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ABSTRACT

3D Gaussian Splatting has demonstrated remarkable potential in novel view synthesis. In
contrast to small-scale scenes, large-scale scenes inevitably contain sparsely observed re-
gions with excessively sparse initial points. In this case, supervising Gaussians initialized
from low-frequency sparse points with high-frequency images often induces uncontrolled
densification and redundant primitives, degrading both efficiency and quality. Intuitively,
this issue can be mitigated with scheduling strategies, which can be categorized into two
paradigms: modulating target signal frequency via densification and modulating sampling
frequency via image resolution. However, previous scheduling strategies are primarily
hardcoded, failing to perceive the convergence behavior of the scene frequency. To address
this, we reframe scene reconstruction problem from the perspective of signal structure re-
covery, and propose SIG, a novel scheduler that Synchronizes Image supervision with
Gaussian frequencies. Specifically, we derive the average sampling frequency and band-
width of 3D representations, and then regulate the training image resolution and the Gaus-
sian densification process based on scene frequency convergence. Furthermore, we intro-
duce Sphere-Constrained Gaussians, which leverage the spatial prior of initialized point
clouds to control Gaussian optimization. Our framework enables frequency-consistent,
geometry-aware, and floater-free training, achieving state-of-the-art performance with a
substantial margin in both efficiency and rendering quality in large-scale scenes.

1 INTRODUCTION

High-fidelity and real-time Novel View Synthesis (NVS) in large scale scenes is a fundamental require-
ment for a wide range of applications, including UAV navigation, autonomous driving. Recently, Neural
Radiance Fields (NeRFs) (Mildenhall et al., 2021) have made significant progress in NVS, yet suffer from
prohibitive optimization and rendering costs. In contrast, 3DGS (Kerbl et al., 2023) achieves comparable
fidelity with fast rendering capability by modeling scenes with Gaussian primitives. Nonetheless, even with
block-wise parallelism (Liu et al., 2024), training remains inefficient in city-scale scenes. The massive in-
puts and numerous Gaussians, alongside the regions lacking initial point clouds and sparsely observed, lead
to redundancy and floaters, thereby compromising both efficiency and reconstruction quality.

Delving deeper into the issue, given that large-scale scenes inevitably require more image supervision and
Gaussians, the degradation can be further attributed to the imbalance between the rendering resolution and
the densification strategy. This can be further elaborated from two complementary perspectives: (1) The
common practice of rendering high-resolution images throughout training imposes substantial computation
and memory overhead. (2) Supervising low-frequency-initialized Gaussians with high-frequency images
leads to uncontrolled densification and redundant Gaussians, as excessive gradients induce premature growth
focused on fine textures, while overlooking the underlying geometric structure. As shown in Fig. 1, redun-
dancy and floaters emerge when supervision is insufficient.
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Figure 1: Floaters and redundancy. Prior methods that directly supervise with high-frequency images lead
to redundancy and cannot exploit more primitives to capture high-frequency details.

We recognize that the rendering resolution and the densification strategy are not orthogonal concepts, and
seek to address the challenges through a unified framework. By reframing scene reconstruction from the per-
spective of signal structure recovery, common schedulers for densification and resolution can be regarded as
controlling the target signal’s frequency content and the sampling frequency. However, such strategies raise a
fundamental question: when should the resolution be increased and densification be performed? Some pre-
liminary attempts have been made in prior works. DashGS (Chen et al., 2025) progressively increases image
resolution in a non-linear fashion over training iterations, whereas methods such as TamingGS (Mallick et al.,
2024), rely on predefined densification schedules. Since these schedulers are predetermined before training
rather than being adapted during the optimization, we refer to such approaches as hard-coded scheduling
strategies. However, the sampling frequency and the fidelity of signal reconstruction are inherently coupled.
Hard-coded scheduling may impede effective learning by imposing premature high-resolution supervision
or delaying essential refinements. Ideally, resolution should be increased only when further training at the
current level ceases to yield significant improvements. This occurs when the spectral content encoded by
the Gaussians reaches the maximum recoverable frequency (i.e., the Nyquist frequency), thereby allowing
higher-resolution images to guide the densification process in recovering high-frequency details.

Building on the above discussion, to ensure frequency-consistent optimization, it is essential to characterize
the frequency of the sampling and target signals. Thus, we first mathematically derive the representation
frequency of 3D Gaussians. This guides the supervision resolution according to the evolving scene fre-
quency. By leveraging low resolution for structure recovery and high resolution for texture refinement, we
enable adaptive resolution adjustment during training. Beyond the frequency inconsistency, unconstrained
Gaussian movement and scaling in prior methods may lead to the neglect of structural priors. While Neural
Gaussians (Lu et al., 2024) introduce neural anchors, they remain limited by block-partitioned training with
shared MLP decoders, hindering scalability and stability in large scale scenes. To leverage the spatial priors
exhibited by point clouds, we further introduce Sphere-Constrained Gaussians to reduce redundancy and
preserve scene structure, where all Gaussians are confined within a sphere based on density priors.

In summary, our contributions are as follows: (1) We mathematically define the average frequency of 3D
Gaussians representation and propose a novel scheduler that synchronizes image supervision with gaussian
frequency, to mitigates redundancy and accelerates training. (2) We propose Sphere-Constrained Gaussians,
which leverage structural priors to restrict the optimization space. (3) Our framework achieves substantial
improvements in quality (+0.9 dB PSNR) and training speed (1.5x per block) across multiple benchmarks.

2 RELATED WORK

Novel View Synthesis and 3D Representation. NeRF (Mildenhall et al., 2021) and its related works (Gao
et al., 2022; Chen et al., 2021; Barron et al., 2021) have achieved remarkable progress in NVS. To achieve
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faster training and rendering, NeRFs have gradually incorporated explicit structures (Chen et al., 2022;
Miiller et al., 2022), while remain computationally expensive due to the dense sampling along each ray. In
contrast, 3DGS (Kerbl et al., 2023) adopts a purely explicit representation, achieving photorealistic render-
ing quality while significantly improving rendering speed. Subsequent works have further enhanced 3DGS
by incorporating techniques such as anti-aliasing (Yu et al., 2024), training acceleration, and block-wise
optimization (Liu et al., 2024; Lin et al., 2024). More recent GS-based approaches introduce neural Gaus-
sians (Lu et al., 2024), combining implicit representations to improve adaptability. However, the implicit
components compromises rendering efficiency and hinders block-wise optimization in large-scale scenes.

Scheduling Strategy for 3DGS Optimization. Multiscale representations (Miiller et al., 2022) are com-
monly employed in NeRF to enable coarse-to-fine optimization (Xue et al., 2024; Lin et al., 2021), which
allows a progressive exposure of high-resolution features during training. In 3DGS, the training scheduler
can regulate the optimization via Gaussian densification and image resolution. For the former, prior works
such as TamingGS (Mallick et al., 2024; Rota Bulo et al., 2024) and DashGS (Chen et al., 2025) primarily
focus on controlling Gaussian densification to limit the number of primitives in early training. For the latter,
DashGS reduces computational cost by dynamically adjusting the rendering resolution throughout training.
However, prior scheduling of either resolution or primitive growth is predefined and static throughout the op-
timization. This lack of adaptivity means that the training process cannot respond to the actual reconstruction
progress. Premature introduction of high-resolution supervision may destabilize early optimization stages,
while delayed scheduling may delay convergence and underutilize computational resources.

Large-scale Scene Reconstruction. Recent advances in large-scale scene reconstruction predominantly
follow a divide-and-conquer paradigm. NeRF-based approaches such as Block-NeRF (Tancik et al., 2022;
Zhenxing & Xu, 2022) and Mega-NeRF (Xu et al., 2024; Turki et al., 2022) partition the scene into spatial
blocks, yet rendering latency remains a critical limitation. In contrast, 3DGS has emerged as a more efficient
alternative, with many studies focusing on block-wise representations that incorporate level-of-detail render-
ing. VastGS (Lin et al., 2024) performs progressive partitioning based on camera distribution. DOGS (Chen
& Lee, 2025) and BlockGS (Wu et al., 2025) adopt recursive strategies to ensure balanced computation
across blocks. CityGS (Liu et al., 2024) leverages coarse Gaussians to guide scene partitioning and performs
direct merging of Gaussians within blocks. Octree-GS (Ren et al., 2024) initializes the scene with structured
neural anchors and decodes gaussian using MLP-decoder, while lacks native support for block-wise training
due to the shared MLP. MomentumGS (Fan et al., 2024) attempts to address this issue but incurs frequent
inter-block synchronization. Recently, several methods have been proposed to accelerate Gaussian rendering
in large-scale scenes, such as FlashGS (Feng et al., 2025) and FastGS (Ren et al., 2025).These methods can
be combined with existing approaches to further improve rendering speed, demonstrating significant prac-
tical utility. Despite these advances, challenges such as Gaussian redundancy and floater artifacts persist in
large-scale scenes, hindering both reconstruction quality and rendering efficiency.

3 METHOD

We first briefly revisit 3DGS in Section 3.1. Then, we formalize average sampling frequency and scene
frequency bandwidth in Section 3.2, and propose our frequency-aligned resolution and densification scheuler
in Section 3.3. Section 3.4 introduces our spatial-aware Gaussian optimization process.

3.1 PRELIMINARIES

3DGS utilizes Gaussian primitives {G;(x) = exp ( — 2(x — p;) ' Z; ' (x — p;))}¥; to represent a 3D
scene, where 3J; € R3*3 denotes the covariance matrix, and p; € R? represents the position. Each primitive
also possesses an opacity o; and color attributes c¢;. Per-pixel colors are obtained via a-blending: C =



Under review as a conference paper at ICLR 2026

Frequency Matching n—
Frequency of sampling = V g y £ “
Sy | -

\f Resolution _ samﬂ ing , Frequency  Gaussians_ Densification Gaussians
3D Scene Scheduler Matchmg Frequency Scheduler Optimization

Sphere-Constrained

f:focal length d: depth

_ Dense Gaussians, low variance
Wsampling = Fsampling (f, d) 51

Frequency of 3D Gaussians

° D "
clone
o | 0N

split =

Gaussians
[
i
- SRR Rt 'l
. LU
0:0pacity S:Gaussian scale Opacity Field
Wscene = Fscene(0,5)

of s
I “Ap>r,, o

Sphere constraint @» 3D Gaussian

|
|
|
|
|

@ Initial point cloud — ~ Optimization

Figure 2: Overview. We define Gaussian frequency based on the opacity ﬁeld represented as a weighted
sum of Gaussians. Using a frequency-matching module, we synchronize image supervision with Gaussian
frequencies (SIG), and optimize with Sphere-Constrained Gaussians to incorporate geometric priors.

Z?}:l ;C; H;;ll(l — «), o denotes the transparency weight, which is derived from o; and 3;. We adopt

the partitioning strategy of CityGS, using coarse training to build a scaffold and fine training for each block.

3.2 RETHINKING THE SCHEDULER FROM SIGNAL STRUCTURE RECOVERY

Theoretical Foundations. Reconstruction can be viewed as the task of recovering continuous 3D signals
from discretely sampled images. Existing methods typically schedule the training process along two axes:
(1) adjusting the frequency of the 3D Gaussians via controlled densification; (2) modulating the frequency of
the supervision signal. For instance, DashGS computes the frequency of images sampled at different resolu-
tions and linearly maps the frequency at different image scales to the training iterations. TamingGS focus on
controlling densification. However, they all rely on hard-coded schedulers fixed prior to optimization. Con-
sequently, premature introduction of high-resolution supervision can destabilize early optimization, while
delayed scheduling may slow convergence and lead to inefficient use of computational resources.

According to the Nyquist Sampling Theorem, sampling at frequency f limits recoverable components to
[0, f/2], known as the signal bandwidth. Given a sampling frequency fi.4, the effective bandwidth of the
scene will converge to a fixed value Bg..p. (under certain assumptions in Appendix A.7). Consequently, the
sampling frequency should be increased once the current bandwidth converges, which indicates sufficient
recovery. Once the relationship between the two is established, the key challenge is thus to determine the
sampling frequency and the effective bandwidth of the 3D Gaussians.

Sample Frequency. For focal length f and sampling depth d, a unit screen-space interval corresponds to
a 3D space with radius of d/f. Assuming constant depth, the sampling frequency of the entire image is
proportional to f/d. Downsampling an image by factor ¢ scales the focal length to f* = f/t, yielding a
sampling frequency v’ = v/t. Therefore, changing the image resolution modifies the sampling frequency
of the signal. In practice, each image samples only a subset of the scene, and varying depth d causes
non-uniform sampling frequencies. From a differential viewpoint, each local patch can be approximated as
uniformly sampled. We thus define the average sampling frequency over the scene as:

v=>"0" [ wi(s)- Ty ds , Jowi(s)ds = 1. (1)

where s denotes a local patch, w;(s) is the weight, representing the contribution of patch s to whole scene,
and w;(s) = 0 if s is not observed. d;(s) denotes the depth of patch s in the i-th view. Clearly, this average
frequency increases with image number 7 and exhibits a strict linear dependence on the focal length f.

Scene Signal Bandwidth. Based on the above discussion, local patch frequencies are inherently non-
uniform. Fortunately, our goal is to recover the dominant structures of the scene signal. In this context,
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the average signal bandwidth—computed over all local patches—serves as a global measure of the scene’s
frequency content, and naturally corresponds to the average sampling frequency in Eq. (1). Geometrically,
variations in the scene’s density function capture the spatial frequency of its structure. We explicitly write
the scene opacity field as a weighted sum of 3D Gaussians:

D(x) = 27, 0i Gi(x) = 21, 04 (21)%/% det(2) V2N (x; i, 2a), ()

where G; denotes the unnormalized Gaussian centered at z; with covariance Y; and opacity 0;. x € R?
represents a point in 3D space. In signal analysis, average frequency or bandwidth is typically weighted by
the power spectral density:

noA Ar N2 no A [N wlD@)?de
D) = X1, 0:Gilw). DW= | X, 0Giw)| . @=Lt ©)

where D(w) and G;(w) denote the frequency-domain counterparts of D(t) and G;(t). Prior to compute
w, we first compute the Fourier transform F'(w) of the Gaussian function e~ and it’s half-power (3dB)
bandwidth wsgp as: F(w) = \/g exp (7%) and w3y = v/2a1n 2. Detailed derivation is given in the Ap-
pendix A.8. wsqp is commonly used to characterize the effective frequency range that contains the majority

of the signal’s energy, we use it to simplify the computation of the power spectrum |ﬁ(w) |2, since perform-
ing continuous integration over tens of millions of Gaussian primitives is computationally challenging.

Given that the frequency of each Gaussian primitive G;(w) o F/(w) follows a bell-shaped distribution, with
its energy predominantly concentrated within wsqg, we approximate the mean frequency of each primitive
using wsqp and assume negligible intensity at other frequencies, the continuous-to-discrete approximation is

shown in Fig. 3(b). Consequently, the | D(w)|? can be approximated as:

IDW)]* =D loiGi(w) + ) Re(oiéi(w) (0,G, (w))*) ~ Y (2m)% det(34)076(w — waap,),  (4)

i=1 i#£] i=1
where Re(+) denotes the real part extraction, 0(+) is the unit impulse function, and det(-) denotes the deter-
minant. As a result, we can estimate the average frequency of the entire scene as:

ffooowlﬁ(w)F dw 377 07 det(2;)wsqs,

1

S DW)de X 0F det (%)

&)

(:]:

Since for a 1D Gaussian function, w3sg = v2a1In2 %, we refer to the scale of a primitive as scale =

1

3
[01,02, 03] and adopt the average over the three axes as wadp,: WadB; X D g—1 35, -

Effectiveness Validation. To identify the effectiveness of our definition of the average sample frequency
and scene signal bandwidth, we conduct the following experiments using vanilla 3DGS (Kerbl et al., 2023):
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Figure 3: Effectiveness Validation: (a) Average Scene Bandwidth during Training under Different Image
Resolutions and wsgp Estimation Methods. (b) Our approximation of the power spectrum.
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(1) To validate the relation between sampling frequency (i.e., image resolution in our perspective) and signal
bandwidth, we reconstruct scenes at different image resolutions. For the relationship between wsqp, and

. . 3 . ..
scale, we adopt three metrics: max -, min = and 3°,_, ==—. In Fig. 3(a), our definition of recovered
ok Ok k=1 30}

scene bandwidth, with wsgp; o Zzzl ﬁ shows a clear positive correlation with the sampling frequency,
whereas the remaining two lack such behavior. This arises as our focus is on the scene’s average band-
width, rather than isolated high or low frequencies. This strict positive correlation confirms our proposed
definition’s validity.

(2) We monitor the average scene bandwidth during training to validate the effectiveness of its definition.
As shown in Fig. 3(a), under our definition, scene bandwidth increases steadily with training iterations,
indicating a progressive recovery of higher-frequency signals.

3.3 COARSE-TO-FINE SIGNAL STRUCTURE RECOVERY

Based on the defined average sampling frequency and the effective scene bandwidth of the 3D Gaussian
representation, we introduce a novel scheduler (SIG) that Synchronizes Image supervision with Gaussian
frequencies to adaptively switch resolutions and regulate densification accordingly. SIG consists of two key
components: frequency-aligned resolution scheduler and densification scheduler.

Frequency-Aligned Resolution Scheduler. As shown in Eq. (1), computing the average sampling fre-
quency requires integrating over differential elements of each scene patch. While the Nyquist sampling
theorem 1is valid locally for each infinitesimal element, the global average value does not strictly satisfy
it. Hence, we assess convergence at a given resolution by examining whether the average scene bandwidth
stabilizes. Once convergence is achieved, we increase the resolution of training images for the next stage.
S})eciﬁcally, we compute the scene frequency w;s., at each iteration using Eq. (5), and obtain its gradient as
di;‘;r. The resolution is updated once the condition as Eq. (6) is satisfied, where k is universal across scenes,
NN (-) denotes nearest-neighbor search, which we use to normalize the scale, since the input point cloud
may not correspond to real-world units.

4f —; —w;_1, d= NN(pointcloud,,;), =L <Fk- mean(}). (6)

diter diter

This strategy enables frequency-consistent signal recovery. As shown in Fig. 3(a), the resolution is increased
as the scene approaches the maximum recoverable frequency.

Densification Scheduler. As noted earlier, increasing the sampling frequency requires more Gaussians to
fit higher-frequency signals. Therefore, after each resolution update, we perform m rounds of densification.
This strategy avoids unconstrained over-densification in the early stage and prevents inefficient training
caused by an excessive number of Gaussians.

3.4 STRUCTURE-AWARE OPTIMIZATION

Sphere-Constrained Gaussians. Due to sparse initialization, the Gaussian primitives exhibit an exces-
sively large optimization space. Spatial-agnostic optimization of Gaussian positions often results in floaters.
Scaffold-GS (Lu et al., 2024) employ neural anchors to decode Gaussians, which helps mitigate this issue.
However, it prevents block-wise independent training due to the shared Gaussian decoder. In contrast, we
constrain our explict Gaussians within a similar explicit structural framework. Specifically, during opti-
mization, we assign each Gaussian ellipsoid two attributes: anchor and maximum offset. These attributes
determine whether the current Gaussian deviates from the original geometric structure. Initially, all anchors
are set to the initial points obtained from COLMAP (Schonberger & Frahm, 2016), and the offset is com-
puted as Xcyrrent — Xanchor- 1The max_of fset is determined based on the initialization by searching for the
K nearest neighbors of each point and calculating their average distance, which serves as the maximum off-
set. In practice, considering potential inaccuracies in COLMAP results but overall structural reliability, we
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Figure 4: Qualitative Results. The top two rows show sparse observations, while the bottom two depict
regular regions. Our method recovers higher-frequency details while preserving geometric structures.

relax the pruning criteria by introducing a scale factor [ > 1 and setting K = 15. When the offset exceeds
I x max_offset, the Gaussian point exceeding this spherical constraint is pruned.

Anchor-based adaptive control. Due to the introduction of anchors, newly generated Gaussians during
densification are also assigned both anchor and max_of fset attributes. The assignment rules as follows:
(1) Replication. Replication signals under-reconstruction—i.e., the region exhibits low-frequency textures
and is initially under-populated with Gaussians. Therefore, to allow large-scale spatial displacement, the
newly created Gaussian does not inherit the original anchor. Instead, its current position is set as the new
anchor, while the max_of fset attribute is inherited from the original Gaussian.

(2) Splitting. Splitting targets higher-frequency details. In this case, the anchor is inherited from the orig-
inal Gaussian to preserve structural alignment. The max_offset is scaled down to 0.7x of the original,
encouraging more conservative updates and ensuring stability in high-frequency regions.

(3) Densification Regularization. Constraining Gaussians densification solely via 2D image supervision (i.e.,
reconstruction loss) is inherently limited. We introduce regularization mechanisms specifically tailored for
densification, based on reprojection-based photometric loss, which is commonly used in sparse-view recon-
struction. Given a rendered depth map, we can reproject the rendered image into nearby views and compute
a photometric loss, encouraging geometric consistency across multiple views without depth prior. We em-
ploy it exclusively as a regularization term during densification. Details can be referred to Appendix A.9.

4 EXPERIMENTS

4.1 EXPERIMENTS SET UP

Datasets and Metrics. Following large-scale reconstruction methods (Liu et al., 2024; Wu et al., 2025), we
evaluate our approach on three datasets: real-world Mill19 (Turki et al., 2022), UrbanScene3D (Lin et al.,
2022), and synthetic MatrixCity (Li et al., 2023). We report results using metrics: SSIM, PSNR, and LPIPS
(Zhang et al., 2018). A color correction is applied for metric computation, following (Lin et al., 2024).
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Implementation Details. All images are downsampled by a factor of n (from 5 to 1) to enable dynamic
resolution. All methods are trained and evaluated on NVIDIA RTX 4090 GPUs. The resolution scheduler
threshold for % issetto k - mean(%) with k = 5 x 1075, and % is evaluated every 100 iterations. For
Sphere-Constrained Gaussians, we adopt a scale factor of [ = 15. We use 30,000 training iterations for both

the coarse and fine stages. More details can be found in Appendix A.2.

4.2 COMPARISON WITH OTHER METHODS.

Baselines. Our method is benchmarked against both NeRF-based and GS-based approaches. The NeRF-
based baselines include Mega-NeRF (Turki et al., 2022) and SwitchNeRF (Zhenxing & Xu, 2022), whereas
the 3DGS-based methods comprise VastGS (Lin et al., 2024), CityGS (Liu et al., 2024), DOGS (Chen &
Lee, 2025), and BlockGS (Wu et al., 2025). Additionally, we compare our method with DashGS (Chen
et al., 2025)—a hard-coded scheduling strategy. More details can be found in Appendix A.3.

Reconstruction Quality. Our method implements structure-aware optimization, enabling the fitting of high-
frequency details with more Gaussian primitives while avoiding floaters. Consequently, we can control the
number of Gaussians by adjusting the gradient threshold during densification, leading to two model variants
with different Gaussian counts—where the model with more Gaussians (Ours-L) demonstrates the higher
performance ceiling of our algorithm. Besides, for BlockGS, We follow its official implementation and use
a batch size of 4 for better reconstruction quality (processing 4 images per iteration to enhance results, albeit
with proportional time overhead). Please refer to Appendix A.3 for details of BlockGS. As shown in Table 1
and Table 3, our method achieves comprehensive improvements over baseline approaches, such as a +0.9 dB
gain in PSNR for the scene 'rubble’. Fig. 4 illustrates that compared to baselines, our method captures finer
high-frequency details without producing floaters (NeRF-based results can be found in Fig. 6). Higher SSIM
and LPIPS scores further validate its superior visual quality. Furthermore, while DashGS yields modest
gains over baselines via its specialized training strategy, its ability to represent high-frequency information
in large-scale scenes remains limited, as its design prioritizes training efficiency.

Efficiency Analysis. Considering that different block partitioning strategies, as well as the size and number
of blocks, affect computational time, we select two baselines corresponding to two partitioning strategies
and report the average optimization time per block on scene ’'rubble’ in Table 3. Our method substantially
improves training efficiency, achieving 1.5x and 1.4 x speedups on BlockGS and CityGS, respectively.

4.3 ABLATION STUDY

As shown in Fig. 3, we have validated the effectiveness of our definitions for the average sampling frequency
and Gaussian representation frequency. In this section, we conduct ablation studies on the 'rubble’ to verify
the efficacy of each individual module, with results presented in Table 2.
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Table 1: Quantitative comparison of NVS results. The best, the second best, and the third best results are
highlighted in red , orange and yellow .

building rubble residence sci-art MatrixCity-Aerial
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
Mega-NeRF  20.92  0.547 0454 24.06 0.553 0.508 22.08 0.628 0401 = 25.60 0.770 0.312 - - -
Switch-NeRF  21.54 0579 0397 2431 0562 0478 2257 0.654 0352 2651 0.795 0271 - - -
DashGS 22.65 0.770 0.251 2637 0.802 0.237 2340 0.825 0.210 24.10 0.833 0.239 28.66 0.869 0.203

Scenes

VastGS 21.80 0.728 = 0.225 2520 0.742 0264 21.01 0.699 0261 2264 0.761 0.261 2833 0.835 0.220
CityGS 2270 0.774 0246 2645 0809 0232 2335 0.822 0211 2449 0.843 0232 28,61 0.868 0.205
DOGS 2273 0.759 0204 25778 0.765 0257 2194 0.74 0244 2442 0.804 0219 2858 0.847 0.219
BlockGS 21.11 0750 0.234 2552 0801 0233 2215 0810 0211 2418 0.831 0219 28.17 0.863  0.199

Ours-L 2286 0.778 0225 2735 0.843 0.189 2346 0.840 0.194 2594 0.890 0.170 29.04 0.888 0.184
Ours-S 2298 0780 0225 2721 0.830 0.208 2350 0.839 0.196 2512 0.863 0.200 29.01 0.879 0.181

Table 2: Ablation. Frequency-consistent training Table 3: Integration with other baselines. We
yields substantial performance gains. improve quality and efficiency by augmenting

Method PNSR SSIM LPIPS Points baselines with our method (*). Opt.time: min/block.
W/o-FARS 26.18 0.807 0.231 2.2M Method PNSR SSIM LPIPS Opt.time
w/o-DS 26.89 0.827 0.212 14M  BlockGS 25.52 0.801 0.233 201
w/o-SCG 27.05 0.818 0.210 1.8M  BlockGS+* 25.89 0.820 0.228 130
w/o-DR 27.01 0.820 0.209 1.9M  CityGS 26.45 0.809 0.232 98
w/ all(*) 27.35 0.843 0.189 15M  CityGS+* 27.35 0.843 0.189 71

Frequency-Aligned Resolution Scheduler (w/o FARS). We directly train on the highest-resolution images
and, following CityGS, perform densification every 200 iterations between 500 and 15,000 iterations. Re-
sults show that omitting FARS leads to a significant drop in reconstruction quality and increased training
time. Due to the lower splitting threshold, over-densification even yields results inferior to CityGS. Fur-
thermore, as illustrated in Fig. 5 and Table 2 (1.5M points vs. 2.2M points), without dynamic resolution
scheduling, redundant Gaussians and floaters tend to emerge in the early stages of optimization, particularly
when the gradient threshold for densification is set low.

Densification Scheduler (w/o DS). Building on the “w/o FARS” setup, we adopt dynamic resolution
scheduling while retaining the original splitting strategy. This leads to a potential issue: if the moment of
reaching the highest resolution lags behind the termination of densification, no further Gaussian densification
occurs afterward. Such a mismatch impairs the model’s capacity to represent high-frequency information.

Sphere-Constrained Gaussians (w/o SCG) and Densification Regularization (w/o DR). Sphere-
Constrained Gaussians (SCG) explicitly leverages the geometric structure of initialized sparse point clouds,
thereby reducing the probability of Gaussians being optimized into erroneous regions. As for the Densifi-
cation Regularization, in the absence of ground-truth depth, this method establishes geometric consistency
constraints across multiple frames. Once floaters emerge, they disrupt depth prediction and thereby induce
errors in adjacent views. As shown in Table 2, both methods effectively reduce the number of Gaussians that
suffer from redundancy or erroneous optimization (1.9M points vs. 1.5M points).

Integration with Other Baselines. Notably, our strategy is compatible with most baseline methods and
can be used as a plug-and-play component. As shown in Table 3, our approach significantly improves both
rendering quality and efficiency when applied to BlockGS and CityGS.

5 CONCLUSION

We attribute low-quality reconstruction under sparse point cloud initialization, floaters, and redundant Gaus-
sian primitives to frequency misalignment between supervision and target signal. Based on this, we derive
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the average scene and supervision frequencies and present a novel training framework. We introduce a
unified resolution—densification scheduling strategy driven by scene frequency convergence, and propose
Sphere-Constrained Gaussians to leverage initial geometry while regularizing densification. This enables
frequency-consistent and geometry-aware optimization.
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A APPENDIX

A.1 LIMITATION

In large-scale scenes, Level-of-Detail (LoD) rendering strategy is usually required. While our approach can
leverage existing LoD strategies such as those proposed in CityGS, our coarse-to-fine training naturally pro-
duces both coarse and fine Gaussians, providing a more intrinsic way of constructing hierarchical structures.
This also points to a promising direction for future optimization.

A.2 IMPLEMENTATION DETAILS.

Our method is implemented in PyTorch (Paszke et al., 2019) and optimized using the Adam (Adam et al.,
2014) optimizer. The training process can be parallelized across multiple GPUs or executed sequentially
in a block-by-block manner on a single GPU. Both coarse and fine training employ a densification gradient
threshold of 0.00015, with learning rates consistent with CityGS. For BlockGS, we note that the official
implementation evaluates quality using a batch size of 4 and efficiency using a batch size of 1. Since batch
size 1 yields suboptimal results, we adopt the official quality-setting batch size of 4 in our experiments and
report the corresponding optimization time to ensure a fair comparison.

A.3 BASELINES.

We compare our method with several 3DGS-based approaches, including VastGS (Lin et al., 2024), CityGS
(Liu et al., 2024), DOGS (Chen & Lee, 2025), BlockGS (Wu et al., 2025), and DashGS(Chen et al., 2025).

For DashGS, we leverage the pre-trained coarse results of CityGS for block partitioning and initialization,
and adopt DashGaussian’s strategy during the training of each individual block.

For BlockGS, we follow the official implementation and settings. However, the reproduced results differ
from those reported in the original paper. Since we need to integrate our method into BlockGS and compare
against its baseline (the results are in Table 3), we report our reproduced BlockGS results for fairness. To
further validate the advantage of our method, we also include the official BlockGS results for comparison,
the results are shown in Table 4, where our method still achieves the best performance.

Although our method can be integrated into other approaches, such as CityGS and BlockGS, we adopt
CityGS’s block partitioning strategy and pipeline due to its superior reconstruction quality and computational
efficiency. In the original BlockGS paper, the reported training time employed a batch size of 1, which
resulted in performance inferior to other baselines. For accuracy comparisons, BlockGS employed a batch
size of 4 with 60,000 iterations per block—equivalent to 240,000 iterations in total—representing eight times
the 30,000 iterations used by CityGS. As shown in Table 3, integrating our method with BlockGS improves
its performance; however, it still falls short of the results obtained using CityGS.

Table 4: Quantitative comparison with BlockGS (results in original paper). The best is highlighted in red .

building rubble residence sci-art
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
BlockGS-S  21.72 0.762 0.222 26.18 0816 0213 2263 0.821 0.196 2469 0.848 0.208
BlockGS-L 2205 0.775 0206 2633 0.824 0200 2325 0838 0.182 2591 0.881 0.171
Ours-S 2298 0.780 0.225 2721 0830 0208 = 2350 0.839 0.196 25.12 0.863  0.200
Ours-L 22.86 0.778 0.225 | 2735 0.843 0.189 2346 @ 0.840 0.194 2594 0.890 0.170

Scenes
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MegaNeRF SwitchNeRF Ours Ground Truth

Figure 7: Qualitative comparison with GS-based methods

A.4 MORE RESULTS IN LARGE-SCALE SCENE RECONSTRUCTION.

This section compares our method with both NeRF-based and GS-based approaches in Mill19 and Urban-
Scene3D, as shown in Figs. 6 and 7.
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Table 5: Results on the MatrixCity and Rubble.

Method MatrixCity Rubble

PSNR SSIM LPIPS | PSNR SSIM LPIPS
CityGSvl 28.61 0.868 0.205 | 2645 0.809 0.232
CityGSv2 2832 0.858 0.169 | 26.03 0.800 0.229
Ours 29.01 0.879 0.181 | 2735 0.843 0.189

Table 6: Results on the Tanks-and-Temples dataset.

Method Train Truck
eho¢ pSNR  SSIM  LPIPS | PSNR  SSIM  LPIPS
3DGS 21.09 0.80 022 | 2519 0.88 0.15
DashGS 22.01 0.80 022 | 2566 0.88 0.16
Ours 22.33  0.82 020 | 2590 0.88 0.15
Table 7: Results on the Mip-NeRF360 dataset.
Flowers Bicycle
Method PSNR SSIM LPIPS | PSNR SSIM LPIPS
3DGS 21.52  0.61 0.34 2525  0.77 0.21
DashGS 22.17 0.63 032 | 2570 0.78 0.20
Ours 2220 0.64 0.33 25.77  0.78 0.21

A.5 GENERALIZATION ON SMALL-SCALE SCENES

We also conducted experiments on the small-scale datasets Mip-NeRF360 (Barron et al., 2022) and Tanks-
and-Temples (Knapitsch et al., 2017). Although our method was initially designed for large-scale recon-
struction, it still significantly improves both the performance and efficiency of vanilla 3DGS on small-scale
datasets. Our approach achieves nearly a 2x training speedup and outperforms both DashGS and vanilla
3DGS. For the Tanks-and-Temples dataset, we evaluate on the Train and Truck scenes; for the Mip-NeRF360
dataset, we evaluate on the Flowers and Bicycle scenes. The results are as shown in Fig. 8,Fig. 9 (the first
column) and Table 6,Table 7. Although our method was originally motivated by the significant mismatch be-
tween the frequencies of the sparsely initialized Gaussians and the sampling frequency in large-scale scenes,
this phenomenon also persists in small-scale scenes. This occurs because, while the SFM-initialized point
cloud in small-scale scenes indeed exhibits higher initial frequencies, the substantially higher sampling den-
sity leads to a correspondingly larger sampling frequency. For example, in the truck scene from Tanks and
Temples, the average Gaussian frequency increases from 9.07 at initialization to 35.92 after convergence
(compared with 3.23 to 14.35 in the large-scale scene rubble). Therefore, the frequency-aligned strategy
remains effective even in small-scale scenarios.

A.6 COMPARISON WITH CITYGSV2.

Besides, we selected the Rubble from the Mill19 and the MatrixCity-Aerial for evaluation. Since CityGSv2
mainly focuses on surface reconstruction, its objectives are not fully aligned with those of 3DGS-based
methods, which emphasize image-level rendering quality. Consequently, CityGSv2 performs less favorably
on standard image reconstruction metrics such as PSNR, SSIM, and LPIPS, as shown in Fig. 9(the second
column) and Table 5.
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Figure 8: Qualitative comparison on Tanks and Temples.Tflg first row reports the results of vanilla 3DGS
combined with our method, while the second row corresponds to the results obtained using the original
vanilla 3DGS alone.

Figure 9: Qualitative comparison on Mip-NeRF360 and Rubble.The first column presents the compari-

son experiments conducted on the Mip-NeRF360 dataset, while the second column reports the comparison
with CityGSv2 on the Rubble scene.
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A.7 NYQUIST SAMPLING THEOREM

In the context of 3D Gaussian Splatting (3DGS), regions containing frequency components higher than the
specified bandwidth may give rise to spiky high-frequency artifacts as a result of aliasing. This phenomenon
can be analyzed in light of the Nyquist Sampling Theorem.

Nyquist Sampling Theorem. If a signal is sampled at frequency f, the recoverable frequency components
lie within the range [0, f/2], which is referred to as the signal bandwidth. The validity of the Nyquist
Sampling Theorem relies on the following key assumptions:

1. Finite bandwidth (Band-limited signal)
The signal must be strictly band-limited; that is, its spectrum vanishes beyond a finite maximum
frequency fi,ax. In other words, the signal contains no frequency components exceeding fiax-

2. Ideal sampling (Ideal uniform sampling)
Sampling must be strictly uniform along the time axis (i.e., equidistant sampling). Each sample rep-
resents the instantaneous value of the signal (ideal d-sampling), without any blurring or integration
effects.

As noted in Section 3.2, under certain assumptions, increasing the sampling frequency effectively enlarges
the recoverable bandwidth of the scene signal. The specific assumption is to consider a band-limited scene
with constrained spatial frequencies, which implies that infinite spatial resolution (i.e., unlimited zoom-in) is
unnecessary, and that image sampling is uniform. In this case, increasing the sampling frequency effec-
tively enlarges the recoverable bandwidth of the scene. This implies that a higher sampling frequency
allows for the reconstruction of a larger bandwidth and finer details.

Moreover, we derive the average sampling frequency of the scene from a differential perspective. Each
infinitesimal patch can be regarded as being sampled uniformly. However, the sampling across the entire
scene is inherently non-uniform. Therefore, the Nyquist Sampling Theorem cannot be directly applied. To
address this, we adopt a convergence-based approach using the average frequency to construct our scheduler.

A.8 DETAILED DERIVATION

In this section, we provide a detailed derivation of the Fourier transform of the Gaussian function and its 3
dB bandwidth. Assuming the Gaussian function is:

fO) =e " a>0, @)
Its Fourier transform is given by:
F(w) = /+OO et eIt 4 8
Further derivation is as follows: -
%S}) = /_;OQ e"”Z%(e_j“t) dt = —j /_;OO te—at’emIwt gt 9)
%:—%F(w) = j—i+;—aF(w):O:> F(w) =Cexp (—Zj) (10)

+o00 2
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F(O)—/_oO e dt—\/; = F(w)—\/;exp( 4a) (11)



Under review as a conference paper at ICLR 2026

The magnitude squared of the Fourier transform is:

2 2 2
|F(w)? = <\/Z e) =Z.ch (12)

The 3dB point is defined as the frequency wsqp at which the power drops to half its maximum:

|Pwsan)? = 5| FO) =

1 x
2a as

Solving for wsqp:

S

=  w3g = V2aln2

A.9 DENSIFICATION REGULARIZATION

During densification, floaters may appear due to the lack of explicit geometric constraints. The presence of
floaters can lead to inaccurate depth estimation. In the absence of ground-truth depth supervision, we can
leverage estimated depth across multiple views to provide constraints, thereby limiting the emergence of
floaters.

Specifically, we extract dense point clouds from rendered depth maps z and project them onto adjacent frame
images to compute photometric errors. It is effective for large textureless regions, enforcing geometric-color
consistency, and is calculated as Eq. (14):

Leons = ZHCz<P>) - Cj<~7'—j(TjTi_1]:71(Zap))>H%a (14)
(4,)
where T represents the camera pose. The C(-) denotes the color obtained by sampling from the image.

F(z) denotes the projection function that maps a 3D point z onto a 2D image. F!(z,p) denotes the
back-projection, mapping a pixel p to a 3D point using depth z.

We found that using it throughout the entire optimization does not improve accuracy. This indicates that
GS-based depth estimation is not perfectly precise, which makes the projections inexact. However, it can
still provide useful constraints during densification, serving as a densification regularization.

A.10 LARGE LANGUAGE MODELS USAGE STATEMENT
Large language models (LLMs) were employed to refine the manuscript, enhancing grammar, phrasing, and

clarity of the authors’ draft. All prompts and generation steps have been recorded. The methodology was
conceived by the authors, who also carefully reviewed and revised all LLM-generated content.
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