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Abstract

Humans can infer the affordance of objects by001
extracting related contextual preconditions for002
each scenario. For instance, when presented003
with an image of a shattered cup, we can deduce004
that this specific condition hinders its suitability005
for drinking purposes. The process of employ-006
ing commonsense preconditions for reasoning007
is extensively studied in NLP, where models008
explicitly acquire contextual preconditions in009
textual form. Nonetheless, it remains uncertain010
whether state-of-the-art visual language models011
(VLMs) can effectively extract such precondi-012
tions and employ them to infer object affor-013
dances. In this work, dubbed PRISM, we intro-014
duce two tasks: preconditioned visual language015
inference (PVLI) and rationalization (PVLR).016
To address these tasks, we propose three strate-017
gies for acquiring weak supervision signals and018
creating a human-validated evaluation resource019
through crowd-sourcing. Our findings expose020
the limitations of current state-of-the-art VLM021
models in these tasks, and we chart a roadmap022
for overcoming the challenges that lie ahead in023
their improvement.024

1 Introduction025

According to the Theory of Affordance (Gibson,026

2000; Chemero, 2003), understanding the precon-027

ditions in which an action or statement is possi-028

ble or impossible is a key aspect of human intel-029

ligence. For example, a glass may be used for030

drinking water, under an implicit assumption that031

the water is at normal temperature, but may not be032

if the glass is shattered. From the cognitive per-033

spective, understanding the affordance of objects,034

or simply preconditions of actions (Qasemi et al.,035

2022a), is part of the commonsense knowledge036

that constitutes what distinguishes humans from a037

machine to make inference (Lenat, 1998). From038

an applications perspective, it also has huge impli-039

cations such as robotics (Ahn et al., 2022), trans-040

portations (Prakken, 2017; Seff and Xiao, 2016;041

H: A glass is used 
for drinking water
L : Contradict 
R: The glass is shattered

H: A glass is used 
for drinking water
L : Contradict 

H: A glass is used for drinking water
P: The glass is shattered
L : Contradict

H: Cats are pets
L : Entailment
R: It has a collar

H: Cats are pets
L : Entailment 

H: Cats are pets
P: It has a collar
L : Entailment

PN
LI

PV
LI

PV
LR

PreventAllow

Figure 1: Preconditioned Visual Language Inference
(PVLI) and Reasoning (PVLR) tasks. The “H” and “P”
are the input hypothesis and premise. The outputs, label
(letter “L”) and rationale (letter “R”), are highlighted .

Kothawade et al., 2021), and general artificial intel- 042

ligence (Nguyen et al., 2021). 043

Reasoning with preconditions of commonsense 044

knowledge (i.e. preconditioned inference), is pro- 045

posed as a benchmarking task for evaluation of the 046

theory of affordance (Qasemi et al., 2022a). Mul- 047

tiple studies have formulated the preconditioned 048

natural language inference (PNLI) as variations of 049

the Natural Language Inference (NLI) (Williams 050

et al., 2018; Bowman et al., 2015a; Condoravdi 051

et al., 2003) task and contributed learning resources 052

that are gathered through crowdsouring (Rudinger 053

et al., 2020; Qasemi et al., 2022a; Hwang et al., 054

2020; Do and Pavlick, 2021; Jiang et al., 2021b) 055

or weak supervision data (Qasemi et al., 2022b). 056

In PNLI, the models rely on the contextual infor- 057

mation (i.e. textual preconditions as premise) as 058

input and have to decide whether the hypothesis 059

is allowed (entailment), prevented (contradiction), 060

or undetermined (neutral) given the premise (first 061

row in Fig. 1). However, humans reason about af- 062

fordance using information beyond text (Barsalou, 063

2010; Andrews et al., 2009) and extract the con- 064

textual meaning representations for cognitive tasks 065

(such as PNLI) from the pool of available infor- 066

mation in various modalities. For example, upon 067

getting the query “can this person run?” and see- 068

ing a picture of a person in a full leg cast, one can 069
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imply the contextual information from the image070

that “the person is injured and incapable of running”071

and use it to answer the query accordingly. Thus,072

a visual variation of the PNLI task is cognitively073

more realistic to benchmark artificial intelligence074

models.075

In this work, we propose PRISM, to expand076

the preconditioned inference and reasoning to the077

visual-language realm by considering the interac-078

tion between linguistic and visual information in079

common sense. This work presents three contri-080

butions. First, we introduce the Preconditioned081

Visual Language Inference (PVLI) and Rational-082

ization (PVLR) tasks (2nd and 3rd rows in Fig. 1),083

which evaluate the visual-language models’ (VLM)084

capabilities to reason with preconditions associ-085

ated with commonsense knowledge. In PVLI, the086

precondition is represented as an image that fur-087

ther constrains the context in which the model088

has to decide the “prevent” or “allow” labels. In089

PVLR, the model has to provide the rationale for090

the choice between the labels as well. For example,091

say the model is given a commonsense statement092

such as “a glass is used for drinking water” as the093

hypothesis and an image of a “broken glass” as the094

premise. Then, in PVLI, the model has to decide095

whether there is a prevented(contradiction) or al-096

lowed(entailment) relation between them, and in097

PVLR, it has to provide a rationale for its decision,098

such as the glass is broken. In addition, to foster099

further research, we created a human-verified evalu-100

ation dataset through crowd-sourcing to benchmark101

models.102

Second, we propose three strategies for retriev-103

ing a rich amount of cheap and allowably noisy104

supervision signals for inference and rationaliza-105

tion. Similar to Parcalabescu et al. (2021), PRISM’s106

three strategies rely on the available image cap-107

tioning datasets (e.g. Changpinyo et al. (2021);108

Sharma et al. (2018); Gurari et al. (2020a); Lin109

et al. (2014a)) that are readily available as a re-110

sult of years of research in the field and maturity of111

resources. In the first strategy, Extraction from Cap-112

tions, we utilize the PInKS (Qasemi et al., 2022b)113

method to extract PNLI instances from image cap-114

tions. PInKS uses a combination of linguistic pat-115

terns (e.g. “{action} unless {precondition}”) and116

generative augmentation to extract large quanti-117

ties of instances from raw text. In the second118

strategy, Caption Querying, we use the existing119

crowdsourced PNLI instances (e.g. Rudinger et al.120

(2020); Qasemi et al. (2022a); Hwang et al. (2020); 121

Do and Pavlick (2021); Jiang et al. (2021b)) and 122

find an image caption that is semantically identi- 123

cal to them. The third strategy, Image Querying, 124

focuses solely on the PNLI instances and devises 125

queries (such as “you are in a desert”) to search 126

directly for corresponding images on the web us- 127

ing image search engines (e.g. Google Images). 128

As post-processing for all three strategies, we use 129

ChatGPT (Brown et al., 2020) to fix the formatting 130

and grammatical issues. 131

Our third contribution is an extensive bench- 132

marking of VLMs based on PRISM. We benchmark 133

4 SOTA VLMs, FLAVA (Singh et al., 2022a), Vi- 134

sualBERT (Li et al., 2019), ViLBERT (Lu et al., 135

2019) and ViLT (Kim et al., 2021) in inference 136

(§4.1) and Ayyubi et al. (2020) in rationalization 137

(§4.5). Using PABI (He et al., 2021) metric, we 138

provide a theoretical measure of informativeness 139

of both visual and textual modalities to the overall 140

task (§4.3). In addition, we show how an effec- 141

tive rationalization will improve inference in the 142

VLM models (§4.5). We further investigate the 143

fine-tuning (learning) process of VLMs in the in- 144

ference task (§4.2) and study their exploitation of 145

the spurious correlation in our dataset (§4.4). 146

2 Construction of PRISM and Test Set 147

This section gives an overview of PRISM (sum- 148

marized in Fig. 2), describing our strategies for 149

obtaining the data, and quality control. For Brevity, 150

details of the human verification through crowd- 151

sourcing are moved to Appx. §B, and implemen- 152

tation details of each strategy are discussed in 153

Appx. §A.1. 154

Datasets: The construction of PRISM uses exist- 155

ing text-only PNLI and image-captioning datasets 156

as building blocks. For the text-only PNLI datasets, 157

we require that they contain a precondition (e.g. 158

premise, context), an action (e.g. hypothesis, ques- 159

tion), and a binary label indicating whether the 160

precondition allows or prevents the action. To limit 161

the leakage of unclean text from these resources, 162

we instruct ChatGPT (Brown et al., 2020) to fix 163

formatting and grammatical issues. For the image 164

captioning datasets, we simply require images (typ- 165

ically the URL) and their captions. Any datasets 166

that meet these requirements can be used for the 167

following steps. 168
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H: No one puts their child-
ren in a boat
R: The water is safer than
the land
L: Contradict

H: A dog takes the plunge 
into water
R: He can cool off
L: Entailment

Extraction from Captions

PInKS

<action> only if <precondition> LF

<action> unless <precondition> LF

Image Captions

1

H: The water came out of the 
showerhead in a square
R: the showerhead is round
L: Contradict

H: Buying house are typic-
ally used for sense of worth
R: Your mortgage is denied
L: Contradict

Caption Querying

Image Captions

2

Preconditions
Resources

PaCo, 𝛅-NLI, …

Approximate Nearest Neighbour

Text 
Encoder 1

Text 
Encoder N

H: a person typically desi-
res to be inoculated
R: a person is affected by 
corona
L: Entailment

H: purse are typically used 
for holding stuff
R: The purse is too small
L: Contradict

Image Querying

2

Preconditions
Resources

PaCo, 𝛅-NLI, …

Query Generation

Figure 2: Overview of weak supervision methods in constructing PRISM.

Preprocessing: The PNLI instances often use169

varying conventions for referring to people. We170

standardize them by replacing these identifiers with171

“the person”, “another person”, “a third person”,172

and so on. For example, the sentence “Alice helps173

Bob” would become “the person helps another174

person”. This ensures that the specific names or175

traditionally-associated genders are not mistaken176

as a focus of the statements. Of the image captions,177

some may consist of multiple sentences. In these178

cases, we split the captions into individual exam-179

ples, pairing each sentence with the original image.180

Using these preprocessed resources, we then obtain181

PRISM instances with three strategies: extraction182

from captions, caption querying, and image query-183

ing.184

Extraction from Captions (EC): Our first strat-185

egy focuses solely on the image captions, find-186

ing and extracting the few that contain precondi-187

tions and actions. By nature, the resulting pairs188

are already grounded in the images. We use189

the minimally-supervised approach described in190

PInKS (Qasemi et al., 2022b), where linguistic191

patterns are used to extract preconditions and ac-192

tions from raw corpora. This strategy constructs193

labeling functions (LF) based on common conjunc-194

tions such as “only if” and “unless”. For example,195

the sentence “Swimming pools have cold water in196

the winter unless they are heated” is matched by197

the pattern “{action} unless {precondition}”, and198

therefore we can infer that “they are heated” is a199

precondition that prevents the action “Swimming 200

pools have cold water in the winter”. Such labeling 201

functions can be refined and added to as desired. 202

In cases where the conjunction can be used in mul- 203

tiple senses, part-of-speech tagging is utilized to 204

filter out irrelevant senses. After applying the la- 205

beling functions to the image captions, we have 206

a dataset consisting of preconditions and actions, 207

where both are grounded in the associated images. 208

To control for quality, we annotate a sample of 209

matches from each labeling function (precision of 210

each LF) to record whether the relation between 211

precondition and action makes sense. Based on the 212

results, we choose a precision threshold and only 213

include labeling functions that meet this minimum. 214

Caption Querying (CQ): Our second strategy 215

bridges the PNLI premises (preconditions) and im- 216

age captions by grounding them in images that have 217

semantically similar captions. We begin by limiting 218

the premises and captions to those whose length is 219

within one standard deviation of the mean (rounded 220

to the nearest integer) in order to remove outliers. 221

We then encode the PNLI premises and image cap- 222

tions in high-dimensional vector embeddings using 223

multiple models. Next, using a PNLI’s premise as 224

a query, we find the most similar captions’ embed- 225

ding through approximate nearest neighbors. We 226

then aggregate the top-ranking captions for each 227

model and select the best caption. This strategy of 228

including multiple models in the decision-making 229

process helps make it more robust to model differ- 230
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ences and to the approximate nature of the nearest231

neighbors. The number of models incorporated and232

the number of top-ranking captions to choose from233

each depends on balancing the desired robustness234

and time or computational constraints.235

To control for quality, we additionally record236

two values: perplexity score from each model and237

model’s agreement. The perplexity is the distance238

(cosine, dot, etc.) between the query and caption,239

averaged over the models. In the case when one240

of the models did not include the chosen caption241

in its ranking, the distance of the last caption is242

used for the average. By nature, the perplexity243

measures how good the models believe the match244

to be. In contrast, the model agreement is not spe-245

cific to the chosen caption but instead measures246

how well-aligned the models’ rankings are. Us-247

ing a ranking similarity metric, we compute the248

similarity between pairs of rankings and then av-249

erage the scores for the model agreement. Since250

a high model agreement indicates that the models251

agree on which are the closest captions, but does252

not speak to the actual proximity of the match, it253

can be thought of as a measure of confidence.254

Image Querying (IQ): Our third strategy utilizes255

image search engines as a source for grounding the256

PNLI premises into an image. Here we form a257

search query from the PNLI premise and feed it258

to a search engine to directly find the relevant im-259

ages describing the premise from the web. Like the260

CQ strategy, we limit the premises to those whose261

length is within one standard deviation of the mean262

and remove all punctuations from the search query.263

In order to ensure effective results, we have ex-264

cluded premises related to abstract concepts, such265

as the notion of responsibility (the person is re-266

sponsible) or gratitude (the person will be grate-267

ful), as searching for images directly in relation to268

these concepts is unlikely to yield favorable out-269

comes. It is important to note that each of the top270

image results can become an individual example,271

enabling this strategy to rapidly generate a substan-272

tial amount of training data. However, it should273

be acknowledged that this abundance of data may274

introduce a certain level of noise and bias.275

3 Data Analysis276

In this section, we investigate different aspects of277

the weak supervision data and evaluate the qual-278

ity of the generated resource. For brevity, ad-279

ditional implementation and experimental details280

are moved to Appx. §A.1 (for data acquisition re- 281

sults), Appx. §B (for crowd-sourcing results), and 282

Appx. §A.2 (for Image Querying results) to con- 283

serve space. 284
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Extraction from Captions Results: After pre- 285

processing the image-captioning resources we end 286

up with 17 million captions. From this, we utilize 287

the Extraction from Captions method that results 288

in 34K extracted PRISM instances. Fig. 3 illus- 289

trates the percentage of matches that come from 290

each LF, separated by PNLI resouced. General 291

statements such as “if” unsurprisingly make up a 292

large percentage of the data, but interestingly, the 293

PNLI resourced have very different distributions. 294

Among the sources of captions, VizWiz has dis- 295

proportionately high counts of “but” and “so that”, 296

while MS-COCO is high in “in order to” and “as if”. 297

Fig. 4 shows the percent of the data and the percent 298

of “allow” examples for varying precision thresh- 299

olds. For the results in §4, we use the threshold of 300

0.6 to have a good balance between the quality and 301

quantity of the final resource. 302

Caption Querying Results: Figure 8 (moved to 303

Appx. §A.1 to preserve space) summarizes the ob- 304

served distribution of matches obtain through pre- 305
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condition and image sources in the Caption Query-306

ing method. For example, we see that the majority307

of our precondition matches come from ANION308

(59.1%) and the majority of captions come from309

CC12M (79.47%), which is unsurprising given310

their size. To mitigate the effect of size of orig-311

inal source of data, in Fig. 8c and Fig. 8d we take312

the ratio of the observed percentages to the percent-313

ages we would expect based purely on the sizes314

of the datasets. For example, we observe that MS315

COCO captions are not good matches for PaCo316

actions.317

4 Evaluation and Discussion318

In this section, we focus on the PRISM tasks. We319

first benchmark state-of-the-art VLMs on the infer-320

ence (§4.1) and reasoning tasks (§4.5). Then, we321

focus on evaluating the faithfulness of the VLMs to322

both modalities of the data through counterfactual323

analysis in the inference task (§4.4).324

4.1 Inference Benchmarking Results325

Here, as the main results, we benchmark the SoTA326

VLM models in the PVLI task.327

Experimental Setup: We used 4 SOTA vision-328

language models: ViLBERT (Lu et al., 2019),329

ViLT (Kim et al., 2021), FLAVA (Singh et al.,330

2022a), and CLIP (Radford et al., 2021). For all331

four models, we start from available pre-trained332

models and evaluate their performance on the test333

set in zero-shot and fine-tuned setups. To make334

sure the models, especially in zero-shot setup, are335

familiar with the hypothesis-image-label format of336

the task, we first fine-tune them on Visual Natu-337

ral Language Inference (VSNLI) task (Vu et al.,338

2018). VSNLI is a general visual language in-339

ference task that has the same format as PRISM,340

however, it does not have any explicit focus on341

preconditioned inference. So by fine-tuning the342

models on VSNLI, we make sure we directly eval-343

uate their understanding of preconditions and not344

their familiarity with the format. We then report the345

accuracy of the resulting models on the PVLI tasks346

in zero-shot and fine-tuned, w.r.t. PVLI, setups.347

For the ViLBERT (Lu et al., 2019) model, we used348

the pre-trained model provided by the authors1 that349

is fine-tuned VSNLI. For the rest of the models,350

we use the pre-trained weights from the Hugging351

Face library (Wolf et al., 2020) and fine-tuned them352

ourselves.353
1https://github.com/facebookresearch/vilbert-multi-task

The ViLBERT model, provided by the authors, 354

is originally fine-tuned on the Visual Natural Lan- 355

guage Inference (VSNLI) task (Vu et al., 2018). 356

We fine-tune ViLBERT on the PVLI training set 357

with a batch size of 32 for 5 epochs, with the Adam 358

Optimiser to optimize the cross entropy loss be- 359

tween the actual and the predicted labels. For all 360

other hyperparameters, we used the default values 361

by authors. 362

The Hugging Face library contains the 363

ViLT (Kim et al., 2021) pre-trained on the Visual 364

Question-Answering task, in which the model 365

has to find an answer from a predefined set of 366

tokens including yes and no. So for zero-shot and 367

fine-tuned results, we format the PVLI dataset 368

into a question-answering format with binary 369

yes/no answers. The statement is converted into a 370

question format by appending the phrase “Is this 371

possible?” to the statement. This question is then 372

fed into the model along with the associated image, 373

which acts as the premise. The model then outputs 374

one of the 2 labels - yes or no, which we use to 375

compute its accuracy on the task. 376

FLAVA (Singh et al., 2022a) and CLIP (Rad- 377

ford et al., 2021) are multi-modal vision and lan- 378

guage models that can be used for tasks such as 379

image-text similarity or zero-shot image classifi- 380

cation. Similar to ViLT, the hugging face library 381

does not provide CLIP and FLAVA models that are 382

pre-trained on binary or multi-label classification 383

tasks. For the fine-tuned results of FLAVA model, 384

we extract the multi-modal embeddings it generates 385

and feed them to a classification head. This clas- 386

sification head is fine-tuned on the VSNLI before 387

using in our experiments. For the CLIP model, we 388

utilize the similarity scores between the visual and 389

the textual features. Similarly, we feed the features 390

through a classification head to output the label 391

which indicates whether the precondition “allows” 392

or “prevents” the common sense statement. 393

From the weak supervision data, we randomly 394

sample 16K for tuning and 6K as noisy test set. For 395

the clean test set we used the 261 human-verified 396

samples obtained through crowd-sourcing on AMT 397

(Discussed in §2 and detailed in Appx. §B). The 398

experiments are conducted on a commodity work- 399

station with an Intel Xeon Gold 5217 CPU and an 400

NVIDIA RTX 8000 GPU. 401

Discussion Tab. 1 summarizes the results of 402

SoTA VLMs on the PVLI task. In the zero-shot 403

setup, all the models perform below the random 404
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0-shot Finetuned
Model Noisy Test Clean Test Noisy Test Clean Test

ViLBERT 52.02 48.48 78.75 55.68
ViLT 50.88 45.83 77.92 55.68
CLIP 30.15 42.80 73.13 56.82
FLAVA 47.38 53.78 80.43 59.47
Random 63.47 56.08

Table 1: Results of SoTA Visual Language Models on
the PVLI task.

Figure 5: Accuracy difference from the peak value of
fine-tuning FLAVA (lower is better) with increasing
amounts of tuning data from PVLI. The batch size is 64.

baseline, showing the difficulty and novelty of the405

task for the models. After fine-tuning, the models’406

performance improves above the random guess,407

where the FLAVA’s (Singh et al., 2022a) perfor-408

mance elevates by 33.05 points of accuracy to409

80.43% on the noisy-test. However, it still is not410

mastering the task. Overall, this shows that SOTA411

methods generally fall behind human-level perfor-412

mance, therefore indicating the need for further413

research in order to improve the comprehension of414

preconditions by commonsense visual reasoners.415

4.2 Analysis with Fine-tuning416

All 4 models get higher scores on PVLI after a full417

fine-tuning process, as observed in Tab. 1. Here, we418

dissect the fine-tuning process to find at what point419

the model understands the task’s requirements.420

Experimental Setup Here we focus on421

FLAVA (Singh et al., 2022a) as the top-performing422

model in PVLI. We carry the setup from §4.1423

and evaluate FLAVA on the noisy test set in424

fine-grained intervals during fine-tuning.425

Discussion Fig. 5 illustrates the progression of426

the FLAVA model toward its peak accuracy perfor-427

mance (marked as a red box with the label “satu-428

ration point”). As illustrated, the model’s perfor-429

mance saturates after 600 iterations of fine-tuning430

or observing 38K instances. The slow saturation of431

the accuracy score here suggests that the instances432

in PVLI are not trivial for the model and it has to 433

see a substantial number of instances to be able 434

to perform the task. Considering that the FLAVA 435

has been pre-trained on a vast corpus, our result 436

shows the novelty and uniqueness of the PVLI task. 437

This result is consistent with the similar analysis in 438

Qasemi et al. (2022a), for comparing MNLI task 439

with PNLI (text-only). 440

4.3 Overall Informativeness of Modalities 441

To show the necessity of both modalities in PRISM, 442

we conducted additional experiments based on the 443

PABI informativeness score (He et al., 2021). Simi- 444

lar to Qasemi et al. (2022b) we use PABI to provide 445

a theoretical justification on the effect of weak su- 446

pervision data on the target task. In essence, the 447

PABI score quantifies the informativeness of an 448

incidental signal (represented by weak supervision 449

data) in relation to a target task (represented by test 450

data). 451

Experimental Setup We leverage the PABI 452

score to assess the effectiveness of three variants of 453

the PRISM dataset on the test set: utilizing only the 454

text, utilizing only the image, and utilizing the com- 455

plete dataset encompassing both image and text. In 456

line with the methodology employed in PInKS, we 457

also establish a baseline using the zero-rate classi- 458

fier (which consistently predicts the majority class) 459

as a point of reference with no task-related infor- 460

mation. 461

Incidental data PABI on clean test set (100X)

Text+Image 63.23
Text-only 61.95
Image-only 58.12
zero-rate 26.83

Table 2: PABI informativeness scores of three variants
of the PRISM dataset on the clean test set

Discussion Table 2 summarizes the PABI infor- 462

mativeness scores of three variants of the PRISM 463

dataset on the clean test set. The results clearly 464

indicate that the image modality’s informativeness 465

on the PRISM test set is comparable to that of the 466

text and both are significantly higher than the zero- 467

rate case. This underscores the significance of both 468

the image modality and text modality in addressing 469

the task at hand. 470
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4.4 Faithfulness Evaluation471

Large LMs (and by extension VLMs) tend to learn472

to solve the dataset rather than the task (Bras et al.,473

2020), by overfitting spurious correlations in the474

data (Xu et al., 2022). To quantify and elimi-475

nate such negative effects, recent studies conduct476

counterfactual inference used in text classification477

Qian et al. (2021a) and information extraction tasks478

(Wang et al., 2022c, 2023). Internally, debiasing479

through counterfactuals works on the model trained480

or fine-tuned on the biased classification data. Dur-481

ing inference, this technique creates counterfactu-482

als where parts or all of the input are obfuscated483

to observe what the model would give by seeing484

only the biasing factors. In this way, bias terms can485

be distilled from the model, which can be further486

deducted from the original prediction for debiasing.487

Specifically, Qian et al. (2021a) design two types488

of counterfactual variations of the input to produce489

two counterfactual output distributions that model490

label bias and keyword bias in the model.491

Experimental Setup Since our data contain both492

images and text, we modified the counterfactuals493

in Qian et al. (2021a) to fit the task. We create four494

counterfactual variants of the inputs to consider,495

visual-token bias, textual-token bias, image bias,496

and text bias. In the visual-token bias and textual-497

token bias, we partially mask the input image (50%498

as in Qian et al. (2021a)) and text (67% as in Qian499

et al. (2021b)) respectively with no change to the500

other modality of input. In the image bias and501

text bias we blind the model in one modality by502

fully masking their respective modalities. Here, we503

focus on the FLAVA (Singh et al., 2022a) model504

and carry over the setup from §4.1 on the noisy test505

set.506

Discussion Our results show that the visually507

blind FLAVA (Singh et al., 2022a) model is per-508

forming on par with the original model (79.88 ac-509

curacy on noisy test). This shows that the model510

may overly rely on the text modality as a shortcut511

in most of the instances rather than utilizing both512

image and text. This result further motivates the513

need for further research in multi-modal faithful-514

ness techniques for models.515

4.5 Utilizing Rationale for Inference Task516

Here, we try to answer the question “How can the517

rationales contribute to the inference task?”. In518

other words, we show how the generated rationales519

can become a piece of useful evidence for infer- 520

ence. 521

As discussed in §5 (under “Free-Text Rationale 522

Generation”), even though there exists a rich body 523

of literature on the free-text rationale generation 524

models in the text-only tasks, there are limited pub- 525

licly available models for the visual language tasks. 526

We implement the architecture proposed in Ayyubi 527

et al. (2020) for visually-guided rationale genera- 528

tion2. The architecture feeds the visual embeddings 529

from a VLM to the decoder of a LM and jointly 530

trains both in an end-to-end fashion. 531

Experimental Setup We do an experiment simi- 532

lar to §4.1, except that the VLM model is trained 533

with both the textual hypothesis and rationale 534

plus the visual premise as input. To contain the 535

length of this experiment we only focus on the 536

FLAVA (Singh et al., 2022a) VLM, and evaluate 537

its performance on the noisy test set in a fully fine- 538

tuned setup. We separately experiment with two 539

types of rationales as input: the FLAVA-rationale- 540

gen gets the generated rationale, and the FLAVA- 541

rationale-gold gets the ground-truth rationale from 542

PRISM . 543

For our implementation of Ayyubi et al. (2020) 544

to generate the rationale, we use a separate 545

FLAVA (Singh et al., 2022a) as the VLM to em- 546

bed the multi-modal input and use GPT-2 (Radford 547

et al., 2019) as a decoder-only LM to generated the 548

rationale from the multi-modal embeddings. We 549

initialize both models, from pre-trained weights 550

on Hugging Face (Wolf et al., 2020) library and 551

fine-tune them on PRISM data for the rationale 552

generation task given the input (text and image). 553

Discussion The inference accuracy of the FLAVA- 554

rationale-gold and FLAVA-rationale-gen is 94.2 555

and 80.56 respectively. First, the significant jump 556

in the performance of FLAVA-rationale-gold (from 557

the base of 80.43 in Tab. 1) shows that in the pres- 558

ence of a competent rationalization model, the gen- 559

erated rationales can significantly contribute to the 560

inference task. Second, we observe that a rationale 561

model as simple as FLAVA-rationale-gen, can also 562

contribute to the performance (although slightly) 563

of the inference task. This further motivates the 564

need for research in multi-modal rationalization 565

models. 566

2At the time of this writing, the code for Ayyubi et al.
(2020) is not public
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5 Related Works567

Preconditions of Commonsense Knowledge568

reasoning with preconditions of common sense has569

been studied in the context of affordance in differ-570

ent fields from cognitive sciences (Garbarini and571

Adenzato, 2004) to robotics (Ahn et al., 2022) but572

was recently brought up in natural language un-573

derstanding. In NLP, the focus has been mainly574

on proposing human-verified learning resources575

(Qasemi et al., 2022a; Rudinger et al., 2020; Hwang576

et al., 2020; Sap et al., 2019; Heindorf et al., 2020;577

Do and Pavlick, 2021; Jiang et al., 2021a). Among578

them, Qasemi et al. (2022a) and Rudinger et al.579

(2020) propose variations of the canonical NLI580

task for preconditioned inference in common sense.581

Qasemi et al. (2022b) propose a combination of582

weak-supervision strategy and biased masking to583

improve LMs’ performance in the task.584

Visual Language Inference With the advent of585

visual language models (VLMs; Li et al. 2022b;586

Liu et al. 2021; Li et al. 2019; Cho et al. 2021;587

Huang et al. 2022) that can simultaneously process588

visual and linguistic information, there is growing589

attention to enrich text-only tasks with visual con-590

text (Parcalabescu et al., 2021; Xie et al., 2018; Vu591

et al., 2018). Vu et al. (2018) propose a visually-592

grounded version of the textual entailment task,593

supported by the cognitive science view of enrich-594

ing meaning representations with multiple modal-595

ities. According to how Visual Language Infer-596

ence (VLI; Xie et al. 2018; Vu et al. 2018) is de-597

fined, the task is regarded as a visual extension of598

the NLI task. In VLI, the premise is substituted599

with an image with visual context instead of the600

text in NLI (Xie et al., 2018). Instead of relying on601

crowdsourcing, both works augment the Stanford602

NLI (SNLI) dataset (Bowman et al., 2015b). Since603

the textual premises of SNLI are extracted from im-604

age captions on Flickr, each premise can be easily605

replaced with its respective image. Our proposed606

PVLI task is a variation of the VLI that focuses on607

the preconditions (affordance) of tasks/objects.608

Weak Supervision Instead of using direct super-609

vision from annotated data, weak supervision in610

NLP tasks typically use linguistic patterns to infer611

large-scale “noisy” or “imperfect” labels on un-612

labelled corpora (Rekatsinas et al., 2017; Zhang613

et al., 2017; Dehghani et al., 2017; Singh et al.,614

2022b), e.g. using heuristic rules. Models fine-615

tuned on weak supervision data have shown con-616

siderable improvements across NLU tasks lacking 617

direct supervision, including temporal common- 618

sense reasoning (Zhou et al., 2020), rationale gen- 619

eration (Brahman et al., 2020), document ranking 620

(Dehghani et al., 2017), ultra-fine entity typing (Dai 621

et al., 2021; Choi et al., 2018), and preconditioned 622

inference (Qasemi et al., 2022b). 623

Free-Text Rationale Generation There is a 624

large body of research on free-text rationale gener- 625

ation toward faithful and explainable NLP. Work 626

like this typically fine-tunes a single LM to gener- 627

ate the task output and rationale (Narang et al., 628

2020; Marasović et al., 2021; Zelikman et al., 629

2022), or uses a separate LM to generate the ra- 630

tionale that another LM uses to generate the out- 631

put (Wang et al., 2022a; Wei et al., 2022; Kumar 632

and Talukdar, 2020; Rajani et al., 2019). In the 633

visual-language realm, free-text rationale genera- 634

tion is limited, where based on our observation it 635

can be due to the lack of large-scale learning re- 636

sources. Dua et al. (2021) and Ayyubi et al. (2020) 637

repurpose the VCR (Zellers et al., 2019) data and 638

propose VL models to generate free-text rationale 639

(instead of picking one as is in the VCR) for it. 640

Other works, e.g. Su et al. (2022); Li et al. (2022a), 641

use visual inputs for text generation, but they are 642

not focused on the rationale generation. 643

6 Conclusion and Future Work 644

We present the Preconditioned Visual Language In- 645

ference (PVLI) and Rationalization (PVLR) tasks 646

as novel approach for assessing the capabilities 647

of Visual Language Models (VLMs) in extracting 648

preconditions and deducing object affordance. To 649

establish a reliable benchmark, we introduce the 650

PVLIR dataset, which has been meticulously eval- 651

uated by human experts through crowd sourcing. 652

Our findings reveal a substantial performance gap 653

between SoTA VLMs and human performance in 654

the proposed tasks. Moreover, we demonstrate 655

the beneficial impact of incorporating precondi- 656

tioned rationalization into the inference process. 657

To enhance the performance of VLMs in the in- 658

ference task, we propose three effective strategies 659

for acquiring and retrieving a substantial volume 660

of cost-effective and tolerably noisy supervision 661

signals. By conducting counterfactual analysis, we 662

quantitatively assess the influence of spurious cor- 663

relation on VLMs’ performance and outline a road 664

map for addressing the inherent challenges in their 665

improvement. 666
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Limitations667

The quality of data produced from our weak-668

supervision strategies is dependent on the range669

of concepts covered by the image caption datasets,670

hence it benefits from a very large corpus of cap-671

tions. Image captioning datasets we used are lim-672

ited both in breadth and depth. We have not inves-673

tigated the use of automatically generated captions,674

e.g. Wang et al. (2022b), in our weak-supervised675

pipeline, but it is a viable path for future extensions676

of this work. Alternatively, automatic text-to-image677

generation techniques, e.g. stable diffusion (Rom-678

bach et al., 2022) or Dall-E (Ramesh et al., 2022),679

are gaining a lot of attention and are promising but680

require a lot of prompt engineering that is chal-681

lenging on a large scale. In addition, the lack of682

access to a large number of free-text rationale gen-683

eration models (through libraries such as Hugging-684

face (Wolf et al., 2020)) limited the evaluation of685

our PVLR tasks. We hope the availability of re-686

sources, such as ours, elicits more research effort687

in the field.688

Ethical Concerns689

We started from publicly available data that is both690

crowd-verified and neutralized, however, multiple691

studies have shown the existence of bias and ethical692

issues in such resources, e.g. Mehrabi et al. (2021).693

Since our work is based on weak supervision, we694

have no additional filter on the acquired instances,695

hence our resource exacerbates the bias in models696

by reinforcing it with biased evidence, e.g. results697

from the query “fat person” will only return images698

of obese white males. In addition, there is a com-699

bination of well-studied biases in the large models700

trained on raw text, e.g. Bender et al. (2021).701

Finally, in this work, we have only relied on702

English resources. In addition, we have only used703

English-speaking annotators. Hence the judgments704

and design decisions are heavily skewed culturally705

which will aggravate the bias issues of our work.706
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Appendices1109

A Weak Supervision Methods1110

A.1 Implementation Details and1111

Experimental Setup1112

This section discusses the experimental setup and1113

implementation details for the results in §3.1114

Precondition Resources: For our P-NLI1115

datasets, we pull from ANION (Jiang et al.,1116

2021b), ATOMIC (Sap et al., 2018), PaCo (Qasemi1117

et al., 2022a), δ-NLI (Rudinger et al., 2020)1118

and WINOVENTI (Do and Pavlick, 2021). For1119

the image caption datasets, we use CC12M1120

(Changpinyo et al., 2021), CC3M (Sharma et al.,1121

2018), MS COCO (Lin et al., 2014b), and VizWiz1122

(Gurari et al., 2020b).1123

Preprocessing Setup: Since ANION and1124

ATOMIC use fixed identifiers (Alice/Bob, Per-1125

sonX/PersonY), we rely on regex rules to replace1126

them with “the person” and “another person”.1127

WINOVENTI uses random first names, and so1128

we utilize Flair’s ner-english-fast model (Akbik1129

et al., 2018) to identify and replace the spans1130

that are identified as people with greater than1131

90% confidence. PaCo does not have any such1132

identifiers to replace.1133

For the image caption data, we break the cap-1134

tions into multiple lines using Natural Language1135

Toolkit’s sentence tokenizer (Bird et al., 2009) in1136

combination with splitting on newline characters.1137

We also notice that some contained “<PERSON>”1138

tags and use regex to replace them.1139

As the last step, we leverage regex to fix whites-1140

pace issues and replace “the person’s” with “their”1141

to increase fluidity. We also found that datasets1142

were easier to clean after lowercasing, particularly1143

as some contained inconsistent capitalization.1144

Extraction from Captions Setup: We mod-1145

ify some of the original labeling functions from1146

PInKS (Qasemi et al., 2022b) and add eight new1147

ones after inspecting our caption corpus. In PInKS,1148

the authors also calculate precision values for each1149

of their labeling functions by sampling 20 examples1150

from each function. The samples are then marked1151

as relevant (score of 1) or irrelevant (score of 0)1152

to the task by two human annotators. The average1153

score of each labeling function provides an estimate1154

of the quality that each labeling function returns1155

and is used for tie-breaking matches or filtering out1156

low-quality functions. We follow their lead and do 1157

the same, computing these precision values specif- 1158

ically on our caption corpus. Tab. 3 summarizes 1159

all the labeling functions, patterns, their precision, 1160

and other details associated with them. Balancing 1161

quality and quantity in our data, we select a thresh- 1162

old of 0.60 and only use the labeling functions that 1163

meet this minimum. The labeling functions are ap- 1164

plied using Snorkel (Ratner et al., 2017), a SOTA 1165

framework for algorithmically labeling data—see 1166

the original PInKS paper for more detail on the 1167

setup for Snorkel. Finally, We noticed that not all 1168

of our patterns were being used in the sentence as 1169

conjunctions, and utilized Flair’s pos-english-fast 1170

model to remove some examples for select patterns. 1171

Caption Querying Setup: For our models, 1172

we use the sentence transformers (Reimers and 1173

Gurevych, 2019) all-distilroberta-v1, all-MiniLM- 1174

L12-v2, and all-mpnet-base-v2 from Hugging- 1175

Face (Wolf et al., 2020). When forming the rank- 1176

ings, we retrieve the 50 closest captions, as that 1177

provides a decent overlap and completes within a 1178

reasonable amount of time. To aggregate our rank- 1179

ings and select the best caption, we use Copeland’s 1180

method (Copeland, 1951). To compare our rank- 1181

ings for model agreement, we utilize the extrapo- 1182

lated form of rank-biased overlap (Webber et al., 1183

2010). 1184

Furthermore, we annotate a subset of our data 1185

to assess the ability of perplexity and model agree- 1186

ment to separate good training examples from poor 1187

ones. When we rate examples for quality of match 1188

between the statement (precondition/action) and 1189

the fetched image caption, on a scale from 1 (worst) 1190

to 4 (best), we find that our measures are reason- 1191

ably successful (See Fig. 6). However, when we 1192

ask Amazon Mechanical Turk workers to vote on 1193

examples for overall quality, requiring that both 1194

statements and images be cohesive, the measures 1195

are unable to isolate better examples (See Fig. 7). 1196

Given that the measures are based purely on the 1197

textual match, it makes sense that it would perform 1198

better without the incorporation of the image. Un- 1199

fortunately, matching with a caption is not always 1200

sufficient for matching with the associated image. 1201

Further work is needed to develop useful heuristics 1202

for the overall quality of a training example. 1203

1



Label Conjunction Precision Regex Pattern
enables so that 0.689 {P} so that {A}

in order to 0.650 {P} in order to {A}
because 0.625 {A} because (?!of\b){P}
due to 0.550 {A} due to {P}
in case 0.475 {A} in case (?!of\b){P}
as if 0.400 {A} as if {P}
as long as 0.375 {A} as long as {P}
if 0.150 {A}(?<!\bas) if (?!not\b){P}
in the event 0.100 {A} in the event {P}
on condition 0.045 {A} on condition (?!of anonymity\b){P}
supposing 0.000∗ {A} supposing {P}
on the assumption 0.000∗ {A} on the assumption {P}
in the case that 0.000∗ {A} in the case that {P}
contingent upon 0.000∗ {A} contingent upon {P}
with the proviso — {A} with the proviso {P}
to understand event — to understand the event "{E}", it is important to know that {P}\.
statement is true — the statement "{E}" is true because {P}\.
only if — {A} only if {P}
on these terms — {A} on these terms {P}
makes possible — {P} makes {A} possible\.

disables unless 0.750 {A} unless {P}
even though 0.550 {A} even though {P}
despite 0.475 {A} despite {P}
if not 0.300 {A}(?<!\bas) if not (?!(more|most|many|all)\b){P}
without 0.257 {A} without {P}
but 0.175 {A} but {NP}
except 0.075 {A} except {P}
lest 0.045∗ {A} lest {P}
excepting that — {A} excepting that {P}
except for — {A} except for {P}

Table 3: Regex patterns for the labeling functions. A=action, E=event, P=precondition, NP=negative precondition.
Patterns with fewer than 20 examples in the corpora are marked with asterisks, and those with no examples are
left empty. Bolded conjunctions were followed with part-of-speech tagging to confirm that they were used as
conjunctions.

Image Querying Setup: To find the top images1204

on the internet, we use Google Images Download 31205

to retrieve the URLs of images. We obtain the top1206

10 images for each query as it is large enough to1207

generate lots of data while keeping them relevant1208

to the query.1209

Caption Querying Results1210

A.2 Image Search Results1211

While less information is available for the Image1212

Querying data, we can look at the websites most1213

frequently drawn from for the matches. Tab. 4 and1214

Tab. 5 display the top 10 websites for each NLI1215

dataset for preconditions and actions, respectively.1216

If desired, it is possible to remove images from1217

unwanted websites.1218

3https://github.com/Joeclinton1/
google-images-download

A.3 Model Sizes and Run-times 1219

For results in Tab. 1, the runtimes are FLAVA=4hr, 1220

VilBERT=4hr, Clip=5hr, ViLT=4hr; the model 1221

sizes for VLMs and LMs are identical to their 1222

respective implementations from the source (e.g. 1223

gpt2 has 1.5B parameters on Wolf et al. (2020)). 1224

The classification head added to VLMs (e.g. 1225

FLAVA) has 1.4k parameters. 1226

B Data Annotation Details 1227

We used Amazon Mechanical Turk (AMT) (Crow- 1228

ston, 2012) to evaluate the quality of extracted 1229

PVLIR instances through our proposed weak super- 1230

vision methods. This enabled us to coordinate the 1231

study and access a large pool of English-speaking 1232

participants as our study population. The AMT is 1233

especially suitable for this study as it can facili- 1234

tate accessing a diverse population of participants 1235

which is necessary for any notion of common sense. 1236

Our study on AMT consists of two parts: a tuto- 1237

rial, which also serves as a qualification test, and 1238

2
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WINOVENTI PaCo ANION

m.media-amazon.com (89) quotefancy.com (102) quotefancy.com (4721)
i.ytimg.com (85) i.ytimg.com (80) thumbs.dreamstime.com (2668)
cdn.shopify.com (67) thumbs.dreamstime.com (73) i0.wp.com (2074)
upload.wikimedia.org (64) i0.wp.com (72) i.pinimg.com (1662)
media.istockphoto.com (52) media.istockphoto.com (46) www.wikihow.com (1597)
thumbs.dreamstime.com (50) m.media-amazon.com (46) www.verywellmind.com (1546)
i0.wp.com (47) i.pinimg.com (39) media.istockphoto.com (1251)
images.squarespace-cdn.com (35) c8.alamy.com (36) miro.medium.com (997)
i5.walmartimages.com (34) upload.wikimedia.org (35) www.incimages.com (967)
c8.alamy.com (33) www.wikihow.com (33) previews.123rf.com (900)

Table 4: Top 10 websites for preconditions by NLI dataset. There are a total of 10,975 unique websites for 50,729
unique images belonging to 82,740 examples.

WINOVENTI PaCo ANION

m.media-amazon.com (54) i0.wp.com (79) thumbs.dreamstime.com (3164)
i.ytimg.com (25) www.verywellmind.com (62) quotefancy.com (2943)
i5.walmartimages.com (24) upload.wikimedia.org (45) i0.wp.com (2050)
thumbs.dreamstime.com (21) post.healthline.com (34) c8.alamy.com (1964)
cdn.shopify.com (21) media.cheggcdn.com (24) media.istockphoto.com (1962)
i0.wp.com (20) quotefancy.com (19) www.wikihow.com (1469)
c8.alamy.com (20) qph.cf2.quoracdn.net (19) www.verywellmind.com (1262)
i.etsystatic.com (19) www.helpguide.org (17) i.insider.com (1213)
upload.wikimedia.org (18) media.self.com (15) previews.123rf.com (1075)
media.istockphoto.com (17) images.squarespace-cdn.com (15) i.ytimg.com (1050)

Table 5: Top 10 websites for actions by NLI dataset. There are a total of 9,700 unique websites for 48,305 unique
images belonging to 80,170 examples.

the main survey. In addition, we implemented two1239

levels of quality control: in the first one we use a1240

response checker code and in the second we use1241

human annotators to ensure only high-quality re-1242

sponses wind up in the final data.1243

B.1 Main AMT Survey1244

In the main survey, the participants are given a set1245

of question units each consisting of a prompt ques-1246

tion, an image, and the radio buttons with three1247

options. We then ask participants to select their1248

responses for each prompt question from the avail-1249

able options in the unit (e.g. “true” “false” “not1250

sure” sample in Fig. 9). We create a question until1251

through the PVLI instances with image and text,1252

that was discussed in §2.1253

Since our annotated images are not perfect, there1254

are a lot of possible points of failure that can render1255

the question units to be impossible to understand.1256

For example, some of the annotations may not be1257

correct, the automatic conversion of meta-data to 1258

a sentence can be wrong in corner cases, or the 1259

image links be corrupted. Hence some of the ques- 1260

tion units may have odd grammar (e.g. "An net 1261

is used for catch fish"). Consequently, some of 1262

the question units may be hard to understand or 1263

just be wrong. To help us find those question units 1264

and ignore them in future iterations, each question 1265

unit has a checkbox in front of it with the label 1266

"not sure/does not make sense". The participant 1267

may choose to select the option and skip answering 1268

that prompt. To make the payment structure fair 1269

for the participants, they will get paid regardless 1270

of their responses. We keep the right reserved to 1271

block the participants who abuse this option using 1272

the annotator agreement metric. 1273

B.2 Qualifying Participants 1274

In the tutorial, first, we have prepared detailed 1275

instructions that explain to the participants what 1276

3
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Figure 6: Heatmap graph comparing the measures of
perplexity and model agreement with expert human
evaluation in the caption querying method. Bins are
computed using 6-quantiles for each axis.

they need to do and what are the criteria for a1277

good vs bad response. For example, in the in-1278

structions, we ask participants to avoid answer-1279

ing “correct”/“incorrect” when they are not sure or1280

when there is something wrong with the image or1281

text of the question unit. The instruction is <5001282

words with an expected reading time of <7 mins.1283

Additionally, we have prepared a set of good/bad1284

examples associated with each rule that can also be1285

accessed in the tutorial. Each one of the good/bad1286

examples comes with a short explanation that dis-1287

cusses the reason for the good/bad rating of the1288

response. The participants are then asked to give1289

the qualification test as a check on whether they1290

have read and understood the instructions. The1291

qualification test contains ∼10 question units simi-1292

lar to the ones they will see in the original survey1293

(due to AMT limitations the qualification question1294

units have a different visual layout but contain the1295

same information). We have carefully designed1296

each qualification question unit such that it tests1297

the participants’ understanding of the rules indi-1298

vidually and give them feedback on their wrong1299

answers. For example, for the rule discouraging1300

the use of “correct”/“incorrect” when the question1301

unit is invalid, we have two question units where1302

first the image is not visible, and second, the text1303

is gibberish. After successfully passing the test,1304

participants with acceptable scores are granted a1305

qualification badge that allows them to engage in1306

the main survey. It must be noted that the detailed1307

instructions and the good/bad examples are both1308
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Figure 7: Heatmap graph comparing the measures of
perplexity and model agreement with human evaluation
from Amazon Mechanical Turk in the caption querying
method. Bins are computed using 6-quantiles for each
axis.

available in the main survey as a memory refresher 1309

for the participants. 1310

To coordinate the study and access a large pool 1311

of participants we use Amazon’s Mechanical Turk 1312

(AMT) service to hire English-speaking people 1313

with no specific background as our study popu- 1314

lation. As part of AMT’s service design, the main 1315

survey can be divided into thousands of micro-tasks 1316

that each is related to a handful of unique question 1317

units. In this setup, the participants may choose 1318

their amount of participation in the study by accept- 1319

ing micro-task jobs whenever they want or fits with 1320

their schedule. Our goal is that each micro-task 1321

takes a short time to complete (less than 1 min) 1322

so we can attract a larger group of participants. It 1323

must be noted that participants can quit at any time 1324

and they will be compensated for their submitted 1325

work up until that point. To ensure the quality of 1326

the responses, the AMT service allows us to review 1327

and accept the responses from each participant in- 1328

dividually, this allows us to pinpoint workers with 1329

low-quality responses (e.g. disagreement on more 1330

than 50 percent of the tasks with other participants) 1331

and ban them from future participation. Even af- 1332

ter being banned, the participants with low-quality 1333

responses will be compensated for their previous 1334

accepted works. 1335

B.3 Mechanical Turk Results 1336

Asked annotators to go through 500 instances of 1337

PVLI. Each instance was annotated by 3 randomly- 1338
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72.11% 70.05% 141.35% 91.59% 100.00%

49.31% 30.54% 114.76% 100.19% 100.00%
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Figure 8: a) Observed distribution of matches for preconditions. b) Observed distribution of matches for actions. c)
Deviation from the expected distribution of matches for preconditions. d) Deviation from the expected distribution
of matches for actions.

Figure 9: A sample question-unit used in the main sur-
vey on the AMT.

selected workers from mainly English-speaking1339

countries: U.S., Canada, England, India, and Aus-1340

tralia. We selected the instances that are found1341

correct by at least 2 annotators and use them as the1342

clean-test set. The final clean-test set, consists of1343

261 human-verified instances with 151 allow labels.1344

The inter-annotator agreement (Fleiss’ Kappa) mea-1345

sure between our annotators is 0.78, showing good1346

agreement among them.1347
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