rows and columns
is consistent with the subsection F.2, with results on the MNIST dataset illustrated in Figure 9, and
those on the KMNIST dataset shown in Figure 10.
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Figure 7: Visualization of the ability of the model to capture features before and after fusion.

It’s particularly noteworthy that in these visualizations, we can observe that for some inputs, nei-
ther Model A nor Model B is capable of effectively extracting features. However, the model post-
AutoFusion integration outperforms both pre-fusion models in terms of feature extraction. This
further demonstrates that AutoFusion has learned a more valuable permutation.

Given that the core of the AutoFusion algorithm involves learning the permutation matrix of model
parameters, this section provides visualizations of the permutation matrices learned by the Auto-
Fusion algorithm when running on three datasets (MNIST, KMNIST, Fashion-MNIST). This offers
a more visual display of the AutoFusion method, where the division method for each dataset and
the model training process is consistent with section 4. As illustrated, since the CNN(VGG) model
we utilized comprises four convolutional layers, our consideration for permutation also exclusively
encompasses these four layers.
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Figure 8: Visualization of permutation matrices.
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Figure 9: CAMs visualization results on the MNIST dataset.
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Figure 10: CAMs visualization results on the KMNIST dataset.
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