
Behavior Generation with Latent Actions

Seungjae Lee 1 2 Yibin Wang 1 Haritheja Etukuru 1 H. Jin Kim 2 3

Nur Muhammad Mahi Shafiullah * 1 Lerrel Pinto * 1

Abstract
Generative modeling of complex behaviors from
labeled datasets has been a longstanding problem
in decision-making. Unlike language or image
generation, decision-making requires modeling
actions – continuous-valued vectors that are mul-
timodal in their distribution, potentially drawn
from uncurated sources, where generation errors
can compound in sequential prediction. A re-
cent class of models called Behavior Transformers
(BeT) addresses this by discretizing actions using
k-means clustering to capture different modes.
However, k-means struggles to scale for high-
dimensional action spaces or long sequences, and
lacks gradient information, and thus BeT suffers
in modeling long-range actions. In this work, we
present Vector-Quantized Behavior Transformer
(VQ-BeT), a versatile model for behavior gener-
ation that handles multimodal action prediction,
conditional generation, and partial observations.
VQ-BeT augments BeT by tokenizing continuous
actions with a hierarchical vector quantization
module. Across seven environments including
simulated manipulation, autonomous driving, and
robotics, VQ-BeT improves on state-of-the-art
models such as BeT and Diffusion Policies. Im-
portantly, we demonstrate VQ-BeT’s improved
ability to capture behavior modes while acceler-
ating inference speed 5× over Diffusion Policies.
Videos can be found https://sjlee.cc/vq-bet/

1. Introduction
The presently dominant paradigm in modeling human
outputs, whether in language (Achiam et al., 2023), im-
age (Podell et al., 2023), audio (Ziv et al., 2024), or

1New York University 2Department of Aerospace Engineering,
Seoul National University 3Artificial Intelligence Institute of SNU
* Equal Advising. Correspondence to: Nur Muhammad Mahi
Shafiullah <mahi@cs.nyu.edu>. Code is avaliable at https:
//github.com/jayLEE0301/vq_bet_official
Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

video (Bar-Tal et al., 2024), follows a similar recipe: collect
a large in-domain dataset, use a large model that fits the
dataset, and possibly as a cherry on top, improve the model
output using some domain-specific feedback or datasets.
However, such a large, successful model for generating hu-
man or robot actions in embodied environments has been
absent so far, and the issues are apparent. Action sequences
are semantically diverse but temporally highly correlated,
human behavior distributions are massively multi-modal and
noisy, and the hard-and-fast grounding in the laws of physics
means that unlike audio, language or video-generation, even
the smallest discrepancies may cause a cascade of conse-
quences that lead to catastrophic failures in as few as tens
of timesteps (Ross et al., 2011; Rajaraman et al., 2020).
The desiderata for a good model of behaviors and actions
thus must contain the following abilities: to model long-
and short-term dependencies, to capture and generate from
diverse modes of behavior, and to replicate the learned be-
haviors precisely (Shafiullah et al., 2022; Chi et al., 2023).

Prior work by (Shafiullah et al., 2022) shows how trans-
formers can capture the temporal dependencies well, and to
some extent even capture the multi-modality in the data with
clever tokenization. However, that tokenziation relies on k-
means clustering, a method typically based on an ℓ2 metric
space that unfortunately does not scale to high-dimensional
action spaces or temporally extended actions with lots of
inter-dependencies. More recent works have also used tools
from generative modeling to address the problem of behav-
ior modeling (Pearce et al., 2023; Chi et al., 2023; Zhao
et al., 2023), but issues remain, for example in high com-
putational cost when scaling to long-horizons, or failing to
express multi-modality during rollouts.

In this work, we propose Vector-Quantized Behavior Trans-
former (VQ-BeT), which combines the long-horizon mod-
eling capabilities of transformers with the expressiveness
of vector-quantization to minimize the compute cost while
maintaining high fidelity to the data. We posit that a large
part of the difficulty in behavior modeling comes from rep-
resenting the continuous-valued, multi-modal action vectors.
A ready answer is learning discrete representations using
vector quantization (Van Den Oord et al., 2017) used ex-
tensively to handle the output spaces in audio (Dhariwal
et al., 2020), video (Wu et al., 2021), and image (Rombach

1

https://sjlee.cc/vq-bet/
mailto:mahi@cs.nyu.edu
https://github.com/jayLEE0301/vq_bet_official
https://github.com/jayLEE0301/vq_bet_official

Behavior Generation with Latent Actions

Avg. rank in unconditional generation Avg. rank in conditional generation

In
fe

re
nc

e
tim

e
(m

s)

VQ-BeT (Us)
VQ-BeT (Us)

DiffusionPolicy-T

DiffusionPolicy-C

BeT
BC

C-BeT

GCBC

CFG-BESO

C-BESO

Better performance

Fa
st

er
 In

fe
re

nc
e

Better performance

Fa
st

er
 In

fe
re

nc
e

BeT DiffPolicy-T

DiffPolicy-C VQ-BeT (Us)

BC

LSTM-GMM

Rollouts on PushT Env.

Figure 1. Qualitative and quantitative comparison between VQ-BeT and relevant baselines. On the left, we can see trajectories generated
by different algorithms while pushing a T-block to target, where VQ-BeT generates smooth trajectories covering both modes. On the
right, we show two plots comparing VQ-BeT and relevant baselines on unconditional and goal-conditional behavior generation. The
comparison axes are (x-axis) relative success represented by average rank on a suite of seven simulated tasks, and (y-axis) inference time.

et al., 2022). In particular, the performance of VQ-VAEs for
generative tasks has been so strong that a lot of recent mod-
els that generate continuous values simply generate a latent
vector in the VQ-space first before decoding or upsampling
the result (Ziv et al., 2024; Bar-Tal et al., 2024; Podell et al.,
2023).

VQ-BeT is designed to be versatile, allowing it to be read-
ily used in both conditional and unconditional generation,
while being performative on problems ranging across simu-
lated manipulation, autonomous driving, and real-robotics.
Through extensive experiments across eight benchmark en-
vironments, we present the following experimental insights:

1. VQ-BeT achieves state-of-the-art (SOTA) performance
on unconditional behavior generation outperforming
BC, BeT, and diffusion policies in 5/7 environments
(Figure 1 middle). Quantitative metrics of entropy and
qualitative visualizations indicate that this performance
gain is due to better capture of multiple modes in be-
havior data (Figure 1 left).

2. On conditional behavior generation, by simply speci-
fying goals as input, VQ-BeT achieves SOTA perfor-
mance and improves upon GCBC, C-BeT, and BESO
in 6/7 environments (Figure 1 right).

3. VQ-BeT directly works on autonomous driving bench-
marks such as nuScenes (Caesar et al., 2020), matching
and being comparable to task-specific SOTA methods.

4. VQ-BeT is a single-pass model, and hence offers a 5×
speedup in simulation and 25× on real-world robots
over multi-pass models that use diffusion models.

5. VQ-BeT scales to real-world robotic manipulation
such as pick-and-placing objects and door closing, im-
proving upon prior work by 73% on long-horizon tasks.

2. Vector-Quantized Behavior Transformers
In this section, we introduce VQ-BeT, which has capability
to solve both conditional and non-conditional tasks from
uncurated behavior dataset. VQ-BeT is composed of two
stages: Action discretization phase (stage 1 in Figure 2)
and VQ-BeT learning phase (stage 2 in Figure 2). Each
stage is explained in Section 2.2 and 2.3, respectively.

2.1. Sequential prediction on behavior data

Binning actions to tokenize them and predicting the to-
kenized class has been successfully applied for learning
multi-modal behavior (Shafiullah et al., 2022; Cui et al.,
2022). However, these k-means binning approaches face
issues while scaling, as disucssed in Section A.2.

As such, we propose instead to learn a discrete latent embed-
ding space for action or action chunks, and modeling such
action latents instead. Note that, such latent models in the
form of VQ-VAEs and latent diffusion models are widely
used in multiple generative modeling subfields, including
image, music, and video (Bar-Tal et al., 2024; Ziv et al.,
2024; Podell et al., 2023). With such discrete tokenziation,
our model can directly predict action tokens from observa-
tion sequences optionally conditioned on goal vectors.

2.2. Action (chunk) discretization via Residual VQ

We employ Residual VQ-VAE (Zeghidour et al., 2021) to
learn a scalable action discretizer and address the complex-
ity of action spaces encountered in the real world. The
quantization process of an action (or action chunk, where
n > 1) at:t+n is learned via learning a pair of encoder
and decoder networks; ϕ, ψ. We start with passing at:t+n

through the encoder ϕ. The resulting latent embedding vec-
tor x = ϕ(at:t+n) is then mapped to an embedding vector
in the codebook of the first layer z1q ∈ {e11, · · · e1k} by the
nearest neighbor look-up, and the residual is recursively

2

Behavior Generation with Latent Actions

∼

Residual VQ
Encoder, ϕ

Residual VQ layer

Action (Sequence)

in Dataset: 𝑎𝑡:𝑡+𝑛

Stage 1. Action Tokenization

GT Action

Reconstructed

Quantizer +

+

-
1st layer

…

Residual VQ
Decoder, ψ

Stage 2. Learning VQ-BeT

MinGPT

Ground-truth action

Observation sequence

Goal sequence

Optional

Code

Predictor

head

Offset
head

+

Hierarchical code pred.

❄

ϕ

❄

ψ

Sampled

Action

+

Focal Loss
Ground-truth action

L1
Loss

∼

Hierarchical code prediction

Sample primary

code

Sample secondary

code

: Frozen network

+

Figure 2. Overview of VQ-BeT, broken down into the residual VQ encoder-decoder training phase and the VQ-BeT training phase. The
same architecture works for both conditional and unconditional cases with an optional goal input. In the bottom right, we show a detailed
view of the hierarchical code prediction method.

mapped to each codebook of the remaining Nq − 1 layers
ziq ∈ {ei1, · · · eik}, where i = 2, · · · , Nq. The latent em-
bedding vector x = ϕ(at:t+n) is represented by the sum of
vectors from codebooks zq(x) =

∑Nq

i=1 z
i
q , where each vec-

tor zi=1:Nq
q works as the centroid of hierarchical clustering.

Then, the discretized vector zq(x) =
∑Nq

i=1 z
i
q is recon-

structed as ψ(zq(x)) by passing through the decoder ψ. We
train Residual VQ-VAE using a loss function, as shown in
Eq 2. The first term represents the reconstruction loss, and
the second term is the VQ objective that shifts the embed-
ding vector e towards the encoded action x = ϕ(at:t+n).
To update the embedding vectors e1:Nq

1:k , we use moving av-
erages rather than direct gradient updates following (Islam
et al., 2022; Mazzaglia et al., 2022). In all of our experi-
ments, it was sufficient to use Nq := 2 VQ-residual layers,
and keep the commitment loss λcommit := 1 constant.

LRecon = ∥at:t+n − ψ(zq(ϕ(at:t+n)))∥1 (1)

LRVQ =LRecon + ∥SG[ϕ(at:t+n)]− e∥22 (2)

+λcommit∥ϕ(at:t+n)− SG[e]∥22, (SG : stop gradient)

We indicate the codes of the first quantizer layer as primary
code, and the codes of the remaining layers as secondary
codes. Intuitively, the primary codes in Residual VQ per-
forms coarse clustering over a large range within the dataset,
while the secondary codes handle fine-grained actions. (De-

coded centroids are visualized in Appendix Figure 8.)

2.3. Weighted update for code prediction

After training Residual VQ, we train GPT-like transformer
architecture to model the probability distribution of action
or action chunks from the sequence of observations. One
of the main differences between BeT and VQ-BeT stems
from using a learned latent space. Since our vector quanti-
zation codebooks let us freely translate between an action
latent zq(ϕ(at:t+n)) =

∑Nq

i=1 z
i
q and the sequence of chosen

codes at each codebook, {ziq}
Nq

i=1, we use them as a labels
in the code prediction Lcode loss to learn the categorical
prediction head ζicode for given sequence of observations
ot−h:t. Following (Shafiullah et al., 2022; Cui et al., 2022),
we employ Focal loss (Lin et al., 2017) to train the code pre-
diction head by comparing the probabilities of the predicted
categorical distribution with the actual labels ziq . We adjust
the weights between the primary code and secondary code
learning losses, leveraging our priors about the latent space.

Lcode = Lfocal(ζ
i=1
code(ot)) + βLfocal(ζ

i>1
code(ot)) (3)

Finally, the quantized behavior is obtained by passing the
sum of the predicted residual embeddings through the de-
coder as follows.

⌊at:t+n⌋ = ψ
(∑

j,i

eij · I[ζicode = j)]
)

(4)

3

Behavior Generation with Latent Actions

Environment Metric GCBC C-BeT C-BESO CFG-BESO VQ-BeT

PushT Final IoU
(·/1)

0.02 0.02 0.30 0.25 0.39
Image PushT 0.02 0.01 0.02 0.01 0.10

Kitchen Goals
(·/4)

0.15 3.09 3.75 3.47 3.78
Image Kitchen 0.64 2.41 2.00 1.59 2.60

Multimodal Ant Goals
(·/2)

0.00 1.68 1.14 0.92 1.72
UR3 BlockPush 0.19 1.67 1.94 1.91 1.94

BlockPush Success (·/1) 0.01 0.87 0.93 0.88 0.87

Table 1. Comparing different algorithms in goal-conditional be-
havior generation. The seven simulated robotic manipulation and
locomotion environments used here are described in Section 3.1.

We adopt additional offset head ζoffset to maintain full fi-
delity, adjusting the centers of discretized actions based on
observations. The total VQ-BeT loss is shown in Eq. 6.

Loffset =
∣∣∣at:t+n −

(
⌊at:t+n⌋+ ζoffset (ot)

)∣∣∣
1

(5)

L VQ−BeT = Lcode + Loffset (6)

2.4. Conditional and non-conditional task formulation

To provide a general-purpose behavior-learning model that
can predict multi-modal continuous actions in both condi-
tional and unconditional tasks, we introduce conditional and
non-conditional task formulation of VQ-BeT.

Non-conditional formulation: For a given dataset D =
{ot, at}, we consider a problem of predicting the distribu-
tion of possible action sequences at:t+n conditioned on a
sampled sequence of observations ot−h:t. Thus, we formu-
late the behavior policy as π : Oh → An, where O and A
denotes the observation space and action space, respectively.

Conditional formulation: For goal-conditional tasks, we
extend the formulation above to take a goal conditioning
vector in the form of one or more observations. Given cur-
rent observation sequence and future observation sequence,
we now consider an extended policy model that predicts the
distribution of sequential behavior π : Oh × Og → An,
where ot−h:t ∈ Oh and oN−g:N ∈ Og are current and
future observation sequences.

3. Experiments
With both conditional and unconditional VQ-BeT, we run
experiments to understand how well they can model behav-
ior on different datasets and environments. We focus on
two primary properties of VQ-BeT’s generated behaviors:
quality, as evaluated by how well the generated behavior
achieves some task objective or goal, and the diversity, as
evaluated by the entropy of the distribution of accomplished
subtasks or goals. Concretely, through our experiments, we
try to answer the following questions:

1. How well do VQ-BeT policies perform on the respec-

Environment Metric BC BeT DiffPolicy-C DiffPolicy-T VQ-BeT

PushT Final IoU
(·/1)

0.65 0.39 0.73 0.74 0.78
Image PushT 0.13 0.01 0.66 0.45 0.68

Kitchen Goals
(·/4)

0.18 3.07 2.62 3.44 3.66
Image Kitchen 0.75 2.48 3.11 3.01 2.98
Multimodal Ant 0.01 2.73 3.12 2.90 3.22

UR3 BlockPush Goals
(·/2)

0.11 1.59 1.83 1.82 1.84
BlockPush 0.01 1.67 0.47 1.93 1.79

Table 2. Performance of different algorithms in unconditional be-
havior generation tasks. We evaluate over seven simulated robotic
manipulation and locomotion tasks as described in Section 3.1.

tive environments in both conditional and uncondi-
tional behavior generation?

2. How well does VQ-BeT capture the multi-modality
present in the dataset?

3. Does VQ-BeT scale beyond simulated tasks?

4. What design choices of VQ-BeT make the most impact
in its performance?

3.1. Environments, datasets, and baselines

Across our experiments, we use a variety of environments
and datasets to evaluate VQ-BeT (Figure 3). In simula-
tion, we evaluate the wider applicability of VQ-BeT on
eight benchmarks; namely, six manipulation tasks includ-
ing two image-based tasks: (a) PushT, (b) Image PushT,
(c) Kitchen, (d) Image Kitchen, (e) UR3 BlockPush, (f)
BlockPush; a locomotion task, (g) Multimodal Ant; and a
self-driving benchmark, (h) NuScenes. The environments
are visualized in Figure 3, and a detailed descriptions of
each task is provided in Appendix D.1. We also evaluate
on a real-world environment with twelve tasks (five single-
phase, three multi-phase tasks and four long-horizon tasks)
described in Section C.6.

4. Conclusion
In this work, we introduce VQ-BeT, a model for learning
behavior from open-ended, multi-modal data by tokenizing
the action space using a residual VQ-VAE, and then using a
transformer model to predict the action tokens. While we
show that VQ-BeT performs well on a plethora of manipu-
lation, locomotion, and self-driving tasks, an exciting appli-
cation of such models would be in scaling them up to large
behavior datasets containing orders of magnitude more data,
environments, and behavior modes. Finding a shared latent
space of actions between different embodiments may let us
“translate” policies between different robots or even from
human to robots. Finally, a learned, discrete action space
may also make real-world RL application faster, which we
would like to explore in the future.

4

Behavior Generation with Latent Actions

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Bar-Tal, O., Chefer, H., Tov, O., Herrmann, C., Paiss, R.,
Zada, S., Ephrat, A., Hur, J., Li, Y., Michaeli, T., et al. Lu-
miere: A space-time diffusion model for video generation.
arXiv preprint arXiv:2401.12945, 2024.

Bellman, R., Glicksberg, I., and Gross, O. On the “bang-
bang” control problem. Quarterly of Applied Mathemat-
ics, 14(1):11–18, 1956.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Bushaw, D. W. Differential equations with a discontinuous
forcing term. PhD thesis, Princeton University, 1952.

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E.,
Xu, Q., Krishnan, A., Pan, Y., Baldan, G., and Beijbom, O.
nuscenes: A multimodal dataset for autonomous driving.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 11621–11631, 2020.

Chen, L., Bahl, S., and Pathak, D. Playfusion: Skill ac-
quisition via diffusion from language-annotated play. In
Conference on Robot Learning, pp. 2012–2029. PMLR,
2023.

Chi, C., Feng, S., Du, Y., Xu, Z., Cousineau, E., Burch-
fiel, B., and Song, S. Diffusion policy: Visuomotor
policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Cui, Z. J., Wang, Y., Shafiullah, N. M. M., and Pinto,
L. From play to policy: Conditional behavior gen-
eration from uncurated robot data. arXiv preprint
arXiv:2210.10047, 2022.

Dadashi, R., Hussenot, L., Vincent, D., Girgin, S., Raichuk,
A., Geist, M., and Pietquin, O. Continuous control with
action quantization from demonstrations. arXiv preprint
arXiv:2110.10149, 2021.

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A.,
and Sutskever, I. Jukebox: A generative model for music.
arXiv preprint arXiv:2005.00341, 2020.

Finn, C., Levine, S., and Abbeel, P. Guided cost learning:
Deep inverse optimal control via policy optimization. In
International conference on machine learning, pp. 49–58.
PMLR, 2016.

Florence, P., Lynch, C., Zeng, A., Ramirez, O. A., Wahid,
A., Downs, L., Wong, A., Lee, J., Mordatch, I., and
Tompson, J. Implicit behavioral cloning. In Conference
on Robot Learning, pp. 158–168. PMLR, 2022.

Gupta, A., Kumar, V., Lynch, C., Levine, S., and Hausman,
K. Relay policy learning: Solving long-horizon tasks
via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Hausknecht, M. and Stone, P. Deep reinforcement learn-
ing in parameterized action space. arXiv preprint
arXiv:1511.04143, 2015.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. Advances in neural information processing systems,
29, 2016.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Hu, P., Huang, A., Dolan, J., Held, D., and Ramanan, D.
Safe local motion planning with self-supervised freespace
forecasting. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 12732–
12741, 2021.

Hu, S., Chen, L., Wu, P., Li, H., Yan, J., and Tao, D. St-p3:
End-to-end vision-based autonomous driving via spatial-
temporal feature learning. In European Conference on
Computer Vision, pp. 533–549. Springer, 2022.

Hu, Y., Yang, J., Chen, L., Li, K., Sima, C., Zhu, X., Chai,
S., Du, S., Lin, T., Wang, W., et al. Planning-oriented
autonomous driving. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 17853–17862, 2023.

Islam, R., Zang, H., Goyal, A., Lamb, A., Kawaguchi, K.,
Li, X., Laroche, R., Bengio, Y., and Combes, R. T. D.
Discrete factorial representations as an abstraction for
goal conditioned reinforcement learning. arXiv preprint
arXiv:2211.00247, 2022.

Jiang, B., Chen, S., Xu, Q., Liao, B., Chen, J., Zhou, H.,
Zhang, Q., Liu, W., Huang, C., and Wang, X. Vad: Vector-
ized scene representation for efficient autonomous driv-
ing. arXiv preprint arXiv:2303.12077, 2023.

Kalakrishnan, M., Pastor, P., Righetti, L., and Schaal, S.
Learning objective functions for manipulation. In 2013
IEEE International Conference on Robotics and Automa-
tion, pp. 1331–1336. IEEE, 2013.

5

Behavior Generation with Latent Actions

Kemp, C. C., Edsinger, A., Clever, H. M., and Matulevich,
B. The design of stretch: A compact, lightweight mobile
manipulator for indoor human environments. In 2022
International Conference on Robotics and Automation
(ICRA), pp. 3150–3157. IEEE, 2022.

Khurana, T., Hu, P., Dave, A., Ziglar, J., Held, D., and Ra-
manan, D. Differentiable raycasting for self-supervised
occupancy forecasting. In European Conference on Com-
puter Vision, pp. 353–369. Springer, 2022.

Kim, J., hyeon Park, J., Cho, D., and Kim, H. J. Automating
reinforcement learning with example-based resets. IEEE
Robotics and Automation Letters, 7(3):6606–6613, 2022.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.
Focal loss for dense object detection. In Proceedings of
the IEEE international conference on computer vision,
pp. 2980–2988, 2017.

Luo, J., Dong, P., Wu, J., Kumar, A., Geng, X., and Levine,
S. Action-quantized offline reinforcement learning for
robotic skill learning. In Conference on Robot Learning,
pp. 1348–1361. PMLR, 2023.

Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tompson, J.,
Levine, S., and Sermanet, P. Learning latent plans from
play. In Conference on robot learning, pp. 1113–1132.
PMLR, 2020.

Mandlekar, A., Zhu, Y., Garg, A., Booher, J., Spero, M.,
Tung, A., Gao, J., Emmons, J., Gupta, A., Orbay, E.,
et al. Roboturk: A crowdsourcing platform for robotic
skill learning through imitation. In Conference on Robot
Learning, pp. 879–893. PMLR, 2018.

Mao, J., Qian, Y., Zhao, H., and Wang, Y. Gpt-driver: Learn-
ing to drive with gpt. arXiv preprint arXiv:2310.01415,
2023a.

Mao, J., Ye, J., Qian, Y., Pavone, M., and Wang, Y. A
language agent for autonomous driving. arXiv preprint
arXiv:2311.10813, 2023b.

Mazzaglia, P., Verbelen, T., Dhoedt, B., Lacoste, A., and
Rajeswar, S. Choreographer: Learning and adapting
skills in imagination. arXiv preprint arXiv:2211.13350,
2022.

Metz, L., Ibarz, J., Jaitly, N., and Davidson, J. Discrete
sequential prediction of continuous actions for deep rl.
arXiv preprint arXiv:1705.05035, 2017.

Pearce, T., Rashid, T., Kanervisto, A., Bignell, D., Sun,
M., Georgescu, R., Macua, S. V., Tan, S. Z., Momenne-
jad, I., Hofmann, K., et al. Imitating human behaviour
with diffusion models. arXiv preprint arXiv:2301.10677,
2023.

Pertsch, K., Lee, Y., and Lim, J. Accelerating reinforcement
learning with learned skill priors. In Conference on robot
learning, pp. 188–204. PMLR, 2021.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn,
T., Müller, J., Penna, J., and Rombach, R. Sdxl: Im-
proving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Rajaraman, N., Yang, L., Jiao, J., and Ramchandran, K.
Toward the fundamental limits of imitation learning. Ad-
vances in Neural Information Processing Systems, 33:
2914–2924, 2020.

Reuss, M., Li, M., Jia, X., and Lioutikov, R. Goal-
conditioned imitation learning using score-based diffu-
sion policies. arXiv preprint arXiv:2304.02532, 2023.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.
627–635. JMLR Workshop and Conference Proceedings,
2011.

Shafiullah, N. M., Cui, Z., Altanzaya, A. A., and Pinto, L.
Behavior transformers: Cloning k modes with one stone.
Advances in neural information processing systems, 35:
22955–22968, 2022.

Shafiullah, N. M. M., Rai, A., Etukuru, H., Liu, Y., Misra,
I., Chintala, S., and Pinto, L. On bringing robots home.
arXiv preprint arXiv:2311.16098, 2023.

Singh, A., Liu, H., Zhou, G., Yu, A., Rhinehart, N., and
Levine, S. Parrot: Data-driven behavioral priors for re-
inforcement learning. arXiv preprint arXiv:2011.10024,
2020.

Stolle, M. and Precup, D. Learning options in reinforce-
ment learning. In Abstraction, Reformulation, and Ap-
proximation: 5th International Symposium, SARA 2002
Kananaskis, Alberta, Canada August 2–4, 2002 Proceed-
ings 5, pp. 212–223. Springer, 2002.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

6

Behavior Generation with Latent Actions

Tavakoli, A., Pardo, F., and Kormushev, P. Action branching
architectures for deep reinforcement learning. In Pro-
ceedings of the aaai conference on artificial intelligence,
volume 32, 2018.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in neural information
processing systems, 30, 2017.

Vasuki, A. and Vanathi, P. A review of vector quantization
techniques. IEEE Potentials, 25(4):39–47, 2006.

Wei, B., Ren, M., Zeng, W., Liang, M., Yang, B., and Ur-
tasun, R. Perceive, attend, and drive: Learning spatial
attention for safe self-driving. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp. 4875–4881. IEEE, 2021.

Wu, C., Huang, L., Zhang, Q., Li, B., Ji, L., Yang, F.,
Sapiro, G., and Duan, N. Godiva: Generating open-
domain videos from natural descriptions. arXiv preprint
arXiv:2104.14806, 2021.

Wulfmeier, M., Ondruska, P., and Posner, I. Maximum en-
tropy deep inverse reinforcement learning. arXiv preprint
arXiv:1507.04888, 2015.

Zeghidour, N., Luebs, A., Omran, A., Skoglund, J., and
Tagliasacchi, M. Soundstream: An end-to-end neural
audio codec. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 30:495–507, 2021.

Zeng, W., Luo, W., Suo, S., Sadat, A., Yang, B., Casas, S.,
and Urtasun, R. End-to-end interpretable neural motion
planner. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8660–
8669, 2019.

Zhao, T. Z., Kumar, V., Levine, S., and Finn, C. Learn-
ing fine-grained bimanual manipulation with low-cost
hardware. arXiv preprint arXiv:2304.13705, 2023.

Ziv, A., Gat, I., Lan, G. L., Remez, T., Kreuk, F., Défossez,
A., Copet, J., Synnaeve, G., and Adi, Y. Masked audio
generation using a single non-autoregressive transformer.
arXiv preprint arXiv:2401.04577, 2024.

7

Behavior Generation with Latent Actions

A. Background and Preliminaries
A.1. Behavior cloning

Given a dataset of continuous-valued action and observation pairs D = {(ot, at)}t, the goal of behavior cloning is to learn
a mapping π from observation space O to the action space A. This map is often learned in a supervised fashion with
π as a deep neural network minimizing some loss function L(π(o), a) on the observed behavior data pairs (o, a) ∈ D.
Traditionally, L was simply taken as the MSE loss, but its inability to admit multiple modes of action for an observation led
to different loss formulations (Lynch et al., 2020; Florence et al., 2022; Shafiullah et al., 2022; Chi et al., 2023). Similarly,
understanding that the environment may be partially observable led to modeling the distribution P(at | ot−h:t) rather than
P(at | ot). Finally, understanding that such behavior datasets are often generated with an explicit or implicit goal, many
recent approaches condition on an (implicit or explicit) goal variable g and learn a goal-conditioned behavior P(a | o, g).
Note that such behavior datasets crucially do not contain any “reward” information, which makes this setup different from
reward-conditioned learning as a form of offline RL.

A.2. Behavior Transformers

Behavior transformer (BeT) (Shafiullah et al., 2022) and conditional behavior transformer (C-BeT) (Cui et al., 2022) are
respectively two unconditional and goal-conditional behavior cloning algorithms built on top of GPT-like transformer
architectures. In their respective settings, they have shown the ability to handle temporal correlations in the dataset, as
well as the presence of multiple modes in the behavior. While GPT (Brown et al., 2020) itself maps from discrete to
discrete domains, BeT can handle multi-modal continuous output space by a clever tokenization trick. Prior to training,
BeT learns a k-means based encoder/decoder that can convert continuous actions into one discrete and one continuous
component. Then, by learning a categorical distribution over the discrete component and combining the component mean
with a predicted continuous “offset” variable, BeT can functionally learn multiple modes of the data while each mode
remains continuous. While the tokenizer allows BeT handle multi-modal actions, the use of k-means means that choosing a
good value of k is important for such algorithms. In particular, if k is too small then multiple modes of action gets delegated
to the same bin, and if k is too large one mode gets split up into multiple bins, both of which may result in a suboptimal
policy. Also, when the action has a large number of (potentially correlated) dimensions, for example when performing action
chunking (Zhao et al., 2023), non-parametric algorithms like k-means may not capture the nuances of the data distribution.
Such shortcomings of the tokenizer used in BeT and C-BeT is one of the major inspirations behind our work.

A.3. Residual Vector Quantization

In order to tokenize continuous action, we employ Residual Vector Quantization (Residual VQ) (Zeghidour et al., 2021) as a
discretization bottleneck. Vector quantization is a quantization technique where continuous values are replaced by a finite
number of potentially learned codebook vectors. This process maps the input x to an embedding vector zq in the codebook
{e1, e2, · · · ek} by the nearest neighbor look-up:

zq = ec, where c = argminj ||x− ej ||2. (7)

Residual VQ is a multi-stage vector quantizer (Vasuki & Vanathi, 2006) which replaces each embedding of vanilla VQ-VAE
(Van Den Oord et al., 2017) with the sum of vectors from a finite layers of codebooks. This approach cascades Nq layers
of vector quantizations residually: the input vector x is passed through the first stage of vector quantization to derive z1q .
The residual, x− z1q , is then iteratively quantized by a sequence of Nq − 1 quantizing layers, passing the updated residual
x−

∑p
i=1 z

i
q to the next layer. The final quantized input vector is then the sum of vectors from a set of finite codebooks

zq(x) =
∑Nq

i=1 z
i
q .

B. Related Works
Deep generative models for modeling behavior: VQ-BeT builds on a long line of works that leveraged tools from
generative modeling to learn diverse behaviors. The earliest examples are in inverse RL literature (Kalakrishnan et al.,
2013; Wulfmeier et al., 2015; Finn et al., 2016; Ho & Ermon, 2016), where such tools were used to learn a reward function
given example behavior. Using generative priors for action generationi, such as GMM by Lynch et al. (2020) or EBMs
by Florence et al. (2022), or simply fitting multi-modal action distributions (Singh et al., 2020; Pertsch et al., 2021) became
more common with large, human collected behavior datasets (Mandlekar et al., 2018; Gupta et al., 2019). Subsequently, a

8

Behavior Generation with Latent Actions

PushT BlockPush Franka Kitchen

Play Kitchen

Multimodal Ant UR3 BlockPush

nuScenes self driving
Figure 3. Visualization of the environments (simulated and real) where we evaluate VQ-BeT. Top row contains PushT (Chi et al., 2023),
Multimodal Ant (Brockman et al., 2016), BlockPush (Florence et al., 2022), UR3 BlockPush (Kim et al., 2022), Franka Kitchen (Gupta
et al., 2019), and bottom row contains nuScenes self-driving (Caesar et al., 2020), and our real robot environment.

large body of work (Shafiullah et al., 2022; Cui et al., 2022; Pearce et al., 2023; Chi et al., 2023; Reuss et al., 2023; Chen
et al., 2023) used generative modeling tools for generalized behavior learning from multi-modal datasets.

Action reparametrization: While Shafiullah et al. (2022) is the closest analogue to VQ-BeT, the practice of reparametriz-
ing actions for easier or better control goes back to “bang-bang” controllers (Bushaw, 1952; Bellman et al., 1956) replacing
continuous actions with extreme discrete values. Discretizing each action dimension separately, however, may exponentially
explode the action space, which is generally addressed by assuming each action dimension as independent (Tavakoli et al.,
2018) or causally dependent (Metz et al., 2017). Without priors on the action space, each of these assumptions may
be limiting, which is why later work opted to learn the reparametrization (Singh et al., 2020; Dadashi et al., 2021; Luo
et al., 2023) similar to VQ-BeT. On another hand, options (Sutton et al., 1999; Stolle & Precup, 2002) abstract actions
temporally but can be challenging to learn from data. Many applications instead hand-craft primitives as a parametrized
action space (Hausknecht & Stone, 2015) which may not scale well for different tasks.

C. Experiments
Baselines: We compare VQ-BeT against the SOTA methods in behavior modeling in both conditional and unconditional
categories. In both of these categories, we compare against transformer- and diffusion-based baselines.

For unconditional behavior generation, we compare against MLP-based behavior cloning, the original Behavior Transformers
(BeT) (Shafiullah et al., 2022) and Diffusion Policy (Chi et al., 2023). The BeT architecture uses a k-means tokenization as
explained in Section A.2. Diffusion policy (Chi et al., 2023), on the other hand, uses a denoising diffusion head (Ho et al.,
2020) to model multi-modality in the behaviors. We use both the convolutional and transformer variant of the diffusion
policy as baselines for our work since they excel in different cases.

For goal-conditional behaviors, we compare against simple goal conditioned BC, Conditional Behavior Transformers
(C-BeT) (Cui et al., 2022) and BESO (Reuss et al., 2023). C-BeT uses k-means tokenization but otherwise has a similar
architecture to ours. BESO uses denoising diffusion, and has a conditioned variant (C-BESO) and a classifier-free guided
variant (CFG-BESO) that we compare against.

C.1. Performance of behavior generated by VQ-BeT

We evaluate VQ-BeT in a set of goal-conditional tasks in Table 1 and a set of unconditional tasks in Table 2. On the PushT
environments, we look at final and max coverage, where the coverage value is the IoU between the T block and the target
T position. For the unconditional Kitchen, BlockPush, and Ant tasks, we look at the total number of tasks completed in
expectation, where the maximum possible number of tasks is 4, 2, and 4 respectively. For the conditional environments, we

9

Behavior Generation with Latent Actions

2

3

4

p4
-E

nt
ro

py 3.07

2.62

3.44
3.66

Kitchen

2.2

2.7

3.2

p4
-E

nt
ro

py

2.48

3.11
3.01 2.98

Image Kitchen

2.6

3.0

3.4

p4
-E

nt
ro

py

2.73

3.12

2.90

3.22

Ant

1.9

1.9

2.0

p2
-E

nt
ro

py 1.95
1.94

1.95

1.99
BlockPush

0.9

0.9

1.0

p2
-E

nt
ro

py

0.99

0.91

0.98
0.99

UR3 BlockPush

BeT DiffusionPolicy-C DiffusionPolicy-T VQ-BeT (Us)

Figure 4. A comparison between the behavior entropy of the algorithms, calculated based on their task completion order, on five of our
simulated environments.

report the expected number of successes given a commanded goal sequence, where the numbers of commanded goals are 4
in Kitchen, 2 in Ant, and 2 in BlockPush. Across all of these metrics, a higher number designates a better performance.

From Tables 1 and 2, we see that in both conditional and unconditional tasks, VQ-BeT largely outperforms or matches the
baselines. First, on the conditional tasks, we find that VQ-BeT outperforms all baselines in all tasks except for BlockPush.
In BlockPush, VQ-BeT performs on par with BeT, while C-BESO and CFG-BESO performs slighly better. Note that
BlockPush has one of the simplest action spaces (2-D ∆x,∆y) in the dataset while also having the largest demonstration
dataset, and thus the added advantage of having vector quantized actions may not have such a strong edge. Next, in
unconditional tasks, we find that VQ-BeT outperforms all baselines in Franka Kitchen (state), Ant Multimodal, UR3
Multimodal, and both PushT (state and image) environments. In BlockPush environment, VQ-BeT is outperformed by
DiffusionPolicy-T, while in Image Kitchen it is outperformed by DiffusionPolicy-C. However, VQ-BeT empirically shows
stable performances on all tasks, while DiffusionPolicy-T struggles in Image PushT environments, and DiffusionPolicy-C
underperforms in Kitchen and BlockPush environments.

C.2. How well does VQ-BeT capture multimodality?

One of the primary promises of behavior generation models is to capture the diversity present in the data, rather than simply
copying a single mode of the existing data very well. Thus, for a quantitative measure we examine the behavior entropy of
the models in the unconditional behavior generation task. Behavior entropy here tries to captures the diversity of a model’s
generated long horizon behaviors. We compare the final-subtask entropy as a balanced metric between performance and
diversity. We see that VQ-BeT outperforms all baselines in all tasks except for Image Kitchen, where it’s outperformed
by DiffusionPolicy-T. However, behavior diversity is hard to capture properly in a single number, which is why we also
present the diversity of generated behavior on the PushT task in Figure 1 (left). There, we can see how VQ-BeT captures
both modes of the dataset in rollouts, while also generating overall smooth trajectories.

C.3. Inference-time efficiency of VQ-BeT

Unconditional C-BeT C-BESO CFG-BESO VQ-BeT

Single step 22.6ms 25.9ms 41.7ms 22.8ms
Multi step ✗ ✗ ✗ 23.3ms

Conditional BeT DiffusionPolicy-C DiffusionPolicy-T VQ-BeT

Single step 13.2ms 100.5ms 98.6ms 15.1ms
Multi step ✗ 100.7ms 98.6ms 15.2ms

Table 3. Inference times for VQ-BeT and baselines in kitchen environment. For DiffusionPolicy we rolled-out with 10-iteration diffusion,
following their real-world settings. The methods that only support single-step action prediction are marked with ✗.

10

Behavior Generation with Latent Actions

Method
Access to

information
Avg. L2

(m) (↓)
Avg. collision

(%) (↓)

FF (Hu et al., 2021)

Full

1.43 0.43
EO (Khurana et al., 2022) 1.6 0.33
UniAD (Hu et al., 2023) 1.03 0.31
Agent-Driver (Mao et al., 2023b) 0.74 0.21

GPT-Driver (Mao et al., 2023a)
Partial

0.84 0.44
Diffusion-based traj. model 0.96 0.49
VQ-BeT 0.73 0.29

Table 4. (Lower is better) Trajectory planning performance on the nuScenes environment. We bold the best partial-information model and
underline the best full-information model. Even with partial information about the environment, VQ-BeT can match or beat the SOTA
models on the L2 error metric.

2.5

3.0

3.5

Co
m

pl
et

ed
 g

oa
ls 3.22

2.93
2.99

2.91
2.82

3.16

Kitchen

3.0

3.5

4.0

Co
m

pl
et

ed
 g

oa
ls

3.78

3.67 3.65

3.76

0.52

3.11

Ant
0.5

1.0

1.5

L 2
 d

ist
. f

ro
m

 G
T

tra
j. 0.73 0.73 0.74 0.73

1.41

nuScenes

VQ-BeT
= 1

Vanilla VQ
Autoregressive codes

W/o offset
W/ chunking

Figure 5. Summary of our ablation experiments. The five different axes of ablation is described in Section C.5.

Denoising diffusion based models such as DiffusionPolicy and BESO require multiple forward passes from the network
to generate a single action or action chunk. In contrast, VQ-BeT can generate action or action chunks in a single forward
pass. As a result, VQ-BeT enjoys much faster inference times, as shown in Table 3. Receding horizon control using
action chunking can speed up some of our baselines, but VQ-BeT can take advantage of the same, speeding up the method
proportionally. Moreover, receding horizon control is not a silver bullet; it can be problematic in affordable, inaccurate
hardware, as we show in Section C.6 in our real world experiments.

C.4. Adapting VQ-BeT for autonomous driving

While our previous experiments showed robotic manipulation or locomotion results, learning from multi-modal behavior
datasets has wider applications. We evaluate VQ-BeT in one such case, in a self-driving trajectory planning task using the
nuScenes (Caesar et al., 2020) dataset. In this task, given a few frames of observations, the model must predict the next six
frames of an car’s location. While nuScenes usually require the trajectory be predicted from the raw images, we adapted
the GPT-Driver (Mao et al., 2023a) framework which uses pretrained models to extract vehicle and obstacle locations and
velocities. However, this processing also discards road lane and shoulder informations, which makes collision avoidance
hard.

In Table 4, we show the performance of VQ-BeT in this task, measured by how closely it followed the ground truth
trajectory in test scenes, as well as how likely the generated trajectory was to collide with the environment. Note that
collision avoidance is especially difficult for agents with partial information since they do not have any lane information. We
find that VQ-BeT outperforms all other methods in trajectory following, achieving the lowest average L2 distance between
the ground truth trajectories and generated trajectories. Moreover, VQ-BeT achieves a collision probability that is better or
on-par with older self-driving methods, while not being designed for self-driving in particular.

C.5. Design decisions that matter for VQ-BeT

In this section, we examine how changes in each module of VQ-BeT affect its performance. We ablate the following
components: using residual vs. vanilla VQ, using an offset head, using action chunking, predicting the VQ-codes
autoregressively, and weighing primary and secondary codes equally by setting β = 1 in Eq. 3. We perform these ablation
experiments in the conditional Kitchen, unconditional Ant, and the nuScenes self-driving task, and the result summary is
presented in Figure 5.

We note that performance-wise, not using a residual VQ layer has a significant negative impact, which we believe is because
of the lack of expressivity from a single VQ-layer. A similar drop in performance shows up when we weigh the two VQ

11

Behavior Generation with Latent Actions

Open Drawer Grasp the Box Close DrawerPlace in the DrawerInitial Position

Pick up Bread Place in the Bag Place on the TablePick up backInitial Position

Pick up Can Place in the Fridge Open Oven DoorClose Fridge DoorInitial Position

Demo: Open Drawer ! Pick and Place Box ! Close Drawer

Demo: Pick up Bread ! Place in the Bag ! Pick up Bag ! Place on the Table

Demo: Can to Fridge ! Fridge Closing ! Toaster Opening

Figure 6. Visualization of the trajectory VQ-BET generated in a long-horizon real world environment. Each demo consists of three to four
consecutive tasks. Please refer to Table 6 for the success rates for each task.

layers equally by setting β = 1, in Eq. 3. Both experiments seems to provide evidence that important expressivity is
conferred on VQ-BeT using residual VQs. Next, we note that predicting the VQ-codes autoregressively has a negative impact
on the kitchen environment. This performance drop is anomalous, since in the real world, we found that the autoregressive
(and thus causal) prediction of primary and secondary codes is important for good performance. In the environments where
it is possible, we also tried action chunking (Zhao et al., 2023); however the performance for such models were lacking.
Since VQ-BeT models are small and fast, action chunking isn’t necessary even when running it on a real robot in real time.
Finally, we found that the offset prediction is quite important for VQ-BeT, which points to how important full action fidelity
is for sequential decision making tasks that we evaluate on.

C.6. Adapting VQ-BeT to real-world robots

While our previous experiments evaluated VQ-BeT in simulated environments, one of the primary potential applications of
it is in learning robot policies from human demonstrations. In this section, we set up a real robot environment, collect some
data, and evaluate policies learned using VQ-BeT.

Environment and dataset: For single-phase and two-phase tasks, we run our experiments in a kitchen-like environment
with a toaster oven, a mini-fridge, and a small can in front of the robot as shown in Figure 3. For long-horizon scenarios
consisting of more than three tasks, we also test on a real kitchen environment as shown in Figure 6. We use a similar robot
and data collection setup as Dobb·E (Shafiullah et al., 2023), and use the Hello Robot: Stretch (Kemp et al., 2022) for
policy rollouts. We create a set of single-phase and multi-phase tasks on this environment (See Table 5, or Appendix D.2 for
details). While the single-phase tasks can only be completed in one way, some multi-phase tasks have multi-modal solutions
in the benchmark and the datasets.

Baselines: In this environment, we use MLP-BC and BC with Depth as our simple baselines, and DiffusionPolicy-T as
our multi-modal baseline. To handle visual inputs, all models are prepended with the HPR encoder from Shafiullah et al.
(2023) which is then fine-tuned during training.

Results: We present the experiment results from the real world environment in Table 5 and Table 6. Table 5 is split in two
halves for single-phase and two-phase tasks. On the single-phase tasks, we see that, simple MLP-BC models are able to

12

Behavior Generation with Latent Actions

Method Open Toaster Close Toaster Close Fridge Can to Toaster Can to Fridge Total

VQ-BeT 8/10 10/10 10/10 10/10 9/10 47/50
DiffPol-T† 8/10 9/10 8/10 10/10 10/10 45/50
BC w/ Depth 0/10 7/10 10/10 8/10 2/10 27/50
BC 0/10 8/10 7/10 9/10 5/10 29/50

Method
Can to Fridge →

Close Fridge
Can to Toaster →

Close Toaster
Close Fridge
and Toaster Total

VQ-BeT 6/10 8/10 5/10 19/30
DiffPol-T† 4/10 1/10 6/10 11/30
BC w/ Depth 2/10 0/10 2/10 4/30
BC 2/10 1/10 4/10 7/30

Table 5. Real world robot experiments solving a number of standalone tasks (top) and two-task sequences (bottom). Here, † denotes that
we modified DiffusionPolicy-T to improve its performance; see Section C.6 paragraph “Practical concerns”.

perform almost all tasks with some success, which shows that the subtasks are achievable, and the baselines are implemented
well. On these single-phase tasks, VQ-BeT marginally outperforms DiffusionPolicy-T, while both algorithms achieve a
≥ 90% success rate. However, the more interesting comparison is in the two-phase, longer horizon tasks. Here, VQ-BeT
outperforms all baselines, including DiffusionPolicy, by a relative margin of 73%.

Besides comparisons with baselines, we also notice multimodality in the behavior of VQ-BeT. Especially in the task “Close
Fridge and Toaster”, we note that our model closes the doors in both possible orders during rollouts rather than collapsing to
a single mode of behavior.

Task 1 Approach Handle Grasp Handle Open Drawer Let Handle Go Approach the Box Grasp the Box Move to Drawer Place Box inside Go in front of Drawer Close Drawer

VQ-BeT 8/10 7/10 7/10 7/10 7/10 7/10 7/10 6/10 6/10 6/10
DiffPol-T† 10/10 9/10 9/10 9/10 8/10 3/10 3/10 3/10 3/10 2/10

Task 2 Approach Bread Grasp the Bread Move to the Bag Place Bread inside Approach the Handle Grasp the Handle Lift Bag up Place on the table Let Handle go

VQ-BeT 10/10 10/10 10/10 4/10 3/10 3/10 3/10 3/10 3/10
DiffPol-T† 9/10 9/10 9/10 9/10 2/10 2/10 2/10 1/10 1/10

Task 3 Grasp Can Pick up Can Can into Fridge Let Go of Can Move Left of Fridge Door Close Fridge Door Go in Front of Toaster Grasp Toaster Handle Open Toaster Return to Home Pos.

VQ-BeT 10/10 10/10 10/10 8/10 8/10 8/10 8/10 7/10 7/10 7/10
DiffPol-T† 5/10 5/10 5/10 4/10 2/10 2/10 2/10 2/10 2/10 2/10

Task 4 Grasp Can Pick up Can Can into Toaster Drops Can on Tray Goes Below Toaster Door Close Toaster Door Backs up Move Left of Fridge Door Close Fridge Return to Home Pos.

VQ-BeT 10/10 10/10 8/10 8/10 8/10 6/10 6/10 6/10 6/10 6/10
DiffPol-T† 9/10 9/10 8/10 8/10 8/10 1/10 2/10 2/10 2/10 1/10

Table 6. Long-horizon real world robot experiments (Figure 6). Each task consists of three to four sequences; Task 1 (Open Drawer →
Pick and Place Box → Close Drawer), Task 2 (Pick up Bread → Place in the Bag→ Pick up Bag → Place on the Table), Task 3 (Can to
Fridge → Fridge Closing → Toaster Opening), and Task 4 (Can to Toaster → Toaster Closing → Fridge Closing). Here, † denotes that
we modified DiffusionPolicy-T to improve its performance as explained in Section C.6 paragraph “Practical concerns”.

RTX A4000 GPU 4-Core Intel CPU
VQ-BeT 18.06 207.25
DiffusionPolicy-T 573.49 5243.82
BC w/ Depth 5.66 87.28
BC 4.73 83.28

Table 7. Average inference time for real robot (in milliseconds). The GPU column is calculated on our workstation while the CPU column
is calculated on the Hello Robot’s onboard computer.

Additionally, we present results from long-horizon real world experiments consisting of a sequence of three or more subtasks
in Figure 6 and Table 6. We consider interactions with a wider variety of environments (communal kitchen and conference
room) and objects (bread, box, bag, and drawer) compared to the single- or two-phase tasks in order to evaluate VQ-BeT
in more general scenes. Overall, we see that VQ-BeT has at least thrice the success rate of DiffusionPolicy at the end of
all four tasks. For Task 1 and 2, we observe that VQ-BeT gains a performance advantage toward the end of the episode,
although VQ-BeT and DiffusionPolicy perform similarly at the beginning of the episodes. Also note that Task 2 is difficult
in our ego-only camera setup, since the bag is out of the view while grabbing the bread. For Tasks 3 and 4, we observe that
VQ-BeT outperforms DiffusionPolicy in all subtasks and notably, the performance difference is even more pronounced
toward the end of the episode. These long-horizon task results continue to suggest that VQ-BeT may overfit less and learn
more robust behavior policies in longer horizons tasks.

Practical concerns: In practice, we noticed that receding-horizon control as used by Chi et al. (2023) fails completely in
our environment (See Appendix Table 11 for comparison to closed loop control). Our low-cost mobile manipulator robot
lacks precise motion control unlike more expensive robot arms like Franka Panda. This controller noise causes models to go
out of distribution during even a short period (three timesteps) of open-loop rollout. To resolve this, we rolled out every

13

Behavior Generation with Latent Actions

policy fully closed-loop, which resulted in a much larger inference time gap (25×) between VQ-BeT and Diffusion Policy
as presented in Table 7.

D. Experimental and Dataset
D.1. Simulated environments

Across our experiments, we use a variety of environments and datasets to evaluate VQ-BeT. We give a short descriptions of
them here, and depiction of them in Figure 3:

• Franka Kitchen: We use the Franka Kitchen robotic manipulation environment introduced in (Gupta et al., 2019) with
a Franka Panda arm with a 7 dimensional action space and 566 human collected demonstrations. This environment
has seven possible tasks, and each trajectory completes a collection of four tasks in some order. While the original
environment is state-based, we create an image-based variant of it by rendering the states with the MuJoCo renderer as an
112 by 112 image. In the conditional variant of the environment, the model is conditioned with future states or image
goals (Image Kitchen).

• PushT: We adopt the PushT environment introduced in (Chi et al., 2023) where the goal is to push a T-shaped block on a
table to a target position. The action space here is two-dimensional end-effector velocity control. Similar to the previous
environment, we create an image based variant of the environment by rendering it, and a goal conditioned variant of the
environment by conditioning the model with a final position. This dataset has 206 demonstrations collected by humans.

• BlockPush: The BlockPush environment was introduced by Florence et al. (2022) where the goal of the robot is to push
two red and green blocks into two (red and green) target squares in either order. The conditional variant is conditioned by
the target positions of the two blocks. The training dataset here consists of 1,000 trajectories, with an equal split between
all four possibilities of (block target, push order) combinations, collected by a pre-programmed primitive.

• UR3 BlockPush: In this task, an UR3 robot tries to move two blocks to two goal circles on the other side of the table
(Kim et al., 2022). Each demonstration is multimodality, since either block can move first. In the non-conditional setting,
we evaluate whether each block reaches the goal, while in the conditional setting, we evaluate in which order the blocks
get to the given target point.

• Multimodal Ant: We adopt a locomotion task that requires the MuJoCo Ant (Brockman et al., 2016) robot to reach
goals located at each corner of the map. The demonstration contains trajectories that reach the four goals in different
orders. In the conditional setting, the performance is evaluated by reaching two goals given by the environment, while in
the unconditional setting, the agent tries to reach all four goals.

• nuScenes self-driving: Finally, to evaluate VQ-BeT on environments beyond robotics, we use the nuScenes (Caesar
et al., 2020) self-driving environment as a test setup. We use the preprocessed, object-centric dataset from Mao et al.
(2023a) with 684 demonstration scenes where the policy must predict the next six timesteps of the driving trajectory. In
this environment, the trajectories are all goal-directed, where the goal of which direction to drive is given to the policy at
rollout time. In Appendix Section F.2, we detail how we process the GPT-Driver Mao et al. (2023a) dataset for use in our
method.

D.2. Real-world environments

We run our experiments on a kitchen-like environment, with a toaster oven, a mini-fridge, and a small can in front of them,
as seen in Fig. 3. In this environment, we define the tasks as opening or closing the fridge or toaster, and moving the
can from the table to the fridge or toaster and vice versa. During data collection and evaluation, the starting position for
the gripper and the position of the cans are randomized within a predefined area, while the location of the fridge and the
toaster stays fixed. We use a similar robot and data collection setup as Dobb·E (Shafiullah et al., 2023), using the Stick to
collect 45 demonstrations for each task, using 80% of them for training and 20% for validation, and using the Hello Robot:
Stretch (Kemp et al., 2022) for policy rollouts. While some of the single tasks can only be completed in one way, the we also
test the model on sequences of two tasks, for example closing oven and fridge, which can be completed in multiple ways.
This task multi-modality is also captured in the dataset: tasks that can be completed in multiple ways have multi-modal
demonstration data.

14

Behavior Generation with Latent Actions

E. Additional Results

C-BeT C-BESO CFG-BESO VQ-BeT

Kitchen
Full 3.09 3.75 3.47 3.78
1/4 2.77 2.62 3.07 3.46
1/10 2.59 2.67 2.73 2.95

Image Kitchen Full 2.41 2.00 1.59 2.60

Ant Multimodal
Full 1.68 1.14 0.92 1.72
1/4 0.85 0.58 0.52 1.23
1/10 0.35 0.39 0.40 1.06

BlockPush Multimodal
Full 0.87 0.93 0.88 0.87
1/4 0.48 0.52 0.47 0.62
1/10 0.10 0.29 0.17 0.13

UR3 Multimodal
−ℓ1 -0.129 -0.090 -0.091 -0.085
p1 1.00 0.98 0.97 1.00
p2 0.67 0.96 0.94 0.94

PushT Final Coverage 0.02 0.30 0.25 0.39
Max Coverage 0.11 0.41 0.38 0.49

Image PushT Final Coverage 0.01 0.02 0.01 0.10
Max Coverage 0.02 0.02 0.02 0.12

Table 8. Quantitative results of VQ-BeT and related baselines on conditional tasks.

BeT DiffusionPolicy-C DiffusionPolicy-T VQ-BeT

PushT Final Coverage 0.39 0.73 0.74 0.78
Max Coverage 0.73 0.86 0.83 0.80

Image PushT Final Coverage 0.01 0.66 0.45 0.68
Max Coverage 0.01 0.82 0.71 0.73

Kitchen

p1 0.99 0.94 0.99 1.00
p2 0.93 0.86 0.98 0.98
p3 0.71 0.56 0.87 0.91
p4 0.44 0.26 0.60 0.77

p3-Entropy 3.44 3.18 3.38 3.42
p4-Entropy 4.01 3.62 3.89 4.07

Image Kitchen

p1 0.97 0.99 0.97 1.00
p2 0.73 0.95 0.90 0.93
p3 0.51 0.73 0.75 0.67
p4 0.27 0.44 0.39 0.38

p3-Entropy 3.03 2.36 3.01 3.20
p4-Entropy 2.77 2.93 3.55 3.32

Ant Multimodal

p1 0.91 0.96 0.87 0.94
p2 0.79 0.81 0.78 0.83
p3 0.67 0.73 0.69 0.75
p4 0.36 0.62 0.56 0.70

p3-Entropy 3.89 4.26 4.27 4.19
p4-Entropy 3.55 4.18 4.11 4.20

BlockPush Multimodal
p1 0.96 0.36 0.99 0.96
p2 0.71 0.11 0.94 0.83

p2-Entropy 1.95 1.94 1.95 1.99

UR3 Multimodal
p1 0.84 1.00 1.00 1.00
p2 0.75 0.83 0.82 0.84

p2-Entropy 0.99 0.91 0.98 0.99

Table 9. Quantitative results of VQ-BeT and related baselines on non-conditional tasks.

15

Behavior Generation with Latent Actions

L2 (↓) Collision (%) (↓)
1s 2s 3s Avg. 1s 2s 3s Avg.

ST-P3 metrics

ST-P3 (Hu et al., 2022) 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
VAD (Jiang et al., 2023) 0.17 0.34 0.60 0.37 0.07 0.10 0.24 0.14

GPT-Driver (Mao et al., 2023a) 0.20 0.40 0.70 0.44 0.04 0.12 0.36 0.17
Agent-Driver (Mao et al., 2023b) 0.16 0.34 0.61 0.37 0.02 0.07 0.18 0.09
Diffusion-based Traj. Prediction 0.21 0.43 0.80 0.48 0.01 0.07 0.35 0.14

VQ-BeT 0.17 0.33 0.60 0.37 0.02 0.11 0.34 0.16

UniAD metrics

NMP (Zeng et al., 2019) - - 2.31 - - - 1.92 -
SA-NMP (Wei et al., 2021) - - 2.05 - - - 1.59 -

FF (Hu et al., 2021) 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43
EO (Khurana et al., 2022) 0.67 1.36 2.78 1.60 0.04 0.09 0.88 0.33
UniAD (Hu et al., 2023) 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31

GPT-Driver (Mao et al., 2023a) 0.27 0.74 1.52 0.84 0.07 0.15 1.10 0.44
Agent-Driver (Mao et al., 2023b) 0.22 0.65 1.34 0.74 0.02 0.13 0.48 0.21
Diffusion-based Traj. Prediction 0.27 0.78 1.83 0.96 0.00 0.27 1.21 0.49

VQ-BeT 0.22 0.62 1.34 0.73 0.02 0.16 0.70 0.29

Table 10. (Lower is better) Trajectory planning performance on the nuScenes (Caesar et al., 2020) self-driving environment. We bold the
best performing model. Note that while Agent-Driver outperforms us in some Collision avoidance benchmarks, it is because they use a
lot more information than what is available to our agent, namely the road lanes and the shoulders information, without which avoiding
collision is difficult for our model or GPT-Driver (Mao et al., 2023a). Even with such partial information about the environment, VQ-BeT
can match or beat the SOTA models in predicting L2 distance from ground truth trajectory.

BeT DiffusionPolicy-C VQ-BeTDiffusionPolicy-T

3.04ms 103.08ms 77.53ms 3.17ms

BC LSTM-GMM

0.13ms 2.45ms

Success
Traj.

Method

Infer. time

Fa
ilu

re
 c

as
es

:
H

ig
h

er
r.

Fa
ilu

re
 c

as
es

:
M

od
e

C
ol

la
ps

e

BeT

DiffusionPolicy-T

VQ-BeT

VQ-BeT

Figure 7. Multi-modal behavior visualization on pushing a T-block to target. On the left, we can see trajectories generated by different
algorithms and their inference time per single step, where VQ-BeT generate smooth trajectories to complete the task with both modes
with short inference time. On the right, we can see failure cases of VQ-BeT and related baselines due to high error and mode collapse.

Control method Close Toaster Close Fridge Can to Toaster Can to Fridge
Can to Fridge →

Close Fridge
Close Fridge
and Toaster Total

Closed loop (n = 1) 9/10 8/10 10/10 10/10 4/10 6/10 47/60
Receding horizon (n = 3) 0/5 0/5 0/5 0/5 0/5 0/5 0/30

Table 11. Quantitative results of running diffusion policy (Chi et al., 2023) with closed-loop vs. receding horizon control in real-world
robot experiments, where n is the number of actions executed at each timestep. We select four single-phase tasks and two two-phase
tasks in which diffusion policy does well with closed-loop control, and compare with the same policy with receding horizon control by
executing multiple predicted actions at each timestep. We see the diffusion policy with an action sequence executed per timestep goes out
of distribution quite easily and fails to complete any tasks on this set of experiments.

16

Behavior Generation with Latent Actions

Ac
tio

n[
0]

Action[1] Action[1]

Decoded primary code of RVQ Decoded full code of RVQ

Figure 8. Action centroids of primary codes and full combination of the codes. On the left, we represent centroids of the raw action data
obtained by decoding (total of 12) primary codes learned from Blockpush Multimodal dataset. On the right, we show the decoded action of
the centroids corresponding to all 144 possible combinations of full the codes. We can see that the primary codes, represented by different
colors in each figure, are responsible for clustering in the coarse range, while full-code representation provides further finer-grained
clusters with secondary codes.

0

0

0

Fin
al

 c
ov

er
ag

e

0.02 0.02

0.30
0.25

0.39

PushT

0

0

0

Fin
al

 c
ov

er
ag

e

0.02
0.01

0.02
0.01

0.10

Image PushT

2

3

4

Co
m

pl
et

ed
 g

oa
ls

0.15

3.09

3.75

3.47

3.78

Kitchen

1

2

3

Co
m

pl
et

ed
 g

oa
ls

0.64

2.41

2.00

1.59

2.60

Image Kitchen

0

1

2

Co
m

pl
et

ed
 g

oa
ls

0.00

1.68

1.14

0.92

1.72

Ant Multimodal

0

1.00

2.00
Co

m
pl

et
ed

 g
oa

ls

0.19

1.67

1.94 1.91 1.94
UR3 Multimodal

0

0.50

1.00

Su
cc

es
s r

at
e

0.01

0.87
0.93

0.88 0.87

BlockPush Multimodal

GCBC C-BeT C-BESO CFG-BESO VQ-BeT

Figure 9. Evaluation of conditional tasks in simulation environments of VQ-BeT and related baselines. VQ-BeT achieves the best
performance in most simulation environments and comparable performance with the best baseline on BlockPush.

0

0

1

Fin
al

 C
ov

er
ag

e 0.65

0.39

0.73 0.74 0.78

PushT

0

0

1

Fin
al

 C
ov

er
ag

e

0.13

0.01

0.66

0.45

0.68

Image PushT

2

3

4

Co
m

pl
et

ed
 g

oa
ls

0.18

3.07

2.62

3.44

3.66

Kitchen

2

3

4

Co
m

pl
et

ed
 g

oa
ls

0.75

2.48

3.11
3.01 2.98

Image Kitchen

2

3

4

Co
m

pl
et

ed
 g

oa
ls

0.01

2.73

3.12

2.90

3.22

Ant

0

1

2

Co
m

pl
et

ed
 g

oa
ls

0.11

1.59

1.83 1.82 1.84

UR3 BlockPush

0

1.0

2

Co
m

pl
et

ed
 g

oa
ls

0.01

1.67

0.47

1.93
1.79

BlockPush

BC BeT DiffusionPolicy-C DiffusionPolicy-T VQ-BeT (Us)

Figure 10. Evaluation of unconditional tasks in simulation environments of VQ-BeT and related baselines. VQ-BeT achieves the best
performance in most simulation environments and comparable performance with the best baseline on BlockPush and Image Kitchen.

17

Behavior Generation with Latent Actions

E.1. VQ-BeT with larger Residual VQ Codebook

Original codebook Extended Codebook Extended Codebook
(Vanilla VQ-BeT) (Vanilla VQ-BeT) (VQ-BeT + Deadcode Masking)

Ant Multimodal (Unconditional)

Codebook Size 10 32 32
of Code Combinations 100 1024 1024

(·/4) 3.22 3.01 3.11
p3-Entropy 4.19 4.23 4.33
p4-Entropy 4.20 4.24 4.32

Ant Multimodal (Conditional)
Codebook Size 10 48 48

of Code Combinations 100 2304 2304
(·/2) 1.72 1.75 1.81

Kitchen (Unconditional)

Codebook Size 16 64 64
of Code Combinations 256 4096 4096

(·/4) 3.66 3.75 3.7
p3-Entropy 3.42 3.01 3.10
p4-Entropy 4.07 3.57 3.74

PushT (UnConditional)
Codebook Size 16 64 64

of Code Combinations 256 4096 4096
Final Coverage 0.78 0.77 0.79
Max Coverage 0.80 0.80 0.82

Kitchen (Conditional)
Codebook Size 16 256 256

of Code Combinations 256 65536 65536
(·/4) 3.78 3.61 3.56

Table 12. Evaluation of conditional and unconditional tasks in simulation environments of VQ-BeT with extended size of Residual VQ
codebook.

In this section, we present additional results to evaluate the performance of VQ-BeT with larger residual VQ codebooks.
While the results of VQ-BeT across the manuscript were obtained using 8 to 16-sized codebooks, resulting in 64 to 256 code
combinations (Table 13), here, VQ-BET was trained on codebooks with 10 to 250 times more combinations, as detailed in
Table 12. First, we evaluate VQ-BeT with extended codebook size without any modifications (‘Vanilla VQ-BeT’). Next, we
test VQ-BeT with an additional technique where the code combinations that do not appear in the dataset are masked with a
probability of zero at sampling time to eliminate the possibility of these combinations.

As shown in Table 12, we find that increasing the number of combinations (×10 ∼ ×250) had little impact on performance
in most environments. In environments Ant Multimodal (Conditional) and PushT (Unconditional), overall performance
slightly increased as the size of the VQ codebook increased. In environments Ant Multimodal (Unconditional) and Kitchen
(Unconditional), we see that there is a performance and entropy trade-off as the size of the codebook increases. The only
environment where the performance of VQ-BeT decreased with the extended size of the codebook was Kitchen (Conditional).
Also, we see that there is no consistent evidence on whether using masking the deadcode (code combinations that do not
appear in the dataset) is better: in Ant and PushT environments, masking led to similar or better performance, while in the
Kitchen environment, we find similar or slightly worse performance with masking.

Overall, we conclude that VQ-BeT has robust performance to the size of the codebook if it is enough to capture the major
modes in the dataset. We conjecture that this robustness is due to VQ-BeT assigning appropriate roles between primary and
secondary codes as the codebook size increases. For example, in the Kitchen (Conditional) environment where we have
increased the number of possible combinations by 256, the code prediction accuracy rate has decreased by only ×0.08
of its original accuracy rate, while the primary code prediction retained ×0.8 of its original accuracy rate. Interestingly,
Despite this large difference, the performance difference between the two is small, around 4.5% (3.78 vs 3.61). These results
suggest that VQ-BeT could rely on the resolution of the primary code in large VQ codebook size, while using less weight on
the secondary code to handle the excessive number of code combinations, leading to robust performance to the size of the
codebook.

18

Behavior Generation with Latent Actions

F. Implementation Details
F.1. Model Design Choises

Hyperparameter Kitchen Ant BlockPush UR3 PushT NuScenes Real-world
Obs window size 10 100 3 10 5 1 6

Goal window size (Conditional Task) 10 10 3 10 5 1 -
Predicted act sequence length 1 1 1 10 5 6 1

Autoregressive code pred. False False False False False True True
β (Eq. 3) 0.1 0.6 0.1 0.1 0.1 0.1 0.5

Training Epoch 1000 300 1500 300 2000 1000 600
Learning rate 5.5e-5 5.5e-5 1e-4 5.5e-5 5.5e-5 5.5e-5 3e-4

MinGPT layer num 6 6 4 6 6 6 6
MinGPT head num 6 6 4 6 6 6 6

MinGPT embed dims 120 120 72 120 120 120 120
VQ-VAE latent dims 512 512 256 512 512 512 512

VQ-VAE codebook size 16 10 8 16 16 10 8/10/16
Encoder (Image env) ResNet18 - - - ResNet18 - HPR

Table 13. Hyperparameters for VQ-BeT

F.2. VQ-BeT for Driving Dataset

While all the other environments reported in this paper have a fixed observation dimension at one timestep, NuScenes driving
dataset, as processed in the GPT-Driver paper (Mao et al., 2023a), could contain the different number of detected objects in
each scene. Thus, we make modification to the input types of VQ-BeT to train VQ-BeT with NuScenes driving dataset in
response to this change in dimensionality of the obeservation data. The tokens we pass to VQ-BeT are as shown below:

• Mission Token indicates the mission that the agent should follow: go forward / turn left / turn right

• Ego-state Token contains velocity, angular velocity, acceleration, heading speed, and steering angle.

• Trajectory History Token contains ego historical trajectories of last 2 seconds, and ego historical velocities of last 2
seconds.

• Object Tokens contains perception and prediction outputs corresponding to current position, predicted future position,
and one-hot encoded class indicator of each object. There are total of 15 classes. (‘pushable-pullable’, ‘car’, ‘pedestrian’,
‘bicycle’, ‘truck’, ‘trafficcone’, ‘motorcycle’, ‘barrier’, ‘bus’, ‘bicycle-rack’, ‘trailer’, ‘construction’, ‘debris’, ‘animal’,
‘emergency’)

MinGPT

…Mission Ego-
states

forward/ left/ right

Trajectory
History

Object 1
Slot

Object N
Slot

Order of the dist. From the agent
If num of object < N (max=51): Use zero masks

current pos (2dim)
future trajectory (2dim)
obj class (15dim one-hot)

current pos (2dim)
future trajectory (2dim)
obj class (15dim one-hot)

or torch.zeros(19)

Code Prediction
head Offset head

Trajectory Prediction

Figure 11. Overview of VQ-BeT for autonomous driving.

19

 이승재 <ysz0301@snu.ac.kr>

[ICML 2024] Decision notification for your submission 2259: Behavior Generation
with Latent Actions

ICML 2024 <icml2024-notifications@openreview.net> 2024년 5월 1일 오후 8:43
답장 주소: program-chairs@icml.cc
받는사람: ysz0301@snu.ac.kr

Dear Seungjae Lee,

We are happy to notify you that your submission Behavior Generation with Latent Actions
(https://openreview.net/forum?id=hoVwecMqV5), is accepted at ICML 2024. To access your reviews, please log in to
your author console at https://openreview.net/group?id=ICML.cc/2024/Conference/Authors.

This year, ICML received 9,473 submissions (not including desk rejected papers), an increase of 44% from last year.
Among these, we have accepted 2,609 submissions for presentation at the conference, an acceptance rate of 27.5%.
These numbers include 286 position paper submissions, out of which 75 were accepted. Submissions were reviewed
by at least three reviewers, an area chair, and a senior area chair, in order to ensure each submission was assessed
properly; in the rare cases where a paper ultimately received only two reviews, ACs provided a detailed reading of the
paper as well.

Note that while some of the meta-reviews mention recommending the paper for a talk versus a poster, no final
decisions have yet been made on the assignment of papers to presentations as a poster alone or as an oral
presentation. These will be made in the coming weeks, subject to availability of space and timing at the venue. All
accepted papers will receive an email in the next few weeks designating the paper as a poster or additional oral
presentation.

ICML will take place in Vienna, Austria on July 21-27 and will be an in-person conference. To accommodate this
format, here is some important information:

1. Every paper will be presented as a poster at one of the poster sessions during the main conference.

2. Every paper will be given an opportunity to record and make available a short video presentation of the paper.
This is encouraged but not required.

3. Papers eventually designated for oral presentation will receive further instructions on the presentation format.

4. Please update your paper as appropriate based on the review process. The camera ready deadline is May 29
(11:59pm AoE). Additional instructions and camera-ready requirements will be provided soon.

Congratulations, and thank you for submitting your work to ICML. We are looking forward to seeing you at the
conference!

Sincerely,
ICML 2024 Program Chairs

Please note that responding to this email will direct your reply to program-chairs@icml.cc.

5/27/24, 3:03 PM 서울대학교 메일 - [ICML 2024] Decision notification for your submission 2259: Behavior Generation with Latent Actions

https://mail.google.com/mail/u/6/?ik=872bb15e0d&view=pt&search=all&permmsgid=msg-f:1797899549140393978&simpl=msg-f:1797899549140393978 1/1

https://openreview.net/forum?id=hoVwecMqV5
https://openreview.net/forum?id=hoVwecMqV5
https://openreview.net/group?id=ICML.cc/2024/Conference/Authors
https://openreview.net/group?id=ICML.cc/2024/Conference/Authors
https://openreview.net/group?id=ICML.cc/2024/Conference/Authors
mailto:program-chairs@icml.cc

