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Abstract

In this paper, we consider the contextual robust op-
timization problem under an out-of-distribution set-
ting. The contextual robust optimization problem
considers a risk-sensitive objective function for an
optimization problem with the presence of a con-
text vector (also known as covariates or side infor-
mation) capturing related information. While the
existing works mainly consider the in-distribution
setting, and the resultant robustness achieved is in
an out-of-sample sense, our paper studies an out-of-
distribution setting where there can be a difference
between the test environment and the training envi-
ronment where the data are collected. We propose
methods that handle this out-of-distribution setting,
and the key relies on a density ratio estimation
for the distribution shift. We show that additional
structures such as covariate shift and label shift
are not only helpful in defending distribution shift
but also necessary in avoiding non-trivial solutions
compared to other principled methods such as dis-
tributionally robust optimization. We also illustrate
how the covariates can be useful in this procedure.
Numerical experiments generate more intuitions
and demonstrate that the proposed methods can
help avoid over-conservative solutions.

1 INTRODUCTION

Contextual optimization considers a constrained optimiza-
tion problem with the presence of covariates (context), and
it can be viewed as a prediction problem under an optimiza-
tion context where the output of the prediction model serves
as the objective function for the downstream optimization
problem. The goal is to develop a model (trained from past
data) that prescribes a decision/solution for the downstream
optimization problem using the covariates directly but with-

out observation of the objective function. It has been ex-
tensively studied in recent years under various settings [Hu
et al., 2022, Elmachtoub and Grigas, 2022, Bertsimas and
Kallus, 2020, Ho-Nguyen and Kılınç-Karzan, 2022, Chen
and Kılınç-Karzan, 2020, Wilder et al., 2019, Sun et al.,
2023b, Huang and Gupta, 2024], and we refer to Sadana
et al. [2024] for a survey on the topic. In this paper, we con-
sider the problem of contextual robust optimization where
the objective function of the optimization problem becomes
a risk-sensitive one. Unlike all existing works, we consider
a distribution shift/out-of-distribution setting where the test
environment is different from the training environment that
generates the training dataset. In this sense, the notion of
robustness goes beyond the existing scope and it also covers
robustness against the distribution shift. To summarize, our
contributions are as follows:

First, we formulate the problem of out-of-distribution robust
optimization and propose a method that utilizes a density
ratio estimate to make inferences about the test environment
with data from the training environment.

Second, we derive theoretical guarantees for the proposed
method and use an analytical example to illustrate the values
of shift structure in avoiding over-conservative solutions.

Third, we conduct numerical experiments to generate more
intuitions for the setup and illustrate the effectiveness of the
proposed method.

Related Literature.

The study of robust optimization has a long history that con-
siders risk-sensitive objectives and approximate solutions
using the notion of uncertainty set (see Ghaoui et al. [2003],
Chen et al. [2007], Natarajan et al. [2008], Huang et al.
[2023], Qiao and Peng [2023] among others). A recent line
of works considers the contextual formulation for robust op-
timization Chenreddy et al. [2022], Sun et al. [2023a], Patel
et al. [2024] which can be viewed as the case of no distri-
bution shift within our framework. A separate line of works
concerns the problem of distributionally robust optimization



for conditional or contextual stochastic optimization prob-
lems, and various techniques have been proposed, including
Esteban-Pérez and Morales [2022], Kannan et al. [2020],
Bertsimas and Van Parys [2022], Liu et al. [2022]. Treat-
ment of distributional shift in this context is very scarce
except for recent work by [Wang et al., 2024], which pro-
posed to treat covariate shift by combining two estimators.
Duchi et al. [2023] considered distribution shift in the form
of the latent mixture under a DRO framework, but their
focus is on loss functions rather than optimization. As for
the literature on distribution shift, there are several streams:
(i) Classification (label shift): Lipton et al. [2018] propose
to correct for label shift in any predictors, but their method
only applies to the classification setting, i.e., a finite number
of labels; (ii) Regression (label shift): Zhang et al. [2013]
handle continuous labels with the kernel mean matching ap-
proach; (iii) Covariate shift: Reweighting is a fundamental
idea to address covariate shift, dating back to Shimodaira
[2000]. Covariate shift is also considered in the causal infer-
ence literature, typically caused by unobserved confounders
Jin and Candès [2023].

2 PROBLEM SETUP

2.1 ROBUST CONTEXTUAL LP

Consider a standard-form linear program (LP)

LP(c, A, b) := min
x

c⊤x, (1)

s.t. Ax = b, x ≥ 0,

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm are the inputs of the
LP, and x ∈ Rn is the decision variable. A more data-driven
setting of LP considers the presence of some covariates
(contextual information or side information), where there
is a feature vector z ∈ Rd that contains some information
related to the objective vector c. In this way, the LP can be
described by the tuple (c, A, b, z).

The statistical setup of contextual optimization considers the
tuple (c, A, b, z) drawn from some (unknown) distribution
P . As the setup of a machine learning problem, there is an
available (training) dataset consisting of i.i.d. samples from
P ,

D = {(ci, Ai, bi, zi)}Ni=1.

One utilizes the dataset to develop a model so that in the
test phase, one needs to recommend a feasible solution
xnew to a new LP problem using only the observation of
(Anew, bnew, znew) but without observing the objective vector
cnew. Here (cnew, Anew, bnew, znew) is a new tuple indepen-
dently sampled from the distribution P. In terms of the ob-
jective, contextual optimization usually adopts a risk-neutral

objective and aims to optimize (in the test phase)

min
x

E[c|z]⊤x, (2)

s.t. Ax = b, x ≥ 0,

where the conditional distribution E[c|z] is not known ex-
actly (due to the unknown P) and has to be learned from
the training data. The recommended decision variables x in
the test phase can be viewed as a function of (A, b, z).

Alternatively, one can consider a risk-sensitive (robust) ob-
jective

min
x

VaRα(c
⊤x|z), (3)

s.t. Ax = b, x ≥ 0,

where α ∈ (0, 1) is a pre-specified constant. Here VaRα(U)
denotes the α-quantile/value-at-risk of a random variable
U . Specifically, VaRα(U) := F−1

U (α) with F−1
U (·) being

the inverse cumulative distribution function of U . For the
objective (2), it concerns the conditional expectation of
E[c|z], while (3) involves the quantile of the conditional
distribution c⊤x|z.

From the literature of robust optimization [Ben-Tal et al.,
2009], we know that the problem (3) can be equivalently
written as the following optimization problem

min
x,U

max
c∈U

c⊤x, (4)

s.t. Ax = b, x ≥ 0, Pc|z(c ∈ U) ≥ α,

where the decision variables become x, c, and the uncer-
tainty set U . The last constraint ensures the coverage guaran-
tee and corresponds to the quantile level α; the probability
is taken with respect to the conditional distribution c|z.
Due to the intractability of (4), people usually consider the
following problem as an approximation

LP(U) := min
x

max
c∈U

c⊤x, (5)

s.t. Ax = b, x ≥ 0,

where U , instead of being a decision variable, is a fixed
uncertainty set satisfying Pc|z(c ∈ U) ≥ α. The uncer-
tainty set ideally covers the high-density region so that the
approximation to (3) is tighter.

2.2 DISTRIBUTION SHIFT

For both the risk-neutral (2) and the risk-sensitive (3) set-
tings, the existing works on contextual optimization and ro-
bust context optimization mainly consider an in-distribution
setting where the training data D is sampled from some
unknown distribution P , and the distribution P remains un-
changed from training to test. In this spirit, the so-called
robustness of the existing methods is achieved against either



(i) the statistical gap between the realized samples D and
the unknown P or (ii) the intrinsic uncertainty underlying
the distribution P that causes the randomness of c|z. In
this paper, we re-examine this classic problem of robust
optimization from the perspective of robustness against dis-
tribution shift or an out-of-distribution setting. While such a
robustness guarantee can only be achieved in a very conser-
vative manner in the worst case, we demonstrate (i) how the
covariates can be useful and (ii) how additional structure on
the distribution shift can reduce the conservativeness.

In the last subsection, we define a joint distribution on the
tuple (c, A, b, z). Throughout the remainder of this paper,
we omit describing the distribution of the constraint (A, b)
and focus on the joint distribution of the objective-covariates
pair (c, z). This is without loss of generality because the
constraint (A, b) is revealed when solving the LP during
the test phase. In general, a distribution shift or an out-
of-distribution setting refers to the case in which the test
data distribution differs from the training data distribution.
Specifically, we consider a training data

DTr := {(ci, zi)}Ni=1 ∼ P

sampled from some unknown distribution P. Different from
the in-distribution case, the sample of the test phase

(cnew, znew) ∼ Q,

where Q may be different from P. The standard setup of
contextual optimization (for both risk-neutral objective (2)
and risk-sensitive objective (3)) considers the case of P =
Q, whereas an out-of-distribution robust optimization allows
a setting where P ≠ Q.

In context-free robust optimization, if one adopts the approx-
imation formulation (5), the task reduces to characterizing
the randomness of c from the observed samples {c1, ..., cN}.
For contextual robust optimization, the task accordingly be-
comes characterizing the randomness of the conditional
distribution c|z. When it comes to the out-of-distribution
setting, it uses the samples from the training distribution
P to obtain a characterization of the conditional distribu-
tion c|z under the test distribution Q. Hence, people usually
assume an additional dataset is available

DTe := {z′1, ..., z′M} ∼ Q,

where it contains M samples from Q but only has the co-
variates z′i but no corresponding c′i. An alternative setting
includes also c′i in the dataset DTe. We consider this weaker
setting for the full generality.

It is imaginable and will be illustrated in the later sections
that such distribution shift from P and Q cannot be resolved
in a worst-case sense. Specifically, if Q is allowed to be
arbitrarily different from P , there is no way we can learn
anything meaningful from dataset DTr. In this sense, we

consider two common structures as in the distribution shift
literature: covariate shift and label shift.

Notation-wise, let Pz,Pc denote the marginal distribution
of z and c, and Pz|c,Pc|z denote the conditional distribution
of z|c and c|z. In this notation, P = Pc×Pz|c = Pz×Pc|z.
We define Qz,Qc,Qz|c and Qc|z analogously. Throughout
this paper, we assume all the distributions have density
functions. Let p(z) and p(c) denote the marginal density
of z and c under distribution P , and pc|z(c; z) denote the
conditional density of c|z. The corresponding densities for
q are defined analogously.

• Covariate shift: The distribution of the covariates z
differs between P and Q, while the conditional distri-
bution c|z remains the same. In other words, Pz ̸= Qz

but Pc|z = Qc|z .

• Label shift: The distribution of the objective vector c
differs between P and Q, while the conditional distri-
bution z|c remains the same. In other words, Pc ̸= Qc

but Pz|c = Qz|c.

In the following, we first state our algorithm in general and
then specialize it into these two cases.

3 OOD ROBUST OPTIMIZATION

Following the setup in the previous section, the goal of
robust optimization under the test distribution Q is

min
x

VaRQ
α (c

⊤x|z),

s.t. Ax = b, x ≥ 0,

where the quantile function VaR is with respect to the con-
ditional distribution of c⊤x|z under Q. If one adopts the
approximation scheme, it reduces to solving the following
problem

LP(U) := min
x

max
c∈U

c⊤x, (6)

s.t. Ax = b, x ≥ 0,

where the uncertainty set U satisfies PQ
c|z(c ∈ U) ≥ α, i.e.,

U gives a coverage guarantee for the conditional distribu-
tion c|z under Q. Compared to the in-distribution problem
(5), the formulation (6) replaces the requirement on the
uncertainty set U from P to Q. Then the task reduces to
constructing an uncertainty set U for the distribution Q us-
ing the data DTr and DTe. Consequently, suppose we have a
perfect knowledge of the distribution P , then it only needs
an estimate of the density ratio to convert our knowledge of
P into an estimate of the test distribution Q.

We formally define the density ratio between P and Q as

w(c, z) :=
q(c, z)

p(c, z)



for all (c, z) where q and p are the density functions for Q
and P , respectively. We assume the density ratio is well-
defined everywhere. In particular, for the case of covariate
shift, the density ratio concerns only the marginal distri-
bution over z, i.e., w(c, z) = q(z)

p(z) . Generally, we need to
estimate the ratio function w from the data DTr and DTe.
The following algorithm takes an estimate as its input, and
later in Section 3.3, we show how it can be estimated under
the two settings of covariate shift and label shift.

3.1 ALGORITHM

Algorithm 1 describes our main algorithm for OOD robust
optimization. It takes the training data DTr and the target
quantile level α as inputs. Also, it requires a prediction
model f̂ for the conditional expectation E[c|z] and a density
ratio estimate ŵ(c, z). The prediction model f̂ can be built
based on some other available history data or using part
of the training data DTr. The predicted vector from this f̂
determines the center of the uncertainty set U .

The algorithm consists of two parts. The first part gives a
coarse prediction of the quantiles of the conditional distribu-
tion c|z. It does not have to be accurate or even consistent.
In the second part, we use both the expectation prediction
model f̂ and the quantile prediction model ĥ to construct
a variable-sized uncertainty set. The uncertainty set is box-
shaped and it is controlled by a scalar variable η. The pa-
rameter η plays the role of scaling the uncertainty bounds
predicted by the quantile regression model ĥ(z). Intuitively,
a larger value of η yields a more conservative uncertainty
set, enhancing robustness at the cost of increased conser-
vatism. Conversely, a smaller η produces tighter uncertainty
bounds, potentially improving decision efficiency but risk-
ing inadequate coverage.

Step 12 in Algorithm 1 is crucial for determining the size
of the uncertainty set. In this step, it utilizes the estimated
density ratio ŵ to re-weight the training samples in D2. The
re-weighting adjusts the original uniform weight over all the
training samples in D2 and assigns a weight to each sample
to reflect its density in the test distribution Q. Intuitively,
step 12 ensures an empirical coverage of the samples over
the test distribution pretending the density ratio estimate is
precise.

We make a few remarks on the algorithm. First, the output
uncertainty set Uα(z) from the algorithm is contextualized
and depends on the covariates z, with the benefits of contex-
tual uncertainty set are illustrated in the existing literature
[Goerigk and Kurtz, 2020, Chenreddy et al., 2022, Sun et al.,
2023a]. Second, we note that the algorithm utilizes the idea
from the recent literature on conformal prediction to adjust
the size of the uncertainty set. Such usage of conformal
prediction in robust optimization and inverse optimization
have appeared in several recent works [Sun et al., 2023a,

Algorithm 1 OOD-RO with Box Uncertainty Set

1: Input: Training data DTr, a prediction model f̂ (for
E[c|z]), a density ratio estimate ŵ(c, z), target quantile
level α

2: Initialization: Randomly split the training set into two
sets such that DTr = D1 ∪ D2 and D1 ∩ D2 = ∅

3: %% Base quantile prediction
4: for (ci, zi) ∈ D1 do
5: Calculate the residual vector on the i-th training

sample

ri := ci − f̂(zi)

and denote ri = (ri,1, ..., ri,n)
⊤

6: end for
7: Learn a quantile regression model ĥ(z) : Rd → Rn by

minimizing

∑
(ci,zi)∈D1

n∑
k=1

ρα

(
ĥ(zi)k − |ri,k|

)
where ρα(·) := α (·)++(1−α) (·)− denotes the pinball
loss

8: %% Confidence adjustment
9: for (ci, zi) ∈ D2 do

10: Let

c̄i(η) := f̂(zi) + ηĥ(zi) ∈ Rn,

ci(η) := f̂(zi)− ηĥ(zi) ∈ Rn

11: end for
12: Choose a minimal η > 0 such that∑

(ci,zi)∈D2

ŵ(ci, zi) · 1{ci(η) ≤ ci ≤ c̄i(η)}∑
(zj ,cj)∈D2

ŵ(cj , zj)
≥ α (6)

where 1{·} is the indicator function and the inequal-
ity within the indicator function is required to hold
component-wise

13: Output: ĥ, η. For any z ∈ Z , produce

Uα(z) =
[
f̂(z)− ηĥ(z), f̂(z) + ηĥ(z)

]

Patel et al., 2024, Lin et al., 2024, Cao, 2024]. The main
advantage of using this conformal control is to obtain a cov-
erage guarantee for the uncertainty set without imposing
any assumptions/structures on the prediction models f̂ and
ĥ. Third, our re-weighting scheme (12) is a natural treat-
ment and it mimics the existing literature on uncertainty
calibration and conformal prediction [Tibshirani et al., 2019,
Podkopaev and Ramdas, 2021]. Moreover, we note that the
inputs of the algorithm require only the training data DTr
but not the test data DTe. The test data contributes only to



the construction of the density ratio estimate ŵ, while Al-
gorithm 1 does not directly involve the test data. Lastly, we
note the algorithm provides just a pipeline to solve the out-
of-distribution robust optimization; many of its components,
say, the density ratio estimate, the prediction model f̂ , and
the learning of the quantile, are unrestricted in choice and
can be substituted with other candidate methods.

3.2 ALGORITHM ANALYSIS

Now we derive a guarantee for Algorithm 1 under the fol-
lowing assumption.

Assumption 1. We assume that the estimated density ratio
is uniformly bounded from below and above. That is, there
exists w > 0 and w̄ > 0 such that

w ≤ ŵ(c, z) ≤ w̄

for all (c, z).

We note this assumption is rather mild in that it concerns
the estimated density ratio ŵ(c, z) but not the true density
ratiow(c, z) = q(c, z)/p(c, z). Such a condition can always
be met by truncating the estimated density ratio. Bounded-
ness of the true density ratio is also a common assumption
adopted in the literature [Kpotufe, 2017, Ma et al., 2023].

Theorem 1. Under Assumption 1, suppose the density ratio
estimate is perfect, i.e., ŵ(c, z) = w(c, z) = q(c, z)/p(c, z),
then the uncertainty set Uα(z) generated by Algorithm 1
satisfies the following coverage guarantee,∣∣∣P (cnew ∈ Uα(znew))− α

∣∣∣ ≤ 1

|D2|+ 1
· w̄
w

where the probability on the left-hand-side is with respect
to (cnew, znew) ∼ Q and D2 ∼ P .

Theorem 1 considers the case when the density ratio es-
timate is precise. Under this condition, the performance
guarantee holds and the right-hand side scales at a favor-
able rate as the number of samples in D2 of Algorithm 1
increases. We emphasize that the algorithm utilizes samples
from the training distribution P to construct the uncertainty
set but the performance guarantee is with respect to the test
distribution Q. This tells that the out-of-distribution robust-
ness is well achievable under a perfect knowledge of density
ratio.

When the density ratio estimate is not perfect, one can also
obtain a slightly weaker guarantee. To proceed, let Q̂ de-
note the estimated test distribution defined by the following
density function

q̂(c, z) =
ŵ(c, z) · p(c, z)∫

(c,z)
ŵ(c, z) · p(c, z)dzdc

. (7)

With this definition, the following corollary extends Theo-
rem 1 to the case when the density ratio estimate is not fully
accurate.

Corollary 1. Let Q̂ denote a distribution with a density
function given by (7), then under Assumption 1, the un-
certainty set Uα(z) generated by Algorithm 1 satisfies the
following guarantee,∣∣∣P (cnew ∈ Uα(znew))−α

∣∣∣ ≤ 1

|D2|+ 1
· w̄
w
+DTV(Q, Q̂),

where the probability on the left-hand-side is with respect
to (cnew, znew) ∼ Q and D2 ∼ P . Here DTV(·, ·) denotes
the total variation distance between two distributions.

Corollary 1 provides a natural extension that includes an ex-
tra term in the bound of Theorem 1. When the density ratio
estimate is perfect, Q̂ = Q, and this extra term disappears.
At the other end of the spectrum, if one adopts a trivial
density estimate where ŵ(c, z) ≡ 1, this term becomes
DTV(Q,P) which is the distance between the training dis-
tribution and the test distribution. In this light, the bound
shows the benefits of having a good density ratio estimate;
and any reasonable density estimate will always bring a
better performance guarantee than the naive treatment of
ŵ(c, z) ≡ 1 which ignores the distribution shift between P
and Q. The two terms on the right-hand-side correspond to
two “orthogonal” sources of errors: the first one captures the
uncertainty calibration error when there is no distribution
shift, and the second one captures the error of density ratio
estimation.

We note that for the performance guarantees in both Theo-
rem 1 and Corollary 1, they are in a marginal sense, not a
conditional sense. In other words, they hold “on average” for
all possible covariates z. To obtain a conditional coverage
guarantee that holds for each possible z requires additional
assumptions and treatments even for the in-distribution set-
ting (see [Kannan et al., 2022, Sun et al., 2023a] among
others). It will be accordingly more challenging for an out-
of-distribution setting, which we leave for future investiga-
tion. Numerically, as the construction of the quantile predic-
tion (in part 1 of Algorithm 1) is in a conditional sense, we
usually observe a conditional coverage empirically.

3.3 DENSITY RATIO ESTIMATION FOR
COVARIATE SHIFT AND LABEL SHIFT

Algorithm 1 takes a density ratio estimate as input. Here we
describe how such estimate can be obtained under covariate
shift and label shift.

Covariate Shift. We briefly describe the probabilistic clas-
sification approach proposed by Bickel et al. [2009]. Intu-
itively, consider a random sample zi drawn from a mixture
distribution of P and Q. With equal probability, zi is ei-
ther drawn from P or from Q. If zi is drawn from P , it



is assigned a label li = 0, and if it is drawn from Q, it is
assigned a label li = 1. Note that the following equation
holds

P(li = 1|zi)
P(li = 0|zi)

=
q(zi)

p(zi)
.

This indicates that if we train a probability classifier that
predicts the label li based on zi, then the oracle classifier
gives P(li = 1|zi) = q(zi)/(q(zi) + p(zi)).

We can obtain a density ratio estimate based on this obser-
vation. First, we pool the covariates zi from both DTe and
DTe. We assign a label li = 0 if zi is from DTr and li = 1 if
zi is from DTe. Then, we learn a probability classifier p̂ (can
be an ML model) so that p̂(zi) ≈ P(li = 1|zi). The density

ratio can then be given by ŵ(ci, zi) =
p̂(zi)

1− p̂(zi)
.

Label Shift. Most of the existing literature on density ratio
estimation under the label shift setting focuses on the classi-
fication task where the domain C for the target variable c is
a discrete space. However, the cost vectors ci’s in contextual
optimization problems are continuous vectors. We can adopt
the kernel mean matching approach introduced in Zhang
et al. [2013]. A brief introduction to the reproductive kernel
Hilbert space (RKHS) and kernel mean match (KMM) is
deferred to Appendix 7.1. Let (F , κ,Z) and (G, η, C) be
RKHS’s, with ϕ[z] and ψ[c] denoting the respective feature
maps. The kernel mean embedding operators µF [·], µG [·]
are defined as

µF [Pz] := EZ∼Pz [ϕ[Z]], µG [Pc] := EC∼Pc [ϕ[C]].

Define the conditional embedding operator as UZ|C :=

AZ,CA−1
C,C , where AZ,C and AC,C denote the cross-

covariance operators [Fukumizu et al., 2004]. Based on
the property that

µF [Pz] = UZ|C [µG [Pc]],

the following equation holds under the label shift assump-
tion: µF [Qz] = UZ|C [µG [Qc]]. The main idea then is to es-
timate the density ratio with ŵ(c, z) such that the estimated
test distribution Q̂c satisfies µF [Qz] ≈ UZ|C [µG [Q̂c]]. Fol-
lowing the empirical estimators given in Appendix 7.3, the
L2 loss to minimize can be written as∥∥∥∥∥∥ÛZ|C

(
1

N

N∑
i=1

w(ci, zi) · ψ[ci]

)
− 1

M

M∑
j=1

ϕ[z′j ]

∥∥∥∥∥∥
2

.

The estimate ŵ(c, z) can then be chosen from a function
family that minimizes the above L2 loss.

Algorithm Complexity. In Appendix 6, we provide a de-
tailed analysis of the computational complexity of Algo-
rithm 1. As noted there, the density ratio estimation step is
the primary factor limiting the algorithm’s scalability, par-
ticularly under the label shift setting, where the complexity

is at least O(N2) due to matrix inversion. Dimensionality
reduction techniques can effectively mitigate this issue in
practice.

4 VALUES OF SHIFT STRUCTURE

In this section, we use an analytical example to show that
the structure of covariate shift and label shift is helpful in
avoiding over-conservative solutions. Consider the follow-
ing linear program.

min
x

VaRQ
α (c · x|z) s.t. − 1 ≤ x ≤ 1, (8)

where α ∈ (0.5, 1). For the training distribution P , c = z+ϵ
with z and ϵ independently sampled from N (0, σ2

1) and
N (0, σ2

2). Under this example, the ideal solution would
be x∗ = −sign(z) if the coverage guarantee can be met.
An over-conservative solution will give x∗ = 0. In the
following, we analyze the problem under covariate shift and
label shift.

Covariate Shift. We introduce a scalar s > 0 to rep-
resent the extent of the distribution shift. Under the co-
variate shift setting, the test distribution Q of z fol-
lows N (s, σ2

1), while the distribution of ϵ remains un-
changed. Hence the conditional distribution of c|z re-
mains to be N (z, σ2

2). The joint distribution of (c, z) is

shifted from P = N
((

0
0

)
,

(
σ2
1 + σ2

2 σ2
1

σ2
1 σ2

1

))
to Q =

N
((

s
s

)
,

(
σ2
1 + σ2

2 σ2
1

σ2
1 σ2

1

))
. We consider an idealized

setting where the density ratio estimation is perfect and
the distribution P is known. Under this case, the solution of
Algorithm 1 to (8) takes the following form

x∗ =


1, VaRQ

α (c|z) ≤ 0,

− 1, VaRQ
1−α(c|z) ≥ 0,

0, otherwise,

(9)

where VaRQ
α (c|z) is with respect to the test distribution Q.

The probability of yielding a conservative solution can be
calculated by

P(x∗ = 0) = Pz∼Qz
(VaR1−α(c|z) ≤ 0 ≤ VaRα(c|z))

= Φ

(
σ2
σ1

Φ−1(α)− s

σ1

)
− Φ

(
−σ2
σ1

Φ−1(α)− s

σ1

)
(10)

where Φ(·) is the cumulative distribution function of a stan-
dard normal distribution.

Alternatively, one can take a worst-case approach by con-
sidering the following set of distributions which we call as
worst-case ball:

B(R) :=
{
N
(
r,

(
σ2
1 + σ2

2 σ2
1

σ2
1 σ2

1

))
: ∥r∥ ≤ R

}



where the set is centered at the training distribution P. Such
a distribution set is commonly considered in distributionally
robust optimization and we can accordingly formulate the
robust optimization problem as

min
x

max
Q∈B(R)

VaRQ
α (c · x|z) s.t. − 1 ≤ x ≤ 1. (11)

To make the set B(R) cover the test distribution Q, we need
to have R =

√
2s. Accordingly, we can solve (11) and

obtain the following:

x∗ =


1, VaRα(c|z) ≤ 0,

− 1, VaR1−α(c|z) ≥ 0,

0, otherwise,
(12)

where for any α ∈ (0, 1) we define

VaRα(c|z) := sup{VaRα(c|z) : (c, z) ∼ Q ∈ B(R)},

VaRα(c|z) := inf{VaRα(c|z) : (c, z) ∼ Q ∈ B(R)},

and the probability of an overly conservative solution under
this worst-case ball framework (11) equals

P(x∗ = 0) = Pz∼Qz
(VaR1−α(c|z) ≤ 0 ≤ VaRα(c|z))

= Φ

(
σ2
σ1

Φ−1(α) +
R

σ1
− s

σ1

)
− Φ

(
−σ2
σ1

Φ−1(α)− R

σ1
− s

σ1

)
.

Figure 1: The curves show how P(x∗ = 0) changes with the
distribution shift extent s. The label “OOD-RO” represents our
approach and “WS-Ball” represents the worst-case approach. α
denotes the risk level. As s increases, our “OOD-RO” becomes
less conservative, with P(x∗ = 0) decreasing to 0, whereas the
“WS-Ball” becomes increasingly conservative.

We can do the same calculation for the case of label shift,
where the details are deferred to Appendix 8. Figure 1 sum-
marizes the two cases to compare our approach (which
accounts for the shift structure) against the worst-case ball
approach under two target quantile levels α = 0.6 and 0.8.
For both cases, as s increases, the mean of the covariate z
and the objective c becomes more and more positive. If we
utilize this structure and also the information from the co-
variate, we should be able to take a more aggressive decision

by setting x∗ = −1; this corresponds to the small proba-
bility of P(x∗ = 0) for our approach. However, if we do
not take advantage of this shift structure, the worst-case ball
has to be very large to cover the test distribution, and then
a worst-case solution will result in a more and more con-
servative solution even as s increases. This corresponds to
the case in Corollary 1 if one adopts the naive density ratio
ŵ ≡ 1, the right-hand-side will have a term of DTV(Q,P).

5 EXPERIMENTS

In this section, we illustrate the performance of our pro-
posed algorithm using a simple example. Additional ex-
periments are provided in Appendix 9. We do not include
direct comparisons with existing baseline methods, as our
out-of-distribution (OOD) robust optimization setting is fun-
damentally different. Traditional robust optimization and
distributionally robust optimization (DRO) approaches typi-
cally assume that training and test distributions are identical
and rely on predefined uncertainty sets that fail to capture
the types of distribution shifts we consider. As such, these
methods cannot be directly applied without significant modi-
fications. Furthermore, standardized benchmarks or datasets
tailored to our contextual OOD setting are not currently
available. Thus, our evaluations primarily aim to demon-
strate and analyze the internal effectiveness, robustness, and
empirical behavior of our method under controlled, simu-
lated distribution shifts.

Continue with problem (8), but instead of considering a
single-dimensional z, set a multi-dimensional covariate z =
(z1, . . . , zd). Let

c = (sign(z1) + ϵ) ·
√

|z1|.

z and ϵ are independent. The training distribution of z and
ϵ are N (0, Id) and N (0, 0.1) respectively (let 0 denote a
zero vector of dimension d, and Id an identity matrix of
dimension d). Covariate shift occurs in the test phase, where
the mean of z is shifted from 0 to 1d (let 1d denote a d-
dimensional vector with all components equaling 1),

Pz = N (0, Id) −→ Qz = N (1d, Id).

We study the performance of Algorithm 1 under different
implementations of f̂ , ĥ, and ŵ, as listed below. All neural
networks used in this experiment are feed-forward networks
with one hidden layer of 16 neurons. We consider the fol-
lowing setups. Prediction models f̂ : Lasso, random forest
(“RF”), and neural network (“NN”). Quantile prediction
models ĥ: linear quantile regression (“Linear”), gradient
boosting regression (“GBR”), and neural network. Density
ratio estimators ŵ: the trivial estimator (“Trivial”, ŵ ≡ 1),
the kernel mean matching method (“KMM”, [Gretton et al.,
2008]), and the probabilistic classification method (“Cls-
NN”, [Bickel et al., 2009]).



The risk level α = 0.8. The training dataset contains 4000
randomly generated samples, with 2000 of them used for
learning f̂ , 1000 for learning ĥ, and 1000 for confidence
adjustment. The test data contains 5000 samples from the
shifted test distribution, with 4000 of them used to learn
the density ratio estimator, and 1000 of them for evaluating
the algorithm’s final performance. Unless otherwise stated,
the default covariate dimension is d = 4. We present the
main results of our experiment below, with further details
and additional experimental results provided in Appendix 9.

Prediction Models Boost Performance: In Figure 2, Algo-
rithm 1 is evaluated under different implementations of f̂
and ĥ. The default configuration uses neural networks for
f̂ and ĥ, and probabilistic classification for ŵ. Except for
the function component explicitly studied in the experiment,
all other components follow the default configuration. Com-
pared to the rest of the benchmarks, the neural network
usually gives a better prediction, and Figure 2 demonstrates
that this reduces the probability of getting a conservative
solution x∗ = 0. In Appendix 9, we further show that neural
networks give more precise predictions and that the proba-
bility of being conservative is positively correlated with the
mean squared error of the prediction models.

Figure 2: Performance of Algorithm 1 under different prediction
models f̂ and quantile regression models ĥ. Each scattered point
indicates a random test sample. The colored curves and the region
between them indicate the (conditional) uncertainty sets. The left
panel implements different f̂ with ĥ fixed to be a neural network,
and the right panel implements different ĥ. The bar chart on the
bottom indicates the corresponding optimal solution x∗ for z1’s
from different regions. Implementing a better prediction model (the
“NN”) generally reduces the probability of obtaining a conservative
solution x∗ = 0.

Density Ratio Estimator Avoids Mis-coverage: Now we il-
lustrate the role of the density ratio estimator ŵ. The left
panel of Figure 3 demonstrates the algorithm’s performance
under different ŵ. The figure indicates that, if no reweight-
ing is applied (i.e. “Trivially” estimate the density ratio to
be 1), the empirical coverage rate can significantly drop
below 0.8. A potentially misleading observation from the
bar chart is that a “Trivial” estimator appears to be less
conservative than its counterparts. However, as discussed
above, this deceptive advantage is achieved at the cost of vi-
olating the coverage guarantee. The table on the right panel

of Figure 3 reinforces the importance of a reliable density
ratio estimator. By observing the “Total” rows of KMM and
Cls-NN under different settings of the covariate dimension,
we point out that a reliable density ratio estimator maintains
the empirical coverage rate to be close to 0.8, even when the
prediction models are poor. Another observation is that the
coverage guarantee is approximately achieved in a condi-
tional sense: after splitting the domain of z1 into two groups,
with “z1 ≤ 0” being a minority group and “z1 > 0” being
major, the empirical coverage rate remains approximately
0.8 for both groups.

Trivial KMM Cls-NN

d = 2

z1 ≤ 0 0.80 0.77 0.79

z1 > 0 0.78 0.75 0.77

Total 0.78 0.75 0.78

d = 4

z1 ≤ 0 0.56 0.72 0.79

z1 > 0 0.54 0.86 0.81

Total 0.55 0.84 0.81

d = 8

z1 ≤ 0 0.53 0.71 0.86

z1 > 0 0.4 0.76 0.81

Total 0.42 0.75 0.83

Figure 3: The figure on the left evaluates the performance of
Algorithm 1 under different density ratio estimators ŵ. With a
better density ratio estimator (the “NN”), the coverage rate of the
uncertainty sets is closer to the target level of 0.8. The table on the
right gives the coverage rate of the uncertainty sets under different
ŵ, different covariate dimensions d, and for different regions of z1.
For example, the row “z1 ≤ 0” gives the coverage rate on samples
with negative z1, and the same holds for “z1 > 0”. The “Total”
rows give the coverage rate on the whole test dataset.

Discussions. In this paper, we study an out-of-distribution
setting of robust optimization where the training distribu-
tion P might be different from the test distribution Q. Other
than the method, the analysis, and the numerical experi-
ments, we hope such a study calls for more attention to the
meaning of robustness in the context of robust optimiza-
tion. As noted earlier, existing works consider mainly (i)
robustness against the statistical gap between the empirical
distribution supported on DTr and the true distribution P or
(ii) the robustness of a risk-sensitive objective such as VaR.
Comparatively, the setting we study can be viewed as a ro-
bustness against distribution shift. Along this path, one may
also consider the adversarial robustness where there might
be a proportion of samples in the training data contaminated
or adversarially generated from the other distributions than
P . We believe the study of such more general notions of
robustness deserves more future works.
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6 ALGORITHM COMPLEXITY AND SCALABILITY

In this section, we analyze the computational complexity of Algorithm 1, which primarily involves estimating three
components: the conditional expectation estimator f̂ , the quantile regression model ĥ, and the density ratio estimator ŵ.

1. The conditional expectation estimation step typically employs methods such as LASSO regression, random forests, or
neural networks. The computational complexity of this step generally scales linearly with the number of samples N
and the input dimension d.

2. The quantile regression model ĥ, trained using standard gradient-based methods, typically has a computational
complexity of O(Nd) per iteration.

3. The density ratio estimation step significantly affects the overall complexity. For covariate shift scenarios using logistic
regression, the complexity is at least O(Nd) per training iteration. Under label shift, the complexity of Kernel Mean
Matching (KMM) is at least O(N2) due to matrix inversion.

Overall, the computational complexity of Algorithm 1 is primarily driven by the density ratio estimation step, particularly in
label shift settings.

To address scalability challenges, practical solutions include dimensionality reduction via random projections or feature
extraction techniques based on principal component analysis (PCA) or machine learning-based embeddings. Random
projections, in particular, can substantially reduce the dimension d to a lower-dimensional space d′, thereby reducing
subsequent computational costs. Feature extraction methods further help preserve essential covariate information, offering
a complexity saving without notable performance loss. Careful tuning of these dimensionality reduction techniques is
recommended to achieve an optimal trade-off between computational efficiency and algorithmic performance.

7 REPRODUCTIVE KERNEL HILBERT SPACE AND KERNEL MEAN MATCHING

7.1 RKHS

Let the tuple (F , κ,Z) denote a reproductive kernel Hilbert space (RKHS) F on the sample space Z with kernel κ. The
RKHS is a Hilbert space of functions f : Z → R, on which the inner product ⟨·, ·⟩F satisfies the reproducing property:

⟨f, κ(z, ·)⟩F = f(z), ∀f ∈ F , z ∈ Z.

That said, the evaluation of function f on a single point z can be viewed as an inner product between function f and the
evaluation operator κ(z, ·). We define the feature map ϕ : Z → F by ϕ[z] := κ(z, ·). Throughout this part, we will use the
square bracket [·] to denote mappings to functional spaces. Based on the reproducing property, the feature map satisfies
⟨ϕ[z], ϕ[z′]⟩F = κ(z, z′) for all z, z′ ∈ Z .



The kernel mean embedding of a probability distribution Pz [Zhang et al., 2013], denoted by µF [·], is a mapping from the
space of all the probability distributions on Z to F . The mapping is given by

µF [Pz] := EZ∼Pz
[ϕ[Z]].

The kernel κ is called characteristic if the kernel mean embedding is injective: for Pz ̸= P ′
z , it holds that µF [Pz] ̸= µF [P ′

z].
And following Huang et al. [2006], the operator µF [·] is bijective if κ is a universal kernel in the sense of Steinwart [2002].
The core idea of the kernel mean matching is estimate Pz with a P̂z satisfying µF [Pz] ≈ µF [P̂z].

7.2 CROSS-COVARIANCE OPERATOR

Consider the joint random variable (Z,C) ∈ Z × C. Define two RKHS’s by (F , κ,Z) and (G, η, C) respectively. Let
P denote the joint distribution of (Z,C) and Pz,Pc their marginal distributions respectively, then the cross-covariance
operator AZ,C (with the dependency on P omitted) is defined as [Baker, 1973]

AZ,C := E(Z,C)∼P [ϕ[Z]⊗ ψ[C]]− EZ∼Pz
[ϕ[Z]]⊗ EC∼Pc

[ψ[C]].

In the following, we will omit the explicit distribution of the random variable in the subscript of E and replace expressions
like E(Z,C)∼P with EZ,C . The operator AZ,C [·] can be viewed as a mapping from G to F in the following way: by noting
that ⟨ψ[C], g⟩G = g(C) for any g ∈ G, we can define AZ,C [g] as

AZ,C [g] := EZ,C [g(C) · ϕ[Z]]− EC [g(C)] · EZ [ϕ[Z]].

For any functions f ∈ F and g ∈ G, the cross-covariace operator has the following property:

⟨f,AZ,C [g]⟩F = EZ,C [f(Z) · g(C)]− EZ [f(Z)] · EC [g(C)],

which exactly corresponds to the covariance between f(Z) and g(C). The conditional embedding operator UZ|C is a
mapping from G to F such that, for any c ∈ C, the follow equation holds:

UZ|C [ψ(c)] = µF [Pz|c]. (13)

In other words, UZ|C maps the feature map ψ(c) to the kernel mean embedding of the conditional distribution Z|C = c.
Following Song et al. [2009], if the cross-covariance operator AC,C is invertible, by defining

UZ|C := AZ,CA−1
C,C

the equation (13) is satisfied. To see this, it is sufficient to show that ⟨f,AZ,CA−1
C,C [ψ[c]]⟩F = ⟨f, µF [Pz|c]⟩F for all f ∈ F ,

and this holds following the derivations below,

⟨f, µF [Pz|c]⟩F = Ez|c[f(Z)|c]
= ⟨Ez|c[f(Z)|C], ψ[c]⟩G
= ⟨AC,C [Ez|c[f(Z)|C]],A−1

C,C [ψ[c]]⟩G
= ⟨AC,Z [f ],A−1

C,C [ψ[c]]⟩G
= ⟨f,AZ,CA−1

C,C [ψ[c]]⟩F .

Equation (13) directly implies the following property, which serves as the key step of the KMM procedure in the density
ratio estimation method of Zhang et al. [2013]:

UZ|C [µG [Pc]] = µF [Pz].

7.3 EMPIRICAL ESTIMATIONS

In this section, we briefly outline how to estimate the quantities above using i.i.d. samples (zi, ci)
N
i=1 drawn from P .

By Mercer’s theorem, the feature map ϕ[z] can be represented as a column vector in a (possibly infinite-dimensional)
Hilbert space. We use ϕ[z]ψ[c]⊤ to denote the outer product ϕ[z] ⊗ ψ[c]. Define the matrices Φ := (ϕ[z1], . . . , ϕ[zN ])



and Ψ := (ψ[c1], . . . , ψ[cN ]). Further define K,H ∈ RN×N with Ki,j = κ(zi, zj) and Hi,j = η(ci, cj). The empirical
estimators are indicated by adding a hat symbol ·̂ to the original quantities, with their explicit expressions shown below:

µF [Pz] ≈ µ̂F :=
1

N

N∑
i=1

ϕ(zi),

µG [Pc] ≈ µ̂G :=
1

N

N∑
i=1

ψ(ci),

AZ,C ≈ ÂZ,C :=
1

N
(Φ− µ̂F1

⊤)(Ψ− µ̂G1
⊤)⊤

=
1

N
Φ

(
I − 1

N
11⊤

)
Ψ⊤,

A−1
C,C ≈ Â−1

C,C := N ·ΨH−1

(
I − 1

N
11⊤

)−1

H−1Ψ⊤,

UZ|C ≈ ÛZ|C := ΦH−1Ψ⊤.

8 ILLUSTRATIVE EXAMPLE

Consider the illustrative example:

min
x

VaRQ
α (c · x|z) s.t. − 1 ≤ x ≤ 1, (14)

where α ∈ (0.5, 1) and c = z + ϵ. In the training distribution P , the z and ϵ are independent and respectively follow
N (0, σ2

1) and N (0, σ2
2). We list the explicit expressions for the following probability distributions:

Pz = N (0, σ2
1), Pc = N (0, σ2

1 + σ2
2),

Pc|z = N (z, σ2
2), Pz|c = N

(
σ2
1 · c

σ2
1 + σ2

2

,
σ2
1σ

2
2

σ2
1 + σ2

2

)
,

(c, z) ∼ P = N
((

0
0

)
,

(
σ2
1 + σ2

2 σ2
1

σ2
1 σ2

1

))
.

We describe the explicit form of Q under the following two distribution shift scenarios:

• Covariate shift: let s represent the extent of covariate shift. The distribution of z is shifted from Pz = N (0, σ2
1) to

Qz = N (s, σ2
1), while the conditional distribution of c|z remains to be N (z, σ2

2). The joint distribution of (c, z) is

shifted to Q = N
((

s
s

)
,

(
σ2
1 + σ2

2 σ2
1

σ2
1 σ2

1

))
.

• Label shift: let s represent the extent of label shift. The distribution of c is shifted from Pc = N (0, σ2
1 + σ2

2) to
Qc = N (s, σ2

1 + σ2
2), while the conditional distribution z|c remains to be N

(
σ2
1 ·c

σ2
1+σ2

2
,

σ2
1σ

2
2

σ2
1+σ2

2

)
. It follows that the

distribution of z in Q is shifted to N
(

σ2
1 ·s

σ2
1+σ2

2
, σ2

1

)
, and the distribution of ϵ is shifted to N

(
σ2
2 ·s

σ2
1+σ2

2
, σ2

2

)
. The joint

distribution of (c, z) is shifted to Q = N

((
s

σ2
1 ·s

σ2
1+σ2

2

)
,

(
σ2
1 + σ2

2 σ2
1

σ2
1 σ2

1

))
.

The solution to (14) admits a simple form under the idealized setting, as given in (9) and restated below:

x∗ =


1, VaRQ

α (c|z) ≤ 0,

− 1, VaRQ
1−α(c|z) ≥ 0,

0, otherwise,

(15)

The probability of yielding an over-conservative solution is

P(x∗ = 0) = Pz∼Qz
(VaR1−α(c|z) ≤ 0 ≤ VaRα(c|z)). (16)



Specifically, in the covariate shift setting, the probability equals

P(x∗ = 0) = Φ

(
σ2
σ1

Φ−1(α)− s

σ1

)
− Φ

(
−σ2
σ1

Φ−1(α)− s

σ1

)
,

and in the label shift setting, the probability also equals

P(x∗ = 0) = Φ

(
σ2
σ1

Φ−1(α)− s

σ1

)
− Φ

(
−σ2
σ1

Φ−1(α)− s

σ1

)
.

Worst-case Approach Alternative to our density ratio-based approach is the worst-case approach. Construct the worst-case
ball:

B(R) :=
{
N
(
r,

(
σ2
1 + σ2

2 σ2
1

σ2
1 σ2

1

))
: ∥r∥ ≤ R

}
.

Following the discussions in the main context, the objective of the worst-case approach is given by (11) and restated below:

min
x

max
Q∈B(R)

VaRQ
α (c · x|z) s.t. − 1 ≤ x ≤ 1.

The probability of yielding an over-conservative solution is

P(x∗ = 0) = Pz∼Qz (VaR1−α(c|z) ≤ 0 ≤ VaRα(c|z)).

In the covariate shift setting, we haveR =
√
2s in order that B(R) covers Q. In the label shift setting,R =

√
1 +

σ4
1

(σ2
1+σ2

2)
2 ·s.

The explicit form of the conservative probability is

P(x∗ = 0) = Φ

(
σ2
σ1

Φ−1(α) +

√
2 · s
σ1

− s

σ1

)

− Φ

(
−σ2
σ1

Φ−1(α)−
√
2 · s
σ1

− s

σ1

)

for the covariate shift setting and

P(x∗ = 0) = Φ

(
σ2
σ1

Φ−1(α) +

√
1

σ2
1

+
σ2
1

(σ2
1 + σ2

2)
2
· s− σ1 · s

σ2
1 + σ2

2

)

− Φ

(
−σ2
σ1

Φ−1(α)−

√
1

σ2
1

+
σ2
1

(σ2
1 + σ2

2)
2
· s− σ1 · s

σ2
1 + σ2

2

)

for the label shift setting.

Figure 1 is plotted by setting σ1 = σ2 = 1.

9 MORE EXPERIMENTS AND EXPERIMENT DETAILS

We consider several implementations of the three components: f̂ , ĥ and ŵ for our Algorithm 1. For the expectation predictor
f̂ which predicts E[c|z] with z, we consider using Lasso regression, random forest, and neural network. On different training
datasets, the regularization parameter λ of the Lasso regression is selected as the optimal parameter in range [0, 4]; for the
random forest searches the best number of trees in range [100, 1000] and the best depth in range [10, 80]; the neural network
has a single middle layer with 16 neurons, with the learning rate set to 0.01 and the training epochs set to 500. For the
quantile predictor ĥ, we implement linear quantile regression, gradient boosting regression, and neural network, all trained
by minimizing the quantile loss. For the density estimator, we mainly consider estimators for the covariate shift setting,
including the trivial estimator, the kernel mean matching method introduced in Gretton et al. [2008], and the probabilistic
classification method introduced in Bickel et al. [2009]. The computational complexity of the kernel mean matching method
scales at least quadratically with the data size, so we only sample 200 data from the training distribution and 200 data from
the test distribution to run the algorithm.



The performance metrics we consider include the coverage rate and the α-quantile of the objective c⊤x. Specifically, we
evaluate the marginal and conditional coverage rates of the uncertainty sets generated from different implementations
of our algorithm, and how different they are from the target coverage rate. The α-quantile of the objective, denoted by
VaRQ

α (c
⊤x|z), is evaluated by generating 100 samples of c from the underlying conditional distribution Qc|z and then

calculate the empirical α-quantile of c⊤x.

9.1 ADDITIONAL EXPERIMENTS ON THE SIMPLE EXAMPLE

This section presents additional experimental results for the simple optimization problem discussed in Section 5. In Figure 4,
we experiment with different choices of f̂ and ĥ, and different covariate dimensions d. Specifically, the implementations
of f̂ and ĥ follow the setup of Figure 2, and the d’s we consider include d = 2, 4, 8. Both the mean squared error and the
quantile loss are evaluated on the test dataset, with the c values known. The results indicate that the algorithm tends to
perform better, as reflected by a lower conservative probability, when the prediction models f̂ and ĥ have lower prediction
errors. Further, for both f̂ and ĥ, neural networks (NN) generally achieve strong predictive performance.

Figure 4: The quality of the predictors affects the performance of Algorithm 1. In the left figure, the x-axis represents
the mean squared error (MSE) of f̂ on the test dataset, while in the right figure, the x-axis represents the quantile loss
of ĥ. For both metrics, lower values indicate higher predictor quality. The y-axis shows the probability of obtaining an
over-conservative solution at x∗ = 0, where a lower probability indicates better algorithm performance. Both figures
illustrate that improved prediction models enhance the performance of the algorithm.

9.2 SHORTEST PATH PROBLEM AND FRACTIONAL KNAPSACK PROBLEM

We test our algorithm on two practical LP settings. The risk level α is fixed to 0.8 and we consider the covariate shift of the
test distribution.

The shortest path problem seeks a path between two vertices in a weighted graph such that the total accumulated cost
along the path’s edges is minimized. Specifically, we consider the shortest path problem on a 5× 5 grid with 25 nodes and
40 edges. The objective is to find the shortest path from the top-left node to the bottom-right node. For i = 0, . . . , 4 and
j = 0, . . . , 4, let (i, j) denote the node on the i-th row and j-th column, with the top-left node located at the coordinate
(0, 0) and the bottom-right node at the coordinate (5, 5). The tuple ((i, j), (i′, j′))e denotes the edge between node (i, j)
and (i′, j′). Let V denote the set of all nodes and E denote all edges. For ((i, j), (i′, j′))e ∈ E, use c(i,j),(i′,j′) to represent
the cost of the edge ((i, j), (i′, j′))e (for the undirected graph that we consider, set c(i,j),(i′,j′) = c(i′,j′),(i,j)). The decision
variables are x(i,j),(i′,j′) for all ((i, j), (i′, j′))e ∈ E, where x(i,j),(i′,j′) = 1 denotes a directed path segment from the node
(i, j) to the node (i′, j′). The shortest path problem then has the following risk-sensitive LP formulation:

min
x

VaRα

 ∑
((i,j),(i′,j′))e∈E

c(i,j),(i′,j′) · x(i,j),(i′,j′)


s.t.

∑
(i′,j′):((i,j),(i′,j′))e∈E

(
x(i,j),(i′,j′) − x(i′,j′),(i,j)

)
=


1 (i, j) = (0, 0)

−1 (i, j) = (4, 4)

0 otherwise

(17)



Extending to the OOD robust formulation, we assume that the dynamic of the cost vector c ∈ R40 is controlled by the
covariate z ∈ Rd (we fix d = 10 in this experiment) through

Pc|z ∼

((
1√
d
Θz + 3

)5

+ 1

)
◦ ϵ,

where Θ ∈ R40×d is a 0-1 matrix with each entry generated independently from a Bernoulli(0.5) distribution. The Θ
matrix is fixed once it is generated. The ◦ symbol denotes an elementwise multiplication. Each element of the random
vector ϵ ∈ R40 is generated independently from Uniform( 34 ,

5
4 ). In the training data, the covariate z is generated from

Pz = N (0, Id), and in the test data z is generated from Qz = N (1d, Id). The objective of the OOD formulation replaces
the VaRα(·) part in (17) with VaRQ

α (·).

The fractional knapsack problem models the case where customers select items that maximize their utility, under a budget
constraint. We consider a simple setting with 20 items. The decision variables x = (x1, . . . , x20) denote the fractions (in
range [0, 1]) of items to purchase, c ∈ R20 denote the item utilities, p ∈ R20 denote the price of items, and B > 0 the total
budget. The fractional knapsack problem has the following risk-sensitive LP formulation:

min
x

VaRα(−c⊤x)

s.t. p⊤x ≤ B

xi ∈ [0, 1], i = 1, . . . , 20.

(18)

The OOD robust formulation considers covariate z ∈ Rd (with d = 10) and assumes the conditional distribution of c|z to be

Pc|z ∼ (Θz)2 ◦ ϵ,

where Θ ∈ R20×d is a 0-1 matrix with each entry generated independently from a Bernoulli(0.5) distribution. Each element
of ϵ ∈ R20 is generated independently from Uniform( 45 ,

6
5 ). The training distribution of the covariate z is Pz = N (0, Id)

and the test distribution is Qz = N (1d, Id).

In Figure 5, we compare our algorithm against multiple benchmarks on the two LP settings above. As there is no existing
algorithm that handles covariate shift in the risk-sensitive setting, we just implement the existing benchmark methods and
evaluate them in the test environment. The “Ellipsoid” method ignores the contextual information and calibrates the ellipsoid
to achieve an empirical coverage rate of α on the training samples. The “DCC” and “IDCC” algorithms are proposed in
Chenreddy et al. [2022]. The “kNN” algorithm is a conditional robust optimization method proposed in [Ohmori, 2021].
The “Ours-Trivial” and “Ours” both implement our Algorithm 1 (with f̂ and ĥ being neural networks). “Ours-Trivial” sets a
trivial density ratio estimator ŵ ≡ 1, while “Ours” uses the probabilistic classification method (which is shown to enjoy the
best performance based on the previous experiments) to estimate ŵ. The result demonstrates that our algorithm generally
outperforms the rest benchmarks, and leveraging the density ratio information further improves the performance on the test
dataset.

10 PROOF OF THEOREMS

10.1 PROOF OF THEOREM 1

Let N := |D2| and define xi := (ci, zi) for i = 1, . . . , N . The final η term produced from Algorithm 1 is a function of
(x1, . . . , xN ), which we define below as the η̂(·) function

η̂(x1, . . . , xN ) := min

{
η ≥ 0 :

N∑
i=1

w(xi) · 1{|f̂(zi)− ci| ≤ η · ĥ(zi)} ≥ α ·
N∑
i=1

w(xi)

}
.

For each xi, let η̃(xi) denote the minimum η such that [f̂(zi)− η · ĥ(zi), f̂(zi) + η · ĥ(zi)] covers ci. The η̃(·) function is
formally defined below

η̃(xi) := min
{
η ≥ 0 : |f̂(zi)− ci| ≤ η · ĥ(zi)

}
.

Under this new notation, the form of η̂(·) can be formulated as

η̂(x1, . . . , xN ) = min

{
η ≥ 0 :

N∑
i=1

w(xi) · 1{η ≥ η̃(xi)} ≥ α ·
N∑
i=1

w(xi)

}
.



Figure 5: The scaled VaR for the objective in the shortest path and fractional knapsack problems. The x-axis lists the
algorithms we test. The “Ellipsoid”, “kNN”, “DCC” and “IDCC” algorithms are introduced in the experiment descriptions.
“Ours-Trivial” implements our algorithm but uses a trivial density ratio estimator ŵ ≡ 1. “Ours” implements our algorithm
and uses the probabilistic classification method to estimate ŵ. Amongst the benchmark algorithms, our proposed Algorithm
1 generally achieves the lowest VaR.

Further, if the density ratio estimate in Algorithm 1 is perfect, then the event {cnew ∈ Uα(znew)} is equivent to {η̃(xnew) ≤
η̂(x1, . . . , xN )}. We restate Theorem 1 below and provide a proof.

Theorem 10.1. Under Assumption 1, suppose the density ratio estimate is perfect, i.e., ŵ(c, z) = w(c, z) = q(c, z)/p(c, z),
then the uncertainty set Uα(z) generated by Algorithm 1 satisfies the following coverage guarantee,

∣∣∣P (η̃(xnew) ≤ η̂(x1, . . . , xN ))− α
∣∣∣ ≤ 1

N + 1
· w̄
w

where the probability on the left-hand-side is with respect to xnew ∼ Q and x1, . . . , xN ∼ P .

Proof. Since the distributions P and Q are continuous, almost surely the samples x1, . . . , xN , xnew are mutually distinct.
Let {·} denote an unordered set (e.g. {x1, . . . , xN} denotes an unordered set containing distinct elements x1, . . . , xN ).
Then the following equation holds:

P(η̃(xnew) ≤ η̂(x1, . . . , xN ))

=

∫
{a1,...,aN+1}

P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ {x1, . . . , xn, xnew} = {a1, . . . , aN+1}
)

· P
(
{x1, . . . , xn, xnew} = {a1, . . . , aN+1}

)
.

(19)

The integration is over all possible sets of N + 1 distinct elements, denoted by {a1, . . . , aN+1}. The remaining part of

the proof uniformly bounds the P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ {x1, . . . , xn, xnew} = {a1, . . . , aN+1}
)

term for all sets

{a1, . . . , aN+1}.

Given a set {a1, . . . , aN+1}, let E denote the event that {x1, . . . , xn, xnew} = {a1, . . . , aN+1}, and let Ei denote the

event that xnew = ai and {x1, . . . , xN} = {a1, . . . , aN+1}\{ai}. The P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ E) term can be



decomposed by the following chain of equations:

P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ E)
=

N+1∑
i=1

P(Ei | E) · P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ Ei

)
(1)
=

N+1∑
i=1

P(Ei | E) · 1
{
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ Ei

}
(2)
=

N+1∑
i=1

w(ai)∑N+1
j=1 w(aj)

· 1
{
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ Ei

}
,

(20)

where (1) is from the fact that η̂(x1, . . . , xN ) is invariant to the permutation of (x1, . . . , xN ), and (2) is by that

P(Ei) = N ! · q(ai) ·
∏
j ̸=i

p(aj)

= N ! · w(ai) ·
N+1∏
j=1

p(aj),

and P(E) =
∑N+1

i=1 P(Ei).

We now characterize the terms 1
{
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ Ei

}
. Without loss of generality, let η̃(a1) < η̃(a2) · · · <

η̃(aN+1), then

1

{
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ Ei

}
= 1

{
η̃(ai) ≤ η̂({a1, . . . , aN+1}\{ai})

}
= 1

{ i−1∑
j=1

w(aj) < α ·
∑
j ̸=i

w(aj)

}
.

(21)

The last line of (21) has the following bounds:

1

{ i∑
j=1

w(aj) < α ·
N+1∑
j=1

w(aj)

}
≤ 1

{ i−1∑
j=1

w(aj) < α ·
∑
j ̸=i

w(aj)

}
≤ 1

{ i−1∑
j=1

w(aj) < α ·
N+1∑
j=1

w(aj)

}
. (22)

Combining (20), (21) and (22), the P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ {x1, . . . , xn, xnew} = {a1, . . . , aN+1}
)

term is

uniformly bounded:

P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ E)
≥

N+1∑
i=1

w(ai)∑N+1
j=1 w(aj)

· 1
{ i∑

j=1

w(aj) < α ·
N+1∑
j=1

w(aj)

}
≥ α− w̄∑N+1

j=1 w(aj)
≥ α− 1

N + 1
· w̄
w
.

P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ E)
≤

N+1∑
i=1

w(ai)∑N+1
j=1 w(aj)

· 1
{ i−1∑

j=1

w(aj) < α ·
N+1∑
j=1

w(aj)

}
≤ α+

w̄∑N+1
j=1 w(aj)

≤ α+
1

N + 1
· w̄
w
.



Plugging the bounds above into (19) finishes the proof.

10.2 PROOF OF COROLLARY 1

By defining the estimated test distribution Q̂ as a distribution with the following density function:

q̂(c, z) =
ŵ(c, z) · p(c, z)∫

(c,z)
ŵ(c, z) · p(c, z)dzdc

,

we could directly apply Theorem 1 to see that∣∣∣PQ̂ (cnew ∈ Uα(znew))− α
∣∣∣ ≤ 1

|D2|+ 1
· w̄
w
, (23)

where the probability PQ̂ is with respect to (cnew, znew) ∼ Q̂ and D2 ∼ P . From the definition of the total variation distance,
the following inequality holds:∣∣∣PQ̂ (cnew ∈ Uα(znew))− P (cnew ∈ Uα(znew))

∣∣∣ ≤ DTV(Q, Q̂), (24)

where P is with respect to (cnew, znew) ∼ Q and D2 ∼ P . Combining (23) and (24) gives the result of Corollary 1, which we
restate below: ∣∣∣P (cnew ∈ Uα(znew))− α

∣∣∣ ≤ 1

|D2|+ 1
· w̄
w

+DTV(Q, Q̂).
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