
Under review as a conference paper at ICLR 2023

POINTS2NERF: GENERATING NEURAL RADIANCE
FIELDS FROM 3D POINT CLOUD

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Radiance Fields (NeRFs) offer a state-of-the-art quality in synthesising
novel views of complex 3D scenes from a small subset of base images. For
NeRFs to perform optimally, the registration of base images has to follow certain
assumptions, including maintaining constant distance between the camera and the
object. We can address this limitation by training NeRFs with 3D point clouds,
instead of images, yet a straightforward substitution is impossible due to the
sparsity of 3D clouds in the under-sampled regions which leads to incomplete
reconstructions output by NeRFs. To solve this problem, here we propose an
auto-encoder-based architecture that leverages a hypernetwork paradigm to transfer
3D points with the associated color values through a lower-dimensional latent
space and generate weights of NeRF model. This way we are able to accommodate
sparsity of 3D point clouds and fully exploit the potential of point cloud data. As
a side benefit, our method offers an implicit way for representing 3D scenes and
objects, that can be employed to condition NeRFs and hence generalize the models
beyond objects seen during training. Empirical evaluation confirms the advantages
of our method over conventional NeRFs and proves its superiority in practical
applications.

Point Cloud KNN-NeRF Points2NeRF

Figure 1: Conversely to other approaches, our Points2NeRF method takes a 3D point cloud with
colors as an input instead of 2D images. A straightforward substitution of the input data in the
existing architectures is not feasible due to the sparsity of point cloud representation (left image),
that yields artefacts in reconstruction (baseline KNN-NeRF result in the middle). By extending an
auto-encoder architecture with the hypernetwork paradigm, our Points2NeRF architecture is able to
build internal representation of complete 3D objects which enhances the rendering quality of NeRFs
(right image).

1 INTRODUCTION

Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) enable synthesizing novel views of complex
scenes from a few 2D images with known camera positions. Based on the relations between those
base images and computer graphics principles, such as ray tracing, this neural network model can
render high-quality images of the scene from previously unseen viewpoints. Although, in recent years
much effort was invested in improving the quality of the resulting views (Kosiorek et al., 2021) and
the controllability of NeRFs (Kania et al., 2022), the robustness of those methods against various data
registration challenges remains largely unchartered research area. For instance, to render high-quality
views, the base images must be captured from a similar distance to the captured object, and the
corresponding camera positions need to be approximately known. These practical constraints limit the
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Input 3D Point Cloud Representation obtained by Points2NeRF

Figure 2: Our Points2NeRF approach takes a 3D point cloud with the associated color values and
returns the weights of a NeRF network that reconstructs 3D objects with high fidelity and coherent
coloring.

applicability of NeRFs across various applications, such as in robots deployed within noisy industrial
environments.

We can address these limitations by using increasingly popular 3D capturing devices, such as LIDARs
and depth cameras, to produce 3D point clouds and by feeding those point clouds to NeRFs. However,
a straightforward substitution of 2D images with 3D point clouds does not produce novel views of the
comparable quality. This is mainly because of the sparsity of point cloud data in the under-sampled
parts of objects, e.g. willows and windows of a car presented in Fig. 1. As a result, the baseline
solution, dubbed KNN-NeRF and described in details in Sec. 2, does not render sharp images.

To solve this problem, we propose in this work an auto-encoder-based architecture that transfers 3D
point clouds through a low-dimensional latent space and outputs weights of a NeRF model. Our
Points2NeRF1 approach embodies hypernetwork paradigm as we take a 3D point cloud with the
associated color values as an input and return the parameters of a target NeRF neural network. Since
the implicit representation of the captured objects are built within the latent space, missing data points
in under-sampled regions do not prohibit the resulting target network from synthesising high-quality
views. Furthermore, during the training, our model can process multiple classes of point cloud
objects, thus yielding a solution that is much more robust. In fact, the NeRF network parameters can
be interpreted as a continuous parametrisation of a 3D object space. Thus, this formulation allows for
conditioning NeRFs and generalizing our solution beyond 3D object classes seen during training.

To summarize, the contributions of our work are the following:

• We propose a new method dubbed Points2NeRF which adapts a hypernetwork framework
to the NeRF architecture and hence allows to produce Radiance Fields from 3D point cloud.

• Our approach enables conditioning NeRFs, which, in turn, allows us to generalize the model
beyond 3D objects seen in training.

• Lastly, our method offers a generative model that can represent 3D objects as NeRF parame-
ters in a continuous manner, enabling interpolation within the object space.

2 TRAINING NERF BASED ON 3D POINT CLOUD

NeRFs (Mildenhall et al., 2020) represent a scene using a fully-connected architecture. As the input,
NeRF takes a 5D coordinate (spatial location x = (x, y, z) and viewing direction d = (θ, ψ)) and it
outputs an emitted color c = (r, g, b) and volume density σ.

NeRFs trained on images. A vanilla NeRF uses a set of images for training. In such a scenario,
we produce many rays passing through the image and a 3D object represented by a neural network.
NeRF approximates this 3D object with a MLP network:

FΘ : (x,d) → (c, σ),

1We make our implementation available at https://github.com/...
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and optimizes its weights Θ to map each input 5D coordinate to its corresponding volume density
and directional emitted color.

The loss of NeRF is inspired by classical volume rendering (Kajiya & Von Herzen, 1984). We render
the color of all rays passing through the scene. The volume density σ(x) can be interpreted as the
differential probability of a ray. The expected color C(r) of camera ray r(t) = o+ td (where o is
ray origin and d is direction) can be computed with an integral.

In practice, this continuous integral is numerically estimated using a quadrature. We use a stratified
sampling approach where we partition our ray [tn, tf ] into N evenly-spaced bins and then draw one
sample uniformly at random from within each bin:

ti ∼ U [tn +
i− 1

N
(tf − tn), tn +

i

N
(tf − tn)].

We use these samples to estimate C(r) with the quadrature rule discussed in the volume rendering
review by Max (Max, 1995):

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, where T (t) = exp

−
i−1∑
j=1

σiδi

 .

where δi = ti+1 − ti is the distance between adjacent samples. This function for calculating Ĉ(r)
from the set of (ci, σi) values trivially differentiable.

We then use the volume rendering procedure to render the color of each ray from both sets of samples.
Our loss is simply the total squared error between the rendered and true pixel colors

L =
∑
r∈R

∥Ĉ(r)− C(r)∥22 (1)

where R is the set of rays in each batch, and C(r), Ĉ(r) are the ground truth and predicted RGB
colors for ray r respectively. Contrary to the baseline NeRF (Mildenhall et al., 2020), we use only a
single architecture.

NeRFs trained on point clouds Such an approach can be easily modified to train NeRFs using
a 3D point cloud. We take an input point cloud X ⊂ R6 where the first three elements encode the
position while the last three encode an RGB color.

We can use only rays which cross points from a 3D point cloud. Let x = (x, y, z, r, g, b) ∈ X be a
point from our point cloud with color. By xp = (x, y, z) we denote the coordinates of the point and
by xc = (r, g, b) we denote color of the point x = (xp,xc). The ray going through point xp from
origin o is defined by rxp

(t) = o+ t
xp−o

∥xp−o∥ . In such a case as a ground true color, we use the color
of the point laid on the ray instead of the pixel from the image C(rxp) = xc. Our loss is simply the
total squared error between the rendered and true point colors

L =
∑

(xp,xc)∈X

∥Ĉ(rxp)− xc)∥22. (2)

Unfortunately, such an approach cannot reconstruct the correct image since we use only a fixed
number of rays. In practice, we use only rays going through the existing 3D points. In particular, the
model does not see the object borders and cannot reconstruct them sharply.

KNN approach to training NeRF on point cloud To solve this problem, we can produce many
different rays which are not restricted to the points from a training data. In such a scenario, we do not
cross any points from the point cloud. Therefore, as a ground truth color, we can use a color of the
point which is closest to our ray. It is not trivial to find such an element since our ray goes through a
3D object and crosses the front and back of the object. So the point must fulfill two main constraints.
It must be as close as possible to points on the ray and the origin of the ray.

We use the K nearest neighbor (KNN) algorithm to solve the problem. Let us consider point cloud
X ⊂ R6 where the first three elements encode the position while the last three encode an RGB color
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and ray r(t) = o + td (where o is ray origin and d is direction). In the first step we find k ∈ N
closest elements to the origin KNNk

o (X). Thanks to this procedure, we obtain KNNk
o (X), which

contains elements from the surface of X situated on the form of the object (according to origin o). In
practice, k is hyperaparamete. In the second step, we look for the closest element to the ray r:

C(X, r) =
{
x̄ ∈ KNNk

o(X) : d(x̄p, r) ≤ d(xp, r) for all x ∈ KNNk
o(X)

}
where d(·, ·) is a distance from a point to a line.

When we find the closest element to the ray, we can use its color as a ground truth

L =
∑
r∈R

∥Ĉ(r)− Cc(X, r)∥22 (3)

where Cc(X, r) is the color of closest point from X to ray r and Ĉ(r) is the predicted RGB colors
for ray r.

This solution, that we dub KNN-NeRF, can be used as a baseline of our model. Unfortunately,
KNN-NeRFs cannot reconstruct correct shapes since point clouds in training are highly sparse. To
solve this limitation, in this work we propose an auto-encoder-based architecture, which transfers the
3D point cloud into NeRF, hence mitigating the problem with sparse input data.

3 POINTS2NERF: GENERATING NEURAL RADIANCE FIELDS FROM 3D POINT
CLOUD

In this section, we present our Points2NeRF model for building NeRF representations of 3D point
clouds. To that end, we leverage three main components described below: the auto-encoder archi-
tecture, the NeRF representation of a 3D static scene, and the hypernetwork training paradigm. The
main intuition behind our approach is the construction of an auto-encoder, which takes as an input 3D
point cloud and generates the weight of the target network – NeRF. For effective NeRF training, our
model requires a set of 2D images on top of the 3D point clouds captured by 3D registration devices.

Hypernetwork Hypernetworks, introduced in (Ha et al., 2016), are defined as neural models that
generate weights for a separate target network solving a specific task. The authors aim to reduce the
number of trainable parameters by designing a Hypernetwork with a smaller number of parameters.
Making an analogy between Hypernetworks and generative models, the authors of (Sheikh et al.,
2017), use this mechanism to generate a diverse set of target networks approximating the same
function.

In the context of 3D objects, various methods make use of a hypernetwork to produce a continuous
representation of objects (Proszewska et al., 2021; Spurek et al., 2021a; 2020; 2021b;c). Hyper-
Cloud (Spurek et al., 2020) represents a 3D point cloud as a classical MLP while in (Spurek et al.,
2021c) it is represented by a Continuous Normalizing Flow (Grathwohl et al., 2018). In the case of
(Proszewska et al., 2021), the authors model voxel representation by a hypernetwork architecture.

Auto-encoders for 3D Point Clouds In our approach, we use hypernetwork paradigm to aggregate
information from 3D point cloud representation and produce the weights of a NeRF architecture.
Moreover, such a solution allows us to create a high-resolution model of the 3D point cloud.

In Points2NeRF hypernetwork is an auto-encoder type architecture for the 3D point cloud. Let
X = {Xi}i=1,...,n = {(xi, yi, zi, ri, gi, bi)}i=1,...,n be a given dataset containing point clouds with
colors. The first three elements encode the position while the last three encode a RGB color. The
objective of the autoencoder is to transport the data through a typically lower-dimensional latent space
Z ⊆ RD while minimizing the reconstruction error. Thus, we search for an encoder E : X → Z
and decoder D : Z → X functions, which minimize the reconstruction error between Xi and its
reconstructions D(EXi). We use a permutation invariant encoder based on PointNet architecture
(Qi et al., 2017) and a modified decoder to produce weights instead of raw points. For point cloud
representation, the crucial step is to define proper reconstruction loss that can be used in the auto
encoding framework. In our approach, we use NeRF cost function.
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Input 3D Point Cloud Representation obtained by Points2NeRF

Figure 3: Reconstructions of objects obtained by Points2NeRF.

Points2NeRF In our model, we use three components: hypernetwork, autoencoder, and NeRF.
The Points2NeRF model uses Hypernetwork to output weights of generative network to create NeRF
representation from the 3D point cloud. More specifically, we present parameterization of the 3D
objects as a function FΘ : R5 → R4, which given location (x, y, z) and viewing direction (θ, ψ))
returns a color c = (r, g, b) and volume density σ. Roughly speaking, instead of producing 3D
objects, we would like to produce many neural networks (a different neural network for each object)
that model them.

In practice, we have one neural network architecture that uses different weights for each 3D object.
The target network (NeRF) is not trained directly. We use a Hypernetwork HΦ : R3 ⊃ X → Θ,
which for an point-cloud X ⊂ R3 returns weights Θ to the corresponding target network (NeRF) FΘ.
Thus, a point cloud X is represented by a function:

F ((x, y, x, θ, ψ); Θ) = F ((x, y, x, θ, ψ);HΦ(X)).

To use the above model, we need to train the weights Φ of the hypernetwork. For this purpose,
we minimize the NeRF cost function over the training set consisting of pairs: point clouds and
2D images of the object. More precisely, we take an input point cloud X ⊂ R6 (the first three
elements encode the position while the last three encode an RGB color) and pass it to HΦ. As a
result, the hypernetwork returns weights Θ to the target network FΘ. Next, the set of 2D images
is compared to the renderings generated by the target network FΘ. As a hypernetwork, we use a
permutation invariant encoder based on PointNet architecture (Qi et al., 2017) and a modified decoder
to produce weight instead of raw points. The architecture of HΦ consists of: an encoder (E) which
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Figure 4: From NeRF representation, we can extract 3D mesh with color. Mesh representation of
objects produced by Points2NeRF.

is a PointNet-like network that transports the data to lower-dimensional latent space Z ∈ RD and
a decoder (D) (fully-connected network), which transfers latent space to the vector of weights for
the target network. In our framework hypernetwork HΦ(X) represents our autoencoder structure
D(EX). Assuming HΦ(X) = D(EX), we train our model by minimizing the cost function given by
equation (1).

We only train a single neural model (hypernetwork), which allows us to produce various functions at
test time.

Figure 5: Interpolations between elements produce by Generative Points2NeRF.
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Mesh representation In the paper, we represent 3D objects as Neural Radiance Fields. Such
representation has few advantages over the classical one. In particular, we can obtain 3D mesh with
colors.

Thanks to volume density σ, we obtain voxel representation. We can predict an inside/outside
category for points from grid (x, y, z). Then we can render objects via the iso-surface extraction
a method such as Marching Cubes. We can predict the color for all vertices when we have mesh
representation. By using colors in the vertices of the mesh, we can add colors to the faces of the
graph. We present 3D objects with colors in Fig. 4.

Figure 6: Object generated by Generative Points2NeRF.

Generative model In our model, we use autoencoder architecture in hypernetwork. Therefore it is
easy to construct a generative model.

An autoencoder-based generative model is a classical auto-encoder model with a modified cost
function, which forces the model to be generative, i.e., ensures that the data transported to the latent
space comes from the prior distribution (typically Gaussian) (Kingma & Welling, 2013; Tolstikhin
et al., 2017; Knop et al., 2020). Thus, to construct a generative auto-encoder model, we add to its
cost function to measure the distance of a given sample from the prior distribution.

Variational Auto-encoders (VAE) are generative models capable of learning approximated data
distribution by applying variational inference (Kingma & Welling, 2013). To ensure that the data
transported to latent space Z are distributed according to standard normal density. We add the
distance from standard multivariate normal density. By adding Kullback–Leibler divergence to our
cost function to obtain a generative model, we cold Generative Points2NeRF. In Fig. 6 we present
samples an in Fig. 5 interpolations obtained by Generative Points2NeRF.

4 RELATED WORKS

3D objects can be represented by using various techniques, including voxel grids (Choy et al., 2016),
octrees (Häne et al., 2017), multi-view images (Arsalan Soltani et al., 2017), point clouds (Achlioptas
et al., 2018), geometry images (Sinha et al., 2016), deformable meshes (Girdhar et al., 2016), and
part-based structural graphs (Li et al., 2017).
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The above representations are discreet, a substantial limitation in real-life applications. Alternatively,
we can represent 3D objects as a continuous function (Dupont et al., 2021). In practice implicit occu-
pancy (Chen & Zhang, 2019; Mescheder et al., 2019; Peng et al., 2020), distance field (Michalkiewicz
et al., 2019; Park et al., 2019) and surface parametrization (Yang et al., 2019; Spurek et al., 2020;
2021c; Cai et al., 2020) models use a neural network to parameterize a 3D object. We do not have a
fixed number of voxels, points, or vertices in such a case, but we represent shapes as a continuous
function.

These models are limited by their requirement of access to ground truth 3D geometry. Recently
works relaxed this requirement of ground truth 3D shapes by using only 2D images. In (Niemeyer
et al., 2020) authors present 3D occupancy fields. The numerical method is used to find the surface
intersection for each ray. In (Sitzmann et al., 2019) propose a neural network that produces feature
vector and RGB color at each continuous 3D coordinate, and propose a differentiable rendering
function consisting of a recurrent neural network.

The above models are limited to simple shapes with low geometric complexity, resulting in over-
smoothed renderings. To solve such a problem, NeRF model was proposed. NeRF represents a static
scene as a continuous 5D function that outputs the radiance emitted in each direction and a density at
each point which acts like a differential opacity controlling how much radiance is accumulated by a
ray passing through the point.

The NeRF method is a state-of-the-art solution for representing 3D objects. However, the model has
many different generalizations for static and dynamic scenes.

Points2NeRF NeRF-KNN
planes (train) 24.83 13.75
planes (test) 20.45 14.18
cars (train) 28.14 11.82
cars (test) 20.86 12.47

chairs (train) 23.90 10.02
chairs (test) 17.17 10.36

Table 1: Comparison of PSNR metric between our
model and baseline KNN-NeRF trained on three
classes of the ShapeNet data.

Information from point clouds was used in
NeRF across different applications. In (Xu
et al., 2022) authors present a novel neural
scene representation Point-NeRF that models
a volumetric radiance field with a neural point
cloud. In NeuS (Wang et al., 2021), authors
propose to represent a surface as the zero-level
set of a signed distance function (SDF) and de-
velop a new volume rendering method to train
a neural SDF representation. In consequence,
we obtain a novel neural surface reconstruc-
tion method. In (Ost et al., 2021), authors
introduce Neural Point Light Fields that repre-
sent scenes implicitly with a light field living
on a sparse point cloud. We use point clouds to produce NeRF representation in our work.

Most of such models are trained on a single scene. NeRF-VAE is a 3D scene generative model.
In contrast to NeRF, such a model considers shared structure across scenes. Unfortunately, the
model was trained only on simple scenes containing geometric figures. In our paper, we present
Points2NeRF, which is trained on an extensive data set and can transform a 3D point cloud to NeRF
representation.

5 EXPERIMENTS

In this section, we describe the experimental results of the proposed model. To our knowledge, it is
the first model that obtains translation from 3D point clouds to NeRF. Therefore, it is hard to compare
our results to other algorithms. In the first subsection, we show that our model produces high-quality
NeRF representations of the objects by comparing our model with our baseline KNN-NeRF. In the
second one, we compare our model by using voxel representation obtained from NeRF.

Methodology We used ShapeNet dataset to train our model. First, we sampled 2048 colored points
from each object from three categories: cars, chairs, and planes. For each object: fifty 200x200
transparent background images from random camera positions.

Point to NeRF evaluation We compare the metric reported by NeRF called PSNR (peak signal-to-
noise ratio) which is used to measure image reconstruction effectiveness.
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Category PointConv ONet ConvONet POCO Ours
cars 0.577 0.747 0.849 0.946 0.995

planes 0.562 0.829 0.965 0.994 0.952
chairs 0.618 0.730 0.939 0.985 0.992

Table 2: F-Score comparison between our model and baselines: PointConv(Peng et al., 2020),
ONet(Mescheder et al., 2019), ConvONet(Tang et al., 2021), POCO(Boulch & Marlet, 2022). We
trained our model on 2048 colored points and sampled on 3000 while other methods used 3000 to
train and test.

In Tab. 1 we compare Points2NeRF and baseline solution KNN-NeRF. We present a comparison of
the training and the test set. It should be highlighted that KNN-NeRF is trained separately for each
object from the train and test set. The Points2NeRF is trained on the training data set and evaluated
on the test set. We achieve better results in all categories on the training data and the test set.

Voxel representation NeRF networks, which are outputs of our hypernetwork can describe the
occupancy of a given point in 3D space. With the marching cubes algorithm, we can obtain mesh
reconstruction for a given point cloud.

To compare reconstruction with original mesh, we use Chamfer Distance, defined as the distance
between two clouds of points P1 and P2 such that:

CD(P1, P2) =
1

2|P1|
∑

p1∈P1

max
p2∈P2

d(p1, p2) +
1

2|P2|
∑

p2∈P2

max
p1∈P1

d(p1, p2) (4)

Additionally, we use F-Score metric between two clouds of points with some threshold t defined as:

F-Score(P1, P2, t) =
2Recall Precision
Recall + Precision

. (5)

For F-Score and Chamfer Distance calculation, we sample random 3000 points from both original
and reconstructed mesh, and we used threshold t = 0.01 to find matching points for F-Score.

Even though our loss function was not directly related to mesh but to image reconstruction, we were
able to achieve competitive results, see Tab 2 and Tab 3.

Category PointConv ONet ConvONet POCO Ours
cars 1.49 1.04 0.75 0.41 0.16

planes 1.40 0.64 0.34 0.23 0.91
chairs 1.29 0.95 0.46 0.33 0.15

Table 3: Chamfer Distance (multiplied by 102) comparison between our model and baselines:
PointConv, ONet, ConvONet, POCO. We trained our model on 2048 colored points and sampled on
3000 while other methods used 3000 to train and test.

6 CONCLUSIONS

In this work, we presented a novel approach to generating NeRF representation from 3D point
clouds. Our model leverages a hypernetwork paradigm and NeRF representation of the 3D scene.
Points2NeRF take a 3D point cloud with the associated color values and return the weights of a NeRF
network that reconstructs 3D objects from 2D images. Such representation gives several advantages
over the existing approaches. First of all, we can add a conditioning mechanism to NeRFs that
allows controlling the process of creating a generative model. Secondly, we can quickly obtain mesh
representation with colors, which is a challenging task in 3D object rendering.
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Jacek Tabor, and Tomasz Trzciński. Hyperpocket: Generative point cloud completion. arXiv
preprint arXiv:2102.05973, 2021a.

Przemysław Spurek, Sebastian Winczowski, Maciej Zięba, Tomasz Trzciński, and Kacper Kania.
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