
E-PROTRAN: Efficient Probabilistic Transformers for Forecasting

Batuhan Koyuncu * 1 Tim Nico Bauerschmidt * 1 Isabel Valera 1

Abstract

Time series forecasting involves predicting future
data points based on historical patterns and is
critical for applications in fields such as health-
care, financial markets, and weather forecast-
ing, where scalability and efficiency, particularly
in training and inference times, are paramount.
Transformers, known for their ability to handle
long-range dependencies in sequential data, have
shown promise in time series analysis. However,
the complexity of transformer models can lead
to overparameterization, extended training times,
and scalability challenges, which can become
even more problematic if the assumptions of the
underlying generative model are overly compli-
cated. In this paper, we introduce E-PROTRAN
by re-designing a state-of-the-art transformer for
probabilistic time series forecasting. We empir-
ically demonstrate that E-PROTRAN maintains
high performance while significantly enhancing
efficiency without necessarily reconstructing the
conditioned history. Our model incorporates sim-
plified attention layers and design adjustments
that reduce computational overhead without com-
promising accuracy, offering a more efficient and
scalable solution for time series forecasting.

1. Introduction
A time series consist of data points with values that can be
modeled as a function of time – in other words, data points
are ordered in time. Time series analysis has been used for
understanding, classification, or forecasting of time series
data. In particular, time series forecasting has important
applications in fields such as health-care (Ghassemi et al.,
2015), financial markets (Sonkavde et al., 2023), weather
forecasting (Zaytar & Amrani, 2016), and many more.

*Equal contribution 1Saarland University, Saarbrücken, Ger-
many. Correspondence to: Batuhan Koyuncu <koyuncu@cs.uni-
saarland.de>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

Transformers (Vaswani et al., 2017) are promising archi-
tectures for natural language processing (Radford et al.,
2018; Devlin et al., 2019), speech processing (Ao et al.,
2021), and computer vision (Carion et al., 2020; Dosovit-
skiy et al., 2020). One of the main strengths of transformers
is their ability to handle long-range dependencies and rela-
tionships in sequential data, making them highly preferable
for time series analysis and modeling. Moreover, Elsayed
et al. (2021) showed that transformer-based models are one
of the few architectures that can outperform traditional ML
models for time series forecasting tasks.

A transformer learns weights on the fly, i.e., weights are
conditioned on the data in each layer using an attention
mechanism. This brings greater expressivity to the model;
however, it also leads to more complex models as the num-
ber of attention blocks increases. In the end, the higher
complexity may create overparameterized models, deterio-
rate training times, reduce scalability, and cause converging
problems.

In this paper, we empirically demonstrate that our proposed
model, E-PROTRAN, a simplified version of the state-of-the-
art attention-based architecture Probabilistic Transformer
(PROTRAN) (Tang & Matteson, 2021), offers strongly im-
proved inference speed and scalability with a comparable
performance.

2. PROTRAN: Probabilistic Transformer
2.1. Preliminaries

In this paper, we work with multivariate time series x1:T ∈
RT×d, where xt ∈ Rd is a d-dimensional data vector at
the discrete time step t ∈ N+. Given conditioning samples
x1:t0 up to time step t0, the goal is to predict the forecasting
distribution p(xt0+1:T |x1:t0). Often, additional covariates
that are known for each time step, such as the date, are
included in the model. Following a latent variable approach,
we decompose the full generative distribution

pψ,θ(x1:T |x1:t0 , c1:T) =∫
pθ(x1:T |z1:T)pψ(z1:T |x1:t0 , c1:T)dz1:T .

(1)

Here, z1:T with zt ∈ Rdz is the corresponding latent time
series, pψ(z1:T |x1:t0 , c1:T) is a conditional prior distribu-

1

E-PROTRAN: Efficient Probabilistic Transformers for Forecasting

tion denoting the transition model with parameters ψ, and
pθ(x1:T |z1:T) is a likelihood distribution denoting the emis-
sion model with paramters θ.

Our objective is to learn both distributions, parameterizing
them via neural networks to capture non-linear temporal
patterns. As the full posterior is intractable, we approximate
it with amortized variational inference (Rezende et al., 2014;
Kingma & Welling, 2013).

In this work, we rely on transformers (Vaswani et al., 2017)
to parameterize the conditional prior distribution pψ . Trans-
formers use multihead attention which enables them to ex-
tract different representations by attending to various parts
of the input. To this end, queryQ ∈ Rℓq×d, keyK ∈ Rℓk×d,
and value V ∈ Rℓk×d matrices are used, which typically
get linearly transformed. Attention (A) can then be denoted
as

A(Q,K, V) = Softmax

(
QKT

√
dk

)
V

MultiHead(Q,K, V) = Concat(head1, . . . , headh)WO

where headi = A(QWQ
i ,KW

K
i , VW

V
i).

WQ
i ,W

K
i ,W

V
i correspond to the weight parameters of

head i, and it is called self-attention if Q = K = V.

2.2. PROTRAN’s Formulation

Our work is closely related to PROTRAN for multivariate
time series forecasting (Tang & Matteson, 2021). PROTRAN
has the transition and emission models1

pψ(z1:T |x1:t0 , c1:T) =
T∏
t=1

pψ(zt|z1:t−1, x1:t0 , c1:T) (2)

pθ(x1:T |z1:T) =
T∏
t=1

pθ(xt|zt). (3)

A latent variable zt depends on the conditioning data x1:t0
and preceding latent variables z1:t−1, while the observed
variable xt depends only on zt. Hence, zt needs to capture
all information to generate xt. The approximate posterior is
conditioned on the whole data and factorizes as

qϕ(z1:T |x1:T , c1:T) =
T∏
t=1

qϕ(zt|z1:t−1, x1:T , c1:T). (4)

The corresponding evidence lower bound (ELBO) becomes

log(pψ,θ(x1:T |x1:t0 , c1:T)) ≥
T∑
t=1

(
Ezt∼qϕ [log(pθ(xt|zt))]−DKL(qϕ ∥ pψ)

)
,

(5)

1Here pψ(z1|z1:0, x1:t0 , c1:T) = pψ(z1|x1:t0 , c1:T).

where DKL is the KL divergence, qϕ and pψ de-
note qϕ(zt|z1:t−1, x1:T , c1:T) and pψ(zt|z1:t−1, x1:t0 , c1:T),
which are parameterized by the posterior and prior networks,
respectively. The ELBO is tractable, and thus its maximiza-
tion is used as objective for training the networks.

The forward pass of PROTRAN starts with projecting the
inputs via an MLP, adding a fixed positional encoding, and
applying layer normalization (LN) (Ba et al., 2016), i.e.,

h
(0)
t = LN(MLP([xt, ct]) + Position(t)). (6)

For forecasting, xt0+1:T are masked out by setting them to
0, while the covariates ct0+1:T are known and given to the
model. Then, for each layer l ∈ [1, . . . , L], they compute

w̃
(l)
t = LN(w

(l)
t−1 +A(w

(l)
t−1, w

(l−1)
1:T , w

(l−1)
1:T)) (Layer Att.)

w̄
(l)
t = LN(w̃

(l)
t +A(w̃

(l)
t , w

(l)
1:t−1, w

(l)
1:t−1)) (Autoreg. Att.)

ŵ
(l)
t = LN(w̄

(l)
t +A(w̄

(l)
t , h

(0)
1:t0

, h
(0)
1:t0

)) (Input Att.)

z
(l)
t ∼ N

(
MLP(ŵ

(l)
t),diag(SP(MLP(ŵ

(l)
t))

)
(7)

w
(l)
t = LN(ŵ

(l)
t +MLP(z

(l)
t) + Position(t)) (8)

with assumptions on edge cases2, N (·, ·) is a Gaussian, SP
denotes the Softplus function, and diag denotes a diagonal
covariance matrix. These equations characterize the con-
ditional prior pψ. The parameters of qϕ are mostly shared
with pψ , except that Equation 7 is replaced with

kt = A(h
(0)
t , h

(0)
1:T , h

(0)
1:T); ŵk

(l)
t = [ŵ

(l)
t , kt] (9)

z
(l)
t ∼ N

(
MLP(ŵk

(l)
t),diag(SP(MLP(ŵk

(l)
t)))

)
. (10)

Finally, the emission model parameterizes the likelihood as
pθ(xt|z(L)t) = Laplace(xt|MLP(w

(L)
t), β), where through-

out this paper we fix β = 1. With multiple layers of latent
variables, the ELBO in Equation 5 has a sum over the layers
for the KL divergence. The underlying assumption is that
prior and approximate posterior factorize over the time steps
and layers. We provide the exact details in Appendix A.

2.3. Weaknesses of PROTRAN

We argue that PROTRAN is overly complex while introduc-
ing no benefits in terms of predictive power. In the following
section, we discuss our arguments in detail.

Autoregressive Attention (I) removes the computational
benefit that transformers possess over RNNs by leveraging
parallel computation. As Vaswani et al. (2017) argue, com-
puting one layer of attention incurs a complexity of O(T 2d),

2Layer attention is omitted at l = 1, autoregressive attention
is omitted at t = 1, and w

(l)
0 are context-independent learnable

parameters.

2

E-PROTRAN: Efficient Probabilistic Transformers for Forecasting

where T is the sequence length and d is the dimensional-
ity. However, attention needs O(1) sequential operations
to compute the T output embeddings. In contrast, RNNs
require O(T) sequential operations, making them much
slower in practice. PROTRAN loses this parallelization, and
it resembles an RNN where the hidden states have to be
computed sequentially for each time step.

Sampling zt at Each Layer (II) and connecting these sam-
ples throughout the layers (Equations 7-8) has no benefits
for the predictive performance compared to sampling them
only in the last layer. On the other hand, it introduces noise
in the forward pass and thus to the gradients during training.

Non-Causal Layer Attention (III) violates the temporal
assumption that xt+1 cannot influence xt. Although not
a problem for a strictly predictive task, predictions of zt
from the conditional prior can change depending on the
forecasting window which influences the length of w(l−1)

1:T

and, therefore, the output of the layer attention. This is
is undesirable. Besides, uncertainty about the future can
negatively impact the predictions at previous points.

3. E-PROTRAN: Efficient Probabilistic
Transformer for Forecasting

We propose the Efficient Probabilistic Transformer for Fore-
casting (E-PROTRAN), which effectively addresses and
overcomes the aforementioned aspects. We mention the
changes we incorporate with E-PROTRAN and their motiva-
tion in the following part.

(I) In order to increase computational efficiency, we omit
Equation (Autoreg. Att.). This re-enables parallel process-
ing of attention for all time steps, while still allowing in-
formation to flow over time through the layer attention.
(II) We remove the sampling in every layer except the last
one thus making our architecture deterministic until the
latent bottleneck. Furthermore, we break the explicit de-
pendency between the latent variables zt at different time
steps. (III) In the conditional prior, we only employ causal
attention to lower layers up until time step t. This approach
ensures that our predictions are independent of the chosen
forecasting window and are unaffected by potential errors
and uncertainties at later time steps.

3.1. E-PROTRAN’s Formulation
We first project inputs and covariates as in Equation 6 to get
h
(0)
1:T . Then, for the conditional prior, we perform3

ĥ
(l)
t = LN(h

(l−1)
t +A(h

(l−1)
t , h

(l−1)
1:t , h

(l−1)
1:t)) (11)

h
(l)
t = MLP(ĥ

(l)
t). (12)

3For l = 1, we use the input projections but allow attention
over the whole context h(0)

1:t0
, like in Equation (Input Att.).

To get the latent variables z1:T , we use the embeddings h(L)1:T

of the last layer, i.e.,

zt ∼ N (MLP(h
(L)
t),diag(SP(MLP(h

(L)
t)))). (13)

We can extend the updates in Equation 11 to get a more
similar process to that of PROTRAN, in other words, we
add the same attention computations without introducing
random variables. This results in the update equations

h̃
(l)
t = LN(h

(l−1)
t +A(h

(l−1)
t , h

(l−1)
1:t , h

(l−1)
1:t)) (14)

h̄
(l)
t = LN(h̃

(l)
t +A(h̃

(l)
t , h

(l)
1:t−1, h

(l)
1:t−1)) (15)

ĥ
(l)
t = LN(h̄

(l)
t +A(h̄

(l)
t , h

(0)
1:t0

, h
(0)
1:t0

)). (16)

We emphasize that the inclusion of autoregressive attention
(Equation 15) and input attention (Equation 16) are purely
optional, and autoregressive attention hinders parallelization.
Note that we do not have to integrate both equations at once,
but we can add them individually.

The network for the approximate posterior can now be pa-
rameterized arbitrarily, but we usually fix the architecture
such that the posterior network shares its parameters with
the prior network, i.e., ψ = ϕ. The difference is that the pos-
terior network can attend the whole input projection h(0)1:T

during training, and it is not restricted to time step t in the
lower layer attention. For the emission model, we use the
exact same approach as PROTRAN with the only exception
that we decode zt instead of w(L)

t . We only have one layer
of latent variables that do not depend on each other, so we
get a more simplistic decomposition, where the conditional
prior distribution pψ and the posterior distribution qϕ only
depend on the inputs and the covariates. We provide this
decomposition in Appendix A.3.

We can use the ELBO objective in Equation 5 to train the
model end-to-end. Importantly, this objective consists of
two parts,

log(pψ,θ(x1:T |x1:t0 , c1:T)) ≥
t0∑
t=1

(E∗ [log(pθ(xt|zt))]−DKL(qϕ ∥ pψ))

+

T∑
t=t0+1

(E∗ [log(pθ(xt|zt))]−DKL(qϕ ∥ pψ)) ,

(17)

where E∗ = Ezt∼qϕ . The first term enforces the model to
reconstruct the conditioning part x1:t0 of a sequence. The
second term optimizes the model to forecast. Tang & Matte-
son (2021) opt to train PROTRAN on the full ELBO over all
time steps. However, to learn forecasting, it is sufficient to
only use the forecasting part of the ELBO. For E-PROTRAN,
we experiment with both versions, maximizing the ELBO
over the entire sequence (i.e., with reconstruction) or just
over the forecasting part (i.e., without reconstruction).

3

E-PROTRAN: Efficient Probabilistic Transformers for Forecasting

Table 1. Performance of PROTRAN and E-PROTRAN on ELECTRICITY and WIKIPEDIA. The CRPS and CRPSsum are normalized.
Layer, Input and Autoreg. attentions are abbreviated by their first letter. For all metrics, lower is better.

Model ELECTRICITY WIKIPEDIA

Type Att. Rec. CRPSsum CRPS RMSE #Params Forw. Pass (sec) CRPSsum CRPS RMSE #Params Forw. Pass (sec)

PROTRAN L I A ✓ 0.030 0.069 439.2 501,924 0.064 ± 0.001 0.066 0.320 5909.2 1,522,080 0.187 ± 0.003

E-PROTRAN L I A ✓ 0.024 0.075 501.7 382,084 0.044 ± 0.001 0.075 0.353 6020.0 1,259,584 0.141 ± 0.005
E-PROTRAN L I ✓ – – – – – 0.063 0.328 5932.2 1,126,720 0.007 ± 0.001
E-PROTRAN L ✓ 0.024 0.072 530.2 315,652 0.002 ± 0.000 0.063 0.311 5936.8 1,060,416 0.007 ± 0.002

E-PROTRAN L I A ✗ 0.030 0.077 582.8 382,084 0.044 ± 0.001 0.081 0.354 5983.3 1,259,584 0.139 ± 0.005
E-PROTRAN L I ✗ – – – – – 0.054 0.327 5945.1 1,126,720 0.007 ± 0.002
E-PROTRAN L ✗ 0.029 0.079 598.7 315,652 0.003 ± 0.001 0.053 0.316 5906.7 1,060,416 0.007 ± 0.002

4. Experiments
For the experiments, we follow the described approach by
Tang & Matteson (2021) as closely as possible. Since the
code is not published, we re-implemented PROTRAN and
its evaluation. The code for PROTRAN and E-PROTRAN
is available in https://github.com/bkoyuncu/
eprotan.

4.1. Metrics

The most commonly used metric in probabilistic time se-
ries forecasting is the continuous ranked probability score
(CRPS) (Matheson & Winkler, 1976), which is defined by

CRPS(F, x) =

∫
R

(
F (z)− I[x≤z]

)2
dz. (18)

Here, I is the indicator function, x ∈ R is the target, and F
is the CDF of the prediction for x. For deterministic point
forecasts, CRPS is equivalent to the absolute error. To obtain
a metric that generalizes to the multivariate case, the mean
CRPS or the mean CRPSsum are reported (e.g., see Tang &
Matteson (2021); Salinas et al. (2019)). The latter reduces
the data dimension to 1 by summing over all dimensions
and then calculating the CRPS. Hence, the mean CRPS is
taken over dimensions and time steps, whereas the mean
CRPSsum only needs to consider the different time steps. To
estimate the CDF of the forecasting distribution, we follow
previous work and generate 100 samples. Furthermore, we
calculate the mean forecast from 100 samples to calculate
the RMSE over dimensions and time steps. We then average
the CRPSsum, CRPS, and RMSE of the forecasting days.
The exact computations for the metrics are in Appendix B.

4.2. Datasets and Setup

We use three datasets, ELECTRICITY, SOLAR, and
WIKIPEDIA, from PROTRAN’s evaluation. These datasets
are available in the GluonTS package (Alexandrov et al.,
2019) and were pre-processed by Salinas et al. (2019).
ELECTRICITY and SOLAR are hourly datasets, while

WIKIPEDIA contains daily data. Testing is performed with
non-overlapping windows. The test series includes data
after a specified cut-off date, using all prior data for training.
The conditioning length matches the forecasting horizon:
24 time steps for hourly data and 30 for daily data. More
details about the datasets are in Appendix C.

For the model architectures, we adhere to Tang & Matteson
(2021): We use 1 layer for ELECTRICITY and SOLAR, and
2 layers for WIKIPEDIA. We use 8-head multihead attention.
Hidden representations (wt, ht) are in R128, with a latent
dimension of dz = 16. All MLPs have two hidden layers
of size 128 with ReLU activation and a linear output layer.
These configurations apply to PROTRAN and E-PROTRAN.

We normalize x1:T and c1:T before feeding them to the
models, and we denormalize the predictions before com-
puting performance metrics including CRPSsum, CRPS, and
RMSE. We give a more detailed description of the model
in Appendix D. All of our experiments are conducted using
a single NVIDIA A100 GPU, ensuring a fair comparison
between E-PROTRAN and PROTRAN.

4.3. Results

We present the performance metrics for ELECTRICITY and
WIKIPEDIA in Table 1 and for SOLAR in Appendix E.1.
We also report the number of parameters and the inference
times. The reported inference time is the average time the
prior and emission models need for a forward pass on 100
different batches. Note that for the first layer, input attention
replaces layer attention, so there are less configurations
with 1-layered models. Moreover, in Figures 1 and 2, we
present forecasting distributions of the different models
on the respective test sets. The results and plots for each
model are based on the best training configuration for this
architecture. We describe the different configurations in
Appendix D.3.

As shown in Table 1, we find that our models perform simi-
larly to or better than PROTRAN with the same number of

4

https://github.com/bkoyuncu/eprotan
https://github.com/bkoyuncu/eprotan

E-PROTRAN: Efficient Probabilistic Transformers for Forecasting

Figure 1. Forecasting predictions on ELECTRICITY for the first test sequence. We show 4 of 370 dimensions. The average predictions
are from 100 forward passes; shaded areas show 1 standard deviation. For E-PROTRAN, only layer attention is used.

Figure 2. Forecasting predictions on WIKIPEDIA for the first test sequence. We show 4 of 2000 dimensions. The average predictions
are from 100 forward passes; shaded areas show 1 standard deviation. For E-PROTRAN, only layer attention is used.

layers.4 We have fewer parameters since E-PROTRAN does
not have random variables between layers, which decreases
the amount of MLPs per layer. Moreover, E-PROTRAN
shares all parameters between the prior and posterior net-
works, except possibly the last layer. Remarkably, en-
abling parallel processing without autoregressive attention
improves the forward pass time by a factor of 20 without
harming the predictive performance for all datasets. We
observe similar improvements for the training and back
propagation times, which we show for WIKIPEDIA in Ap-
pendix E.2.

It is not apparent whether including the reconstruction part
in the ELBO (Equation 17) leads to better predictive power.
Our empirical results show that using the reconstruction
loss helps with ELECTRICITY but generally worsens the
performance on WIKIPEDIA; on SOLAR, the evidence is
inconclusive. We hypothesize that it may be depending on
many factors such as the conditioning length, the distribu-
tion of the time series in the conditioning and forecasting
windows, and hyperparameter tuning. For example, the two
rightmost plots in Figure 1 are typical signals for ELECTRIC-
ITY, where the conditioning and forecasting series behave
almost identical. As shown in Figure 2, this is not the case
for WIKIPEDIA, where the model without reconstruction
loss performs best. For WIKIPEDIA, models with recon-
struction closely match the history, but tend to predict only
the mean for the forecasting part, whereas models without

4We tried to reproduce the results for PROTRAN; however, they
are not the same as reported by Tang & Matteson (2021).

reconstruction capture temporal patterns in the forecasting
window.

5. Conclusion
In this paper we showed that PROTRAN, a model for proba-
bilistic time series forecasting, can be refined to an efficient
transformer E-PROTRAN with a comparable performance.
The advantage of our model is its improved speed by forgo-
ing autoregressive attention, making it much more scalable.
We also demonstrated that complex sampling processes in
prior and posterior networks do not necessarily lead to better
performance. Ultimately, E-PROTRAN offers an efficient
alternative for probabilistic time series forecasting, enabling
faster, more scalable solutions for real-world applications.

For future work, we plan to dive deeper into the scalability
and performance aspects of our model. So far, we have
mainly focused on the direct comparison with PROTRAN,
matching it in many aspects such as the number of layers.
However, we can easily scale our lightweight model to
incorporate more layers and longer conditioning lengths
without reaching a problematic runtime. Therefore, we
want to test how well E-PROTRAN performs without these
restrictions.

We are also committed to better understanding the different
factors that influence the optimization of E-PROTRAN, such
as the ELBO with and without reconstruction, the condi-
tioning length, the differences in frequency components in
conditioning and forecasting windows, and their interplay.

5

E-PROTRAN: Efficient Probabilistic Transformers for Forecasting

6. Acknowledgments
Batuhan Koyuncu is supported by the Konrad Zuse School
of Excellence in Learning and Intelligent Systems (ELIZA)
through the DAAD programme Konrad Zuse Schools of Ex-
cellence in Artificial Intelligence, sponsored by the Federal
Ministry of Education and Research.

The authors thank to Pablo M. Olmos and Ignacio Peis
Aznarte for their valuable discussions and contributions in
the early stages of the project.

References
Alexandrov, A., Benidis, K., Bohlke-Schneider, M.,

Flunkert, V., Gasthaus, J., Januschowski, T., Maddix,
D. C., Rangapuram, S., Salinas, D., Schulz, J., Stella,
L., Türkmen, A. C., and Wang, Y. GluonTS: Proba-
bilistic Time Series Modeling in Python. arXiv preprint
arXiv:1906.05264, 2019.

Ao, J., Wang, R., Zhou, L., Liu, S., Ren, S., Wu, Y., Ko, T.,
Li, Q., Zhang, Y., Wei, Z., Qian, Y., Li, J., and Wei, F.
Speecht5: Unified-modal encoder-decoder pre-training
for spoken language processing. ArXiv, abs/2110.07205,
2021. URL https://api.semanticscholar.
org/CorpusID:238856828.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization,
2016.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kir-
illov, A., and Zagoruyko, S. End-to-end object de-
tection with transformers. ArXiv, abs/2005.12872,
2020. URL https://api.semanticscholar.
org/CorpusID:218889832.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
Bert: Pre-training of deep bidirectional transformers
for language understanding. In North American Chap-
ter of the Association for Computational Linguistics,
2019. URL https://api.semanticscholar.
org/CorpusID:52967399.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers
for image recognition at scale. ArXiv, abs/2010.11929,
2020. URL https://api.semanticscholar.
org/CorpusID:225039882.

Elsayed, S., Thyssens, D., Rashed, A., Schmidt-Thieme, L.,
and Jomaa, H. S. Do we really need deep learning models
for time series forecasting? CoRR, abs/2101.02118, 2021.
URL https://arxiv.org/abs/2101.02118.

Ghassemi, M., Pimentel, M. A. F., Naumann, T., Bren-
nan, T., Clifton, D. A., Szolovits, P., and Feng, M.
A multivariate timeseries modeling approach to sever-
ity of illness assessment and forecasting in icu with
sparse, heterogeneous clinical data. Proceedings of
the ... AAAI Conference on Artificial Intelligence. AAAI
Conference on Artificial Intelligence, 2015:446–453,
2015. URL https://api.semanticscholar.
org/CorpusID:5825525.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. CoRR, abs/1312.6114, 2013. URL https:
//api.semanticscholar.org/CorpusID:
216078090.

Matheson, J. E. and Winkler, R. L. Scoring rules
for continuous probability distributions. Manage-
ment Science, 22:1087–1096, 1976. URL https:
//api.semanticscholar.org/CorpusID:
119590882.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Rasul, K., Sheikh, A.-S., Schuster, I., Bergmann, U. M.,
and Vollgraf, R. Multivariate probabilistic time series
forecasting via conditioned normalizing flows. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=WiGQBFuVRv.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochas-
tic backpropagation and approximate inference in deep
generative models. In International Conference on
Machine Learning, 2014. URL https://api.
semanticscholar.org/CorpusID:16895865.

Salinas, D., Bohlke-Schneider, M., Callot, L., Medico,
R., and Gasthaus, J. High-dimensional multi-
variate forecasting with low-rank gaussian copula
processes. In Wallach, H., Larochelle, H., Beygelz-
imer, A., d'Alché-Buc, F., Fox, E., and Garnett, R.
(eds.), Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
0b105cf1504c4e241fcc6d519ea962fb-Paper.
pdf.

Sonkavde, G., Dharrao, D. S., Bongale, A. M., De-
okate, S. T., Doreswamy, D., and Bhat, S. K. Fore-
casting stock market prices using machine learn-
ing and deep learning models: A systematic re-

6

https://api.semanticscholar.org/CorpusID:238856828
https://api.semanticscholar.org/CorpusID:238856828
https://api.semanticscholar.org/CorpusID:218889832
https://api.semanticscholar.org/CorpusID:218889832
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:225039882
https://api.semanticscholar.org/CorpusID:225039882
https://arxiv.org/abs/2101.02118
https://api.semanticscholar.org/CorpusID:5825525
https://api.semanticscholar.org/CorpusID:5825525
https://api.semanticscholar.org/CorpusID:216078090
https://api.semanticscholar.org/CorpusID:216078090
https://api.semanticscholar.org/CorpusID:216078090
https://api.semanticscholar.org/CorpusID:119590882
https://api.semanticscholar.org/CorpusID:119590882
https://api.semanticscholar.org/CorpusID:119590882
https://openreview.net/forum?id=WiGQBFuVRv
https://openreview.net/forum?id=WiGQBFuVRv
https://api.semanticscholar.org/CorpusID:16895865
https://api.semanticscholar.org/CorpusID:16895865
https://proceedings.neurips.cc/paper_files/paper/2019/file/0b105cf1504c4e241fcc6d519ea962fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/0b105cf1504c4e241fcc6d519ea962fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/0b105cf1504c4e241fcc6d519ea962fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/0b105cf1504c4e241fcc6d519ea962fb-Paper.pdf

E-PROTRAN: Efficient Probabilistic Transformers for Forecasting

view, performance analysis and discussion of impli-
cations. International Journal of Financial Studies,
2023. URL https://api.semanticscholar.
org/CorpusID:260264948.

Tang, B. and Matteson, D. S. Probabilistic transformer
for time series analysis. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 23592–23608. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
c68bd9055776bf38d8fc43c0ed283678-Paper.
pdf.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. 2017. URL https://arxiv.org/
pdf/1706.03762.pdf.

Zaytar, A. and Amrani, C. E. Sequence to sequence
weather forecasting with long short-term memory recur-
rent neural networks. International Journal of Computer
Applications, 143:7–11, 2016. URL https://api.
semanticscholar.org/CorpusID:1308550.

7

https://api.semanticscholar.org/CorpusID:260264948
https://api.semanticscholar.org/CorpusID:260264948
https://proceedings.neurips.cc/paper_files/paper/2021/file/c68bd9055776bf38d8fc43c0ed283678-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c68bd9055776bf38d8fc43c0ed283678-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c68bd9055776bf38d8fc43c0ed283678-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c68bd9055776bf38d8fc43c0ed283678-Paper.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://api.semanticscholar.org/CorpusID:1308550
https://api.semanticscholar.org/CorpusID:1308550

E-PROTRAN: Efficient Probabilistic Transformers for Forecasting

A. Additional Mathematical Details
A.1. PROTRAN’s Generalized ELBO Inequality

With multiple latent layers in PROTRAN the ELBO inequality becomes

log(pψ,θ(x1:T |x1:t0 , c1:T)) ≥
T∑
t=1

(
E
z
(L)
t ∼q(L)

ϕ

[
log(pθ(xt|z(L)t))

]
−

L∑
l=1

DKL

(
q
(l)
ϕ ∥ p(l)ψ

))
, (19)

with q(l)ϕ = qϕ(z
(l)
t |z(l)1:t−1, z

(l−1)
1:T , x1:T , c1:T) and p(l)ψ = pψ(z

(l)
t |z(l)1:t−1, z

(l−1)
1:T , x1:t0 , c1:T). Note that q(l)ϕ and p(l)ψ depend

on t.

A.2. PROTRAN’s Probabilistic Decomposition

Here we show the mathematical decomposition property that is assumed with the multilayered PROTRAN model and justifies
the ELBO inequality in Appendix A.1. The joint, conditional prior, and approximate posterior distribution factorize as
follows:

pψ,θ(x1:T , z
(1:L)
1:T |x1:t0 , c1:T) =

(
T∏
t=1

pθ(xt|z(L)t)

)(
L∏
l=1

T∏
t=1

pψ(z
(l)
t |z(l)1:t−1, z

(l−1)
1:T , x1:t0 , c1:T)

)
(20)

qϕ(z
(1:L)
1:T |x1:T , c1:T) =

L∏
l=1

T∏
t=1

qϕ(z
(l)
t |z(l)1:t−1, z

(l−1)
1:T , x1:T , c1:T). (21)

Again, we treat edge cases with z(l)1:0 = z
(0)
1:T = ∅ for notational simplicity.

A.3. E-PROTRAN’s Probabilistic Decomposition

For our model, the approximate posterior and the conditional prior have a more simplistic decomposition compared to
PROTRAN (Appendix A.2), since we do not introduce multiple layers of latent variables, and our latents are independent of
each other. Hence, we get

pψ,θ(x1:T , z1:T |x1:t0 , c1:T) =

(
T∏
t=1

pθ(xt|zt)

)(
T∏
t=1

pψ(zt|x1:t0 , c1:T)

)
(22)

qϕ(z1:T |x1:T , c1:T) =
T∏
t=1

qϕ(zt|x1:T , c1:T). (23)

B. Exact Computation of the Performance Metrics
CRPS To get the mean CRPS over the forecasting time steps and dimensions, we calculate

Et,i
[
CRPS(F̂ , x)

]
=

1

d(T − t0)

T∑
t=t0+1

d∑
i=1

∫
R

(
F̂t,i(z)− I[xt,i≤z]

)2
dz, (24)

where d is the number of dimensions and T − t0 is the number of forecasting time steps. F̂t,i is the estimated CDF that the
model predicts for xt in dimension i. To estimate the CDF F , we generate S = 100 samples of the model, i.e. 100 forward
passes. Given 100 samples x̂(s) ∈ R for a certain dimension and time step, F̂ (z) = 1

S

∑S
s=1 I[x̂(s)≤z]. To calculate the

CRPSsum, we use the same formula, with the difference that we first sum over the dimensions of x, and then calculate the
mean CRPS of the time steps. Note that for the samples we also sum over the dimensions to get an estimated CDF for this
sum. Mathematically, let yt =

∑d
i=1 xt,i, ŷ

(s)
t =

∑d
i=1 x̂

(s)
t,i , and Ĝt(z) = 1

S

∑S
s=1 I[ŷ(s)t ≤z

]. The mean CRPSsum is then

Et
[
CRPSsum(Ĝ, x)

]
=

1

(T − t0)

T∑
t=t0+1

∫
R

(
Ĝt(z)− I[yt≤z]

)2
dz. (25)

8

E-PROTRAN: Efficient Probabilistic Transformers for Forecasting

Often, the normalized CRPSsum and CRPS are reported as they are implemented in the GluonTS (Alexandrov et al., 2019)
package. To get the normalized version of both metrics, Et,i

[
CRPS(F̂ , x)

]
and Et

[
CRPSsum(Ĝ, x)

]
are divided by the

mean absolute value of the forecasting time series, i.e., 1
d(T−t0) ·

∑T
t=t0+1

∑d
i=1|xt,i|.

RMSE Since PROTRAN and E-PROTRAN produce different samples for each forward pass due to the sampling, we take
the mean of S = 100 samples x̂(s)1:T ∈ RT×d, x̄1:T = 1

S

∑S
s=1 x̂

(s)
1:T , to calculate the RMSE to the ground truth. Note that

with PROTRAN the different latent samples also depend on one another, so we cannot simply decode the mean of the final
latent distribution to get the mean prediction. We report the RMSE, which is defined as√√√√ 1

d(T − t0)

T∑
t=t0+1

d∑
i=1

(xt,i − x̄t,i)2. (26)

Since we have multiple test series, we report the mean RMSE over the different test samples.

C. Datasets
The datasets that we use contain the following data:

• ELECTRICITY: Hourly electricity consumption of 370 customers.
• SOLAR: Hourly photo-voltaic production of 137 stations in Alabama State.
• WIKIPEDIA: Daily page views of 2000 Wikipedia pages.

As in previous work (Tang & Matteson, 2021; Rasul et al., 2021; Salinas et al., 2019), we concatenate the single dimensional
time series to get multidimensional ones. The idea is that the model can leverage correlations between the different
dimensions/time series for its predictions. Table 2 summarizes the statistics about the datasets.

Table 2. Statistics for the datasets.
Data Set Domain Freq. Dimension #Training Steps Pred. Length Cond. Length #Test Dates

ELECTRICITY R+ hourly 370 5,833 24 24 7
SOLAR R+ hourly 137 7,009 24 24 7
WIKIPEDIA N daily 2,000 792 30 30 5

D. Model
D.1. Input Processing

Before we input the data to the model, we standard scale each dimension with the mean and standard deviation calculated
for this dimension across all training time steps. As covariates, we use the hour of the day, the day of the week, and the
month of the year for hourly data. For daily data, we only use the day of the week and the month of the year. We normalize
these covariates like the data, and also concatenate lag values as described by Rasul et al. (2021).

D.2. Additional Model Details

Here we describe additional details that are not mentioned in Section 4. The MLPs that generate the means and variances of
the latent variables share all of their parameters until the output layer. Furthermore, the input and output dimensions of each
MLP can be inferred, that is, MLPs that have a latent variable zt or its distributional parameters as input/ouput have the
input/output dimension dz = 16. The same principle applies to MLPs that work on hidden states (wt, ht) or the input (xt).
The MLP that gives the initial embedding in Equation 6 is a simple linear layer without an activation function.

The positional embedding is fixed and it is obtained in the usual way from the sine and cosine functions. All layer
normalization layers use ε = 10−5 and have learnable parameters. We use a dropout with a probability of 0.1 on the
attention weights as well as on the output of the attention blocks.

9

E-PROTRAN: Efficient Probabilistic Transformers for Forecasting

D.3. Training Configurations for the Models

For training, we try 6 different configurations for each architecture that start from the same random seed, so the models have
the same initialization for each run. We use the ADAM optimizer (Kingma & Ba, 2017) and try learning rates 0.001, 0.0003
(learning rate in Tang & Matteson (2021)), and 0.0001. We test each of these learning rates with and without learning rate
decay. We decay the learning rate by multiplying it with 0.3 after a certain amount of training steps. For ELECTRICITY and
SOLAR, we do it for every quarter of the maximum training steps that is reached; for WIKIPEDIA, we do it for every fifth of
the maximum training steps. We report all results on the best models from these 6 training procedures. We determine the
best models by their CRPSsum.

To build training batches, we randomly sample starting points in the training part of the time series, and then take the
following T time steps to create training samples. We use a batch size of 64 and train 8,000 update steps for ELECTRICITY,
12,000 for SOLAR, and 1,500 for WIKIPEDIA.

E. Additional Results
E.1. Performance on SOLAR

In Table 3, we present the same statistics as in Table 1, but for the SOLAR dataset. We also include the results for E-
PROTRAN, where the posterior network does not share all parameters with the prior network. Instead, the posterior network
takes the last hidden states h(L)1:T of the conditional prior network as input. It then performs self-attention over the full input
projection h(0)1:T and generates the latent distribution parameters via an MLP from the concatenation of the self-attention
output and h(L)1:T . These computations are the same as in Equations 9 and 10 for PROTRAN, but only applied in the last layer.
While we generally do not find an improvement over the usual E-PROTRAN architecture with this attention head, for a
specific configuration it performs better on the SOLAR dataset. We include this configuration under E-PROTRAN(H) in the
table.

Table 3. Performance of PROTRAN and E-PROTRAN on SOLAR. The CRPS and CRPSsum are normalized. Layer, Input and Autoreg.
attentions are abbreviated by their first letter. For all metrics, lower is better.

Model SOLAR

Type Att. Rec. CRPSsum CRPS RMSE #Params Forw. Pass (sec)

PROTRAN L I A ✓ 0.240 0.279 24.43 411,986 0.064 ± 0.001

E-PROTRAN L I A ✓ 0.306 0.364 29.00 292,146 0.044 ± 0.003
E-PROTRAN L ✓ 0.331 0.386 29.56 225,714 0.002 ± 0.000

E-PROTRAN L I A ✗ 0.991 0.991 58.48 292,146 0.044 ± 0.001
E-PROTRAN L ✗ 0.328 0.380 30.48 225,714 0.002 ± 0.000
E-PROTRAN(H) L ✗ 0.239 0.301 26.16 345,298 0.002 ± 0.000

E.2. Training Times on WIKIPEDIA

In Table 4, we show the the forward pass and backpropagation times (in seconds) on WIKIPEDIA for the different models.
The times are tracked over the whole training process for all training batches. The optimization parameters are the same
for all models, that is, the learning rate is 0.0003 and we do not use learning rate decay. Notably, for E-PROTRAN, we
implemented the possibility to not share the architecture between prior and posterior networks, hence, we do not couple
their forward passes. For PROTRAN, we do the forward pass for posterior and prior networks at the same time. Therefore,
the times for E-PROTRAN can be further improved by sharing the forward pass during training when prior and posterior
share their parameters.

E.3. Forecasting Plots

In Figures 3, 4, and 5, we provide more of the forecasting plots. Each of them shows the forecasting distributions of the
different models over the first 12 dimensions of the first test series for each dataset. E-PROTRAN models are the simplest

10

E-PROTRAN: Efficient Probabilistic Transformers for Forecasting

Table 4. Training times on WIKIPEDIA. We show the average forward pass and backpropagation times.

Model Training Times (sec)

Type Att. Rec. Forward Pass Backpropagation

PROTRAN L I A ✓ 0.393 ± 0.027 0.507 ± 0.012

E-PROTRAN L I A ✓ 0.373 ± 0.027 0.500 ± 0.005
E-PROTRAN L I ✓ 0.016 ± 0.015 0.020 ± 0.003
E-PROTRAN L ✓ 0.011 ± 0.013 0.009 ± 0.002

E-PROTRAN L I A ✗ 0.381 ± 0.026 0.510 ± 0.008
E-PROTRAN L I ✗ 0.012 ± 0.013 0.010 ± 0.002
E-PROTRAN L ✗ 0.014 ± 0.016 0.016 ± 0.003

version with only lower layer attention (bottom rows in Tables 1 and 3). For each model, we take the best one out of the
different training configurations according to the test CRPSsum, so the models are the same as in Table 1 and Appendix E.1.
For SOLAR, we also include the E-PROTRAN(H) model.

Figure 3. Forecasting predictions on ELECTRICITY for the first test sequence. We show the first 12 of 370 dimensions. The average
predictions are from 100 forward passes; shaded areas show 1 standard deviation. For E-PROTRAN, only layer attention is used.

11

E-PROTRAN: Efficient Probabilistic Transformers for Forecasting

Figure 4. Forecasting predictions on WIKIPEDIA for the first test sequence. We show the first 12 of 2000 dimensions. The average
predictions are from 100 forward passes; shaded areas show 1 standard deviation. For E-PROTRAN, only layer attention is used.

Figure 5. Forecasting predictions on SOLAR for the first test sequence. We show the first 12 of 137 dimensions. The average predictions
are from 100 forward passes; shaded areas show 1 standard deviation. For E-PROTRAN, only layer attention is used.

12

