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Abstract

Click-Through Rate (CTR) prediction models es-
timate the probability of users clicking on items
based on feature interactions, inherently follow-
ing a discriminative paradigm. However, this
paradigm is prone to embedding dimensional col-
lapse and information redundancy due to lim-
itations of vanilla feature embeddings. This
motivates us to reformulate it into a generative
paradigm to generate new feature embeddings.
Unlike sequential recommendation, which nat-
urally fits a generative ”next-item prediction”
paradigm, it’s hard to formulate CTR models into
this paradigm because there are no explicit orders
between features. In this paper, we propose a
novel Supervised Feature Generation framework
for CTR models, shifting from the discriminative

”feature interaction” paradigm to the generative
”feature generation” paradigm. Specifically, we
predict each feature embedding based on the con-
catenation of all feature embeddings. Besides, this
paradigm naturally accommodates a supervised
binary cross-entropy loss to indicate whether the
sample is positive or negative. The framework can
reformulate nearly every existing CTR model and
bring significant performance lifts. Moreover, it
produces less-collapsed and redundancy-reduced
feature embeddings, thereby mitigating the in-
herent limitations of the discriminative paradigm.
The code can be found at https://github.
com/USTC-StarTeam/GE4Rec.
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1. Introduction
Click-Through Rate (CTR) prediction models estimate the
probability of users clicking on items based on feature inter-
actions. While conventional wisdom holds that CTR models
inherently follow a discriminative paradigm, they are prone
to embedding dimensional collapse (Guo et al., 2024) and in-
formation redundancy (Zbontar et al., 2021), primarily due
to the limitations of vanilla feature embeddings. Therefore,
we explore reformulating CTR models into a generative
paradigm to generate new feature embeddings.

Different from sequential recommendation models (Kang &
McAuley, 2018; Rajput et al., 2023; Zhai et al., 2024; Yin
et al., 2024), very limited research has focused on formu-
lating CTR models under a generative paradigm. This is
possibly due to the fact that there are no explicit partial or-
ders among the inputs of CTR models, making it difficult to
directly fit them into the popular next-token (Vaswani et al.,
2017) or next-scale (Tian et al., 2024) prediction paradigm.

In auto-regressive models, as illustrated in Fig. 1a, a widely
adopted approach is to consider the sequence up to posi-
tion N as the source input and the item at position N ` 1,
i.e., the next token, as the target input. Alternative formu-
lations also exist; for instance, masked generative models
(Fig. 1b) (Chang et al., 2022; Li et al., 2023) treat the entire
input as the source input and randomly selected portions
as the target input, while VAR (Fig. 1c) (Tian et al., 2024)
considers coarse-scale token maps as the source input and
fine-scale token maps as the target input.

CTR prediction handles the multi-field categorical
data (Zhang et al., 2016; Pan et al., 2018), where there
are usually no explicit partial orders between input features.
To this end, we propose to treat each feature as the target in-
put, and build an Encoder-Decoder network upon the whole
input features, i.e., the source input, to predict it. Such a
method can be regarded as a ”feature generation paradigm”,
which models the P pXq on the unordered multi-field cate-
gorical data.

Specifically, the encoder employs a non-linear activated
MLP upon the concatenation of all feature embeddings, gen-
erating a new representation for each feature. Then we use
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Figure 1. Different generative paradigms. Existing autoregressive generative models can be unified under a common framework.
Specifically, these models construct an encoder based on the source input, generate an output embedding, and utilize it to predict the
target input. The core of paradigm design involves selecting appropriate source input and target input based on the intrinsic data structure.

this new representation to predict the embedding of another
feature i using various feature interaction functions such as
the dot product or the projected product (Sun et al., 2021;
Wang et al., 2021). Such a design avoids direct interac-
tion (product) between vanilla ID embeddings as done in
traditional CTR models (Rendle, 2010; Guo et al., 2017;
Sun et al., 2021; Wang et al., 2021), and hence prevents the
embeddings from dimensional collapse due to Interaction-
Collapse Theory (Guo et al., 2024). Besides, the output
embedding of encoder can be treated as a new represen-
tation of each feature that is tailored to different samples.
These new representations are more decorrelated with the
vanilla representation, fulfilling the redundancy reduction
principle (Zbontar et al., 2021).

Conventionally, generative paradigms are accompanied by
a self-supervised loss. In the next-prediction paradigm in
sequential modeling, the label of the next item is usually a
self-supervised signal, that is, whether the next item is the
ground-truth one, or just a random one. However, in feature
interaction recommendation, it is unnecessary since natural
supervised signals already exist. Therefore, we adopt a su-
pervised loss with the proposed feature generation paradigm
rather than the widely adopted self-supervised loss in the
next-prediction paradigm. The feature generation, together
with the supervised loss, leads to a novel Supervised Feature
Generation framework for CTR prediction.

This framework can reformulate nearly every existing fea-
ture interaction model, ranging from FM to DeepFM,
xDeepFM, and DCN V2. Comprehensive experiments
demonstrate that this new framework significantly improves
performance, achieving an average of 0.272% AUC lift and
0.435% Logloss reduction, while incurring only a marginal
increase in computational overhead—an average increase of
3.14% in computation time and 1.45% in GPU memory con-
sumption. It can produce feature embeddings with reduced
collapse and redundancy compared to raw ID embeddings.
Additionally, we conduct extensive ablation studies to val-
idate the framework design. We successfully deploy it to
one of the world’s largest advertising platforms for click
prediction, with a 2.68% GMV lift on a primary scenario,

leading to one of the largest model improvements in 2024.

2. Method
In this section, we first define the problem and introduce tra-
ditional discriminative CTR paradigms and their limitations
in Sec. 2.1. Subsequently, in Sec. 2.2, we propose a novel
generative feature generation framework based on our find-
ings. Finally, Sec. 2.3 presents the detailed implementation
of the proposed supervised feature generation framework.

2.1. Preliminary: CTR prediction in a discriminative
paradigm

Problem definition. CTR prediction aims to predict the
probability that users will click on items based on multiple
features. The problem can be formally defined using fea-
tures X P t0, 1uM and a label set Y P t0, 1u, indicating
whether users click the target item. Typically, X consists of
multiple feature categories, including user, item, and context
features. Suppose there are N different feature categories,
each category can be represented by a distinct feature field
Fi of cardinality Di, where Di measures the number of
unique features in each field.

Formulation. In general, CTR models learn a function Φ
mapping X to Y , which models the distribution P pY|X q.
This aligns with the definition of discriminative models,
thereby existing CTR models can be naturally formalized
as the following discriminative form:

Lpysuper,

classify

hclassifierp ginterptviuq

feature interaction

q. (1)

vi P RK is obtained from the embedding lookup table
Vi P RDiˆK corresponding to field Fi, where K denotes
the embedding dimension. ginter is the feature interaction
module exploring high-order correlations among feature
fields, usually achieved through hadamard product between
feature embeddings. hclassifier, implemented with a pooling
function or an MLP, finally maps the interacted embedding
to a predicted label. ysuper P Y is the corresponding label
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used to calculate the binary cross entropy loss L. Using the
classic DCN V2 (Wang et al., 2021) model as an example,
it can be formalized as:

Lpysuper,DNNp

L
ÿ

l“1

N
ÿ

i“1

N
ÿ

j“1

v
p0q

j d v
plq
i M

plq
F piqÑF pjq

qq, (2)

where L denotes the number of cross layers; l denotes the
layer index; N denotes the total number of features; i and j

denote the feature indices; vp0q

i denotes the embedding of
feature i in the embedding layer; vplq

j denotes the embedding

of the j-th feature in the l-th layer; M plq
F piqÑF pjq

denotes the
projection matrix between the F piq and F pjq field pair in
the l-th layer; and F piq and F pjq denote the fields of the
feature i and j, respectively.

Discussions on limitations of discriminative paradigms.
Despite the achieved achievements, these methods still fall
into a discriminative paradigm, and very limited research
has focus on formulating them under a generative paradigm.
Such a discriminative paradigm will encounter the following
issues:

1. Dimensional Collapse caused by raw ID embedding
interaction. The embeddings of some fields may only
span a low-dimensional space due to various reasons,
such as the low cardinality of this field. For example, the
embeddings of the gender field with values of Male, Fe-
male, and Unknown can only span a 3-dimensional space.
According to the Interaction-Collapse-Theory (Guo et al.,
2024), the interactions with these low-dimensional field
embeddings may lead to the dimensional collapse (Jing
et al., 2021) of the embeddings of the other fields, thereby
limiting their information abundance.

2. Limitation to learn data distribution. Discriminative
paradigms learn the distribution P pY | X q while over-
looking P pX q, focusing solely on establishing a feasible
decision boundary for classification (Harshvardhan et al.,
2020; Oussidi & Elhassouny, 2018). However, given the
inherent limitations of raw ID embeddings—primarily
caused by data distribution—the lack of consideration
for data distribution makes it challenging to learn an
effective decision boundary.

3. Information redundancy. Redundancy-reduction prin-
ciple (Barlow et al., 1961) has been fruitful in different
application domains (Barlow, 2001; Grill et al., 2020;
Zbontar et al., 2021). This principle necessitates the min-
imization of information redundancy between the two
views, that is, their mutual correlation. We have empir-
ically verified this principle in Sec. 3.3.2, and find that
models with redundancy reduced interacted embeddings
achieve better recommendation performance (Fig. 4).

But interacted raw ID embeddings with raw ID embed-
dings, even though after some elaborately designed trans-
formation (e.g., DCN V2 (Wang et al., 2021)), still ex-
hibit a strong tendency towards containing homogeneous
information, i.e., information redundancy. This limits
the knowledge efficiency of feature interactions.

These limitations call for a rethinking of feature interaction
models in the context of paradigm designs.

2.2. CTR prediction in a generative paradigm

Autoregressive generative paradigms. Generative mod-
els focus on learning the joint distribution P pX ,Yq. Among
generative paradigms, autoregressive approaches remain the
de facto standard, predicting the next item in a sequence
based on preceding inputs. Conventional wisdom posits
that autoregressive models inherently require explicit partial
data ordering, as demonstrated by the success of sequential
recommendation systems (Zhai et al., 2024; Rajput et al.,
2023). However, advancements in autoregressive models
within computer vision—notably the next-scale prediction
paradigm (Tian et al., 2024)—have shifted the focus toward
designing generative frameworks that align with inherent
data characteristics, rather than enforcing autoregressive
structures on non-sequential data. This implies that explicit
data ordering is not fundamentally necessary for autore-
gressive generation. Instead, the essence lies in modeling
appropriate intrinsic data structures.

Reformulation. We re-conceptualize the generative mod-
els in feature interaction models by shifting from the ”next-
item prediction” to the ”feature generation” paradigm. To
begin with, we can integrate previous autoregressive genera-
tive models into a unified framework as illustrated in Fig. 1:
Specifically, it builds a encoder upon the source input, gets
an output embedding, and uses it to predict the target input.
It can be formally defined as:

Lpysuper,

classify

hclassifierpΦqq, (3)

where Φ is the feature generation framework:

Φ “ f j
encoderptviusourceq d ftransformtviutarget, (4)

where some feature embeddings tviusource are fed into a
f j

encoder to construct new embeddings, which will further
be used to perform generation along with the transformed
target feature embeddings tviutarget. The hadamard product
operation is where feature generation happens, which will
be further processed with different pooling function.

By transcending data sequentiality constraints, we can incor-
porate established feature interaction models into this gener-
ative framework. For CTR data defined in Section 2.1, ex-
plicit correlation data between feature fields remain absent.
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Figure 2. The feature generation framework builds a en-
coder based on the source input, generates an output em-
bedding, and utilizes it to predict the transformed target
input. Feature generation occurs through the Hadamard
product operation, followed by further processing with a
pooling function. For multi-layer generation, representa-
tions produced by the pooling function will be used as the
new ”feature ID embeddings” in the next-layer generation.
Specifically, the encoder is implemented as a field-wise
single-layer non-linear MLP.

Nevertheless, there are fundamental connections among
feature fields.

Based on the above analysis, when constructing features,
we employ all raw embeddings as source input to model im-
plicit inter-field relationships. Following conventional gen-
erative paradigms, we designate each feature as target input,
applying the transformations from existing discriminative
model (e.g., DCN V2’s transformation matrix). The encoder
architecture remains flexible, requiring only effective me-
diation between source and target inputs (implementation
specifics in Section 2.3).

Conventionally, generative paradigms like next-item predic-
tion are accompanied by a self-supervised loss, while the
next item may be the ground-truth one or just a random one.
Unlike conventional unsupervised generative paradigms, our
approach can leverage the inherently available supervisory
signals to achieve robust generative learning. The paradigm
overview is presented in Fig. 1d.

Then using stacked DCN V2 as an example, Equation 2 can
be reformulated as:

Lpysuper,DNNp

L
ÿ

l“1

N
ÿ

i,j“1

f j
encoderprvplqsq d v

plq
i M

plq
F piqÑF pjq

qq.

(5)

More formal reformulations can be found in Appendix A.

Discussion. Through the feature generation framework,
we have shifted from the discriminative paradigm that in-
volves direct interactions between raw ID embeddings to
a generative paradigm that constructs new embeddings by
an dencoder network and interacts the constructed embed-
dings with the raw ID embeddings. It integrates all feature
fields to construct tailored features for each sample, which
can avoid direct interactions between raw ID embeddings,
thereby mitigating the risk of dimensional collapse (verified
in Sec. 3.3.1). Besides, the constructed embeddings can
be easily de-correlated with raw ID embeddings, thereby
reducing information redundancy (verified in Sec. 3.3.2).

2.3. Implementation

Our main focus is on designing a generative framework
suitable for feature interaction models, so we keep a simple
encoder architecture design. We instantiate the encoder as
a field-wise single-layer non-linear MLP:

f j
encoderprvsq “ σprvs ¨ WF pjqq, (6)

where σ is a non-linear activation function, rvs P RNK

the concatenation of all feature embeddings, and WF piq P

RNKˆK a field-wise weight matrix. All these three compo-
nents, i.e., the non-linear activation function σ, the feature
concatenation rvs and the weight matrix WF piq are neces-
sary, and we’ll present the ablation study on them in Sec. 3.4.
Now, we can reformulate existing CTR models within the
feature generation framework, which are detailed in Fig. 2.
Notably, we regard the elaborately designed transformations
in existing models as the transformation to target input.

3. Experiments
In this section, we aim to address these research questions:

• RQ1: To what extent can the paradigm shift improve
existing discriminative feature interaction models?

• RQ2: Can the generative paradigm mitigate the inher-
ent drawbacks of raw ID embeddings in discriminative
paradigms, specifically in terms of embedding dimen-
sional collapse and information redundancy reduction?

• RQ3: Is the current paradigm design optimal for feature
generation? What will happen if we use different source
input, encoder, or target input?

3.1. Setup

Datasets & Evaluation protocols. In this work, we have
conducted experiments based on two widely adopted large-
scale datasets, namely Criteo (cri, 2014) and Avazu (ava,
2014). Dataset statistics are summarized in Appendix B.1.
As for evaluation, we evaluate the recommendation perfor-
mance with AUC and Logloss.
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Baselines. To verify versatility of our method, we in-
tegrate it with various representative models, including
explicit feature interaction models FM (Rendle, 2010),
FmFM (Sun et al., 2021), CrossNetv2 (Wang et al., 2021),
and DNN-based models DeepFM (Guo et al., 2017),
IPNN (Qu et al., 2016), xDeepFM (Lian et al., 2018), DCN
V2 (Wang et al., 2021). All experiments are based on a pop-
ular library FuxiCTR (Zhu et al., 2020; 2022). More details
can be found in Appendix B.2. Besides, the computational
complexity are provided in Sec. B.3.

3.2. Recommendation performance comparison between
discriminative and generative paradigms (RQ1)

Offline results. We apply the feature generation frame-
work with various recommendation models, with results
presented in Tab.4. Overall, the proposed method ex-
hibits promising effectiveness and achieves consistent per-
formance lift across different models, achieving an average
of 0.272% AUC lift and 0.435% Logloss reduction. Usually
a 0.1% AUC (gAUC) lift is regarded as a huge improvement
in recommendation systems (Zhu et al., 2022).

Specifically, generative paradigm on explicit feature interac-
tion models can bring an average of 0.428% AUC lift and
0.689% Logloss reduction. Notably, DCN V2 incorporates
a DNN based on CrossNet, enhancing its modeling capabil-
ity. The discriminative version of DCN V2 surpasses the
discriminative CrossNet by 0.157% lift in AUC and 0.235%
in Logloss reduction. Surprisingly, when CrossNet is refor-
mulated within our generative paradigm, it can even out-
perform the discriminative DCNv2 by 0.106% lift in AUC
and 0.089% reduction in Logloss, verifying the promising
potential of generative paradigms. For DNN-based models,
the improvement is less pronounced. Nevertheless, even
when integrated with these complex DNN-based models,
the paradigm shift still brings significant enhancements,
achieving an average improvement of 0.116% in AUC and
0.181% in Logloss reduction. We conclude the following
result:

Result 1. By shifting from discriminative to generative
paradigm, our proposed feature generation framework
brings consistent performance lift on various existing
feature interaction models.

Online A/B Testing. We deployed the proposed genera-
tive paradigm in one of the world’s largest advertising plat-
forms. The production model employs Heterogeneous Ex-
perts with Multi-Embedding architecture (Guo et al., 2024;
Su et al., 2024; Pan et al., 2024). We switch the IPNN expert
in the production model into a generative paradigm, which
models the interactions between more than five hundred
user-, ad-, and context-side features. During the one-week
20% A/B testing, demonstrated promising results, achiev-

ing 2.68% GMV lift and 2.46% CTR lift on several vital
scenarios, including Moments pCTR, Content and Platform
pCTR, and DSP pCTR. These improvements were statisti-
cally significant according to t-tests. The proposed feature
generation framework has been successfully deployed as the
production model in the above-mentioned scenarios, leading
to a revenue lift by hundreds of millions of dollars per year.

3.3. How does the generative paradigm work? (RQ2)

3.3.1. GENERATIVE PARADIGM MITIGATES
EMBEDDING DIMENSIONAL COLLAPSE

Dimensional collapse evaluation protocols. Dimen-
sional collapse means that the embeddings only span a
low-dimensional subspace of the available representation
space (Jing et al., 2021; Guo et al., 2024), which is usu-
ally measured with singular value decomposition. Specif-
ically, we evaluate the dimensional collapse issue at the
sample level. We begin by obtaining the sample embed-
ding matrix Z P RBˆK using the validation dataset, where
B denotes the batch size and K the dimension size (No-
tably, this batch-wise setting will greatly enhance the anal-
ysis efficiency, and we have verified the robustness of
this setting in Appendix B.4). The covariance matrix is
then derived as C “ 1

B

řB
i“1pzi ´ z̄qpzi ´ z̄qT , with

z̄ “ 1
B

řB
i“1 zi. Subsequently, we determine the singular

values S “ diagpσkq of C via singular value decomposition
(SVD) and normalize them by the maximum singular value:
S1 “ diag

´

σk

maxpσkq

¯

. Finally, we present these normalized
singular values in descending order, as shown in Fig. 3.

Evaluated embeddings. We focus on the direct impact of
the feature generation framework on the embedding space.
Specifically, we analyze the embedding used to interact with
raw ID embeddings. In the discriminative paradigm, it is
the concatenation of raw ID embeddings, formally defined
as rvs. In the generative paradigm, it is the embedding
immediately constructed by the encoder, formally defined
as rσprvsWF piqqs. We study this embedding to investigate
the direct influence of the generative paradigm.

Generative paradigm mitigates dimensional collapse.
For brevity, we illustrate the singular value spectrum of the
embedding space for four representative models in Fig. 3.
Visualization of all models can be found in Appendix C.1.
In each sub-figure, the spectrum exhibits a rapid decay. Tak-
ing Fig. 3d as an example, the singular values of DCN V2
on Criteo remain high up to index 250, with values around
1 ˆ 10´5. However, they drop dramatically to 1 ˆ 10´15 at
index 280, a reduction of 1010 times. This indicates an ex-
treme imbalance among dimensions, i.e., only a minority of
dimensions dominate the embedding space. After index 280,
the singular values remain around 1 ˆ 10´15, essentially
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Table 1. Recommendation performance of models with the DIScriminative (DIS) and GENrative (GEN) paradigm. We conduct a
two-tailed T-test to calculate the statistical significance, with results presented in a form of mean(variance). Bolded values refer to the
best performance, and * means the corresponding p-values are less than 0.05.

Model Criteo Avazu
AUCÒ LoglossÓ AUCÒ LoglossÓ

E
xplicit

FM DIS 0.80236(9e-05) 0.44889(7e-05) 0.78877(1e-04) 0.37529(4e-05)
GEN 0.81108(1e-04)* 0.44077(1e-04)* 0.79260(1e-04)* 0.37279(6e-05)*

FmFM DIS 0.80552(3e-04) 0.44626(3e-04) 0.78990(2e-04) 0.37519(7e-04)
GEN 0.80992(7e-04)* 0.44258(8e-04)* 0.79266(9e-05)* 0.37287(2e-04)*

CrossNet V2 DIS 0.81312(1e-04) 0.43918(2e-04) 0.79106(1e-04) 0.37319(2e-04)
GEN 0.81540(4e-05)* 0.43661(5e-05)* 0.79301(2e-04)* 0.37200(5e-05)*

D
N

N
-based

DeepFM DIS 0.81380(8e-05) 0.43804(6e-05) 0.79285(1e-04) 0.37224(1e-04)
GEN 0.81396(6e-05)* 0.43788(5e-05)* 0.79333(7e-05)* 0.37181(1e-04)*

xDeepFM DIS 0.81365(1e-04) 0.43819(1e-04) 0.79222(1e-04) 0.37246(5e-05)
GEN 0.81421(7e-05)* 0.43775(9e-05)* 0.79429(1e-04)* 0.37123(7e-05)*

IPNN DIS 0.81341(5e-05) 0.43850(2e-05) 0.79348(3e-04) 0.37159(1e-04)
GEN 0.81415(8e-05)* 0.43776(1e-04)* 0.79451(8e-05)* 0.37105(1e-04)*

DCN V2 DIS 0.81387(6e-05) 0.43826(4e-05) 0.79282(2e-04) 0.37222(1e-04)
GEN 0.81472(6e-05)* 0.43713(5e-05)* 0.79342(5e-05)* 0.37180(5e-05)*
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Figure 3. Normalized singular value spectrum of embeddings used to interact with raw ID embeddings. It is the concatenation of raw ID
embeddings for the discriminative paradigm, while the embedding immediately constructed by the encoder for the generative paradigm.

zero. These singular values account for approximately 30%
of the total singular values, implying that 30% of the dimen-
sions in the embedding carry no meaningful information,
which is clearly unfeasible.

These phenomena are significantly mitigated in the gener-
ative one. With the exception of FM, the singular value
spectra of the other methods do not exhibit the abrupt de-
cay mentioned earlier. Instead, they decline at a relatively
slower rate, indicating a more balanced embedding space.
Even for simple models like FM, our generative paradigm
can increase the number of meaningful dimensions by 25%.
We attribute this improvement to the integration of all fea-
ture fields when constructing embeddings using the feature
generation framework. We conclude the following result:

Result 2. The generative paradigm substantially miti-
gates the issue of embedding dimensional collapse.

3.3.2. REDUNDANCY REDUCTION VIA GENERATIVE
FEATURE LEARNING

Information redundancy evaluation protocols. Accord-
ing to the information redundancy reduction principle (Bar-
low et al., 1961; Zbontar et al., 2021), the two interacted
embeddings are expected to exhibit low correlation. To
quantify this, we employ the Pearson Correlation Coeffi-
cient between each dimension of the two interacted embed-
dings, defined as ρX,Y “

CovpX,Y q

sXsY
. For the discriminative

paradigm, X and Y are the two interacted embeddings,
while X and Y are the transformed source input and target
input embeddings for the generative paradigm. sX and sY
denote their respective standard deviations.
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(a) FM (DIS) (b) DeepFM (DIS) (c) DCN V2 (DIS) (d) DCN V2 (GEN)

Figure 4. Pearson correlation matrix between two interacted embeddings. (a)Ñ(b)Ñ(c) means more complex models, which also exhibits
a trend of redundancy reduction. This reveals the importance of information redundancy reduction when designing CTR models. In (d),
we can find the generative DCN V2 almost produces a zero correlation matrix, perfectly aligning with the redundancy reduction principle.

Negative connection between redundancy metric and
recommendation performance. We have visualized the
correlation matrix of FM, DeepFM, DCN V2 in Fig. 4. More
visualizations are provided in Appendix C.3. In Fig. 4a,
we have derived two major observations: (1) Intra-field
correlation. It forms some obvious diagonal blocks, while
each block corresponds to a feature field. This means the
information within a feature field is highly correlated, i.e.,
redundant information. (2) Inter-field correlation. The index
32 - 160 forms a big diagonal block, which is exactly the
correlation between field with index 3 - 10. This means
these feature fields are also highly correlated, violating the
redundancy reduction principle. These observations may
explain the inferior performance of FM.

Then we analyze by comparing different models. DeepFM
builds a parallel DNN upon FM, which greatly decreases
inter-field correlation and increases recommendation per-
formance. DCN V2 further incorporates a more advanced
explicit feature interaction module based on DeepFM. In
Fig. 4c, the diagonal blocks representing intra-field correla-
tion are almost reduced, which explains the recommendation
performance lift. All these results reveal a negative connec-
tion between the redundancy metric and recommendation
performance, which can guide model designing.

Generative paradigm reduces information redundancy.
Despite the transformations applied to raw ID embeddings
in DCN V2, we still observe correlations in Fig. 4c. In con-
trast, the correlation matrix is nearly a zero matrix in Fig. 4d,
indicating that the two vectors are highly de-correlated and
thus adhere to the redundancy reduction principle. This
demonstrates our framework’s ability to reduce information
redundancy effectively. We conclude the following result:

Result 3. The feature generation framework produces
embeddings highly de-correlated with raw ID embed-
dings, adhering to the redundancy reduction principle.

3.4. Ablation on the feature generation framework
design (RQ3)

For simplicity, all ablation studies are based on DCN V2.

Ablation on the source input design. As stated in Dis-
cussion 1 of discriminative paradigms, a major limitation
of them is the inherent drawbacks of raw ID embeddings,
especially those of low-cardinality fields. To tackle this
issue, we propose to utilize all field embeddings as source
input for all fields. For comparison, we will investigate the
following configurations to reveal the significance of our
design: (a) using only the field’s own embedding as source
input for all fields; (b) using all field embeddings as source
input for 10 fields with the highest cardinality; and (c) using
all field embeddings as source input for 10 fields with the
lowest cardinality. Results are presented in Fig. 5a.

We can observe that using all field embeddings as source
input outperform other settings, revealing the necessity of
constructing embeddings with all features. Additionally,
the results of only constructing low-cardinality fields with
all features are significantly better than the high-cardinality
counterparts, which corroborates our previous assertion that
low-cardinality fields suffer from severe information insuffi-
ciency compared with high-cardinality fields. We conclude
the following result:

Result 4. For feature generation, it is effective to use
all feature fields as source input. In particular, low-
cardinality field embeddings suffer from more severe
issues than high-cardinality field ones, underscoring
the importance of leveraging all feature information to
generate these embeddings.

Ablation on the encoder design. The adopted encoder is
a field-wise one-layer non-linear MLP. To further investi-
gate its properties, we first construct the following model
variants: (b.1) using a field-shared MLP, (b.2) removing
non-linear activations, (b.3) stacking one more layer. In
Fig. 5b, simplifying the encoder with either (b.1) or (b.2)

7
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Different model variants
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(a) Ablation on source input

Different model variants
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Different model variants
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(c) Ablation on target input

Figure 5. Ablation study on the feature generation framework design using DCN V2 on Avazu.

leads to significant performance degradation. The former
underscores the importance of constructing distinct embed-
dings for different fields, which aligns with our intuition.
The latter highlights the necessity of modeling non-linear
relationships among features, which also contributes sig-
nificantly to alleviating the dimensional collapse issue, as
verified in Appendix C.4. This phenomenon is also ob-
served from many other non-linear activation functions as
verified in Appendix C.4. On the other hand, increasing the
complexity of encoder with (b.3) even greatly degrades rec-
ommendation performance, AUC decreases from 0.793512
to 0.792931, which may be caused by over-fitting.

Next, we investigate whether other generative models are
also feasible: (b.4) self-attention networks. In Fig. 5b, we
observe that both (b.4) outperform the original discrimina-
tive paradigm but underperform the generative paradigm
with the MLP-based encoder. This result confirms the ef-
fectiveness of the generative paradigm and further demon-
strates that our encoder is a simple yet effective design for
constructing meaningful embeddings. We conclude the fol-
lowing result:

Result 5. The field-wise non-linear one-layer MLP is
a simple yet effective encoder. Common modifications,
including simplification or increased complexity, lead
to inferior recommendation performance.

Ablation on the target input design. In the proposed
paradigm, we generate all feature fields simultaneously.
We compare different implementations of the generative
paradigm by designing distinct target input: (c.1) ”predict-
random-selected”: generating only randomly selected fea-
ture fields; (c.2) ”masked feature modeling”: randomly
masking some fields in source input with a learnable mask
vector and predicting them as target input, akin to masked
image modeling (He et al., 2022); (c.3) ”field-aware masked
feature modeling”: similar to (c.2) but using field-specific
mask vectors; (c.4) ”hard masked feature modeling”: similar
to (c.2) but with zero vectors as mask. Formal definitions are
detailed in Appendix B.5, and results are shown in Fig. 5c.

In the figure, all paradigms outperform the discriminative
approach except (c.2), which we attribute to the superior fea-

ture distribution modeling ability of generative paradigms.
For (c.2), the semantic gap between different feature fields
renders the use of a single mask vector for all fields inher-
ently impractical. Therefore, adopting (c.3) with a field-
aware mask significantly improves performance. Counter-
intuitively, a fixed zero vector outperforms learnable mask
vectors. We hypothesize this discrepancy stems from dif-
ferences between unsupervised and supervised generative
paradigms. When supervised signals are introduced, the in-
clusion of a learnable mask vector may inadvertently impede
feature distribution learning. Our ”predict-all” paradigm
outperforms all others, demonstrating its superiority. We
conclude the following result:

Result 6. For feature generation, regarding all feature
fields as target input simultaneously is effective.

4. Related Works
Feature-interaction-based recommender systems. De-
signing improved feature interaction models has consistently
represented a significant area of research within the field of
recommender systems (Zhang et al., 2019; Cheng & Xue,
2021). A key focus in the advancement of modern recom-
mendation systems is the development of more sophisticated
feature interaction modules, including first-order (Richard-
son et al., 2007), second-order (Rendle, 2010; Pan et al.,
2018; Sun et al., 2021), and high-order interactions (Lian
et al., 2018; Wang et al., 2021; Li et al., 2024). With the
rise of deep learning, Deep Neural Networks (DNNs) with
non-linear activation functions have been integrated into
recommendation systems to capture implicit high-order fea-
ture interactions (Cheng et al., 2016; Guo et al., 2017; He &
Chua, 2017; Lian et al., 2018; Wang et al., 2021). In addition
to incorporating non-linearity in DNNs, several studies have
explored the introduction of non-linearity in embeddings
through gating mechanisms, such as FiBiNET (Huang et al.,
2019), FinalMLP (Mao et al., 2023), and PEPNet (Chang
et al., 2023). Orthogonal to these works, we propose a novel
Supervised Feature Generation framework for CTR models,
shifting from discriminative ”feature interaction” paradigm
to generative ”feature generation” paradigm.
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5. Conclusion
In conclusion, this work introduced a novel Supervised
Feature Generation framework that shifts CTR modeling
from discriminative feature interaction to generative feature
generation. The framework’s versatility was demonstrated
through reformulating various existing feature interaction
models into generative ones, ranging from explicit inter-
action models to complex DNN-based models. It could
produce feature embeddings with reduced collapse and re-
dundancy compared to raw ID embeddings. In future work,
we aim to develop a more advanced feature generation
framework within the generative paradigm, incorporating
enhanced encoders and other innovative components.
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A. Formal reformulation of existing feature interaction models
In Tab. 2, we provide the formal definition of how to reformulate existing discriminative models into generative paradigms.
Notably, we only present the ”feature interaction” or ”feature generation” part in each paradigm for simplicity.

Table 2. Feature interaction models in discriminative & generative paradigm

Model Discriminative Generative

FM
řN

i,j“1 vj d vi

řN
i,j“1 σprvs ¨ WF pjqq d vi

FmFM
řN

i,j“1 vj d rvi ¨ MF piqÑF pjqs
řN

i,j“1 σprvs ¨ WF pjqq d rvi ¨ MF piqÑF pjqs

CrossNet V2
řL

l“1

řN
i,j“1 v0

j d pvl
i ¨ M l

F piqÑF pjq
q

řL
l“1

řN
i,j“1 σprvsl ¨ W l

F pjq
q d pvl

i ¨ M l
F piqÑF pjq

q

DeepFM
řN

i,j“1 vj d vi ` DNNprvsq
řN

i,j“1 σprvs ¨ WF pjqq d vi

xDeepFM
řL

l“1

řN
i,j“1 Convl

p v0
j d vl

iq ` DNNprvsq
řL

l“1

řN
i,j“1 Convlp σprvsl ¨ W l

F pjq
q d vl

iq ` DNNprvsq

IPNN DNNprrvs,
řN

i,j“1 vj d visq DNNprrvs,
řN

i,j“1 σprvs ¨ WF pjqq d visq

DCN V2
řL

l“1

řN
i,j“1 v0

j d pvl
i ¨ M l

F piqÑF pjq
q ` DNNprvsq

řL
l“1

řN
i,j“1 σprvsl ¨ W l

F pjq
q d pvl

i ¨ M l
F piqÑF pjq

q ` DNNprvsq

B. Detailed experimental configuration
B.1. Dataset statistics

We adopt the Criteo x1 and Avazu x4 datasets provided by FuxiCTR (Zhu et al., 2020; 2022), whose statistics are summarized
in Tab. 3.

B.2. Implementation details of baseline methods

We first introduce common settings for all models: (1) For Criteo dataset, the embedding size is set to 10, batch size is set to
4,096, and learning rate is set to 1e-3. (2) For Avazu dataset, the embedding size is set to 16, batch size is set to 10,000, and
learning rate is set to 1e-3. All experiments will be early stopped when results on validation dataset decrease for consecutive
two training epochs.

Then we list the detailed setting of different baseline models. Notably, we do not tune these hyper-parameters when fitting
these models into the proposed generative paradigm:

• FM: embedding regularization coefficient is set to 5.0e-06 for Criteo and 1.0e-06 for Avazu.

• FmFM: parameter regularization coefficients are set to 1.0e-06 for the both datasets; we adopt matrixed field embedding
transform type (Sun et al., 2021) for both datasets.

• CrossNet V2: embedding regularization coefficient is set to 1.0e-05 and 0 for Criteo and Avazu, respectively; number
of cross layers is set to 3, 5 for Criteo and Avazu.

• DeepFM: embedding regularization coefficient is set to 1.0e-05 and 0 for Criteo and Avazu, respectively; a parallel
DNN with size [400, 400, 400] and [2000, 2000, 2000, 2000] are used for Criteo and Avazu, respectively.

Table 3. The number of user-item interactions of the adopted two datasets.

Train Valid Test

Criteo 33M 8M 4M
Avazu 32M 4M 4M

12



From Feature Interaction to Feature Generation: A Generative Paradigm of CTR Prediction Models

• xDeepFM: embedding regularization coefficient is set to 1.0e-05 and 0 for Criteo and Avazu, respectively; CIN hidden
units are set to [16, 16] and [276] for Criteo and Avazu, respectively; DNN size is set to [400, 400, 400] and [500, 500,
500] for Criteo and Avazu, respectively.

• IPNN: embedding regularization coefficient is set to 1.0e-05 and 1.0e-09 for Criteo and Avazu, respectively; DNN size
is set to [400, 400, 400] and [1000, 1000, 1000] for Criteo and Avazu, respectively.

• DCN V2: based on the setting of CrossNet V2, a parallel DNN with size [500, 500, 500] and [2000, 2000, 2000, 2000]
are used for Criteo and Avazu, respectively.

All experiments can fit into a GPU with 14GB memories.

B.3. Computational complexity analysis

Table 4. Computational complexity when reformulating a discriminative feature interaction model into a generative feature generation
model.The proposed generative paradigm achieves significant recommendation performance improvements, as detailed in Section 3.2,
while incurring only a marginal increase in computational overhead—averaging 3.14% more computation time and 1.45% additional GPU
memory consumption.

Model Criteo Avazu
Speed (time/epoch) GPU memory (MB) Speed (time/epoch) GPU memory (MB)

E
xplicit

FM DIS 8m40s 1600 3m08s 2554
GEN 8m58s 1605 3m13s 2626

FmFM DIS 9m38s 4846 3m48s 10148
GEN 9m45s 4892 3m57s 10180

CrossNetv2 DIS 5m01s 1050 1m43s 2100
GEN 5m09s 1096 1m57s 2190

D
N

N
-based

DeepFM DIS 8m23s 2090 4m36s 3622
GEN 8m33s 2122 4m44s 3676

xDeepFM DIS 8m15s 1906 2m43s 3268
GEN 8m24s 1908 2m45s 3322

IPNN DIS 6m37s 1544 3m06s 2592
GEN 6m41s 1558 3m14s 2614

DCNv2 DIS 5m31s 1238 5m44s 2982
GEN 5m58s 1282 6m01s 3070

Assuming the original model in the discriminative paradigm has complexity OpAq, the primary computational overhead
when transitioning to a generative paradigm arises from the encoder. The encoder is implemented as a field-wise non-linear
MLP, formally defined as:

f i
encoderprvsq “ σprvsWF piqq, (7)

where rvs P RNK denotes the concatenation of all feature embeddings, and WF piq P RNKˆK represents a field-wise weight
matrix. Consequently, the total encoder complexity becomes OpBLN2d2q, where B is the batch size, L denotes the number
of encoder layers, N the number of feature fields, and d the embedding dimension. This computational complexity aligns
with mainstream discriminative feature interaction models (e.g., DCN V2), indicating comparable efficiency. Furthermore,
as demonstrated in the source input ablation study (Sec. 3.4), the complexity can be reduced to OpBLN 12d2q by using
all field embeddings as source input only for fields with the lowest cardinality, achieving this optimization with moderate
performance trade-offs.

Result 7. The extra computational burden introduced by reformulating existing discriminative feature interaction
paradigms to the generative feature generation paradigm is marginal.
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B.4. Robustness analysis of the batch-wise setting in Sec. 3.3.1.

In Sec. 3.3.1, we have conducted embedding analyses in dimensional collapse with a batch-wise setting, which greatly
accelerates the analysis process compared with that based on the full validation dataset. But this batch-wise setting may
introduce randomness to the analysis results, so we further provided the analysis of different seeds in Fig. 6. In the figure,
the trend of embedding spectra is consistent across all seeds, demonstrating the robustness of our batch-wise analysis setting.
Specifically, on both Avazu and Criteo, the spectrum curves of discriminative paradigms exhibit an abrupt singular decay
from 1 ˆ 10´5 to 1 ˆ 10´15, a reduction of 1010times. This indicates a severe dimensional collapse issue. But in our
generative paradigm, the abrupt singular value decay has been greatly alleviated. This verifies that the generative paradigm
substantially mitigates the embedding dimensional collapse issue, forming a more balanced embedding space.

Figure 6. Normalized embedding spectrum visualization with batch-wise setting in different seeds. We can observe that the trend of
embedding spectra is consistent across all seeds, which demonstrates the robustness of our batch-wise analysis setting.

B.5. Formal definition of different target input design

We provide a detailed formal definition of the different target input designs mentioned in Sec. 3.4.

(c.1) ”Predict-random-selected”, which generates only randomly selected feature fields:

y “
ÿ

i

ÿ

jPFrandom

σprvs ¨ WF piqq d vj , (8)

where Frandom is a set of fields randomly sampled from all fields.

(c.2) ”Masked feature modeling”: randomly masking some fields in source input with a learnable mask vector and predicting
them as target input, akin to masked image modeling (He et al., 2022):

y “
ÿ

i

ÿ

jPpFunmaskYFmaskq

σprvsnot masked ¨ WF piqq d vj,mask (9)

where Funmask Y Fmask “ F , vj,mask “ mask if j in Fmask else vj .

(c.3) ”Field-aware masked feature modeling”: similar to (c.2) but using field-specific mask vectors:

y “
ÿ

i

ÿ

jPpFunmaskYFmaskq

σprvsnot masked ¨ WF piqq d vj,mask (10)
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where Funmask Y Fmask “ F , vj,mask “ maskj if j in Fmask else vj .

(c.4) ”Hard masked feature modeling”: similar to (c.2) but with zero vectors as mask:

y “
ÿ

i

ÿ

jPpFunmaskYFmaskq

σprvsnot masked ¨ WF piqq d vj,mask (11)

where Funmask Y Fmask “ F , vj,mask “ 0 if j in Fmask else vj .

C. Supplemental results
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(a) FM
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(b) FmFM
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(c) CrossNet
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(d) DeepFM
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(e) xDeepFM
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(f) IPNN
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(g) DCNv2

Figure 7. Normalized singular value spectrum of embeddings used to interact with raw ID embeddings. It is the concatenation of raw ID
embeddings for the discriminative paradigm, while the embedding immediately constructed by the encoder for the generative paradigm.

C.1. Normalized singular value spectrum visualization of all models

The normalized singular value spectrum of all models are illustrated in Fig. 7. Similar to results concluded in Sec. 3.3.1, the
feature generation framework substantially mitigates the embedding dimensional collapse issue, forming a more balanced
and meaningful embedding space.

C.2. Dimensional collapse analysis of embedding lookup tables

In Sec. 3.3.1, we focus on analyzing the spectrum of embeddings used to interact with the original embeddings, since we are
mainly motivated to address the dimensional collapse issue of these embeddings. On the other hand, we can also follow Guo
et al. (2024) to visualize the spectrum of embedding lookup tables, i.e., Vi P RDiˆK defined in Sec. 2.1, where i denotes
one of the feature field, Di is the field’s cardinality, and K is the embedding dimension size of the embedding table. The
results have been depicted in Fig. 8. In the figure, the spectrum of high-cardinality embedding lookup tables in the generative
paradigm is higher than the discriminative one. This indicates the embedding space will be less dominated by some specific
dimensions, which will greatly enhance the robustness of these embeddings. However, for those low-cardinality embeddings,
the improvement remains limited. This is fundamentally because these field embeddings are inherently constrained by
nature. For instance, the number of meaningful singular values of a matrix sized 4 ˆ K cannot exceed four.

C.3. Pearson correlation matrix of all models

Similar to Sec. 3.3.2, we provide Pearson correlation matrix of all models on the Avazu dataset in Fig. 12. The conclusion
remains the same as in Sec. 3.3.2: (1)There is a strong connection between redundancy reduction metric and recommendation
performance: The most simple model FM yields the most matrix with intra-field and inter-field correlations, while the
correlation matrix of other models are reduced to some extent, depending on whether DNN (DeepFM, IPNN) or more
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(a) Field 24 (Di “ 4) (b) Field 19 (Di “ 6) (c) Field 14 (Di “ 6) (d) Field 13 (Di “ 7)

(e) Field 7 (Di “ 6, 545) (f) Field 12 (Di “ 7, 259) (g) Field 10 (Di “ 820, 509) (h) Field 11 (Di “ 2, 903, 322)

Figure 8. Normalized singular value spectrum of embeddings lookup tables Vi P RDiˆK , where i denotes one of the feature field, Di is
the field’s cardinality, and K is the embedding dimension size of the embedding table.

advanced interaction modules (CrossNet V2, xDeepFM, DCN V2). (2)The feature generation framework produces
embeddings highly de-correlated with raw ID embeddings: We can observe that the correlation matrices of all models
become a nearly zero matrix within the generative paradigm.

C.4. Comparison of different non-linear activation functions

Different model variants
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(a) Recommendation performance
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(b) Singular value spectrum

Figure 9. We have implemented the encoder with different non-linear activation functions, including ReLU, Sigmoid, Tanh, and SiLU,
and providing the corresponding results based on DCN V2: (a) The recommendation performance with different non-linear activation
functions. (b) The normalized singular value spectrum of the embedding space with different non-linear activation functions.

We employ a field-wise non-linear single-layer MLP as our encoder, with the non-linear activation function being one
of its most critical components. A natural question arises regarding the role of the non-linear activation function and the
criteria for selecting an appropriate one. We have empirically assessed the effects of various activation functions on the
encoder, with the findings illustrated in Fig. 9. As depicted in Fig. 9a, the absence of a non-linear activation function in the
encoder results in a notable decline in performance, underscoring the importance of incorporating non-linearity within the
encoder. Conversely, all non-linear activation functions enhance recommendation performance relative to the discriminative
paradigm, with the rank of recommendation performance being Sigmoid ă Tanh ă ReLU ă SiLU. Furthermore, we present
the normalized singular value spectrum of embeddings in Fig. 9b. Initially, the spectrum of the linear activation is highly
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collapsed, potentially accounting for its inferior recommendation performance. Subsequently, it is observable that the
spectra of all non-linear activation functions exhibit greater smoothness than that of the discriminative one. This suggests
that non-linear activation functions play a pivotal role in alleviating the embedding dimensional collapse issue. Additionally,
the spectrum adheres to the rank Sigmoid ă Tanh ă ReLU ă SiLU, mirroring the ranking of recommendation performance.
This observation further implies a strong correlation between the mitigation of embedding dimensional collapse and the
enhancement of recommendation performance.

Result 8. The non-linear activation function is an important component of the field-wise MLP encoder, crucial for
embedding dimensional collapse mitigation. Besides, many non-linear activation functions, including Sigmoid, ReLU,
Tanh, and SiLU, can get consistent performance lift while mitigating the dimensional collapse.

C.5. Comparison with feature refinement and graph-based models

Some other methods also target enhancing the embeddings of CTR models with field graphs (Sun et al., 2022; Li et al.,
2019; Wang et al., 2022c) or feature enhancement modules (Wang et al., 2023; 2022b;a). Our paradigm differs from these
works in the sense that we aim to tackle the dimensional collapse issue due to the direct interaction of ID embeddings. We
have empirically compared our paradigm with several representative feature refinement models, with results depicted in
Tab. 5. We observed that some models outperform the discriminative DCNv2 models, but still underperform our generative
paradigm. Besides, we also studied the singular spectrum in Fig. 10, and we find that the feature enhancement methods can
mitigate the dimensional collapse on the tail singular values compared to the vanilla discriminative DCN V2. However, our
generative paradigm leads to more robust values across all dimensions.

Table 5. Comparison with other methods that also target enhancing embeddings of CTR models. We have compared with one classic
field-graph method Fi-GNN (Li et al., 2019), and two feature enhancement methods GFRL (Wang et al., 2022a) and FRNet (Wang et al.,
2022b). Notably, we also visualize the normalized spectrum of these methods in Fig.

Model Criteo Avazu
AUCÒ LoglossÓ AUCÒ LoglossÓ

FiGNN 0.81352 0.43845 0.79156 0.37343

DCNv2

DIS 0.81387 0.43826 0.79282 0.37222
GFRL 0.81427 0.043773 0.79296 0.37194
FRNet 0.81431 0.43789 0.79313 0.37191
GEN 0.81472 0.43713 0.79342 0.37180

Figure 10. Normalized embedding spectrum of the feature enhancement methods. We can find that these feature enhancement methods
can mitigate the dimensional collapse on the tail singular values compared to the vanilla discriminative DCN V2. However, our generative
model leads to more robust values on all dimensions.

C.6. T-SNE visualization comparison

In Fig. 11, we have visualized discriminative and generative embeddings with different cardinalities with T-SNE (Van der
Maaten & Hinton, 2008). Fig. 11d and Fig. 11h depict embeddings of the highest cardinality field in the dataset, where we
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(a) Feature 1 (Discriminative) (b) Feature 2 (Discriminative) (c) Feature 3 (Discriminative) (d) Feature 4 (Discriminative)

(e) Feature 1 (Generative) (f) Feature 2 (Generative) (g) Feature 3 (Generative) (h) Feature 4 (Generative)

Figure 11. T-SNE visualisation of discriminative and generative embeddings of four features, numbered from 1 to 4. The cardinality of
these features is 4, 4,051, 820,509, and 2,903,322, respectively. (a-d) illustrate embeddings of the four features within the discriminative
paradigm; (e-h) illustrate embeddings of the four features within the generative paradigm.

observe that the generative embeddings retain the separability as the discriminative paradigm. However, the improvement
brought by the generative paradigm is substantial for embeddings of fields with less cardinality. In Fig. 11a, Fig. 11b, and
Fig. 11c, the embeddings coalesce in the latent space, even for the field with the second-highest cardinality (Fig. 11c and
Fig. 11g). After the generative reformulation, all three embeddings can form a more uniform distribution in the latent space,
as illustrated respectively in Fig. 11e, Fig. 11f, and Fig. 11g. These results demonstrate that our generative paradigm can
greatly improve the separability of embeddings, especially for embeddings with fewer cardinalities. This also supplements
the aforementioned dimensional collapse phenomena analysis from a field-wise perspective.
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(a) FM (DIS) (b) FM (GEN) (c) FmFM (DIS) (d) FmFM (GEN)

(e) CrossNet V2 (DIS) (f) CrossNet V2 (GEN) (g) DeepFM (DIS) (h) DeepFM (GEN)

(i) xDeepFM (DIS) (j) xDeepFM (GEN) (k) IPNN (DIS) (l) IPNN (GEN)

(m) DCN V2 (DIS) (n) DCN V2 (GEN)

Figure 12. Pearson correlation matrix between two interacted embeddings. For all discriminative feature interaction models, the correlation
matrix becomes a nearly zero matrix after reformulating them into a generative paradigm, which perfectly aligns with the redundancy
reduction principle.
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