Inducing Uncertainty on Open-Weight Models for
Test-Time Privacy in Image Recognition

Muhammad H. Ashiq Peter Triantafillou
University of Wisconsin-Madison University of Warwick
Madison, WI 53706, USA Coventry, England
ashiq@wisc.edu p.triantafillou@warwick.ac.uk
Hung Yun Tseng Grigorios G. Chrysos
University of Wisconsin-Madison University of Wisconsin-Madison
Madison, WI 53706, USA Madison, WI 53706, USA
htseng230@wisc.edu chrysos@uisc.edu
Abstract

A key concern for Al safety remains understudied in the machine learning (ML)
literature: how can we ensure users of ML models do not leverage predictions
on incorrect personal data to harm others? This is particularly pertinent given
the rise of open-weight models, where simply masking model outputs does not
suffice to prevent adversaries from recovering harmful predictions. To address this
threat, which we call fest-time privacy, we induce maximal uncertainty on protected
instances while preserving accuracy on all other instances. Our proposed algorithm
uses a Pareto optimal objective that explicitly balances test-time privacy against
utility. We also provide a certifiable approximation algorithm which achieves
(e, d) guarantees without convexity assumptions. We then prove a tight bound that
characterizes the privacy-utility tradeoff that our algorithms incur. Empirically, our
method obtains at least > 3 x stronger uncertainty than pretraining with marginal
drops in accuracy on various image recognition benchmarks. Altogether, this
framework provides a tool to guarantee additional protection to end users.

1 Introduction

Data privacy is increasingly important for large-scale machine learning (ML), where models are
often trained on sensitive user instances [[European Parliament, |2016]. Furthermore, open-weight
image recognition models, where users have access to the model parameters and architecture, have
proliferated [TorchVision, [2016, |(Google, [2023] Microsoft, 2024]].

Yet, there has been little work done to address privacy threats to ML models due to incorrect personal
data, especially data which are public such as images posted to public forums. Concretely, suppose
a model provider trains an open-weight medical imaging model f which classifies skin images as
harmless ailments like “Benign Keratosis™ or serious diseases like “Melanoma” [Sun et al., 2016].
Next, a health insurance company scrapes images from public forums to build risk profiles. Then,
this health insurance company downloads the open-weight model f to automatically screen images
for potential health liabilities. In particular, a person p posts a photo of a harmless birthmark to a
public health forum to ask a question. During the upload, a compression error causes the image file
to become corrupted, severely distorting the birthmark. This results in an image x,,. When the health

Workshop on Regulatable ML at the 39th Conference on Neural Information Processing Systems (NeurIPS
2025).

Insurance Provider

B PR
. Health
Queries f High insurance
Model Provider with corrupted x,, Low companies
E Trains f\ \[f(m) - “Melanoma”] (l:s::g’;:
’ ! ? confidently
. classify
Pretrained Model f High a person
as having
Low melanoma
to deny
‘. _)[iwlEmy) = 588] coverage.
=

Uniform Classifier f;;

Figure 1: An adversary, like a health insurance company (B), can query a pretrained model f (§)
and use its outputs to make harmful decisions. However, after running our algorithm, the new model
fu (@®) provides maximal uncertainty, protecting against such an adversary.

insurance company feeds x,,, scraped from the public forum, into f, it confidently classifies x,, as
“Melanoma”. This erroneous classification is then automatically added to person p’s risk profile,
resulting in person p being unfairly denied coverageﬂ We call this threat model test-time privacy
(TTP), and make this concrete in Fig. This privacy threat model is inspired by definitions of
privacy which correspond to protecting a user from unfair interference or intrusion [Merriam-Webster,
2022]. This differs from settings in privacy which mainly protect sensitive information.

We discuss why existing solutions, like unlearning [Sekhari et al., 202 1]] or differential privacy [Dworkl
et al., 2006] do not suffice to solve this problem in Sec. @ Furthermore, naive solutions like masking
model outputs do not work for open-weight image recognition models, since the model parameters
and architecture are available to the model user. An adversary could simply remove such a mask.
To make this clear, we comprehensively detail our threat model as a security game in Appx.[A]and
provide various motivating attacks in Appx. [B] Therefore, we ask the following research question:

Can we ensure test-time privacy against adversaries with access to an open-weight model?

To do so, we argue it suffices to have uniform model outputs over the protected instances. That way,
a data controller can only guess at the prediction. Thus, we revisit inducing maximal uncertainty
over a dataset [Pereyra et al.,2017]]. Furthermore, we want to obtain high performance on all other
instances as well. In particular, we answer our research question affirmatively, providing:

* A method to finetune a pretrained model with a Pareto optimal objective, rendering the
model maximally uncertain over protected instances while preserving accuracy on others.

* Several principled (e, §)-certified full-batch and sequential algorithms which approximate
the Pareto objective, derived without assumptions of convexity.

* A theoretical analysis of the privacy-utility tradeoff that our algorithms incur, establishing a
tight, non-vacuous bound.

* Empirical studies on image recognition models like ResNet50 [He et al.,|2016]| trained on
datasets like CIFAR100 [Krizhevsky et al.,|2009], observing that our algorithms maintain
high uniformity on protected instances while guaranteeing excellent utility on the rest.

Following the literature on privacy, we focus on protecting a subset of the training data. However, as
detailed in Sec. [3|and Appx.[A] our setup and algorithms can also work for corrupted test instances.
The code for our experiments is available for reproducibility athttps://github.com/ashiqwisc/
test_time_privacy/blob/main/README.md,

'Recently, there has been significant progress in building effective image recognition models for skin disease,
making this problem pertinent [[Yang et al.| [2018]]; [Liu et al.,2025].
2We provide additional test-time privacy examples beyond medical classifiers in Appx.

https://github.com/ashiqwisc/test_time_privacy/blob/main/README.md
https://github.com/ashiqwisc/test_time_privacy/blob/main/README.md

2 Related Work

Data Privacy: Data leakage is a persistent danger for large information systems [Al-Rubaie and
Chang, [2019]]. In the context of ML, data privacy is ubiquitous [Fredrikson et al.l |2015]; [Song
et al.,[2017]); [Yeom et al.,2018]]. Approaches to privacy-preserving ML include differential privacy
(DP) [Dwork et al.| |2006]; [Balle and Wang}, 2018]}; [Amin et al.,2024], homomorphic encryption
[Brakerski et al.,[2014]); [Lee et al., [2022]; [[Aono et al.,[2017]], and model obfuscation [Zhou et al.,
2023]]. Notably, these methods protect against various privacy violations, like reconstruction attacks
[Dinur and Nissim, [2003]] due to failures of anonymization [Li et al., [2012]]. However, existing
methods do not prevent confidently correct classification, and thus fail to protect against the attacks
we consider in our setting. For example, if x,, is a corrupted medical image record, an adversary
may not be able to use a DP model f to recover the record x,, exactly, but they can still produce a
confident prediction of e.g. “Melanoma" to harm person p.

A dominant viewpoint in the privacy community is that a model f working as expected does not
constitute a privacy violation, e.g. correctly predicting “Melanoma" for the corrupted medical
image x,, as it has learned something underlying about nature [Mcsherry, |2016]; [Bun et al., 2021]].
Furthermore, the privacy leakage occurred when @, became public [Kamath, 2020]]. This view misses
the point: ML models are often trained and applied on freely available data. For example, training
data could be scraped from the web or social media platforms. Subsets of this data can be obsolete,
corrupted, or confidential. With such data as input, model f presents a clear and present danger
for Al safety which differential privacy falls short of addressing, as the above example showed. In
parallel, as humans, we learn to not act upon certain kinds of knowledge. For example, when we read
confidential documents or learn that previously obtained knowledge is incorrect, we are not allowed
to share or act on this knowledge.

Unlearning: A related subfield is machine unlearning, which is inspired by the right to be forgotten
(RTBF), mandating that ML. model providers delete user data upon request [European Parliament,
2016]. In practice, model providers must remove user data and its effects from trained models and
algorithms. Unlearning methods usually do so by approximating (and evaluating performance against)
the model retrained from scratch without the protected user data [Sekhari et al.,[2021]]; [Bourtoule
et al., [2021]]; [Kurmanji et al., 2023]].

However, while unlearning helps model providers comply with the RTBF, it cannot protect against
attacks within our threat model. Specifically, recent unlearning research has established that data
in the support of the training distribution will likely still be confidently predicted with the same
prediction as before, even after using state-of-the-art algorithms (or even after applying exact retrain-
from-scratch algorithms) to unlearn them [Zhao et al., [2024]]. That is, denoting the pretrained model
as f and the unlearned model as f,,, for typical training instances, it holds that f = f,.

To make clear why unlearning does not solve our problem, recall the example of a model f trained
on skin images to predict disease. This time, to remove the corrupted medical image x, from f,
person p invokes the RTBF. Thus, the data controller for f unlearns x,, yielding f,. But, even after
unlearning, any medical insurance company can still access the publicly available x,, and obtain
fu(zp). But, fi(x,) = f(x,), and thus the medical insurance company incorrectly labels person
p as high risk for medical coverage. Thus, the unfair and dangerous scenario for person p remains.
This holds similarly for unlearning methods which deal with corrupted or obsolete data, as they still
do not aim to reduce confidence in the final prediction [Schoepf et al., [2025]].

Differences from Unlearning: Importantly, what we propose is not an unlearning algorithm,
which would need to be aligned with the goals of unlearning (and indistinguishability from retrain-
from-scratch). Instead, we aim to address an entirely new threat scenario—test time privacy—that
unlearning cannot solve, which we detail in Appx.[A] For example, indistinguishability from retrain
is inconsequential in our threat model. Furthermore, we also consider corrupted test examples, unlike
unlearning which focuses only on the training dataset. Finally, what may constitute a privacy violation
in unlearning, e.g. revealing that an instance is in the forget set via a membership inference attack
[Shokri et al.,2017] does not constitute a violation in our threat model. This holds similarly for other
threat models; for example, reconstruction attacks which lead to recovery of x,, [[Dinur and Nissim)
2003]] or adversarial attacks which lead to misclassification of x,, [Goodfellow et al.,2015] are not
violations in our threat model, as explained in Appx.

Still, the privacy guarantees that we provide in the threat model of test-time privacy are complementary
to the guarantees that unlearning can provide. However, related work has focused heavily on
unlearning—we fill this gap by presenting a framework for test-time privacy.

Additional Related Works: Due to space constraints, we provide an additional related works section
in Appx.|Cl Critically, we describe how differentially privacy methods like private aggregation of
teacher ensembles (PATE) [Papernot et al., | 2018]] or label differential privacy (LabelDP) [Ghazi et al.|
2021] differ from our setting, how label model inversion attacks [Zhu et al., 2019] relate to our threat
model, and also why misclassification-based methods for unlearning [Cha et al., 2024 are suboptimal
for addressing our threat model.

3 Approaches and Algorithms

Notation: Let X C R? be a sample space and let) C R? be a label space. Denote Z = X x)
as the space of feature-label pairs. Let Z” be the n-fold Cartesian product of Z such that a dataset
D C Z™ is a collection of n feature-label pairs. Then, the ith instance is denoted as DO with its
feature in X’ being D) and label being D(*¥). Following the unlearning literature, we subset D
as a “forget set" Dy, containing instances to protect, and a retain set D, = D \ Dy. Then, suppose
we have a (randomized) learning algorithm A : Z" — W, where W C R? is a parameter space. Let
the set of hypotheses parameterized with respect to this parameter space be Hyy,. Let fo, € Hyy be
the hypothesis parameterized by w € W, defined as fo, : X — Ay, where Ay is the probability

simplex {p1,...,py : pi > 0, Zg‘l p; = 1}. When A is a matrix, ||A]|2 is the 2 operator norm.

When v is a vector, ||v]|2 is the ¢5 norm. Furthermore, let A, (A) denote the minimum eigenvalue
of A. If we have an objective f4 + fp, we denote its gradient evaluated at w as V, 4, p and Hessian
as Hy, 4 p. Finally, when for sets S, 7 C A/ and R and mechanisms M, M’ : N’ — R, we have
Pr(M(S) e R) < e Pr(M'(F) € R) +§ and Pr(M'(S) € R) < e Pr(M(F) € R) + 6, we
will denote M(S) =~ 5, M’ (F). We provide a symbol table in Appx.

In order to prevent test-time privacy violations, it suffices to have the model output a uniform
distribution over the forget set, rendering the model maximally uncertain. Then, an adversary can
only guess at the original sensitive predictionE] We also would like to preserve retain set accuracy; to
that end, we present an algorithm that finetunes the pretrained model with a Pareto optimal objective.
To make this algorithm concrete, we define a uniform learner, which we prove to exist in many
common hypothesis classes. Then, we use this concept in order to construct a Pareto objective.

3.1 The Exact Pareto Learner

For a dataset D C Z™, we denote the pretrained model as .A(D). Then, to make .A(D) uniform over
the forget set, we introduce our core concept of a uniform learner:

Definition 3.1 (Uniform learner). Suppose we have a (randomized) learning algorithm K : Z™ — W
that, given D C Z", yields the parameter K(D) = wp. We say K is a uniform learner if YD €
Z", wp parametrizes fiu, € Hw and satisfies:

1 1
wp ~ \[qy 2" Ay / |loo, =0. 1
—_———

| V| times

That is, K is a uniform learner if its parameterized outputs yield the uniform distribution U0, |V]] for
all inputs across all datasets. We define this as a learning algorithm for full generality to handle e.g.
neural networks with nonlinear transformations in their last layer. Furthermore, K exists in many
common hypothesis spaces, proved in Appx.[G.2}

Proposition 3.2. Suppose we have a hypothesis space Hyy consisting of functions where the ultimate
layer is an affine transformation and the outputs are passed through a softmax. Let IC be a uniform
learner. Then, fx(py € Hw VD C Z".

Proof Sketch: Setting the weights in the ultimate affine layer to 0 yields uniform outputs.

3Please see Appx. for a clear characterization of why this is optimal within our threat model, and why we
can consider Dy C D, where D is a training dataset, without loss of generality.

Most classifiers built and deployed in ML recently, including multilayer perceptrons (MLP), residual
networks (ResNets) [He et al.l 2016], and transformers [[Vaswani et al.,|2017] satisfy the premise of
Prop. [3.2] making it widely applicable.

Next, we assume A and K are obtained through empirical risk minimization (ERM) to a local or
global minima. That is, let A(D) = argmin,, ., £4(w, D) and (D) = argmin,, ., Lx(w, D),
where L 4 penalizes incorrect classification and Lx penalizes a lack of uniformity in model outputs.
One choice of L is the KL divergence [Kullback and Leibler, [1951]] between the softmax outputs
and the uniform distribution. This loss has been previously used to penalize highly confident classifier
predictions [Pereyra et al.,2017]; we thus adapt this loss to our setting. Furthermore, by Prop.[3.2}
this loss can be completely minimized over W.

Critically, we seek the optimal tradeoff between uniformity over the forget set and utility over the
retain set. That is, we should produce a learner that is Pareto optimal with respect to L and L 4.
This learner can be characterized as follows:

Proposition 3.3. Ler 0 € (0,1). Fix D C 2™ and consider the forget set Dy C D and the retain
set D, = D\ Dy. Then, if My(D) = argmin,, ¢,y 0Lic(w,Dy) + (1 — 0)L 4(w, D,.) is a global
minimizer, it is globally Pareto optimal with respect to Li(w, D) and L o(w, D,.). Similarly, if
My (D) is a local minimizer, it is locally Pareto optimal.

Proof Sketch: This holds by contradiction. If the solution to the minimized objective was not globally
(locally) Pareto optimal, since € (0, 1), it could not be the global (local) minimizer. See Appx.
for a full proof. Definitions of Pareto optimality are included in Appx.[G.3]as well.

As shown in Prop. My yields a parameter that, given § € (0, 1), presents a Pareto optimal
tradeoff between uniformity over the forget set and utility over the retain set. One can adjust 6 to vary
over many Pareto optimal solutions, yielding different tradeoffs between uniformity and utility. This
yields Alg. E], in which we finetune a pretrained model by using it as initialization for My (D).

3.2 The Certified Pareto Learner

While the aforementioned algorithm in [3.1] provably guarantees an optimal tradeoff, so long as its
objective is minimized, we would also like to make it certified, obtaining a certificate that a third
party can inspect to verify test-time privacy. Thus, to design a certified approximation algorithm, we
take inspiration from certified unlearning [Zhang et al.||2024]], which aims to add a small amount of
structured noise such that the pretrained model becomes indistinguishable from the retrained model.
In our setting, we would like to make the pretrained model indistinguishable from the solution to the
Pareto objective. To do so, we define a new notion of (e, §)-indistinguishability and use this definition
to design a certifiable algorithm, with results in Sec. [5]

Firstly, to motivate our definition, recall the definition of differential privacy [Dwork et al., 2006]:

Definition 3.4 ((¢, ¢)-differential privacy). Suppose we have privacy budgets ¢ € (0,1) and § > 0. A
randomized algorithm M : Z™ — W satisfies (e, §)-differential privacy if VT C W and VD, D’ €
Z"st. |[D-D'||s < 1:

M(D) ~e 57 M(D'). @)

This guarantees that the algorithm M applied on a dataset is statistically indistinguishable from the
same algorithm applied on all datasets different by one instance. One can leverage this definition to
formalize certified unlearning [Sekhari et al.| 2021]):

Definition 3.5 ((¢, §)-certified unlearning). Suppose we have privacy budgets € € (0,1) and 6 > 0.
Consider D C 2" and let Dy C D be the forget set to be unlearned, and D,, = D \ Dy be the retain
set. U : Z™ x Z™ x W — Wis an (e, §)-certified unlearning algorithm if YT C W, we have:

U(D,Df,.A(D)) Re,8,T A(Dr)' 3)

This formalizes making A(D) indistinguishable from A(D,.). In light of Def.[3.5] we seek to make
A(D) indistinguishable from My (D). Thus, we provide the following new definition:

Definition 3.6 ((¢, d,)-certified Pareto learner). Suppose we have privacy budgets € € (0,1) and
d > 0 with D C Z". Let Dy C D be the forget set and let D, = D \ Dy be the retain set.
Suppose we have 0 € (0,1) and Mgy(D) = argmin,,c\y 0Lx(w,Dy) + (1 — 0)L 4(w, D,.), where

Algorithm 1 M, Finetuning

Require: Dataset D; forget set Dy; pretrained model w* = A(D); uniformity-utility tradeoff
coefficient #; e epochs.
Use w* as initialization for the Pareto learner My(D).
Optimize the Pareto learner My (D) for e epochs with e.g. SGD to yield w™.
return w-.

Algorithm 2 (¢, 6, 0)-Certified Uniformity with Exact Inverse Hessian

Require: Dataset D; forget set Dy; pretrained model w* = A(D); privacy budgets ¢ and &;
uniformity-utility tradeoff coefficient 6; local convex coefficient A; norm upper bound C'.
W w* — (Hy o4 + M) Vo 4. / Derived in Appx.[H
Compute A as the bound in Eq. (F20).
o= %\/21n(1.25/(5).
w~ W+ Y where Y ~ N(0,0%1).
return w-.

K is a uniform learner and A is a learning algorithm both obtained through ERM. An algorithm
G:Z"x Z" x W = Wisa (e, 9, 0)-certified Pareto learner if YT C W:

G(D, Dy, A(D)) ~c57 Mo(D). “)

Discussion: Qualitatively, the conditions in Def. [3.6|mean that the model obtained by algorithm G is
statistically indistinguishable from a model that is Pareto optimal between utility over the retain set
and uniformity over the forget set. Here, we consider the classical setting of £ € (0, I)EI Finally, note
that satisfying Def. [3.5]and Def. [3.6]together is not possible for forget sets which overlap; thus, a
model provider should adopt whichever approach corresponds to their threat model.

One way we can design an algorithm which satisfies Def. [3.6]is by taking a Newton step towards
the Pareto model and applying structured Gaussian noise; this yields Alg.[2] which is certifiable as
proved in Appx.[F} Using local convex approximation [Nocedal and Wright, 1999], in which we add
a regularization term to the objective of the Pareto learner, we design Alg. [2| without any assumptions
of convexity on the component loss functions.

In addition, Alg. 2]requires inverting a Hessian, which is computationally infeasible for practical
neural networks e.g. ResNets, even after employing conjugate gradient methods [[Nocedal and Wright,
1999]] and Hessian vector product techniques [Pearlmutter, [1994]. To resolve this issue, we also
propose a derived Alg.[3|in Appx.[F] which computes an efficient estimator for the inverse Hessian
[Agarwal et al.l 2016]. Furthermore, this algorithm does not assume convergence to a local minima
for A(D), handling e.g. early stopping. An online version is presented in Appx. as Alg. |4l While
Alg. and 4 have more hyperparameters than Alg. [I] they offer a certificate which can be used to
verify use of our method by a third party; we present ways to reduce hyperparameters in Appx. [I}

4 Theoretical Analysis

In what follows, we aim to analyze various properties of Alg.|l|and Alg. [2|to understand how to
appropriately choose 6 and the privacy-utility tradeoffs these algorithms incur. To clarify the notation
used in this section, we include a symbol table in Appx.[M] Firstly, we seek to understand how
we can choose 6 to guarantee uniformity over the forget set. To do so, we provide a constraint
to be satisfied to ensure uniformity. Then, we provide an appropriate lower bound on 6 to ensure
the constraint is satisfied. In doing so, one obtains a bound on the privacy of our algorithm. We
next want to obtain a bound on the utility of our algorithm. To that end, we upper bound the
difference between the retain loss of the locally optimal learned model .A(D;.) and the locally optimal
solution to the Pareto objective My (D). We obtain a tight, non-vacuous bound with respect to 6 and
characterize it asymptotically. Incorporating the two bounds provides a concrete characterization of
the privacy-utility tradeoffs that occur when our algorithms are used.

“Notably, |Balle and Wang][2018] provide a way to achieve (&, §)-indistinguishability for € > 1, and their
technique can be adapted without loss of generality to our setting.

In particular, across all algorithms, we make the pretrained model mdlstmg/{nshable from:

M =ar min O0Lx(w,D La(w,D w 5
o(D)=arg min 0Lx(w, Dy) + (1~ 0)La(w, D) + 5w})
Dyl .) D | A
=ar min 6 lc(w, D} 1—6 La(w, D) + Zllw|2, (6

5 ey 2 B0 D)+ (=03 4l D) 4 Gl ©
where /i and ¢4 are component loss functlons corresponding to individual data instances in the
forget and retain sets, respectively. Note that) is present either as weight decay in the Pareto learning
in Alg.[I]or as part of the local convex approximation in Alg.[2] Furthermore, note that the objective
is constrained by ||w||2 < C'; we use this as a part of our local convex approximation when deriving
Alg.[2} it is however unecessary for Alg.[T} Similarly, unlearning methods assume this either implicitly
or explicitly [Zhang et al.,2024]]. One can use projected gradient descent [Nocedal and Wright, |1999]
during pretraining to satisfy this constraint.

Note that Alg. [[|has A ~ 0. For Alg.[2] by Lemma our models f,,~ and f,(py have

approximately the same outputs over D, where w ™~ are the weights after applying one of our TTP
algorithms. Hence, for any of our algorithms, to ensure indistinguishability from uniformity over Dy,
it suffices to ensure that M, satisfies the following constraint:

| fmo() (D) = U0, P]f[oc < e M

We then have the following bound on Eq. (7) with respect to 6, the proof of which is in Appx.
Proposition 4.1. Let My(D) be the global solution to the Pareto objective. Choose, as surrogate
losses, {x(w, ’D}i)) = Dxr(fw (D}i))HU[O, | V), the KL divergence between the model outputs
over the forget set and the uniform distribution, and ¢ 4 (w, Dﬁj)) = (D(J y), fw(Dr @ X())),)the
) (D) —

U0, Yllllee < /2(552(D] n[Y)).

Proof Sketch: By using Prop. [3.2] and the fact that M(D) is a global minimizer, we can yield a
bound on L. Then, standard inequalities yield our result.

Then, we can choose 6 as follows to guarantee Eq. (7), the proof of which is in Appx.

Corollary 4.2. Choosing 6 > % guarantees that Eq. (7)) holds for any € > 0.
Discussion: Note that Cor. 4.2|is well-defined in that # € (0, 1) for any choice of |D,|, || and €.
Furthermore, Cor. restricts My (D) to a subset of Pareto optimal solutions, but this does not
render it no longer Pareto optimal; thus, our formulation as in Appx. [F still holds in its entirety.
Importantly, this is a sufficient but not necessary condition to satisfy Eq. (7).

Similarly, by Lemma|G.9] we can study the affect of 6 in My(D) on the (empirical) retain error on
D, after our algorithms are applied. To provide this bound, we require two key assumptionS'

Assumption 4.3. The gradients of {xc and ¢ 4 are Lipschitz in w with constants ID i and |1; E

Assumption 4.4. The Hessians of {xc and {4 are Lipschitz in w with constants ‘D i and |§ -

Discussion: Note that these assumptions are only used to prove Thm. .5]and in Appx.|[F} we do
not require them to prove all previously mentioned theorems. These assumptions, similar to those
studied by Zhang et al.|[2024], are less restrictive than those typically studied in certified unlearning
Sekhari et al.| [2021]; importantly, we do not assume (strong) convexity of the losses.

We then present a tight, non-vacuous bound on the retain error after applying any of our algorithms:

Theorem 4.5. Suppose Assumptlons H.3|and 4.4 hold, and let P, Px, Fx, F.4 be as defined in
Assumptwns“and- 4.4) Let o* := LA(A(D,.), D,.) be the locally optimal (empirical) retain loss,
achieved by My (D) when 0 = 0. Let a(0) := L A(Myg(D),D,) be the locally optimal retain
loss obtained by My(D) when 0 € (0,1). Suppose all weights used throughout are bounded by
[|lw|l2 < C. Additionally, denote by F := M + (1 — 6)F4 and P := 6P + (1 — 0)Py4.
Consider regularization coefficient A > L + 20CF + \/ZGCF(P + 20CF + 8Px). Then, we have
the following bound:

lo* — ()] < OAC?0 + C262). ®)

EEN Pretrain WEM Refrain WEE Synthetc ~ WEE LabelDP mmE Alg. 1 EEE Alg. 2 EEN Pretrain WM Retrain EEE Synthetc ~ EEE LabelDP NN Alg.1 EEE Alg.2
1.0

0.8
6
B 0.4
I II i

MNIST SVHN CIFAR10 CIFAR100 MNIST SVHN CIFAR10 CIFAR100
LogReg ResNet50 ResNet50 ResNet50 LogReg ResNet50 ResNet50 ResNet50

100

%

Accuracy (%) (Higher is Better)

w
Confidence Distance (Lower is Better)

(a) Accuracy on retain set for baselines as well as Alg. (b) Confidence distance on forget set for baselines as
and Alg.] with § = 0.75. well as Alg.[T|and Alg. 2] with 6 = 0.75.

Figure 2: Across datasets, observe a significant drop in confidence distance, where lower is better, for
both our algorithms. We also observe that both algorithms provide strong accuracy on the retain set.
We observe similar behavior for the test set in Appx. Kl while the baselines are inconsistent. Variance
is negligible for all metrics.

Proof Sketch: We subtract the first order conditions, by definition of a* and «(6), to get an expression
with respect to the gradients; plugging in an equivalent path integral expression and applying
Lemma [G.2]yields our desired result, with a full proof (including the full bound) in Appx.[G.12]

Discussion: Three key hyperparameters should be kept small to ensure high retain accuracy: the /5
regularization coefficient A, the max model weight magnitude C, and the Pareto frontier hyperparam-
eter 0. In particular, large regularization coefficients take the model off the Pareto frontier. However,
smaller or sparser weights are preferred, since the bound grows quadratically in C'.

In addition, that when # = 0, the bound simplifies to 0, indicating that it is tight near 0. We
demonstrate that it is tight near 1 in Appx. [K] Furthermore, in the case of Alg.[T} since A ~ 0, we
do not need the condition on A and obtain a clearer characterization. Furthermore, we can obtain a
more concise bound with simpler techniques, but such a bound is vacuous and does not incorporate
information about ; we elaborate on this in Appx.

5 Empirical Analysis

Below, we provide empirical results for Alg.[T]and Alg.[2] We firstly discuss our experimental setup,
baselines, and define our uniformity metric. Next, we provide our core results across Alg.[T} Alg.
and our baselines for several architectures and benchmarks. We also comment on the Pareto frontier
of Alg.[T|and Alg.[2} providing additional insight into the structure of our problem.

Setup and Baselines. Our primary results on Alg. [T]are for ResNet50 trained on
SVHN, CIFAR10, and CIFAR100. We also provide results for logistic regression on MNIST to
evaluate Alg.[2] We then include additional experiments with more complicated datasets and models,
such as ViT [Dosovitskiy et al', 2021]] and TinyImageNet [Le and Yang| 2015]}, in Tab. [K3] We
compare results with the pretrained model and the model retrained without the forget set, which
constitutes exact unlearning [Bourtoule et al., 2021]]. We also compare our methods to LabelDP

Ghazi et al} 2021]] and a synthetic baseline that assigns random labels to instances neighboring the
forget set. Across methods, we compare retain accuracy, test accuracy, and forget uniformity. We
provide more details and the rationale for our baselines in Appx.[J}

Providing a Uniformity Metric: We require a metric to compare uniformity over the forget set
in an interpretable manner. Thus, we define the “confidence distance" as max{0, f(x); — WI‘} for

x € Dy, where f(x); is the max confidence score. In our experiments, we use this as the primary
metric for uniformity, reporting the average confidence distance over the forget set. We discuss why
this is reasonable in Appx.|D|and compare it to alternative metrics in Appx.

Overall Results: The results for Alg. [T|are presented in Fig. 2] in which we were able to achieve
a > 3x decrease in confidence distance with only a 0.01% and 0.04% decrease in retain and test
accuracy, respectively, for a ResNet50 pretrained on SVHN. We obtain similar results for MNIST,

e MNIST LogReg (Alg. 2) e MNIST ResNet18 (Alg. 1) emm» \INIST LogReg (Alg. 2) e MNIST ResNet18 (Alg. 1)

@ MNIST LogReg (Alg. 1) e CIFAR10 ResNet50 (Alg. 1) @ MNIST LogReg (Alg. 1) e CIFAR10 ResNet50 (Alg. 1)
@ MNIST MLP (Alg. 1) @mm= CIFAR100 ResNet50 (Alg. 1) @ VINIST MLP (Alg. 1) @ CIFAR100 ResNet50 (Alg. 1)
100 1.00
o [0}
q
& 2075
5 7
s a
g » 8 050
< 3
< k]
5} £
ko S 025
o)
50 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0 0
(a) Retain Accuracy vs. 6, MNIST (b) Confidence Distance vs. §, MNIST

Figure 3: From Fig.[3al we observe that for simple datasets, the retain accuracy decreases smoothly.
However, for larger datasets like CIFAR10 and CIFAR100 as one passes 6 = 0.75, retain accuracy
drops significantly. This motivates our choice of # = 0.75 used throughout our experiments. In
Fig. |3“_5| we observe that the confidence distance decreases roughly linearly as 6 increases.

CIFAR10, and CIFAR100: retain and test set accuracies remain high, while forget confidence distance
is significantly reduced. Results for the test set are deferred to Appx.|Kl We additionally find that the
synthetic baseline can induce uniformity well for SVHN, but can either fail to induce uncertainty
entirely (CIFAR10) or induce uncertainty at great cost to retain and test accuracy (CIFAR100). We
observe similar behavior for TinyImageNet in Appx.[K:3] This holds similarly for LabelDP, which
furthermore undesirably reduces the confidence distance on retain and test sets, while our method
does not, as demonstrated in Tab.[K:4} Furthermore, our observations coincide with[Zhao et al| [2024],
observing that unlearned models still produce confident predictions on deleted instances.

Furthermore, as illustrated by Fig.[2] we find that Alg.[2]also induces uniformity well, while marginally
reducing retain and test accuracy. Thus, this algorithm produces a certificate through which test-time
privacy can be verified while still obtaining a good privacy-utility tradeoff. For both algorithms,
tables are included in Appx. [K]for completeness.

Pareto Frontiers: To better understand the structure of our problem, we explore the Pareto frontier
in Fig. @ We observe that for MNIST, CIFAR10, and CIFAR100, various # can provide good retain
accuracy, albeit at the cost of uniformity. In general, we find that § ~ 0.75 offers a solid privacy-utility
tradeoff. Thus, the € in Prop.[d.I|can be chosen fairly large while ensuring low confidence distance.

Additional Experiments: We conduct various additional experiments in in Appx. K] and briefly
comment about them here. Firstly, we obtain excellent performance for TinyImageNet and ViT in
Appx. Secondly, as desired, we obtain obtain high confidence distances on the retain and test
sets in Appx.[K:4] Thirdly, we study the optimization dynamics of Alg.[I]in Appx.[K:6] providing
mathematical and empirical evidence for the necessity of early stopping in large models when using
Alg.[T] Fourthly, we evaluate our method on several strong TTP attacks, demonstrating that we can
still offer effective defense, especially when compared to pretraining or retraining, in Appx. [K.7]
Fifthly, in Appx.[K:8] we find that we preserve strong accuracy and high confidence, as desired, on test
instances which are nearest neighbors to the forget set instances. Thus, an adversary querying nearby
instances outside of the forget set does not suffice to circumvent our algorithms. Sixthly, we find that
we can induce uncertainty on forget instances which were not part of the original training dataset,
while still preserving retain and test accuracies, in Appx.[K:9] Seventhly, we provide ablations on the
size of our forget set in Appx. Finally, we compare our confidence metric to an ¢5 uniformity
metric, finding that they highly correlate, in Appx.

6 Discussion

We present test-time privacy, a threat model in which an adversary seeks to directly use a confident
prediction for harm. This contrasts with existing work like PATE and LabelDP, which focus on
protecting against model inversion and leakage of ground truth labels. To protect against a test-time
privacy adversary, we present multiple algorithms to induce uniformity on a known corrupted subset

while preserving utility on the rest of the data instances. This can be used to prevent adversaries
from taking advantage of model outputs. Furthermore, we prove a privacy-utility tradeoff for our
algorithms, providing a tight bound which is empirically verified. We hope our test-time privacy can
further inspire the community to explore different threat models for sensitive data. Limitations and
future directions are provided in Appx.[E.T]

Acknowledgements

The authors would like to thank Kangwook Lee for feedback on the early idea and proposing the
synthetic and GaussianUniform baselines.

References

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. Proceedings of the Conference on on Computer
and Communiscations Security (CCS), pages 308-318, 2016.

Naman Agarwal, Brian Bullins, and Flad Hazan. Second-order stochastic optimization in linear time.
stat, 1050:15, 2016.

Mohammad Al-Rubaie and J Morris Chang. Privacy-preserving machine learning: threats and
solutions. IEEE Security & Privacy, 17(2):49-58, 2019.

Kareem Amin, Alex Kulesza, and Sergei Vassilvitskii. Practical considerations for differential privacy,
2024. URL https://arxiv.org/abs/2408.07614.

Anastasios N Angelopoulos, Michael I Jordan, and Ryan J Tibshirani. Gradient euilibrium in online
learning: theory and applications. arXiv preprint arXiv:2501.08330, 2025.

Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. Privacy-preserving deep learning
via additively homomorphic encryption. IEEE Transactions on Information Forensics and Security,
13(5):1333-1345, 2017.

Mirza Ahad Baig and Krzysztof Pietrzak. On the (in)security of proofs-of-space based longest-chain
blockchains. Cryptology ePrint Archive, Paper 2025/942, 2025. URL https://eprint.iacr!
org/2025/942|

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy:
analytical calibration and optimal denoising. International Conference on Machine Learning
(ICML), 2018.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. IEEE Symposium on Security
and Privacy (SP), pages 141-159, 2021.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. Transactions on Computation Theory (TOCT), 6(3):1-36, 2014.

Mark Bun, Damien Desfontaines, Cynthia Dwork, Naor Moni, Kobbi Nissim, Aaron Roth, Adam
Smith, Thomas Steinke, Jonathan Ullman, and Salil Vadhan. Statistical inference is not a privacy
violation, 2021.

Robert Istvan Busa-Fekete, Umar Syed, Sergei Vassilvitskii, et al. On the pitfalls of label differential
privacy. In NeurIPS Workshops, 2021.

Sungmin Cha, Sungjun Cho, Dasol Hwang, Honglak Lee, Taesup Moon, and Moontae Lee. Learning
to unlearn: instance-wise unlearning for pre-trained classifiers. AAAI Conference on Artificial
Intelligence, 38(10):11186-11194, 2024.

Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. Advances in
Neural Information Processing Systems (NeurIPS), 21, 2008.

10

https://arxiv.org/abs/2408.07614
https://eprint.iacr.org/2025/942
https://eprint.iacr.org/2025/942

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical risk
minimization. Journal of Machine Learning Research, 12(3), 2011.

Lynn Chua, Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Amer Sinha, and Chiyuan
Zhang. Scalable dp-sgd: shuffling vs. poisson subsampling. Advances in Neural Information
Processing Systems (NeurIPS), 37:70026-70047, 2024.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature. Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing, 29(6):141-142, 2012.

Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. Proceedings of the
Symposium on Principles of Databases (PODS), pages 202-210, 2003.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
International Conference on Learning Representations (ICLR), 2021.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. Proceedings of the Theory of Cryptography Conference (TCC), 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3-4):211-407, 2014.

European Parliament. Regulation (EU) 2016/679 of the European Parliament and of the Council,
2016. URL https://data.europa.eu/eli/reg/2016/679/0jl

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the Conference on on Computer and
Communiscations Security (CCS), pages 1322-1333, 2015.

Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi, and Chiyuan Zhang. Deep learning
with label differential privacy. Advances in Neural Information Processing Systems (NeurIPS), 34:
27131-27145, 2021.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. International Conference on Learning Representations (ICLR), 2015.

Google. Vision transformer pretrained on imagenet-21k, 2023. URL https://huggingface.co/
google/vit-base-patchl6-224|

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning (ICML), 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778,
2016.

C-L Hwang and Abu Syed Md Masud. Multiple objective decision making—methods and applications:
a state-of-the-art survey, volume 164. Springer Science & Business Media, 2012.

Gautam Kamath. Lecture 12: what is privacy? Lectures on private ml and stats, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical Report from the University of Toronto, 2009.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The Anals of Mathematical
Statistics, 22(1):79-86, 1951.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
machine unlearning. Advances in Neural Information Processing Systems (NeurIPS), 2023.

11

https://data.europa.eu/eli/reg/2016/679/oj
https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/google/vit-base-patch16-224

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge, 2015.

Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim Deryabin,
Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, et al. Privacy-preserving machine
learning with fully homomorphic encryption for deep neural network. IEEE Access, 10:30039—
30054, 2022.

Ninghui Li, Wahbeh Qardaji, and Dong Su. On sampling, anonymization, and differential privacy or,
k-anonymization meets differential privacy. Proceedings of the Conference on on Computer and
Communiscations Security (CCS), pages 32-33, 2012.

Hui Liu, Yibo Dou, Kai Wang, Yunmin Zou, Gan Sen, Xiangtao Liu, and Huling Li. A skin disease
classification model based on multi scale combined efficient channel attention module. Scientific
Reports, 15(1):6116, 2025.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. [International Conference on
Learning Representations (ICLR), 2018.

Gtinter Mayer. On the convergence of the neumann series in interval analysis. Linear algebra and its
applications, 65:63-70, 1985.

Frank Mcsherry. Statistical inference considered harmful, 2016. URL https://github.com/
frankmcsherry/blog/blob/master/posts/2016-06-14.mdl

Merriam-Webster. Privacy. Merriam-Webster Dictionary, 2022. URL https://www,
merriam-webster.com/dictionary/privacy.

Microsoft. Resnet50 pretrained on imagenet-21k, 2024. URL https://huggingface.co/
microsoft/resnet-50.

Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science & Business
Media, 1999.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. NeurlPS Workshops, page 4,
2011.

Thanh Tam Nguyen, Thanh Trung Huynh, Zhao Ren, Phi Le Nguyen, Alan Wee-Chung Liew,
Hongzhi Yin, and Quoc Viet Hung Nguyen. A survey of machine unlearning. arXiv preprint
arXiv:2209.02299, 2022.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

International ~ Association of Privacy Professionals. Swedish court rejects
google’s appeal in rtbf case, 2020. URL https://iapp.org/news/a/
swedish-court-rejects-googles-appeal-in-rtbf-case.

Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Ulfar Erlings-
son. Scalable private learning with pate. International Conference on Learning Representations
(ICLR), 2018.

Panos M Pardalos, Antanas Zilinskas, Julius Zilinskas, et al. Non-convex multi-objective optimization.
Springer, 2017.

Tim Pearce, Alexandra Brintrup, and Jun Zhu. Understanding softmax confidence and uncertainty.
arXiv preprint arXiv:2106.04972, 2021.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147-160,
1994.

Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey Hinton. Regularizing
neural networks by penalizing confident output distributions. International Conference on Learning
Representations (ICLR), 2017.

12

https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md
https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md
https://www.merriam-webster.com/dictionary/privacy
https://www.merriam-webster.com/dictionary/privacy
https://huggingface.co/microsoft/resnet-50
https://huggingface.co/microsoft/resnet-50
https://iapp.org/news/a/swedish-court-rejects-googles-appeal-in-rtbf-case
https://iapp.org/news/a/swedish-court-rejects-googles-appeal-in-rtbf-case

Mark S Pinsker. Information and information stability of random variables and processes. Holden-
Day, 1964.

Xinbao Qiao, Meng Zhang, Ming Tang, and Ermin Wei. Hessian-free online certified unlearning.
International Conference on Learning Representations (ICLR), 2025.

Stefan Schoepf, Michael Curtis Mozer, Nicole Elyse Mitchell, Alexandra Brintrup, Georgios Kaissis,
Peter Kairouz, and Eleni Triantafillou. Redirection for erasing memory (rem): Towards a universal
unlearning method for corrupted data. arXiv preprint arXiv:2505.17730, 2025.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: algorithms for machine unlearning. Advances in Neural Information Processing
Systems (NeurIPS), 34:18075-18086, 2021.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. /IEEE Symposium on Security and Privacy (SP), pages 3—18,
2017.

Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine learning models that remember
too much. Proceedings of the Conference on on Computer and Communiscations Security (CCS),
pages 587-601, 2017.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. International
Conference on Learning Representations (ICLR), 2021.

Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li, and Yiran Chen. Soteria: Provable
defense against privacy leakage in federated learning from representation perspective. Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.

Xiaoxiao Sun, Jufeng Yang, Ming Sun, and Kai Wang. A benchmark for automatic visual classification
of clinical skin disease images. European Conference on Computer Vision (ECCV), 2016.

TorchVision. Torchvision: Pytorch’s computer vision library, 2016. URL https://github.com/
pytorch/vision,

Cuong Tran and Ferdinando Fioretto. Personalized privacy auditing and optimization at test time.
arXiv preprint arXiv:2302.00077, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems (NeurIPS), 30, 2017.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong Qi. Beyond inferring
class representatives: User-level privacy leakage from federated learning. /IEEE Conference on
Computer Communications, 2019.

Annie White. Dmvs can (and do) collect and sell your personal data. Car and Driver, 2020.

Ruihan Wu, Jin Peng Zhou, Kilian Q Weinberger, and Chuan Guo. Does label differential privacy
prevent label inference attacks? International Conference on Artificial Intelligence and Statistics
(AISTATS), 2023.

Taihong Xiao, Yi-Hsuan Tsai, Kihyuk Sohn, Manmohan Chandraker, and Ming-Hsuan Yang. Ad-
versarial learning of privacy-preserving and task-oriented representations. AAAI Conference on
Artificial Intelligence, 2020.

Jufeng Yang, Xiaoxiao Sun, Jie Liang, and Paul L Rosin. Clinical skin lesion diagnosis using

representations inspired by dermatologist criteria. Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

13

https://github.com/pytorch/vision
https://github.com/pytorch/vision

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning:
Analyzing the connection to overfitting. 2018 IEEE Symposium on Computer Security Foundations
(CSF), pages 268-282, 2018.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning of
language models. International Conference on Learning Representations (ICLR), 2022.

Binchi Zhang, Yushun Dong, Tianhao Wang, and Jundong Li. Towards certified unlearning for deep
neural networks. International Conference on Machine Learning (ICML), 2024.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. In International Conference on Learning
Representations (ICLR), 2017.

Rui Zhang, Song Guo, Junxiao Wang, Xin Xie, and Dacheng Tao. A survey on gradient inversion:
Attacks, defenses and future directions. International Joint Conferences on Artificial Intelligence
(IJCAI), 2022.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610, 2020.

Kairan Zhao, Meghdad Kurmanji, George-Octavian Barbulescu, Eleni Triantafillou, and Peter Tri-
antafillou. What makes unlearning hard and what to do about it. Advances in Neural Information
Processing Systems (NeurIPS), 2024.

Mingyi Zhou, Xiang Gao, Jing Wu, John Grundy, Xiao Chen, Chunyang Chen, and Li Li. Modelob-
fuscator: obfuscating model information to protect deployed ml-based systems. Proceedings of the
Symposium on Software Testing and Analysis, pages 1005-1017, 2023.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in Neural
Information Processing Systems (NeurIPS), 2019.

14

Appendix

Table of Contents

|A" Test-Time Privacy Threat Model as a Security Game|

[B™ Definining Test-Time Privacy Attacks|

|C__Additional Related Workl

D Uniformity Metric|

[E™ Test-Time Privacy Examples|

[FDesigning Certified Algorithms|

lG__Proofs
|G.I Helpful Lemmas|.
|G.2° Proof of Proposition|3.2]
|G.3 Proof of Proposition|3.3| o
4 Proof of TheoremIE Il o

|G.9 Proof of Proposition|H.1}. o oo
|G.10 Proof of Proposition|4.1] o
|G.11 Proof of Corollary|d.2f|. oo

[Online Algorithm|

I Eliminating Hyperparameters in Certified Algorithms|

J__Experimental Details|

[KAdditional Experiments|
IK.T " Test Set Accuracies for Main Paper Experiments|
IK.2 Tables for Main Paper Expermments|
|K.3" Additional Experiments on TinylmageNet & Vil|.
|K.4 " LabelDP and Alg.[1|Confidence Distances for Retain, Test, and Forget Sets| . . .
|K.5 " Pareto Frontier Main Paper Tablef
|K.6 Optimization Dynamics| L
|K.7 Evaluating Test-Time Privacy Attacks|.
IK.8 Robustness of Alg.[1|Classifier on Neighboring Test Instances|
|K.9 " Ensuring Test-Time Privacy for Test Instances|
|K.10 Ablation Study on Forget Set S1ze| 0oL,
|K.T1 Evaluating Confidence Distance asa T'TP Metric|
IK.12 An Additional Baseline with Randomly Sampled Labels: GaussianUniform| . . .

15

17

18

18

20

20
21

21

24
24
28
28
29
29
30
30
31
32
32
34
34

38

38

39
39
39
40
40

42
0
43
43
43
43
44
49
49
50
51
52
52

|K.13 Tightness of Bound in Theoremf4.5| 54

|K.14 Confidence Intervals for Main Paper Experiments|. 54
|K.15 Proportions of Time Elapsed in Alg.|l}. 54
IK.16 Warmup Values for MNIST LogReg|. 55
|K.T7 Visualization of Softmax Outputs| 56
[KT8 Results for KMNIST LogRegand MLP| 57
|K.19 Ablation Study on Synthetic Baseline Sample Sizef 57
|K.20 Test Accuracy Plot for Pareto Frontier Experiments|. 58
[C" Broader Impacts| 58
M b ble} 60

16

A Test-Time Privacy Threat Model as a Security Game

Following recent works on privacy and cybersecurity [Baig and Pietrzak] [2025]], we begin by making
our threat model concrete as an informal security game. Broadly, we consider a test-time privacy
(TTP) game where a TTP adversary aims use an open-weight ML model f to produce a confident,
harmful prediction m for a specific set of corrupted inputs D drawn from a distribution P.

Actors and Assets: The game begins with three key actors:

1. The data corrupter c, an entity that either maliciously or erroneously creates a “forget set"
Dy of corrupted instances, e.g. a server which makes an error in compressing a medical
image uploaded to an online forum.

2. The model provider T, a benign challenger that uses a learning algorithm .4 and releases
amodel f. For example, f can classify skin disease from skin images. They then seek to
ensure TTP by running algorithm G to obtain model f.

3. The TTP adversary v e.g. a potential medical insurance provider who has access to the

architecture and parameters of f and aims to obtain harmful prediction m on Dy to e.g. use
as a warrant to reject insurance applicants.

Assumptions: We operate under two core assumptions:

* Open-Weight Access: The adversary v has complete access to the model’s architecture and
weights. This renders naive defenses, like obtaining f by masking softmax outputs of f,
useless, as an adversary can simply move such a mask and recover prediction m.

» 7-Limited Knowledge: The model provider 7 is notified about the existence of a corrupted
forget set Dy, but does not know the specific harmful label m. Furthermore, they do not
know the specific adversary. To make this concrete, the model provider 7 does not know
whether e.g. v is a medical insurance company aiming to obtain a prediction of “Melanoma"
to reject coverage or a defense attorney in a criminal case against a doctor aiming to obtain
a prediction of “Benign" to clear a doctor of accusations of medical malpractice.

Game: The game is then played in the first round.

Round 1: The first round contains preliminary steps as follows:

* The corrupter c corrupts the data and yields Dy, which adversary v gains access to e.g.
through the public Internet.

* The model provider 7 trains a model f over instances from P.

» The model provider 7 is made aware that D contains corrupted instances, and seeks to
protect them from a TTP adversary v.

Round 2: The second round contains the following steps:

1. The model provider 7, who is aware of TTP, aims to provide a model f to replace f such

that f (x) # m, where m is the harmful prediction. However, they are unaware of which
prediction m is. T thus runs an algorithm G with respect to f, D, and a training dataset D,

which yields a new model f .

2. The TTP adversary takes model f and attempts to obtain a confident prediction m which
serves as a warrant to endanger individuals e.g. to reject individuals from a health insurance
provider because their image was classified as a high risk disease like melanoma.

Win Conditions: The TTP adversary v wins if it is clearly the case that f(x) = m for all € Dy,
as they can then e.g. use this prediction as a warrant to reject people’s insurance applications. The

model provider T wins if f leaves v uncertain as to whether the prediction is m or not.

Given this win condition, an algorithm G satisfies test-time privacy if the adversary can only guess at
the model output for all instances in Dy. Thus, it is optimal to induce maximal uncertainty over Dy.
In particular, in the discriminative setting—which our work focuses on—it is optimal for model f to

17

output uniform softmax outputs over Dy, while maintaining strong accuracy on all other instances.
Furthermore, to defend against such a adversary with open-weight model access, one must perturb
the model weights in a non-invertible manner, motivating our approaches detailed in Sec.[3} b

Importantly, while in our formulation in Sec. [3]we define the forget set of corrupted instances in
terms of the training dataset, we do so without loss of generality. As detailed previously, we assume
that the forget set contains all corrupted instances, including instances outside of the training dataset
that are known to be corrupted. Denoting the set of training forget set instances D}“““ and D}e“,
we can thus let Dy = ’D;{ai“ U D;?S‘ and again consider D = Dy U D,; in this scenario, all formal
definitions and statements throughout Sec.[3] Sec.[d] and elsewhere follow in the exact same manner.
A concrete example of when instances outside of a training dataset can become relevant is credit
score classification; one’s credit score report can become corrupted, even if they are not in the training
dataset, and one should be able to ask a credit bureau to remedy this to ensure that e.g. a loan officer
does not incorrectly estimate their credit score.

In Appx. Bl we present some simple TTP attacks on open-weight image classifiers to further motivate
our threat model.

B Definining Test-Time Privacy Attacks

In what follows, in light of our threat model provided in Appx.[A]l we design some simple test-time
privacy attacks to motivate our problem. We also include experiments on these attacks, and how
Alg. [T performs against them, in Appx.[K.7

Our first simple algorithm is to add a small amount of uniformly sampled Gaussian noise, presented
in Alg.[5] We find that this is not very effective in increasing confidence distance, as demonstrated in
Tab. and Tab. When it brings the confidence distances from low to moderate, the model is
usually confidently wrong, as demonstrated in Tab.

One way to more optimally attack the TTP of a pretrained model is by finding instances in a ¢-ball
around the forget set instances that maximize the prediction confidence. To design such an attack,
suppose we have a pretrained classifier fu,« : X — Ay|. Here, fy(x) = softmax(z(x)), for
x € X, where z is a vector of logits. For a forget set instance, we begin by adding a small amount
of uniform noise to break symmetry and obtain a nonzero gradient. We then want to obtain the
worst-case perturbation over the logits by solving the optimization problem:

max max z,(f,) (z+ ¢), (B.9)
J
st |[@]loc <. (B.10)

Since the max function is not differentiable everywhere, we use LogSumExp to approximate it.
Denote p(fu (x 4+ ¢)) = log Zlﬁil exp (zJ,(x + ¢)). This yields the optimization problem:

mgXp(fw*(wﬂLé)% (B.11)
st ||0]]oe < - (B.12)

Following the Fast Gradient Sign Method (FGSM), a simple attack used to generate adversarial
examples [Goodfellow et al., [2015]], we design an attack as Alg.[6] Intuitively, we take a single
linear step towards maximizing the function. We design also design stronger attack based on
Projected Gradient Descent (PGD) [Madry et al.| 2018]| as Alg.[/| taking 40 steps while incrementally
maximizing the confidence function while projecting back to the ball around the original instance.
Empirical results are in Appx.

C Additional Related Work

Differential Privacy: Differential privacy has widely been studied in the ML community in order
to ensure privacy-preservation [Chaudhuri and Monteleoni, 2008]; [Chaudhuri et al., 2011]]; [Abadi

18

et al.;|2016]; [Chua et al.,2024]). There also exist methods to finetune pretrained models to satisfy
differential privacy [Yu et al.,[2022]]. Furthermore, there are also ways to aggregate label noise to
preserve privacy [Papernot et al., 2018]].

However, differential privacy is designed to address an entirely different threat model than ours. In
particular, in the threat model of differential privacy, an adversary seeks to use model outputs to
recover private information about data instance x,, corresponding to person p with e.g. a model
inversion attack. A differentially private classifier generally results in confident, accurate predictions.
This does not address our threat model, where an adversary may use confident model outputs to
violate the privacy of person p in a different manner, taking advantage of them directly to use as a
warrant to cause harm to person p.

Label Differential Privacy: Similarly, our formulation differs from label differential privacy (La-
belDP) [Ghazi et al.,[2021]], which seeks to protect an adversary from learning the true labels of the
instances in the training data. Given an instance, even after computing f(x,), under LabelDP an
adversary cannot be confident that f(x,) = y. However, LabelDP is applied to the entire dataset;
our threat model involves only a particular subset of the training data. Furthermore, we do not need
to protect the user’s ground truth label, necessarily. In our law enforcement example in Sec. 1] the
agency does not care about the ground truth label. Instead, they want any confirmation such that
they have a warrant to act adversarially towards person p; for this, a confident prediction by model f
suffices. Finally, LabelDP results in poor retain and test accuracy for larger datasets e.g. CIFAR100,
as demonstrated in Fig.[2]

Furthermore, from the perspective of protecting the privacy of the labels themselves, rather than
protecting against any confident prediction, Busa-Fekete et al.| [2021] demonstrate that testing a
model, trained with LabelDP, on the training dataset allows an adversary to recover the labels of
the label-private data with high probability. Since our algorithms induce uniformity, an adversary
cannot infer the correct forget set labels by testing the model on the training dataset; thus, we provide
better privacy against this threat model than LabelDP as well. [Wu et al.| [2023]] argue that, under this
threat model where one seeks to protect the labels, any model that generalizes must leak the accurate
labels when tested on the training data. However, as we demonstrate by inducing uniformity while
maintaining high test accuracy, this only holds when the model is to be tested on the entire training
data, not a subset of the training data (or other test instances which are known to be corrupted), as in
our setting.

Label Model Inversion Attacks: Related to LabelDP are model inversion attacks to recover the
ground truth labels, like gradient inversion [Zhang et al., [2022]; [Zhu et al., [2019]; [Zhao et al.,
2020]]. Yet, these methods do not report the confidence values for the recovered labels. Thus, they do
not constitute test-time privacy attacks within our threat model. Furthermore, by the same token as
above, an adversary seeks to recover a confident prediction to use as a warrant, not necessarily the
ground truth labels. Still, these methods could potentially be extended to test-time privacy attacks by
reporting a confidence score for the recovered labels. We leave this to future work.

Other Paradigms in Privacy: Other paradigms in the privacy literature correspond to a notion of
“test-time privacy" which differ from our threat model. For example, several works study defense
against model inversion attacks as test-time privacy [Wang et al., 2019]]; [Xiao et al.,[2020]; [Sun
et al., 2021]; [Tran and Fiorettol [2023]]. However, this is a separate threat model from ours; the
adversary already has access to the instance x,, within our threat model.

Misclassification & Relabeling in Machine Unlearning: Recently, methods have emerged to
finetune a model to misclassify rather than mimicking retraining from scratch [Cha et al., [2024]].
There are other similar relabeling methods in the debiasing literature which could be used for this
purpose [Angelopoulos et al.,[2025]]. However, these methods often achieve poor performance on
the remaining training data and fail to provide protection against our threat model in all cases. In
particular, a purposefully incorrect classification can also be used to endanger an individual. For
example, in the insurance example in Sec. [I] it may still be problematic to classify the user as
“Benign" instead of “Melanoma"; for example, the user of model f could be a medical professional
instead of an insurance provider. Furthermore, in the binary classification case, if an adversary knows
that x,, is in the forget set, they can recover the true f(x,) by taking complements, if an unlearning
method which seeks to induce misclassification is used. They can also use the information that learned
representations are markedly different than other similar examples to understand the method used.
Additionally, in the multiclass setting, an adversary can still take complements of this class, yielding

19

a probability of recovering the true class which is significantly better than choosing uniformly at
random. Instead, it is fairer and more robust to have an output that is maximally uncertain.

Model Calibration and Confidence: In our setting, we use the model softmax outputs to represent
the adversary’s confidence in the final prediction. However, some argue that this type of interpretation
is incorrect, i.e. ML models are poorly calibrated [Guo et al., 2017]]. Still, this interpretation is
common [Pearce et al.| 2021]], and thus a model user would likely rely on the softmax outputs as the
confidence scores. We leave to inducing uncertainty over the calibrated outputs to future work.

D Uniformity Metric

The confidence distance quantifies the adversary’s confidence in their final prediction, i.e. the
difference between the argmax softmax score and the uniform softmax score. Importantly, our
method aims to have the adversary lack confidence in their final prediction. Thus, our metric captures
what we aim to measure and is interpretable, since it is minimized at 0.

Furthermore, confidence distance allows us to quantify how uncertain the model is without relying
on accuracy, since a drop in forget set accuracy is not the goal of our formulation. Next, if the
maximum confidence score is very close to the uniform distribution, the probability mass of the
output distribution must be distributed over the other softmax outputs, clearly yielding that the higher
our uniformity metric, the more confident our model is, and the lower our uniformity metric, the less
confident our model is. Additionally, it takes the dataset into account; for example, in CIFAR10, one
would expect a uniformity score of ~ 0.2 to be reasonable, as then the adversary can only be = 30%
confident that they have a useful prediction. However, for CIFAR100, a uniformity score of ~ (0.2
is much better, as it implies that an adversary can only be ~ 21% confident that they have a useful
prediction.

One objection to the use of this metric may be that it does not indicate uniformity if it is low. For
example, on CIFAR10, one could have a confidence score of 0.2, which yields that the max softmax
output is 0.35. There could be three other nonzero softmax outputs of 0.3, 0.3, 0.1, 0.05; this clearly
is not uniform. However, this ensures test-time privacy; a test-time privacy adversary now has little
confidence in their prediction, even if they choose the first one, rendering their warrant for misuse of
sensitive data useless.

We empirically compare our confidence distance metric to other similar metrics in Appx. |Kl] finding
that when our confidence metric is minimized, other metrics are minimized.

E Test-Time Privacy Examples

Here, we provide a set of examples of the TTP threat model:

Health Insurance: Suppose an open-weight medical imaging model f is released, designed to
perform multiclass classification of skin photos into categories like “Dysplastic Nevus”, “Benign
Keratosis”, which are usually harmless, or serious classes like “Melanoma” [Sun et al} [2016]]. A
person p posts a photo of a harmless birthmark on his arm to a public health forum to ask a question.
During the upload, an e.g. server error or compression issue causes the image file to become corrupted,
severely distorting the birthmark. This results in a photo x,,. Next, a health insurance startup decides
to build risk profiles by scraping these public forums. They download the open-weight model f to
automatically screen images for potential health liabilities. When they feed x,, into f, it confidently
classifies x,, as “Melanoma”. This erroneous classification is then automatically added to person p’s
risk profile, resulting person p being unfairly denied coverage.

Criminal Records: Suppose a model f is trained on criminal records to predict individual crime
likelihood. Additionally, suppose the criminal record x,, of a person p is corrupted and publicly
available. Then, f(x,) predicts that person p is highly likely to commit crime. An adversarial law
enforcement agency, or even a prospective employer, may ignore or be unaware of warnings about
the data being corrupted, rendering a dangerous scenario for person pE] To make this clear, provide a
figure similar to that of Fig. [I]at Fig.[E.4]

SRecently, ML model providers have been involved in privacy cases involving criminal records [of Pri-
vacy Professionals| 2020], making this threat pertinent.

20

Employer

. i (o
Queries f High Employers
Model Provider with corrupted z,, Low Z‘:g’:?
Trains f
] iR ‘. 3(/() — “High Risk” | confidently
classify a
. person as
Pretrained Model f High high risk as
a warrant to
Low deny their
application..

‘. — Sl o2]
Uniform Classifier [y

Figure E.4: An adversary, like an employer (B, can query a pretrained model f (4P) and use its
outputs to make harmful decisions. However, after running our algorithm, the new model fr; ()
provides maximal uncertainty, protecting against such an adversary. This is a duplicate of Fig.[I] to
make clear how TTP extends to other settings.

Mortgage Loans: Suppose a model f is trained on various items relevant to whether one receives
a mortgage loan or not, like bank statements and past rent payments. Person p has corrupted rent
payment history x,. Then, the bank runs model f and obtains f(x,), which confidently says that ,,
is undeserving of a loan.

Car Insurance: Suppose a model f is trained on one’s history of car accidents. Person p has
corrupted car accident history ;. Then, when applying for car insurance, the provider runs model f
and obtains f(x,), which confidently says that x,, is undeserving of a loanﬂ

We provide an additional example in the generative setting as well:

News Articles: Consider a text-to-image generative model trained on a large dataset, including
web data, which has web articles and associated images. A popular news site publishes an article
about a businessperson, but mistakenly uses a picture of an unrelated individual p, x,,, as the header
image. This creates a strong, albeit false, association between this person’s likeness and the (perhaps
negative) content of the article. When prompted with a string similar to the headline of the news
article, the model generates an image (or a similar image) of person p, algorithmically cementing a
false narrative about person p.

E.1 Limitations and Future Directions

Notably, our presented method only applies to classification. Extending this to generative models
e.g. diffusion models for image generation [[Song et al., [2021] or autoregressive transformers for
sequence-to-sequence generation [[Vaswani et al., 2017]] remains as future work. Furthermore, even in
the discriminative setting, we focus our method on image classification. Extending our methods to
the text setting, which is nontrivial due to discrete inputs, remains as future work.

From an algorithmic perspective, in Alg.[I] we use linear scalarization to design our objective [Hwang
and Masud, 2012]]. One can instead design an objective using e-constraints [Miettinen, |1999|], which
can then be solved by an augmented Lagrangian method [Nocedal and Wright, |1999].

F Designing Certified Algorithms

In what follows, we design (&, 0, 8)-certified Pareto learners. A symbol table can be found at Appx.

In our setting, the original model is obtained using ERM over some loss function £ 4, some dataset D,
and some parameter space V. Furthermore, we consider the common scenario where the cumulative

SNote that recent, the Department of Motor Vehicles in America has been selling driving records, making
this threat pertinent [White} 2020].

21

loss L 4 over the dataset is a finite sum of individual losses £ 4. Thus, we denote the pretrained model
as:

|D|
w* = A(D) := arg ur}nel%}v Li(w,D) = arg gleilr/leEA(w,D(i)). (F.13)
i=1

By Prop. [3.2] we can similarly obtain a uniform learner through ERM with respect to some loss
function Lx. Furthermore, in our setting, we have the forget set Dy and retain set D,, = D \D Iz
Thus, the uniform learner over the forget set can be characterized as:

Dyl
K(Dy) := arg m111/1\} Li(w, D) ZE;C (F.14)

Let 6 € (0,1) be a tradeoff parameter between uniformity over the forget set and utility over the
retain set. This yields a concrete characterization of My as:

w* = My(D) := arg rrg‘r/lv 0Lk (w,Dy) + (1 —0)La(w,Ds), (F.15)
w
|Dy | |Dr|
—argmmHZE;CwD() ZeAwDU (F.16)
as in Eq. (6).

To design an algorithm which takes in D, D,., and w* and outputs a parameter which satisfies Def.
we follow the methodology of certified unlearning|[Zhang et al|[2024]], which seeks to satisfy Def.|3.5]

First, we simplify the problem of deriving a model that satisfies Def. [3.6}

Theorem F.1. (Certification Guarantee) Let w := F(D Dy, w*) be an approximation to w*.
Suppose || — w*||s < A. Then, U(D, Dy, A(D)) = w~ = W+ Y is a (06,0) certified

uniformity algorithm, where Y ~ N(0,0%I) and o > = /2In(1.25/5).
Proof: See Appx.[G.4]

Thus, it then suffices to find an approximation of @™, i.e. a form for 7 (D, D I w™) and its associated
A. To do so, we consider the two assumptions Asm. [4.3]and Asm.

For any w € W, denote V., k4 = Vo (0L (w, Dy) + (1 — 0)L 4(w, D,)), the gradient of the
objective of My with respect to w, and Hy, ¢ 4 := V2 (0L (w, Df) + (1 — 0) L a(w, D)), the
Hessian of the objective of My with respect to w. We thus have Vo, x4 = 0V + (1 — 0) Vo 4,
and similarly for the Hessian.

Next, letting g(w) := V4, x4, by Taylor’s theorem, expanding g(w*) around w*, we have that:
g(w") = g(w") + Dglw- (D" — w"). (F17)

Note that g(w*) = 0, since W™ is the minimizer of the objective in My. Isolating w* and using the
definition of g, we then have that:

w* ~w H_ IC.AV'LU JC,A- (F.18)

Thus, we let w = w* — H ,C 4V~ k4. This yields the following general form of A:
Proposition F.2. Suppose Asm. |4 and Asm. 4 hold. Suppose w = w* — H_, ! < e AVw KA

Then, (0P
- 0Fc + (1 —
|[@0" —]2 < 5 ANHG! o allallw — 3. (F.19)

22

Proof: See Appx.[G.3]

We then use local convex approximation [Nocedal and Wright, |1999] to bound || H, 1;} ic.all2- To

that end, we let the objective of My have a regularization term % ||w||3, yielding the inverse Hes-
sian ||(Hy~ i 4 + AL)71||2; thus, in Prop. the norm of the inverse Hessian is replaced by
||(Hyw~ jc.a + M) 7Y |2. It then suffices to bound this term.

Additionally, note that since the objective of My is nonconvex, the Hessian may not be invertible,
i.e. Amin(Huw~ k,4) < 0. However, Apin(Huw+ .4 + M) = Amin (Hw= kc,4) + A. Thus, for A
sufficiently large, we can make H,,- i 4 + AI positive definite and hence invertible, resolving this
issue. In particular, we can take A > || Hyp+ i, 4]|2-

Furthermore, we let ||w||2 < C'in Mg and A, i.e. My = arg min||y|,<c,wew 0Lx (w, Dy)+(1—
0)LA(w,D.4) + 3||w|[3 and A(D) = arg min,ew,|jw||<c £a(w, D). Note that, as mentioned in
[Zhang et al., 2024]], unlearning methods implicitly assume this.

Together, these two methods yield a tractable form of A:

Proposition F.3. Suppose Asm. and Asm. hold. Suppose & = w* — (Hy- .4 +
M) Vo x4 where ||w*||o, [|@0*[la < C. Let Amin = Amin(Huw=xc.4). Suppose X >
|[Huw~ ic,.4l|2- Then,

e~ 20((0Mg + (1 —0)MA)C + X
1 — ||, < 22UEMx A(H _) A)CHA) (F20)

Proof: See Appx.[G.6

While Prop. does yield a form of F and A, the computation of w requires obtaining the exact
inverse Hessian, which has runtime (’)(sz + z3), where z is the number of learnable parameters.
Furthermore, computing the gradient product with the inverse Hessian is O(z?). Finally, computing
the gradient Vo« x4 is O(|D|z). Thus, the algorithm yielded by Prop.[F.3|has a runtime complexity
of O(dz? + 2% + 22 + | D|2).

If we consider the additional assumption of convexity, we can take A\ very small to ensure the Hessian
is invertible, since we have Anin = 0. Thus, for convex models e.g. logistic regression with a
mean-square uniform loss, this is tractable. This yields Alg. 2]

However, for nonconvex models e.g. large scale neural networks, this is computationally intractable.
Thus, to provide better runtime, we derive an asymptotically unbiased estimator of the inverse Hessian.
However, the estimator in|Zhang et al.|[[2024]] does not trivially extend to our case. In particular, we
cannot glean Hessian samples using sampled i.i.d. data from the retain set, because the Hessian in
our setting is defined over the forget set as well. Thus, we must derive an unbiased estimator while
sampling Hessians from both the retain and forget set. As such, following the techniques of [Agarwal
et al.,[2016]], we design an unbiased estimator as follows:

Theorem F.4. Suppose we have n i.i.d. data samples (X1, ..., X,,) drawn from D and D, uniformly

at random, with probabilities 6 and 1 — 0 respectively. Then, suppose ||H = o 4 + M ||2 < J. For
t=1,..nif Xy ~ Dy let Hyy = Hy oy + 55 and if Xy ~ D, let Hy \ = Hy» a4 + %.
Suppose A > ||H o+ x, A||2. Then, compute:

H,

H{ =TI+(I- JH, !\, Hop =1. (F21)

rr—1

H
Then, TA is an asymptotically unbiased estimator for (Hy» jc.a + N)71

Proof: See Appx.

One simple choice of J is J = 2\, by Lemma|G.I} However, we let J be free. The computation of
the estimator in theorem [F.4] has a runtime complexity of O(nz?), a great speedup over the original
(9(sz + 23). Furthermore, with Hessian vector product (HVP) techniques [Pearlmutter; {1994, we
obtain a space complexity of O(z) instead of O(z?), since we do not have to compute the sample

Hessians explicitly. Furthermore, computing H, \ V.. xc, 4 recursively reduces O(22) to O(nz).

23

H,
7

1
A

Additionally, following |Agarwal et al.| [2016], we can average b unbiased estimators as

W
% Ei’:l 2 — to achieve better concentration. Altogether, we achieve a final runtime complexity
of O(bnz? + bnz + |D|z).

Furthermore, we relax the assumption that w* and w* are the global minimizers of £ 4 and 6L 4 +
(1 — 6)Lx. We do so because, in practice, it is possible that the data controller trained their model
with early stopping, i.e. they did not reach the global minimizer. Altogether, this yields a final form
of A as:

Theorem F.5. Let w* and w* not be empirical risk minimizers of their respective losses, but
rather approximations thereof. Suppose Asm. and Asm. hold. Suppose ||w*||2, ||@0*||2 < C.
oy —1
t, A

Let Amin := Amin(Huw= ic,4). Suppose X > ||Hy~ c all2. Let W = w* — —5> Ve i 4. Let
b be the number of inverse Hessian estimators we average. Letting n be the number of steps
taken during unbiased estimation of the inverse Hessian, require n > 22— In(b) where

B
A+Amin A+Amin
B = max{ e%f-s-‘,\’ (1_‘9);:“"""’\ . Suppose ||V k. all2; || Var xc,4ll2 < G, With probability larger

than 1 — p, we have that:

e - 20((0Fc + (1 —0)F4)C +\) + G
|[w* — ||y < U (F.22)
B [l(%) 1
+ (16 + —)(2C(0Pc + (1 — 0)P4) + G). (F.23)

Gmn b 16
where (pin > min;)\min(Vi,lZ;C,A(w, D(i))).

Proof: See Appx.

Note that if we let w™* be an ERM in theorem we can use V, x, 4 and obtain the same result.
Altogether, this yields Alg.[3]

G Proofs

G.1 Helpful Lemmas

Lemma G.1. Given Asm.[4.3| the gradients ¥V, xc and Vo, 4 exist and are Lipschitz with constants
Px and P4, respectively. Furthermore, given Asm. the Hessians H., x and H., 4 exist and are
Lipschitz with constants Fic and F 4, respectively.

Proof.
& (2) (4) & (2) (4)
IV k = Ve ellz = 1) V2 (w1, D) = 3~ V2 (ws, DY) (G.24)
i=1 i=1
|Dy| , 4 4 '
< Z ||V2£§é) (wl,DSf)) - VQZ%) (wa, D;”)HQ, triangle inequality (G.25)
i=1
|Dy| P
<> ﬁ”wl — wsl|2, Asm. B3 (G.26)
i=1
= Px||lwi — ws|2 (G.27)
This follows similarly for Vo, 4, Hyp xc, and Hy, 4. O]

Lemma G.2. Given Asm.[.3| for any dataset D C Z", L 4 satisfies:

P
|La(w1,D) — La(wsz,D)| < 7K||w1 — w3 + [[Vwy,all2]|wr — wa| (G.28)

24

Algorithm 3 (¢, 6, 0)-Certified Uniformity with Inverse Hessian Estimator

Require: Dataset D; forget set Dy; pretrained model w* = A(D); privacy budgets € and &;
uniformity-utility tradeoff coefficient €; estimator concentration b; sample size n; local convex
coefficient A; norm upper bound C; cumulative Hessian upper bound H; individual Hessian
minimum eigenvalue upper bound (i, ; gradient norm upper bound G; bound looseness probability

Pé,ox) — Vuw+ k.4

forj=1,...,bdo

fort=1,...,ndo
Sample X; from D uniformly with probability 6 or,
sample X; from D, uniformly with probability 1 — 6 .
if X; ~ Dy then
HY) « V2 Lic(w*, X;) + AL
else if Xt ~ D, then

end if o
N 0 HtJ B
By =P+ (- R0,
end for
end for .)
Pn)‘ = % Zj:l Pn?)\
W — w* — P

Compute A as the bound in Eq. (E23).
o= £2,/2In(1.25/5)

w” W+ Y where Y ~ N(0,0%I).
return w- .

Proof. By the fundamental theorem of calculus, we have the path integral:

1
/ (Vg tt(wy —ws), A, W1 — w2)dt = L (w1, D) — L 4(wa, D) (G.29)
0

We have that:

1 1
/ <vw2+t(w17w2),Aa wy — w2>dt = / <V'w2,A - V'wz,.A + vwngt(wlfwg),Aa wy — w2>dt
0 0
(G.30)

1
:/ (Vs 4, w1 — wa)dt (G301
0

1
+ / <vw2+t(w1—w2),A — Vs, 4, W1 — wo)dt (G.32)
0

The first term can be bounded by Cauchy-Schwarz as:

1
/ (Veos s W1 — W)t < |[Vao, al|2]|wr — ws]2 (G33)
0

and similarly the second term can be bounded by Cauchy-Schwarz as:

25

1 1
/ <V'w2+t(w17w2),A - vwg,Aa w1 — w2>dt < / ||vw2+t(w17w2),A - Vw;;,.AHQHwI - w2||2dt
0 0
(G.34)

1
g/ Pxt||lwi — ws|2, by Lemmal[G.T] (G.35)
0

P
< TAle — ws[2 (G.36)

Incorporating these bounds into Eq. (G.32) and Eq. (G.29), upon applying the triangle inequality,
yields:

P
[La(w1, D) = La(ws, D)| < 7’C|le = W3 + [[Vawa al[2] w1 — w22 (G.37)

as desired.

Lemma G.3. Given Asm. the Hessians H, xc, Hyy A, and Hy, 4 are symmetric.

Proof. By Lemma[G_TI, the Hessians H,, x and H,, 4 are continuous, and thus H,, x4 is con-
tinuous by linearity. Hence, all second-order partial derivatives contained in the Hessians are
continuous, so by Schwartz’s theorem all Hessians are symmetric. Importantly, for e.g. Hy, xc 4,
[|Huw i, All2 = max; [N (Hw i,)|, where \; denotes the ith eigenvalue. O

Lemma G.4. (Corollary of Theorem A.1 in [Dwork et al., 2014]) Let X ~ N (\,0%I) and Y ~
N (N, a%I). Suppose ||\ — N||2 < A. Then forany 6 > 0, X and Y are (g, §)-indistinguishable if
o> 2,/2In(1.25/5).

Lemma G.5. Suppose we have n i.i.d. data samples (X1, ..., X,,) drawn from Dy and D, with
probabilities 0 and 1 — 0 respectively. Fort = 1,...,n, if Xy ~ Dy let Hy x = H o1 + % and if
X¢~ Dy let Hyy = Hyr aq + giitgy- Then, E[H, \] = Hup- x4 + M i.e. Hy x is an unbiased
estimator of our Hessian of interest.

Proof. Attime t, we have sample X; s.t. Xy ~ D, or X; ~ Dy. Notethat Ex,p, [Hw*,IC,t‘F%] -
Hy- i + 55 and likewise Ex,<p, [Hu 4 + 503555] = Huwr A + 55257

By the law of iterated expectation, we have that:

E[Ht,)\} = E[Ht,)\lXt ~ Df] PI'(Xt ~ Df) +]E[Ht’,\|Xt ~ DT] PI'(Xt ~ DT)

A A
= QEXt~Df [Hw*,lc,t + %)] + (]— - Q)EXtNDT [Hw*,.A,t + m}
bVl A

= 0(H ~ — 1 —0)(H - _—

(Hue e+ 53) + (1=) (et)
= eHw*,IC —|- (1 —_ H)Hw*,_A +)\I
- w* KC,A + A

as desired. [

Lemma G.6. Suppose Assumptions{.3|and{.4hold. Let local condition number k; and maximum

local condition number K}"** correspond to the definitions of|Agarwal et al.|[2016]] with respect to the

Hessian of the loss of Mg after local convex approximation. Then, fj < —x— +fmin and £ < f; -
where B = max{ HTS;TA, (k%ﬁﬁk} and where (i, > ming)\min(vfué)(é?A(w7 DY),

26

Proof. By Eq. (6) and our local convex approximation technique, we have that:

|Dy| 2
Mp(D) = arg min 6>~ 6 (w, D) + (1-60) Y £ (w, DY) + Tl |3
im1 i=1
|Dsl 0 o A\ | D "
_ . 7 1 2) (1)
arg 5}%1‘9\} — (QEIC (w7Df) + 2|Df| ||’LU||2) + ;(GKA (w7Dr) +
|D| 0
g min 20, (w, DO
arg 5)%151\} 2 ,C,A(w,)

where

00 (w, D) + s7llwll3, 1 <i < |Dy]

00 4(w. D) = {

2[Dr|

By the definitions provided in|Agarwal et al.|[2016], we have:

R max;)\max(Vi}lZ;@A(w, D))
Ak = max
wew Amin(Hw,lC,A =+)\I)

and

s.max

max; Amax (V2 (x4 (w, DD))
K] = max = -
wew HllIl7)\min(v»%uglC,A(wv D(Z)))

We then have that, for any ¢,

)\max(VfD@%?A) < ||V12ug§ci?,4”27 by Lemma[G.3]
A
Dyl

A

= max{[|0V2,¢{) +
* D |

o, [1(1 = 0)V2,6%) +

|2}

Furthermore, by Asm.[4.3]and the triangle inequality:

0P + A
Dyl

Y
oV 00 + <
109560 + 5l

and

A (1—-0)Ps+ A
o < —5+—

Dy | Dy

11— 0)V2e%) +

Taking max over all ¢, we obtain that
OPc+X (1—0)Py +)\}
Dyl 1Dy |

max Amax (V2 x4 (w, DW)) < max{

which we denote by B.

Then, we obtain that & < 5%

22— and A" < B as desired, since
Amin Cmin

27

(1—0)0 P (w, DITPIY 4 A w3, D] +1<i < D)

>‘ 2
Wﬂwﬂz)

(G.41)

(G.42)
(G.43)

(G.44)
(G.45)

(G.46)

(G.47)

(G.48)

(G.49)

Lemma G.7. (Lemma 3.6 adapted from|Agarwal et al [2016)]) Suppose Asm.[4.3|and Asm. 4.4 hold.

T,

Consider the estimator in theorem|F.4} Let b be the number of inverse Hessian estimators we

H
obtain. Suppose n > Qﬁ ln(ﬁb), where B = max{ ef,’gf'ﬁ)‘, (1_%1?‘““‘ }. Then, we have
that:
H, | B |l 1
Pr[|| Hop- A)TH - A, <16 Py > G.50
r[[[Huw~ x4 + AT) 7 2 < [glz1-r (G.50)

where (in > min;)\min(ij,(QA(m D(i)))‘

Proof. Note that b = S; in our setting. In our setting, following the subsequent steps of the proof in
Agarwal et al.[[2016] after plugging in the bounds in Lemmain place of K;, K]"**, noting that
we choose n = Sy > 2% ln(%b), we obtain the exact same result for the Neumann series
bound of 1—16. Using the fact that % is an upper bound on £;"%* by Lemma the rest of the proof
follows similarly. O

Lemma G.8. (Proposition 2.1 in \Dwork et al.| [2014)]]) Let M : NI¥l' — R be a randomized
algorithm that is (g, 6)-differentially private. Let f : R — R’ be an arbitrary mapping. Then,

f oM :NIXl 5 R is (e, 8)-differentially private.
Note that, in the proof of Lemma|G.8] one proves this fact for deterministic mappings, so this holds
for both randomized and deterministic f.

Lemma G.9. Consider the mapping J : W — R, and suppose G : Z" x Z™ x W — W satisfies
Def. Then, VC C R:

Pr(J(G(D,Dys, A(D))) € C) < e Pr(J(My(D)) € C)+ 6 (G.51)
Pr(J(My(D)) € C) < e Pr(J(G(D, Dy, AD))) € C)+ 0 (G.52)
Proof. Immediate from Lemma|G.§ O

G.2 Proof of Proposition [3.2]

Proof. Fix adatasetD C Z™.
Suppose we have an K —layer function f,, : R¢ — R parameterized by w € W of the form
f(®)=1Lio..oLk 10Lkwhere Li_1(x) =Wk @+ br_1and Li(z) = softmax(z), i.e.

LK_l(CL')i = %. Thus, fw € Hyy. Then, let Wi _1 =0and bx_1 = 0.
j=1"

Fix z € D. This yields, for j = 1,..., Y|, f(2); = Z‘ij{ieﬂ = |3f\0e0 = W:LI Hence, since z was
i=1

1
arbitrary, fo,(2z) = () Vz € D. Since D was arbitrary, by definition of a uniform learner

m7 seey m
———

| V| times

over D, fi(p) € Hw VD C Z™ as desired.

G.3 Proof of Proposition 3.3

We use the following definition of global Pareto optimality:

Definition G.10. (Chapter I of \Pardalos et al.|[2017|]) Suppose we have a multiobjective optimization
problem min f(x) s.t. x € A, where f(x) = (fi(x), fo(x), ..., fm(x)). * € A with f(x*) is
called globally Pareto optimal if and only if there exists no x € A such that f;(x) < f;(x*) for all
i=1,2,....,mand f;(z) < f;(x*) for at least one j € {1, ..., m}.

28

We can then prove the statement:

Proof. Let6 € (0,1). Fix D C 2", Dy C D, and D, = D\ Dy.

Suppose, for the sake of contradiction, that w* = My(D) = argmin,,0Lx(w,Ds) + (1 —
0)L 4(w, D,.), a global minimizer, is not globally Pareto optimal with respect to Li (w, D) and
La(w,D,). Then, exists w’ s.t. Li(w',Dy) < Li(@*,Dy) and L4(w',D;) < L(@*,D,),
with at least one of these inequalities being strict.

Then, since 6 € (0,1) and (1 — §) € (0, 1), we have that 0L (w’, Dy) + (1 — 6)La(w', D) <
0Ly (w*,Dy) + (1 — 0)L a(w*, D,.), contradicting optimality of @*. As such, Mg(D) is globally
Pareto optimal respect to Lx(w, Dy) and £ 4(w, D,.) as desired.

This holds similarly for a local minimizer w™, where Pareto optimality similarly holds only locally in
a neighborhood around the minima.

O

G.4 Proof of Theorem [E1]

Proof. The proof follows similarly to Lemma 10 in|Sekhari et al.[[2021]]; for completeness, we adapt
their proof to our setting.

Let w* := A(D),w™ := G(D, Dy, w*),w := F(D, Dy, w*). Departing from the notation of the
theorem for clarity, let w* := My (D), w= := G(D,), w*), w := F(D,), w*).

Note that @ = w*. We then have that ||@ — || = || — w*||z < A, by definition of A.

By definition of G, we have that w™ = @ + Y and w— = @ + Y, where Y ~ N(0,021) s.t.
o> 2,/2In(1.25/5).

As such, w~ = N (@, 02I) and w— ~ N (w,021).

Thus, by Lemma w’,fwL are (e, d)-indistinguishable. In particular, since w = w* by
construction, G(D, Dy, A(D)) and Mgy(D) are (¢, §)-indistinguishable, as desired.

O
G.5 Proof of Proposition[F.2]
Proof. By the same token as Lemma 3.3 in [Zhang et al.| 2024], we have that:
||w —w*|[2 <||H ;CA||2/ [[Huw 1,4 — Hope yt(i0 —w) i, All2][w™ — @07 [|2dt (G.53)
Letw’ = w*+t(w—w*). We have that ||w* —w'||; = |[[w* —w*+t(D* —w™")||2 = t]||w* —D*|]|2.

Furthermore, by linearity of H,, and the triangle inequality, we have that:

| Hu x4 — Hu seoall2 = |0 Huw xc + (1 — 0)Hyyr 4 — 0Hyr o — (1 — 0)Hyy all2 (G.54)
< O|[Huw~x — OHuy kll2 + (1 — 0)[| Huw, 4 — Huyr all2 (G.55)
= 0Fk||w* —w'||2 4+ (1 — 0) F4||lw* — w'||2, by Lemma|G.]]

(G.56)
= OtFic||w* — @*||2 + (1 — O)tF4]|w* — @*||2, (G.57)

This yields that:

29

1
16 — "2 < | Hp! yc_alla / [Hour s — Hupe 1w sl ollw” — @2t (G.58)
0

1
< ||Hy: k. all2 / (0tFx + (1 = 0)tFa)||[w* — @*[[3 (G.59)
0
QF)C+(170)FA — * ~ %
= 5 1 Hoy2 e allallw” = @[3 (G.60)
as desired.
O]

G.6 Proof of Proposition[F.J]

Proof. See the proof of theorem 3.4 in [Zhang et al., [2024], noting that in our setting M = F =
0Fx + (1 — 0)F 4 by Eq. (G.57). O

G.7 Proof of Theorem [F4]

Proof. First, we have that:

E[H, | =E[I+H, , - %Ht, AH |], by definition (G.61)
=1+ E[f{t__ll,/\] — }E[Hw\f{t_l,,\], linearity of expectation (G.62)
=TI+ E[f{t__ll,/\] - %E[H@)\}E[ﬁt_lg\],i.i.d. samples (G.63)
— TR - B AT g) by LemmaG3) (G.64)

J
Denote H, := Hy,» i, 4 and E; :=]E[EI;/\I] We thus have that:

H,

Et == I+ Et,1 - J Etfl (G65)
H,
=I+E (- (G.66)
H,

=I+({I—-M)E;_,, letting M :=

7 (G.67)
We then know that, by assumption, A > || H||2, where H, is a symmetric Hessian by Lemma
as such, H, + \I is positive definite and has all positive eigenvalues. We also know that || H.||2 <
J = ||M]||2 < 1, so we have that 0 < X\;(M) < 1 for all eigenvalues ;. Furthermore, I — M
has eigenvalues 1 — A\; (M), so we have that 0 < A\;(I — M) < 1,s0 ||[I — M]||2 < 1, since I — M
is symmetric. Since I — M has spectral radius less than 1, the Neumann series > o (I — M)*
converges. [Mayer] |1985]]. Thus, the Neumann series is Cauchy.

Fix e > 0. Lets, = > ,_o(I — M)*. We know that 3N € Nst. m >n > N =
[$m = snllz = [| X pepsi (I — M)¥||z < . Form > n > N, we have that || E,, — E,||> =

1> e (I — M)¥||; < e. As such, {E,} is Cauchy; since it is real, it converges. As such,
E =lim;_ . FE, exists.

Taking limits on both sides, we then have:

r' -~ H * I ~
BIALL] = 1+ B, + TSt) G6®)
Hl,. B
= B[] = (Horxa + M) (G.69)

30

rearranging using linearity of expectation and noting that A was chosen such that H,- x 4 + AI is
invertible, as desired. O

G.8 Proof of Theorem[E3|

This follows similarly to theorem 3.6 and proposition 4.1 in Zhang et al.|[2024], noting that we
apply Lemma|[G.7|instead of applying lemma 3.6 from|[Agarwal et al|[2016]. Furthermore, note that
L = 0P + (1 — 6)P4 in our setting. For completeness, we provide the full proof below.

Proof.
r—1
W — * = w — ;I’A Vs koA — B (G.70)
7—1 7—1
n Hn
= w" — @~ 2 (Vur s~ Var kd) =~ Varga (GT)

By the triangle inequality, this yields:

Fr—1 Fr—1
n,A n,A
*) Vw* _ vm*)
77 (Vx4 rA)llz + 11—
The first term in Eq. (G.72) can be bounded by the triangle inequality as:

r7—1
~ % n,A

[0 — " ||z < [Jw* — @

Varic.allz (G.72)

[|w* — w* — I (V= ic,4 — V= x,.4)||2

(G.73)
Fr—1

= [|lw* —®* = (Huwr x4+)" + IZ’A — (Hy- ca + M) (Vi 4 = Vam i, a)l 2
(G.74)

< lw* = @* — (Hu- ,a + M) 7 (Var i = Vi x,a) |2

(G.75)

17{—1
I (Hu e+ M) ™ = =) (Vs = Ve sea)
(G.76)

In the setting of Prop. we have that @ — w* = w* — @* — (Hy a4 + M) (Vs ic4 —
V= i,4). Hence, by Prop. we have that:

[[w* — @* — (Hype o4 + M) (Ve o4 — Vi ic.a)| |2 (G.77)
2 _
< C((0Fc+ (1 —0)F4)C+ \) (G78)
)\ +)\min

Furthermore, we have:

-1
I(Huwr e+ M) = =22) (Varka = Varca)ll2 - (GT79)
H,)
<((Hops iooa + M) = IZ’ N2ll(Vaw* i, 4 — Vg~ xc,4)||2, property of op norm (G.80)
ln% 1]
< (16C T + E)||(vw*7K’A — V@*7K’A)||2, Lemma (GS])
B [lmg 1 _
< (16< : b’) + 1—6)20(9P,< + (1 —0)P4, LemmalGIl (G.82)

31

with probability at least 1 - p. Incorporating this into equation Eq. (G.76), we have that:

rr—1
~ % n,A

. 20((0Fc + (1 = 0)F4)C +)
[|lw* — " — i

A +)\min

B |4
HE2E [+ PICOP+ (1= 0)Py) (G389

It then suffices to bound the second term in Eq. (G.72). We have that:

Fr—1
HH}}’A Ve i,all, = H [(Hy gooa + M) 71— (Hye jooa + A7

(G.83)

(Vaw=ic,4 — V= rc,4)|]2 <

-t
TR vﬁ,*y,c,AHQ (G.85)

- H(Hw*,ic,A + M) Ve k.4
it

+ (% — (Hur ka +AD ™) Varseoa| (G-86)
< [(Huye e + A7z ([Vg i ,all2
H! _
+ H £22 — (Hy~ o4+ M) 1H2 Vo i all2 (G.87)
G B [m@/p) | 1
< - 2\ mldle) 1)) g)
-)\+)\min * (16<min b * 16) ¢ (G 88)

by definition of A, Lemma[G.7} and that ||V g« x,4/l2 < G.
Incorporating the above into Eq. (G.72), this yields that:

2C((0Fc + (1= 0)Fa)C + A)

@D — @*[|2 < . (G.89)
B [y
n <32<mm g g) C(HP;C =P+
B [In(d
2C((0Fk + (1 — 0)F4) C G
_20((0Fc + (1= 0)FA) C+p) + GoD
12 + Hmin
B [n(d
+ (16@ n(b/p) + 11—6> (20(0Pc + (1 — 0) P4 + G)).
as desired.
O

G.9 Proof of Proposition [H.1]

Proof. By the same token as proposition 4.2 in[Zhang et al| [2024]], follow the proof of theorem [F.3]
O

G.10 Proof of Proposition {.1]

Proof. Fix any sampled D. Since Mg (D) is taken to be the global risk minimizer, we have that:

QK’C(MG(ID)7 Df) + (1 - Q)EA(MG(D)’ Dr) (G.92)
< 9£,C(w,D,c) + (1 — Q)EA(UJ,DT) Yw e W (G.93)

32

subtracting 3 ||w)|2 from both sides.

Let wy be the parameter that results in a parameterized model f,,, which outputs a uniform
distribution; by Prop.[3.2] such a parameter exists. We then have that:

Dyl
Lx(wy,Dy) = ZDKL 0, [YI)IIUo, |¥)) = (G.94)
and
|D | D] |V
La(wy,D ZHCE yO U0V == 4Pl =D Y (G95)

N

=1 j=1

(2)

where y is a one hot vector of length) such that fory,;’, j =1, ...,

(@) _ { instance 7 is labeled class j (G.96)

Y 0 instance ¢ is not labeled class j

Incorporating the above into Eq. (G.93) yields:

QEK(Mg(D),Df) +(1=-60)LA(My(D),D,) < 0Lk (wU,Df) +(1-0)La(wy,D,) (GIT)
< 0(0) + (1 - 6)[Dy/ In | (G.98)
=|D;[(1=0)In[Y)| (G.99)
This then yields that:
1-6
£’C<M9(D)7 Df) < T(|Dr| In |y| - EA(MG(D)7 Dr) (G.100)
<D, w1y (G.101)

since the cross entropy is nonnegative, yielding that —£ 4(My (D), D,.) < 0.

Then, we have:

1fato 0y (Dg) = U0, Voo < [[faty0) (D) — UT0, [V [2 (G.102)
< 2TV (faty () (D) = U0, V) (G.103)

1
< 2\/2DKL(fM9(D), [|U0,|Y]]), Pinsker’s inequality [Pinsker} [T964]

(G.104)

= \/2Dxc1(fany o), U0, 1Y) (G.105)

= ¢25K<M9<D>,Df> (G.106)

\/2D Dy (G.107)

by the above bound on Ly, as desired. O

33

G.11 Proof of Corollary[d.2]
Proof. To have Eq. (7), by Prop. it suffices to solve for # in the bound obtained. This results in:

1-6 1-6 2
\/2(9)|Dr|1n|y Se = —— Dy < % (G.108)
DY Dyl _ e
- < — G.10
g b =2 (G-109)
D, |1 2 2 4 2/D, |1
M < & + Dy In|Y| = M (G.110)
0 2 2
0 2
= > G.111
Dy In |Y]| — €2+ 2D, | In |V ()
21D, In]Y
= 0> —— G.112
S NINRY (G.112)
as desired.
O]

G.12 Proof of Theorem

First, before we prove theorem[4.5] we note that we can use Lemma|G.2]and that ||w|| < 2 to obtain
a simple bound. Let:

la* — a(0)] = |LA(A(D;), D) — La(Mg(D), D) (G.113)
P
< fIIMe(D) — A5 + IV ap,),all2lMo(D) — A(D,)|l2 - (G.114)
2
< ¢ QPA + AC? (G.115)

after applying the triangle inequality and rearranging the first order condition on A(D,.).

However, this bound is vacuous and not tight; it does not incorporate any information about 6 or most
of the constants that appear in Asm. [d.3]and Asm.[4.4] Given this, we seek to construct a tighter,
non-vacuous bound. We first restate the proof without any asymptotic characterizations:

Theorem G.11. Suppose Assumptionsd.3|and hold, and let Px, P, Fi, F 4 be as defined in
Assumptionsand Let o* := L 4(A(D,), D,) be the locally optimal (empirical) retain loss,
achieved by My(D) when 8 = 0. Let a(0) := LA(Mp(D),D,) be the locally optimal retain
loss obtained by Mg(D) when 0 € (0,1). Suppose all weights used throughout are bounded by
llw|l2 < C. Additionally, denote by F := M + (1 — 0)F4 and P := 0P + (1 — 0)Py4.
Consider regularization coefficient A > L + 20CF + \/QGCF(P + 20CF + 8Px). Then, we have
the following bound:

A—P— /(A= P)2—40CF(2Pc + \)

* P]C 2

la” —a(f)] < —=(5F)2+ (G.116)

A—P— A—P)2 —40CF (2P, A
AC(VA) (2P +)). (G.117)

2F
Proof. First, when § = 0, we have that:

. Al

Wer := arg min La(w,D;)+ =||lwl|3 (G.118)
weW,||w||2<C

2

which yields the first order condition:

34

Ve, A+ AWq =0

which, upon multiplying 1 — 6 on both sides, yields:

(1—=0)Vw,.a+(1—0)Awy- =0
Then, when 6 € (0, 1), we have:

. A
Wy () 1= arg wEWI,ﬂ’IuIJlHQSC 0Lx(w,Dy) + (1 = 0)La(w,D;) + §||w\|§

which yields the first order condition:

vaw)x -+ (]. — Q)Vwa(e),A +)\’wa(g) =0

Subtracting Eq. (G.120) from Eq. (G.122) yields:

vaa(e),)c + (1 — H)Vwa(e),A +)\wa(g) — (1 — Q)Vwa* A

)

— (1 -) wa- =0

which simplifies to:
vaa(e)ﬁ +(1- 9)(Vwa(e),,4 — vwa*,A) + /\(’wa(g) — Wer) = —OAw,

The fundamental theorem of calculus then yields:

1
/ H‘wa* +t(wa(9)+wa*),A(wa(0 - wa*)dt = vwa(g),A - Vwa* JA
0

and

1
/ H’wa*+t(wa(9)+wa*)7K(wa(G) — Wy~)dt = vwa(g),lC - Vwa* K
0

‘We thus denote:

1
Hy 22/ Hay.. 1t(wo gy +wax),cdt
0

1
HA = / Hwa*+t(wa(9)+wa*)744dt
0

Aw = Wy p) — War

Incorporating Eq. (G.123)) and Eq. (G.126)) into Eq. (G.124) then yields:

(G.119)

(G.120)

(G.121)

(G.122)

(G.123)

(G.124)

(G.125)

(G.126)

(G.127)

(G.128)
(G.129)

(V. x + HcAw) + (1= 0)(Vap,. 4 + HaAAw = V. 4) + NAw = -0 w,-

OV, . c + 0HcAw + (1 —) H aAAw + AAw + Odw,- =0

(0Hk + (1 = 0)H o + M) Aw = —0(Vap,. + Awg-)

(Huw,. A+ M +0(Hc — Hy,.)+ (1 —0)(Ha — Hy,. 4))Aw
= —0(Va,. o + Awg)

111

< (Huw,.xA+MN)Aw=—(0(Hx — Hy,. x)+ (1 —0)(Hs — Hy,. 4))Aw

)

- H(Vwa*’;c + Xwa*).

35

(G.130)

Then, note that:

1
| Hx — Hy,. xll2 = H/ Hy, . inwicdt — Hy . k|2 (G.131)
0
1
S/ [[Hu, . ttawk — Huw,. xll2 (G.132)
0
F)
< < l1aw], (G.133)
by the same token as in Prop.
Similarly:
_ F.A
[Ha — Hup,. ,|l2 < 7||Aw||2 (G.134)
Also:
[Vawge cllz = Ve o — Vo) kll2 (G.135)
< Pllwas — wipyll2 (G.136)
< 2PcC (G.137)

by definition of the uniform learner K, Lemma[G.} and the triangle inequality.
Additionally:

[Awas||2 < AC (G.138)

By the triangle inequality, incorporating Eq. (G.133)), Eq. (G.134), Eq. (G.137), and Eq. (G.I38) into
Eq. (GI130), we have that:

[(Huw,o 1,4 + A Aw||y < (0| Hk — Hup,. |2 + (1= 0)|| Ha— (G.139)
Hy,. all2)[|Aw||z + 0]V, . xll2 + 0] Adwa- |2 (G.140)
< (0Fc 4 (1 — 0)F4)||Aw||2 + 0C(2Pc + \) (G.141)

Note that we have, where oy, (+) denotes the minimum singular value:

[[(Huw, v o4 + M)Aw||z > omin(Hw,. ., + M)|[Aw]|2 by property of op. norm (G.142)
= Amin(Huw,« 4 + M)[|[Aw]|2 by Lemma|[G.J| (G.143)

Furthermore, by Lemma [G.1} we have that || Hu,. , |l2 < Pk and ||Hu,. ,|l2 < Pa, which yields:

a* K

[[Hw,. x,all2 < 0Pc+ (1 —60)Py (G.144)
which by Lemma G 3] yields:

Amin(Has joa + M) € [\ = 0P — (1 — 0)Pa, pu+ 0Pk + (1 — 6) P4] (G.145)

With Eq. (G:143),, this yields that:

(. oo + AD)Aw]J2 > (A — 0Pk — (1 — 0))| Aw]2 (G.146)

36

Incorporating this into Eq. (G.I41) yields:

(A= 0Pk — (1 = 0)Py)||Aw]|s < (0Fk + (1 — 0)F4)||Aw||2 + 0C(2Px + \) (G.147)

Simplifying yields the quadratic inequality:

(0F + (1 —0)F4)||Aw|]3 — (A — 0P — (1 — 0)P)||Aw]||z +0C(2Pc +A) >0 (G.148)

This then yields that:

A=P— /(A= P)2—40CF(2Pc + \)

[[Aw|[2 < T (G.149)
This is only valid when:
(A= P)2 —40CF(2Pc +)) >0 (G.150)
= A2 — 2L\ + P2 —40C2PcF — 40C\F > 0 (G.151)
= A — 2P\ —40CF\ + P2 —80CPcF >0 (G.152)
= A — (2P + 40CF)\ + (P? —89CPcF) > 0 (G.153)
&= A>P+20CF +\/20CF(P + 20CF + 8Pk (G.154)

which holds by assumption. Note that all components of 20C F' + \/ 20CF(P + 20CF + 8P are
nonnegative, rendering this valid. Incorporating Eq. (G.149) into Lemma|G.2]yields the final bound
as desired. O

Then, theorem [.5|follows as a corollary of theorem [G.1T}

Proof. Note that we take care to ensure the bound holds for any choice of 6 € [0, 1]. Hence, fix
6 € [0,1].
Let

a—+va?—¢

a=A=P>0, e=d0CF2Px+1), A=—rpr—. (G.155)

Theorem [G.T1| gives the inequality:

P
la* — ()] < TK A%+ ACA. (G.156)

By the condition on) in the theorem, the square root is real for every 0 € [0,1] (i.e. a®> — & > 0).
This yields:

a—-Val—e=—°> (G.157)

a++Va*—e
Then, since a + va? — e > a > 0, (G.I57) implies:
(G.158)

Dividing (G.I58) by 2F yields:
A< —. (G.159)

Then, substituting ¢ = 40CF (2Pk +) from (G.159) yields:
490F(2PK +)\) . QQC(QPK +)\)

< . .
A< e - (G.160)

We now bound the two terms on the right-hand side of (G.I56). Using (G.I60), we have that:
20C(2Pk + A) . 2A(2Pk + A)

ACA<NC- C%9 = O(\C?9), (G.161)
a a
2 2
PQ—KAz < PTK (290(2]:K ki A)> = QPK(M;;‘ A g 0(C26?). (G.162)

Combining (G.156), (G.161) and (G.162) and absorbing constants (which are independent of 6 €
[0,1]) yields:

la* — «(0)| = O()\029 + 0292), for any 6 € [0, 1]. (G.163)
as desired. O

H Online Algorithm

We also consider the online setting, where users send requests in sequential order [Nguyen et al.,
2022]|. Here, we denote Dy, as the forget set after the k-th request and the associated retain set
as D, = D\ U Dy,. Letting wy = A(D), we estimate wy, recursively as Wy = Wg_1 —
H, 3t

Vi, _, K, A, Where fIn_&,k_l is an estimator for (H, , .4 + A)~! with respect to Dy,
and D, . Vg, _, kA4 is also computed with respect to Dy, and D, . Adding noise to wy, as stipulated
in theorem yields aw,, satisfying Def. Furthermore, we have that:

Proposition H.1. Let A\, be the smallest eigenvalue of Hy, _, ic.a, A > ||[Huw= i 4ll2, and
Ve ic.all2 | Ve ic,alle < G for all k, all evaluated with respect to Dy, and D,, . Then, the
bound in theorem[F3|is identical in the online setting.

Proof: See Appx.[G.9
In the online setting, Prop.[H.1]yields Alg.[4]

Note that, for simplicity, we set b = 1. However, they can be added similarly to Alg. [3if the user
desires.

I Eliminating Hyperparameters in Certified Algorithms

Here, we summarize how to eliminate hyperparameters in Alg.[2] Alg.[3] and Alg.[d]

* Amin can be chosen as 0 by convex approximation, or it can be estimated using simple
algorithms like Gershgorin’s circle theorem or inverse power iteration.

* By Lemma|G.1] A can be chosen as 0 P + (1 — 6) P4

* Similarly, by Lemma[G.I} H can be chosen as 2\

* In practice, since offers a bound on &; by Lemma Cmin can be chosen as

A+ Amin

» By Lemma n can be chosen as n = 2% ln(ﬁb)

min

_B
A"l‘)\min

* (can be approximated by computing ||V i, 4| |2.
* 0 can be chosen with Cor.[4.2]to satisfy a particular closeness to uniformity.
* In practice, we find that C' can be chosen as 10, 20, or 100.

* b can be chosen to satisfy a particular concentration on the estimator, so we let it be free.
However, one can set b = 1.

» Common heuristics for € and ¢ are available in the differential privacy literature.

* In practice, following what is common in certified unlearning e.g. in [Zhang et al.| 2024,
the Lipchitz constants in Asm.[4.3|and Asm. [4.4]are treated as hyperparameters. However,
in practice, they can all be set to 1.

38

Algorithm 4 Online (¢, 6, §)-certified uniformity with DP

Require: Dataset D; forget sets {Dy,, ..., Dy, }; pretrained model w* = A(D); privacy budgets &
and ¢; ; privacy-utility tradeoff coefficient 6; sample size n; local convex coefficient A; norm upper
bound C; cumulative Hessian upper bound H; individual Hessian minimum eigenvalue upper
bound (i ; bound looseness probability p.

’lZ]() — w*
D,, <+ D
fori=1,...,k do
D, <Dy, _, \Dfi
Py < Vi, x4
fort=1,...,ndo
Sample X;, from Dy, with probability 6 or sample X;, from D, with probability 1 — 6
if X;, ~ Dy then
Ht,)\,i < V%U‘CIC(w*7Xti) + %
else if X; ~ D, then
Hy)+ Vi La(w*, Xe,) + 5055

end if H
£N i
Piyi=Pori+ I —=5)Pi_1x
end for P
’lI)i < 11)7;_1 — 7}1;’1
end for

Compute A as the bound in Eq. (E23).
o= £./2In(1.25/4)
w~ < Wy + Y where Y ~ N(0,021I)

return w—

J Experimental Details

J.1 Dataset Details

MNIST: The MNIST dataset contains 70k 28x28 greyscale images of hand-drawn digits in 10
classes [Deng, [2012]. We conduct our experiments with 49k training images and 21k test images.
The classes are mutually exclusive.

Kuzushiji-MNIST: The Kuzushiji-MNIST (KMNIST) dataset contains 70k 28x28 greyscale images
of Japanese kanji in 10 classes [Clanuwat et al., [2018]]. We conduct our experiments with 49k training
images and 21k test images. The classes are mutually exclusive.

CIFAR10: The CIFARI10 dataset consists of 60k 32x32 color images in 10 classes. The classes are
mutually exclusive and include airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships,
and trucks [Krizhevsky et al.,[2009].

CIFAR-100: The CIFAR-100 dataset is similar to CIFAR-10 but contains 100 classes, each with 600
images, making a total of 60k 32x32 color images. The 100 classes are grouped into 20 superclasses,
and each image comes with a “fine” label (the class to which it belongs) and a “coarse” label (the
superclass to which it belongs) [[Krizhevsky et al.,[2009].

SVHN: The Street View House Numbers (SVHN) dataset [Netzer et al., 201 1] contains images of
double-digit numbers on house walls as colored 32x32 images. We load SVHN with 100 classes,
corresponding to 10 * 10 for each digit. There are 73k training images, 26k testing images.

J.2 Model Details

LogReg: A logistic regression model that has a single linear layer between inputs and outputs,
followed by a softmax output function.

MLP: A two-layer ReLU feedforward neural network.

ResNet8: A [1,1,1,0] residual network, , with standard convolutional blocks, as described in [He
et al., 2016].

39

ResNetl18: A [2,2,2,2] residual network, with standard convolutional blocks, as described in [He
et al., 2016].

ResNet50: A [3, 4, 6, 3] residual network, with bottleneck convolutional blocks, as described in [|He
et al,[2016].

ViT_S_16: A vision transformer with ~ 20 million parameters, as detailed in [Dosovitskiy et al.,
2021].

ViT_B_16: A vision transformer with ~ 80 million parameters, as detailed in [Dosovitskiy et al.,
2021]).

J.3 Baseline Details

We implement several baselines and provide the rationale for their use below:

Pretrained: This is simply the pretrained model corresponding to whichever model and benchmark
is specified. The rationale for using this is to demonstrate that we alter uniformity significantly from
before without tarnishing accuracy for either the retain or test sets.

Retrained: This is a model retrained over the retain set, performing exact unlearning. The rationale
for using this is to demonstrate that our methods mimic unlearning in how we preserve accuracy, but
induce uniformity in a way that unlearning does not.

Synthetic: This method proceeds as follows: for each instance in the forget set, sample k instances
from the e-ball, with respect to the ¢, norm, around that instance. Then, assign these k instances
random labels from the label space, choosing labels uniformly at random. Do this for all forget
set instances, yielding |Ds|k new instances. Then, append this to the retain set and retrain over
this augmented dataset. This provides strong accuracy for simple baselines like MNIST while also
inducing uniformity, providing an alternative, simple algorithm to compare our method against in
terms of time elapsed.

Label Differential Privacy: Specifically, we use the multi-stage training method of |Ghazi et al.
[2021]] to obtain a model which is differentially private with respect to the labels—that is, an adversary
cannot be sure whether the label they obtain is the true label. This is related to our work, albeit
addresses a different threat model, as described in Appx. [C] Still, we believe it is important to
demonstrate that our method achieves privacy while not sacrificing utility to the extend that label
differential privacy does, since it is a well-known method in the privacy literature that addresses
a similar problem. For our experiments, we use the official repository with the hyperparameters
reported in the paper: https://github.com/google-research/label-dpl

J.4 Hyperparameter Details

Please note that, throughout, we do not do extensive hyperparameter optimization, which may lead to
improved performance.

We use a standard train-test split of 70-30 throughout. Pretraining and synthetic training have the
same hyperparameters as pretraining, unless mentioned otherwise. We use ADAM, with standard
PyTorch hyperparameters aside from learning rate and weight decay, throughout. A batch size of 128
is used for pretraining and also for the retain set in Alg. [T|throughout. For all Alg. [T]experiments and
Alg. 2]experiments, we use a forget set size of 100 with a batch size (when loading the forget set into
the finetuning in Alg. [T)) of 10. We perform Alg.[I]for 100 epochs and finetune Alg. 2]for 50 epochs
before running the certified Newton step. We generally use the forward KL divergence between
model softmax outputs and the uniform distribution for Lx and the cross entropy between model
predictions and ground truth labels for £ 4. For LogReg, we instead use the square loss between the
uniform softmax probabilities and the model softmax outputs, since the forward KL is not necessarily
convex in w in this case, while the square loss is; this allows us to use Alg. with small \. For our
synthetic baseline, we use ¢ = 8/255 throughout, where ¢ is the size of the e-ball where we sample
instances to assign random labels for retraining. For the LabelDP baseline, we use the multi-stage
training algorithm of |Ghazi et al.|[2021]] throughout.

40

https://github.com/google-research/label-dp

Early stopping is implemented by saving the model which first meets the early stopping conditions,
and continuing to see if any model performs better in terms of confidence distance while still meeting
the early stopping conditions specified below.

Compute: We use two RTX 6000 Ada Generation NVIDIA GPUs throughout. The most resource
intensive experiments are the LabelDP experiments, which take up most of the memory on both GPUs.
Besides those, the other experiments take up at most a fourth of the compute resources available on
one GPU. No experiments ran required more compute than these two GPUs provide.

MNIST, LogReg Pretraining: Epochs: 25. Learning rate: 0.01.
MNIST, MLP Pretraining: Epochs: 5. Learning rate: 0.01.
MNIST, ResNet18 Pretraining: Epochs: 2. Learning rate: 0.001.
MNIST, LogReg Alg.[I; Learning rate: 0.01

MNIST, MLP Alg.[T} Learning rate: 0.01

MNIST, ResNet18 Alg.[I: Learning rate: 0.001. Early stopping criterion of a confidence distance
< 0.32 and a retain accuracy of > 90%.

MNIST, LogReg Alg. M = 1. C' = 10, pretrained with PGD with the same hyperparameters
as the standard pretraining. Since the losses are convex in w, Ay, = 0. A = 0.0001. Following
Zhang et al. [2024], we use the variance o2 as a hyperparameter, corresponding to a broad range
of choices of € and §. We choose o = 0.001. This results in large ¢ and 6, as typical in differential
privacy [Dwork et al.,[2014]] and certified unlearning [Qiao et al.,|2025]]. However, we still observe
good induced uniformity.

MNIST, LogReg Synthetic Baseline: Sampled k instances for each forget set instance: 5.
MNIST, ResNet18 Synthetic Baseline: Sampled £ instances for each forget set instance: 500.

MNIST, LogReg LabelDP Baseline: Epochs: 200. Batch size: 256. Random flip, random left-right
flip, and random cutout (8). SGD with learning rate 0.4 with momentum 0.9. ¢ = 2.0. Mixup for
stage 1: 16. Mixup for stage 2: 8. Data split evenly between the two stages. Piecewise constant
learning rate scheduler. These hyperparameters are chosen to match those in the best results of |(Ghazi
et al.|[2021]]. See|Ghazi et al.|[2021] for more details on these hyperparameters.

MNIST, ResNet18 LabelDP Baseline: Same as the MNIST LogReg LabelDP hyperpameters,
except with a weight decay of 0.0005 throughout.

KMNIST, LogReg Pretraining: Epochs: 100. Learning rate: 0.01.
KMNIST, MLP Pretraining: Epochs: 100. Learning rate: 0.001.
KMNIST, ResNet18 Pretraining: Epochs: 12 Learning rate: 0.002.
KMNIST, LogReg Alg. [T} Same as pretraining.

KMNIST, MLP Alg.|1f Learning rate: 0.01.

KMNIST, ResNet18 Alg.[T; Learning rate: 0.002. Early stopping criterion of a confidence distance
< 0.32 and a retain accuracy of > 99%.

KMNIST, ResNet18 Synthetic Baseline: Sampled k instances for each forget set instance: 500.
KMNIST, ResNet18 LabelDP Baseline: Same as the MNIST ResNet18 LabelDP hyperparameters.
SVHN, ResNet50 Pretraining: Epochs: 150. Learning rate: 0.001. Weight decay: 0.00005.
SVHN, ResNet50 Alg.|1; Same as pretraining.

SVHN, ResNet50 Synthetic Baseline: Sampled £ instances for each forget set instance: 500.
SVHN, ResNet50 LabelDP Baseline: Same as MNIST ResNet18 LabelDP hyperparameters.

CIFAR10, ResNet18 Pretraining: Epochs: 200 with SGD with a momentum of 0.9. Learning rate:
0.1. Weight decay: 0.0005.

CIFAR10, ResNet18 Alg.[T} Same as pretraining. Early stopping criterion of a confidence distance
< 0.42 and a retain accuracy of > 87%.

41

CIFARI10, ResNet50 Pretraining: Same as CIFAR10 ResNet18.

CIFAR10, ResNet50 Alg.[T} Same as pretraining. Early stopping criterion of a confidence distance
< 0.42 and a retain accuracy of > 87%.

CIFARI10, ResNet8 Pretraining: Same as CIFAR10 ResNet18.

CIFAR10, ResNet8 Alg.[I: Same as CIFAR10 ResNet18.

CIFARI10, ResNet18 Synthetic Baseline: Sampled £ instances for each forget set instance: 5000.
CIFAR10, ResNet50 Synthetic Baseline: Sampled £ instances for each forget set instance: 5000.

CIFAR10, ResNet18 LabelDP Baseline: Same as MNIST ResNet18 LabelDP hyperparameters,
except with a batch size of 512.

CIFAR10, ResNet50 LabelDP Baseline: Same as CIFAR10 ResNet18 LabelDP.
CIFAR10, ViT_S_16 Finetuning: 8 epochs. Learning rate 0.0001 with AdamW.
CIFAR10, ViT_B_16 Finetuning: 10 epochs. Learning rate 0.0001 with AdamW.
CIFAR100, ResNet50 Pretraining: Same as CIFAR10 ResNet18.

CIFAR100, ResNet50 Alg.[I; Same as pretraining. Early stopping criterion of a confidence distance
< 0.42 and a retain accuracy of > 87%.

CIFAR100, ResNet8 Pretraining: Same as CIFAR100 ResNet50.
CIFAR100, ResNet8 Alg.[1; Same as CIFAR100 ResNet50.
CIFAR100, ResNet50 Synthetic Baseline: Sampled instances: 5000.

CIFAR100, ResNet50 LabelDP Baseline: Same as CIFAR10 ResNet18 LabelDP. Please note that
our results differ from the results reported in the original paper of |Ghazi et al.[[2021]]; however, we
verified our results through several runs and used the official paper repository at https://github.
com/google-research/label-dp with the hyperparameters reported in the paper.

CIFAR100, ViT_S_16 Finetuning: 30 epochs. Learning rate 0.002 with SGD with momentum 0.9.
500 warmup steps with cosine scheduler.

CIFAR100, ViT_S_16 Alg. 100 epochs. Learning rate 0.001 with SGD.

CIFAR100, ViT_B_16 Finetuning: 45 epochs. Learning rate 0.002 with SGD with momentum 0.9.
500 warmup steps with cosine scheduler.

CIFAR100, ViT_B_16 Alg.[T; Same as CIFAR100 ViT_S_16.

TinyImageNet, ViT_S_16 Finetuning: 30 epochs. Learning rate 0.0001, momentum 0.9, and
weight decay 0.01 with SGD.

TinyImageNet, ViT_S_16 Alg. Same as CIFAR100 ViT_S_16.

TinyImageNet, ViT_B_16 Finetuning: 50 epochs. Learning rate 0.0001, momentum 0.9, and
weight decay 0.01 with SGD.

TinyImageNet, ViT_B_16 Alg. Same as CIFAR100 ViT_S_16.
Attacks: o = 0.0001. PGD learning rate: 0.001. PGD steps: 50.

Test-Set Finetuning: Finetune pretrained model for 20 more epochs with the same hyperparameters
as pretraining, then run Alg. [T with the same hyperparameters as the original run of Alg.[I] For
CIFARI10/CIFAR100, finetune for 100 epochs.

K Additional Experiments

K.1 Test Set Accuracies for Main Paper Experiments

We provide a figure, similar to Fig.[2a] for the test set in Fig. We observe similar results as one
does on the retain set, with test accuracies preserved by Alg.|1|and Alg.

42

https://github.com/google-research/label-dp
https://github.com/google-research/label-dp

Bl Pretrain mmm Retrain s Synthetic B |abelDP . Alg. 1 mmm Alg. 2

MNIST SVHN CIFAR10 CIFAR100
LogReg ResNet50 ResNet50 ResNet50

Figure K.5: Accuracy on test set for baselines as well as Alg.|I{and Alg. with 0 =0.75.

100

= D [0is}
o [=] (==}

Accuracy (%) (Higher is Better)
[~
(=]

0

K.2 Tables for Main Paper Experiments

The tables for Fig. [2] are in Tab. [K.I]and Tab. [K.2] We include results for MNIST and KMNIST
ResNet18 as well. We see that Alg. [T] induces uniformity without great damage to utility, while
all other baselines—including the synthetic baseline—fail to do so without critically harming utility.
Furthermore, we observe that ResNet50 performs better than ResNet18, providing more credibility to
the claim in Sec. [3] that larger models tend to perform better when used in Alg.[I] Next, we observe
that Alg.[T]can actually provide better retain and test accuracy than the pretrained model, as observed
for ResNet50 over CIFAR100; this is because we also minimize the retain accuracy during finetuning.
We similarly have to use early stopping for Alg.[T] as discussed in Sec. 5] since we use large models.
Finally, we observe that LabelDP can induce uniformity, albeit at the cost of retain and test accuracy,
but does so not only on the forget set but also the retain set; for a comparison of the confidence
distances across the retain, test, and forget sets for LabelDP and our method, please see Tab. @
Additionally, for larger, more complex datasets like CIFAR100, LabelDP fails entirely. Please note
that we do not perform extensive hyperparameter optimization during pretraining or retraining.

We observe similar results for Alg. [2]in Tab.[K.2]

K.3 Additional Experiments on TinylmageNet & ViT

We provide experimental results for Alg. [I] for ViT trained on CIFAR100 and TinylmageNet in
Tab. [K3] observing similar behavior—in fact significantly lower confidence distance with little retain
or test accuracy reduction—when compared to in Tab. [K.1]

K.4 LabelDP and Alg.|I| Confidence Distances for Retain, Test, and Forget Sets

Here, we present Tab. [K:4] which details the confidence distances for the retain, test, and forget sets
of our method vs. LabelDP. Not only do we achieve better retain and test accuracy, but also we induce
uniformity on only the forget set, while LabelDP induces uniformity on the forget, retain, and test
sets altogether, functionally the same as adjusting the temperature. This does not suffice for our threat
model, since we want to preserve confident predictions on the retain and test sets.

K.5 Pareto Frontier Main Paper Table

The results which correspond to Fig. [3b] Fig.Ba] and Fig.[K:12]are included in Tab.[K:3]and Tab. [K.6]

43

Table K.1: Results for Alg. |1} used in Fig.[2] We find that we are able to induce uniformity while
only slightly decreasing retain and test accuracy. # = 0.75 throughout.

Dataset Model Method Retain Acc. Test Acc. Conf. Dist.
(Lower Better)
Pretrain 98.0% 98.1% 0.877
Retrain 97.3% 97.1% 0.876
MNIST | ResNetl8 Synthetic 100.0% 99.1% 0.010
LabelDP 98.8% 98.8% 0.593
Alg.[1] 99.6% 99.1% 0.070
Pretrain 98.2% 92.1% 0.880
Retrain 98.4% 92.4% 0.884
KMNIST | ResNetl8 Synthetic 99.9% 96.7% 0.019
LabelDP 98.9% 96.1% 0.530
Alg.[1] 99.1% 94.7% 0.257
Pretrain 99.6% 94.8% 0.980
Retrain 99.3% 94.7% 0.964
SVHN | ResNet50 Synthetic 99.9% 99.4% 0.013
LabelDP 92.0% 92.2% 0.282
Alg.[1] 99.5% 94.4% 0.280
Pretrain 100.0% 95.3% 0.898
Retrain 100.0% 95.3% 0.891
ResNet18 Synthetic 94.0% 89.7% 0.844
LabeanP 85.8% 83.6% 0.359
Alg. |1 89.6% 83.1% 0.377
CIFARIO Pretrain 100.0% 95.2% 0.900
Retrain 100.0% 95.0% 0.891
ResNet50 Synthetic 91.4% 87.4% 0.818
LabelDP 85.5% 83.4% 0.334
Alg.[1] 94.7% 90.0% 0.270
Pretrain 100.0% 78.3% 0.902
Retrain 100.0% 78.3% 0.765
CIFAR100 | ResNet50 Synthetic 17.7% 17.6% 0.189
LabelDP 8.41% 6.95% 0.203
Alg.[91.4% 65.5% 0.298

Table K.2: Results for Alg. [2|for logistic regression trained over MNIST, used in Fig.[2| § = 0.75
throughout.

Method | Retain Acc. Test Acc. (Lg\?vl;f:]I;;tsttér)
Pretrain 92.1% 91.8% 0.807
Retrain 92.0% 92.1% 0.807
Synthetic 86.4% 86.0% 0.313
LabelDP 57.1% 57.4% 0.125
Alg. 87.8% 87.7% 0.180
Alg.|2 87.1% 87.2% 0.280

K.6 Optimization Dynamics

K.6.1 Empirical Results

Upon using Alg. [T} we observe that logistic regression fails to induce uniformity for more complex
benchmarks than MNIST, e.g. KMNIST. Logistic regression has poor test accuracy; we thus conclude

that a model must be large enough to generalize well in order to have uniformity induced over it
without a large cost to retain accuracy. We discuss mathematical intuition for this in Appx.[K.6.2}

44

Table K.3: Results for Alg.|I|{for ViT trained on CIFAR100 and TinyImageNet.
Conf. Dist.

Dataset Model Method Retain Acc. Test Acc.
(Lower Better)
Pretrain 95.2% 90.1% 0.942
Retrain 93.4% 89.1% 0.883
ViT_S_16 Synthetic 86.36% 84.76% 0.682
Alg.[1 91.6% 85.1% 0.036
CIFAR100 Prelr;1 9G2% 9T.2% 0972
Retrain 95.2% 91.0% 0.952
ViT_B_16 Synthetic 17.7% 17.6% 0.189
Alg.[1] 91.6% 88.6% 0.074
Pretrain 86.7% 84.4% 0.698
Retrain 87.2% 84.4% 0.742
ViT_S_16 Synthetic 87.9% 86.3% 0.833
Alg. 84.2% 81.4% 0.057
Pretrain 95.0% 91.7% 0.822
TinyImageNet Retrain 96.8% 90.6% 0.826
ViT_B_16 Synthetic 98.0% 84.4% 0.830
Alg. 91.8% 88.3% 0.037
Pretrain 91.2% 83.5% 0.812
Retrain 91.6% 80.9% 0.924
ResNet50 Synthetic 92.1% 80.6% 0.569
Alg.[1] 92.1% 81.6% 0.197

Table K.4: A comparison of the confidence distances on the retain, test, and forget sets between Alg.
and LabelDP. In general, we induce uniformity on only the forget set, while maintaining confidently
correct predictions on the retain and test sets, while LabelDP falls short. Note that this is only for one
experiment run.

Dataset Model Method

Retain Conf. Dist. Test Conf. Dist. Forget Conf. Dist.
(Higher Better) (Higher Better) (Lower Better)

LabelDP 0.579 0.577 0.593

MNIST | ResNetl8 710 0.503 0.509 0.070
LabelDP 0.495 0.466 0.530

KMNIST | ResNetl8 71] 0.870 0.828 0.257
LabelDP 0.288 0.285 0.282

SVAN | ResNet30 "1] 0.888 0.855 0.280
ResNer]g LabelDP 0.371 0.365 0.359

CIFARI0 Alg.[1] 0.724 0.690 0.377
ResNersg LabelDP 0.366 0.361 0.334

Alg.[1] 0.725 0.701 0.270

LabelDP 0.182 0.156 0.203

CIFARIO0 | ResNet30 =1 11 0.576 0.470 0.298

However, when using Alg. [I] on larger models, we observe that we need early stopping. After
achieving a good uniformity-utility tradeoff, large models e.g. ResNet50 on CIFAR10 will powerfully
increase accuracy at the cost of uniformity. This is undesired behavior when compared to, for
example, a ResNet8 trained on CIFARI10, where we initially increase uniformity at the cost of
accuracy but slowly regain accuracy without critically damaging uniformity. We illustrate this in
Fig. Altogether, our method works best for large models with early stopping during finetuning.
We characterize this mathematically in Appx.[K.6.2]as well.

We provide a plot characterizing how test accuracy for Alg. [[jand Alg. 2]applied on CIFAR10 and
CIFAR100 for # = 0.75 changes over 100 epochs in Fig.[K.7]for ResNet8 and ResNet50. We observe
similar behavior to retain accuracy.

Results as used in Fig.[K.6a] Fig.[K:6b] and Fig.[K.7 are included in Tab. [K77]

45

Table K.5: Results for Alg.|l|and Alg.|2{as we explore the Pareto frontier over MNIST, single run for

Fig. Bb} Fig. [34] and Fig.[K.12]

Model 0 Retain Acc. Test Acc. (ngvréi']?éf:ér)
0.000 93.7% 92.9% 0.817
0.125 91.9% 91.2% 0.583
0250 92.9% 92.4% 0.178
0375 92.0% 92.3% 0.208
LogReg | 0500 92.4% 92.1% 0.342
0.625 91.3% 91.1% 0.374
0.750 91.6% 91.2% 0.263
0.850 88.4% 87.5% 0.204
0950 89.2% 89.1% 0.169
0.000 925% 92.2% 0.738
0.125 92.2% 91.3% 0.573
0250 91.6% 91.5% 0.324
0375 91.4% 90.5% 0.327
Cert. LogReg | 0.500 90.5% 90.6% 0.300
0.625 90.6% 89.7% 0.451
0.750 87.1% 87.2% 0.280
0.850 89.3% 88.4% 0.206
0950 85.0% 85.7% 0.092
0.000 100.0% 98.1% 0.893
0.125 98.3% 97.6% 0.399
0250 99.8% 97.4% 0.068
0375 97.4% 96.6% 0.247
MLP 0.500 99.5% 97.1% 0.037
0.625 96.4% 95.8% 0.166
0.750 97.5% 95.7% 0.037
0.850 92.5% 92.8% 0.096
0950 91.3% 90.0% 0.029
0.000 99.6% 99.4% 0.896
0.125 99.3% 99.1% 0.892
0250 97.2% 97.5% 0.427
0375 99.6% 99.3% 0.586
ResNetl® | 5500 97.0% 97.0% 0.357
0.625 97.0% 97.0% 0.357
0.750 97.0% 97.0% 0.151
0.850 95.7% 95.4% 0.234
0950 93.6% 94.0% 0.288

K.6.2 Intuition for Early Stopping

In what follows, we give mathematical justification for the behavior observed in Fig. and Tab.

Firstly, recall that random vectors are nearly orthogonal in high dimensions [[Vershynin, [2018]]. In
particular, for larger models, the gradients will conflict i.e. point in opposite directions more strongly,
since their parameter space is very large. Second, every gradient step of our Alg. 1 is given by
OV w Lic(w, Df) +(1-0)VwLa(w,D,).

In what follows, consider a large model e.g. CIFAR10 ResNet50.

When we begin finetuning the pretrained model with Alg. 1, 8 is large, £ 4 is small, and L is
large. Thus, V L significantly dominates VL 4. For large models, since the gradients are nearly
orthogonal, we will move very fast in the direction of the forget gradient.

As finetuning continues, we reach a point where 6 is large, L is small, and £ 4 is large. At this point,
the Vi L 4 begins to dominate, albeit less significantly since 6 is large. For large models, since the
gradients are nearly orthogonal, we will move fast in the direction of the retain gradient. However,

46

Table K.6: Results for Alg.|l|as we explore the Pareto frontier over CIFAR10 and CIFAR100 for
ResNet50, single run for Fig. [3b] Fig. 34| and Fig. [K-T2}

. Conf. Dist.
Dataset 0 Retain Acc. Test Acc. (Lower Better)
0.000 100.0% 92.9% 0.817
0.125 99.9% 94.1% 0.616
CIFAR10 | 0.250 99.9% 93.8% 0.586
0.375 99.9% 94.6% 0.501
0.500 91.9% 85.7% 0.395
0.625 90.9% 86.9% 0.343
0.750 94.7% 90.0% 0.270
0.850 56.8% 56.0% 0.108
0.950 10.7% 10.4% 0.168
0.000 92.5% 92.2% 0.738
0.125 99.9% 77.0% 0.353
CIFAR100 | 0.250 99.9% 77.5% 0.252
0.375 99.9% 77.0% 0.296
0.500 99.9% 77.1% 0.301
0.625 90.9% 70.2% 0.353
0.750 91.4% 65.5% 0.298
0.85 21.2% 20.6% 0.138
0.950 40.8% 30.3% 0.019
e C|FAR10 ResNet8 e CIFAR10 ResNet50 esm» C|FAR10 ResNet8 @ C|FAR10 ResNet50
e CIFAR100 ResNet8 e C|FAR100 ResNet50 e C|FAR100 ResNet8 e C|FAR100 ResNet50
100 1.00
g % 0.75
§ 90 @
5 a
g 8050
< [
£ 80 2
g 5 0.25
o«)
70 0.00
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs
(a) Retain Accuracy vs. Epochs, 6 = 0.75 (b) Confidence Distance vs. Epochs, 6 = 0.75

Figure K.6: For CIFAR10 and CIFAR100 ResNet50, we observe a sharp drop in confidence distance
followed by a sharp increase in Fig. [K.6b] in line with the drops and increases for retain accuracy in
Fig.[K:6a] Test accuracy is similar. This highlights the need for early stopping when using Alg.[T] for
large models, since otherwise one escapes from a good privacy-utility tradeoff. For smaller models,
e.g. MNIST MLP, this issue does not persist—we obtain good uniformity after an initial drop in
accuracy, but then increase accuracy and decrease confidence distance simultaneously.

due to our choice of large 6, the retain gradient will be reduced in magnitude. Thus, we will move
more slowly at this stage.

We must stop shortly after this, otherwise the forget loss will climb back up to a point where the
model is no longer reasonably uniform.

Importantly, since smaller models (e.g. CIFAR10 ResNet8) have smaller parameter spaces, the
gradients do not conflict as much. Thus, when we begin finetuning the model, while we do increase
in retain loss initially, after the uniform loss is minimized we can minimize the retain loss freely. As
such, we can move in a direction that minimizes both the forget and retain gradients, and do not need
to stop early.

However, as noted in the main paper, the model needs to be sufficiently large to achieve strong test
accuracy, e.g. logistic regression trained on KMNIST does not work well. We hypothesize that this is

47

Table K.7: Studying the optimization dynamics of Alg.[1} Used in Fig.

Dataset Model Epoch Retain Acc. Test Acc. (ngvl;tl}]ls)g:fttér)
0 98.9% 90.8% 0.883
10 88.9% 80.4% 0.713
20 90.8% 83.1% 0.539
30 92.9% 85.3% 0.386
40 95.4% 87.3% 0.295
CIFAR10 ResNet8 50 96.5% 88.9% 0.263
60 97.3% 89.9% 0.261
70 97.9% 90.0% 0.295
80 98.2% 90.4% 0.270
90 98.6% 90.5% 0.276
100 98.9% 90.9% 0.245
0 100.0% 95.2% 0.899
10 72.5% 66.4% 0.593
20 77.9% 75.0% 0.176
30 88.8% 85.3% 0.131
40 92.9% 88.7% 0.231
CIFARI10 ResNet50 50 96.1% 91.1% 0.394
60 98.0% 92.5% 0.459
70 98.9% 93.2% 0.579
80 99.4% 93.7% 0.636
90 99.6% 94.0% 0.665
100 99.7% 94.0% 0.665
0 96.4% 67.8% 0.515
10 84.9% 59.2% 0.112
20 89.5% 63.4% 0.063
30 93.0% 67.3% 0.048
40 94.6% 68.5% 0.046
CIFAR100 | ResNet8 50 95.2% 69.0% 0.038
60 95.6% 69.4% 0.036
70 95.9% 69.5% 0.031
80 96.0% 69.8% 0.030
90 96.1% 70.0% 0.026
100 96.2% 70.2% 0.026
0 100.0% 78.3% 0.906
10 64.9% 50.8% 0.170
20 83.6% 65.6% 0.348
30 93.1% 71.7% 0.419
40 96.9% 74.4% 0.467
CIFAR100 | ResNet50 50 98.7% 75.5% 0.505
60 99.4% 76.4% 0.519
70 99.7% 76.7% 0.530
80 99.8% 76.5% 0.546
90 99.8% 76.8% 0.555
100 99.9% 77.3% 0.561

48

em» C|FAR10 ResNet8 ess» CIFAR10 ResNet50
e C|FAR100 ResNet8 emm» CIFAR100 ResNet50

100

90

80

Test Accuracy (%)

0 20 40 60 80 100
Epochs

Figure K.7: Test Accuracy vs. Epochs, 8 = 0.75, MNIST. This has similar behavior to Fig.

| II?*XP(fw*(m+¢))!
st @l < -

l Generates

Corrupted Data

Figure K.8: We corrupt an instance to increase the confidence of the final prediction. Noise is
highlighted throughout for clarity.

because a model with more parameters has many more subspaces where two task losses can coexist
in a way that provides a good tradeoff. We leave studying this and the above more formally to future
work.

K.7 Evaluating Test-Time Privacy Attacks

In what follows, we assume a test-time privacy (TTP) adversary with open-weight model access. We
describe our attacks, specifically in Appx.[A]

The results for the attacks with Alg.[5] Alg.[6] and Alg.[7]are in Tab. and Tab. We see that
our method effectively defends against Alg. [} Alg.[6] and Alg.[7]for various choices of in most
scenarios. In our choices of -y, we follow the adversarial robustness literature, choosing ~ sufficiently
small such that the perturbation is invisible to the naked eye, but sufficiently large such that our attack
is effective. However, in some cases, the attacks succeed despite the use of our method. Still, as
demonstrated in Tab. we find that our algorithm renders the forget accuracy very low in these
cases. As such, the adversary cannot be confidently correct—rather, in most cases, they can at best
be confidently wrong. In particular, we have significantly better protection from attacks than in the
pretrain, retrain, synthetic, or LabelDP cases. We provide visual intuition for our attacks in Fig.

K.8 Robustness of Alg. 1| Classifier on Neighboring Test Instances

To illustrate what happens for the finetuned classifier on neighboring test instances, we run an
experiment evaluating accuracy and average confidence distance on test instances which are nearest
neighbors to forget instances. Specifically, for each forget instance x € Dy, we found the nearest
neighbor of x in the test set. We evaluated this nearest neighbor in pixel space with respect to the /5
distance.

49

Algorithm 5 Gaussian Noise Open-Weight Test Time Privacy Attack

Require: Forget set Dy; pretrained model w* = A(D); adversarial v
D?dv — H
fori=1,...,|Ds| do
Ladv = Dgrz) + ﬂa B ~ N(Oa’YI)

D;dvﬁ(i) = Tadv

end for
return D}d"

Algorithm 6 FGSM-Style Open-Weight Test Time Privacy Attack
Require: Forget set D ; pretrained model w* = A(D); adversarial ; symmetry breaking o
Dy =]
fori=1,...,|Ds| do
20 =D} + 8. 8 ~ U([~a, 1))

@y = DY) + ysign(Vap(fur ()])

=0

D;dv,(i) = Tadv

end for
return D‘}dv

Results are in Tab. We notice that the classifier works as intended. That is, we obtain high
accuracy as well as high confidence distance on the test set, including for nearby instances. While
we do observe a drop for CIFAR100 ResNet50, we also observe that the confidence distance is still
much higher than the 0.298 confidence distance on the forget set.

K.9 Ensuring Test-Time Privacy for Test Instances

In our paper, we focus on training data examples because this is the basis for scenarios addressed
by the GDPR, HIPAA, etc. Providing the same guarantee for non-training (test) data is an equally
important problem. However, the proposed method can be extended to cover this new case without
loss of generality. One can just finetune on test instances highlighted to be corrupted and then run
Alg.[1] In Tab. we find that finetuning with test instances yields similar performance to using
our algorithm over just the training instances.

Algorithm 7 PGD-Style Open-Weight Test Time Privacy Attack

Require: Forget set Dy; pretrained model w* = A(D); adversarial -v; symmetry breaking «; step
count N
D?dv — H
fori=1,...,|Ds| do
20y, = D + B, 8 ~ U(l—ay,a1))
forj=1,...,N do
Tt = Toay + O5ig0(Vap(fur ()|)

=T

mtjzdv = HB'Y (D(fi)) (madv)

en(}if(zlf)
D :wﬁv

end for
return D‘}dv

50

Table K.8: Confidence distances over the forget set after Alg. |5} Alg. |§|, and Alg. 7| are applied to
pretrained models and models finetuned with Alg. |I| for MNIST and KMNIST. Lower is better.

Prior Conf. Dist. Attack Conf. Dist.
Dataset Model ~ Method Attack (Lower Better) (Lower Better)

Pretrain Alg.|6 0.879 0.884
5 Alg.5] 0.037 0.043
255 Alg. Alg. [0} 0.037 0.054
Alg. [T 0.037 0.185
Pretrain Alg.g)l 0.879 0.888
5 Alg. 0.037 0.064
MLP 55 Algf] Alg.[0.037 0.089
Alg.[7] 0.037 0.488
Pretrain Alg. [0 0.879 0.891
8 Alg. 5] 0.037 0.091
255 Alg. Alg. g 0.037 0.125
Alg. 0.037 0.632
MNIST Pretrain Alg.[6 0.895 0.896
9 Alg.[5] 0.070 0.075
255 Alg. Alg. [0} 0.070 0.133
Alg. [T 0.070 0.133
Pretrain Alg. % 0.895 0.897
5 Alg. 0.070 0.088
ResNetl8 355 Alg [l Ale. 0.070 0.164
Alg.[7] 0.070 0.350
Pretrain Alg. 0.895 0.898
8 Alg. 5] 0.070 0.116
255 Alg. Alg. [0} 0.070 0.248
Alg. [T 0.070 0.638
Pretrain Alg.[6 0.858 0.865
9 Alg.[5] 0.257 0.258
255 Alg. Alg. [0} 0.257 0.302
Alg. [T 0.257 0.317
Pretrain Alg. (§ 0.858 0.872
5 Alg. 0.257 0.259
KMNIST | ResNetl8 355 Ajo [Alg.f 0.257 0.370
Alg. [T 0.257 0.420
Pretrain Alg.[6 0.858 0.878
8 Alg. 5] 0.257 0.259
255 Alg. Alg.[6) 0.257 0.433
Alg. [T 0.257 0.520

K.10 Ablation Study on Forget Set Size

Figures are provided in Fig. and Fig.[K:T0} In Tab.[K.13] we provide experiments for ResNet50
trained on CIFAR10 and CIFAR100 for Alg. I} In Tab.[K.14] we provide experiments on MLP trained

over MNIST for Alg.[I]and logistic regression trained over MNIST for Alg.[2]

Throughout our experiments, we use a forget set size of 100. We do so because for our use case, it is
likely that a data controller would want to induce uniformity only for a small number of instances.
We observe that as one increases the forget set size, it becomes harder to induce uniformity with
the same hyperparameters. Still, for Alg. [T} we are able to obtain strong uniformity with good
retain and test accuracy for significantly larger forget set sizes. Furthermore, we observe that Alg. 2]
fails for sufficiently large forget set size; this is likely because Hessian matrix is significantly larger
(in norm) for a larger forget set, resulting in a catastrophically large Newton step. Mitigating this
phenomenon is left to future work, where Hessian-free techniques like those of |Qiao et al.|[2025]]
may be advantageous.

51

Table K.9: Confidence distances over the forget set after Alg. |5} Alg. |§|, and Alg. 7| are applied to
pretrained models and models finetuned with Alg.[T|for SVHN, CIFAR10, and CIFAR100. Lower is
better.

Prior Conf. Dist. Attack Conf. Dist.
Dataset Model ~ Method Attack (Lower Better) (Lower Better)

Pretrain Alg.[6 0.972 0.886
1 Alg.[5] 0.289 0.519
255 Alg. Alg. s 0.289 0.571
Alg. 0.289 0.582
SVHN | ResNet50 Proran Als. [09072 0.904
9 Alg. 5] 0.289 0.519
255 Alg. Alg. (6] 0.289 0.613
Alg.[7 0.289 0.640
Pretrain Alg.|6 0.898 0.898
1 Alg. 5] 0.377 0.300
255 Alg. Alg. (6] 0.377 0.353
ResNet18 Alg.[7] 0.377 0.356
Pretrain Alg.|6 0.898 0.822
5 Alg.[5] 0.377 0.301
255 Alg. Alg. g 0.377 0.397
Alg. 0.377 0.408
CIFARIO Pretrain Ale. [0.900 0.306
1 Alg.[5] 0.270 0.336
255 Alg. Alg. [0} 0.270 0.374
Alg.[7 0.270 0.378
ResNet50 Proran Al 0.900 0827
9 Alg. 5] 0.270 0.336
255 Alg. Alg. [0} 0.270 0.407
Alg.[7 0.270 0.425
Pretrain Alg.[0 0.906 0.587
1 Alg. 5] 0.298 0.275
255 Alg. Alg. g 0.298 0.360
Alg. 0.298 0.373
CIFARI00 | ResNet50 Pretrain Ali. 0 0.906 0.652
9 Alg.[5] 0.298 0.276
255 Alg. Alg. [0} 0.298 0.421
Alg. [T 0.298 0.468

K.11 Evaluating Confidence Distance as a TTP Metric

The (5 metric || f(x) — +||> has similar utility to our presented metric. However, it is slightly less
interpretable and may accidentally overpenalize uncertain outputs. For example, if one class has
no probability but the other 9 classes are uniform. Still, as demonstrated in Tab. [KT3] we find that
we minimize this metric as well for the same models and datasets. This holds similarly for other
potential metrics e.g. the ¢; metric.

K.12 An Additional Baseline with Randomly Sampled Labels: GaussianUniform

In what follows, we present the GaussianUniform baseline, an alternative idea to our approach based
on the notable work of |[Zhang et al.|[[2017], which demonstrates that a neural network can fully
minimize its loss over a training dataset where samples have labels sampled uniformly at random.
The approach of GaussianUniform is as follows:

1. Begin with a training dataset D = Dy U D,..

2. Perturb all samples in D to yield D' = D’; UD;.. We use mean zero Gaussian noise with 0.1
variance, which adds a small amount of noise.

52

Table K.10: Accuracies over the forget set after Alg. |§| and Alg.|7|are applied to pretrained models and
models finetuned with Alg. [T]for SVHN, CIFAR10, and CIFAR100. We see that Alg.[T]significantly
lowers forget set accuracy.

Prior. Forget Acc. Atk. Forget Acc.

Dataset Model ~v Method Attack (Lower Better) (Lower Better)
5 Pretrain Alg.[/, 97.0% 96.0%
MLP 255 Alg.] Alg.[]] 71.0:% 43.03/0
MNIST g Pretrain Alg.[/ 98.3% 96.0%
255 Alg.[l] Alg.[7 71.0% 41.0%
g Pretrain Alg.[/ 98.9% 100.0%
ResNetl8 555 Alg] Alef] 28.0% 54.0%
8 Pretramm Alg.|/ 96.0% 96.0%
KMNIST | ResNetl8 555 Alg] Alg.[] 50.0% 55.0%
Pretrain ~ Alg.[6 97.0% 66.0%
2 Alg. g 40.0% 53.0%
255 Alg[ll Alg. 40.0% 52.0%
SVHN | ResNet50 H e 40.0% 52.0%
Pretrain Alg.[6 97.0% 66.0%
9 Alg.[5 40.0% 52.0%
255 Alg. Alg.[6] 40.0% 53.0%
Alg.[7 40.0% 53.0%
Pretrain Alg.|6 100.0% 61.0%
1 Alg. g 60.0% 35.0%
255 Alg]ll Alg. 60.0% 34.0%
ResNet18 ¢ Aé. t 60.0% 34.0%
Pretrain __ Alg. g 100.0% 61.0%
9 Alg. 60.0% 35.0%
CIFARI0 35 Algfll Alg.[60.0% 33.0%
Alg.[7 60.0% 32.0%
Pretrain Alg.[6 100.0% 56.0%
1 Alg. g 55.0% 33.0%
255 Alg[ll Alg. 55.0% 30.0%
ResNet50 o 55.0% 30.0%
Pretrain Alg.[6] 100.0% 56.0%
9 Alg. 5] 55.0% 30.0%
255 Alg. Alg.[6 55.0% 30.0%
Alg.[7 55.0% 32.0%
Pretrain Alg.|6 100.0% 32.0%
1 Alg. g 48.0% 11.0%
255 Alg]ll Alg. 48.0% 10.0%
CIFAR100 | ResNet50 & Alg_ o 18.0% 11.0%
Pretrain Alg.[0 100.0% 32.0%
9 Alg.[5 48.0% 11.0%
255 Alg. Alg.[6] 48.0% 10.0%
Alg.[7 48.0% 11.0%

3. Sample all labels in D uniformly at random to yield D = D U D,.
4. Train A(D' UD).

In this scenario, inducing uncertainty may not be necessary, since the forget set would have very
strong uniformity, with strong accuracy on the retain set available by slightly perturbing with Gaussian
noise. We use the same hyperparameters as pretraining for the respective model and dataset tested, as
reported in Appx.[J]] We find that this is not the case for ResNet50 trained on SVHN, CIFAR10, and
CIFAR100. However, it achieves very poor test accuracy compared to Alg. [Tjon both normal Diey
and perturbed test D}, datasets; thus, we prefer Alg. [I|to this approach, since it generalizes well and
also does not require retraining. Results are in Tab. [K. 16|

53

Table K.11: Accuracies and confidence distances for test instances which are nearest neighbors (with
respect to /5 distance) of forget set instances. We observe that models continue to confidently and
correctly classify nearby test instances after finetuning with Alg. E

Conf. Dist.
Dataset Model Method Acc. (Higher Better)
Pretrain 100.0% 0.894
MLP Alg] 93.0% 0.754
MNIST L i
ResNet18 Pretrain 100.0% 0.896
Alg.[l 100.0% 0.875
Pretrain ~ 99.0% 0.871
KMNIST | ResNetl8 Alg. 99.0% 0.850
Pretrain ~ 95.0% 0.982
SVAN | ResNetS0 510 1 95.0% 0.939
Pretrain 98.0% 0.876
ResNetl8 n1o [85.0% 0.538
CIFAR10 e
ResNet50 Pretramm 96.0% 0.884
Alg. 90.0% 0.700
Pretrain ~ 78.0% 0.778
CIFARI100 | ResNet50 Alg. 66.0% 0.484
e MNIST MLP (Alg. 1) e C|FAR10 ResNet50 (Alg. 1) e \INIST MLP (Alg. 1) @ CIFAR10 ResNet50 (Alg. 1)
@ VINIST LogReg (Alg. 2) e CIFAR100 ResNet50 (Alg. 1) @ VINIST LogReg (Alg. 2) e CIFAR100 ResNet50 (Alg. 1)
100 1.00
50 38
; E 0.75
§ 60 %
§ 8 050
< w §
'{:lj % 0.25
T 20 (&)
0 0.00
0 1000 2000 3000 4000 5000 0 1000 2000 3000 1000 5000
Forget Set Size Forget Set Size
(a) Retain Accuracy vs. Epochs, § = 0.75 (b) Confidence Distance vs. Epochs, 6 = 0.75

Figure K.9: We observe that retain accuracy stays fairly stable as the forget size increases, in
Fig. except for Alg. [2] where it causes catastrophic failure due to the magnitude of the Newton
step. Furthermore, we find that confidence distance slowly increases as the forget set size increases in

Fie
K.13 Tightness of Bound in Theorem [4.3|

To evaluate how tight our bound is, we run an experiment for MNIST logistic regression. We use the
notation of theorem [4.3]in Tab. We find that our constant bound is fairly tight as § — 1; we
leave using more advanced techniques to ensure better tightness to future work.

K.14 Confidence Intervals for Main Paper Experiments

In what follows, we report confidence intervals for only ResNet50 trained on SVHN due to compute
constraints. We find that variance is low in Tab. [K 18]

K.15 Proportions of Time Elapsed in Alg. |I|

Results are reported in Tab. [K:19]

54

Table K.12: Finetuning on test instances and running Alg. |1} Here, “pretrain” denotes the initially
pretrained model (no additional test instances), while other rows correspond to finetuning on the
specified number of test instances.

Conf. Dist.

Dataset Model % Forget Size Method Retain Acc. Test Acc.
(Lower Better)
0 Pretrain 98.3% 97.0% 0.879
Alg.[1| 97.5% 95.7% 0.037
MLP 1/5 Pretrain 99.1% 97.3% 0.892
Alg.[1] 96.4% 93.9% 0.147
Pretrain 99.0% 97.1% 0.896
MNIST 1/2 Al 962% 93.4% 0.157
0 Pretrain 99.2% 98.9% 0.879
Alg.[T] 99.6% 99.1% 0.070
ResNet18 1/5 Pretrain 98.9% 98.5% 0.884
Alg. 1] 99.6% 98.9% 0.181
12 Pretrain 99.4% 100.0% 0.897
Alg.[T] 99.5% 98.7% 0.243
0 Prctrailn 98.2% 92.1% 0.880
Alg. 99.1% 94.7% 0.257
Pretrain _ 100.0% 97.5% 0.900
KMNIST | ResNetl8 1/5 Alg.[T] 99.7% 96.5% 0.301
Pretrain 100.0% 97.7% 0.895
1/2 Al 99.5% 96.9% 0.233
0 Pretrain 99.5% 94.4% 0.971
ResNet50 Alg. 1] 99.0% 94.4% 0.280
1T Q0 7097, Q [Q
s e 0T s o
1/2 Pretrai] 99.5% 94.5% 0.986
Alg. 99.8% 95.1% 0.391
0 Pretrail_rll 100.0% 95.3% 0.898
Alg.[l 89.6% 83.1% 0.377
ResNet18 Pretrain 100.0% 98.4% 0.894
1/5 Algfl] 89.4% 85.6% 0.358
Pretrain _ 100.0% 933% 0.887
CIFARIO 1/2 Alg. 87.9% 83.7% 0.494
0 Pretrain _ 100.0% 95.2% 0.900
Alg.[1] 94.7% 90.0% 0.270
ResNetS0 15 Pretruli1 99.9% 93.4% 0.896
Alg. 91.6% 87.1% 0.392
12 Pretrulil 99.8% 93.6% 0.894
Alg. 89.1% 86.7% 0.390
0 Pretrain 100.0% 78.3% 0.902
ResNet50 Alg.[1] 91.4% 65.5% 0.298
CIFAR100 VS el osse ein oo
12 Pretrain 99.9% 782% 0.860
Alg.[1] 97.9% 72.8% 0.221

K.16 Warmup Values for MNIST LogReg

Results are contained in Tab. We find that after applying the certified Newton step in Alg.[2]
we obtain better retain and test accuracy, at small cost to uniformity. Thus, warming up is not the
only component of achieving good results in Alg. 2]

55

@ VNIST MLP (Alg. 1) @==» CIFAR10 ResNet50 (Alg. 1)
e \INIST LogReg (Alg. 2) e C|FAR100 ResNet50 (Alg. 1)

100

P —

*

60

Test Accuracy (%)

Lo

0 1000 2000 3000 1000 5000
Forget Set Size

Figure K.10: Test Accuracy vs. Forget Set Size, § = 0.75. This has similar behavior to Fig.

Table K.13: Results on applying Alg.[1jon ResNet50 for various forget set sizes over CIFAR10 and
CIFAR100. Please see Appx. [K.10]for a discussion on Alg.[2} 6 = 0.75 throughout.

Dataset Model Forget Size Retain Acc. Test Acc. (Lg;)vrelfj]?elftt(;r)

100 94.7% 90.0% 0.270

250 96.4% 90.3% 0.289

CIFAR10 | ResNet50 500 95.1% 88.6% 0.190
1000 97.0% 90.0% 0.144

5000 95.8% 89.5% 0.176

100 91.4% 65.5% 0.298

250 99.7% 78.0% 0.370

CIFAR100 | ResNet50 500 99.8% 76.1% 0.475
1000 99.7% 74.8% 0.492

5000 99.8% 74.1% 0.613

K.17 Visualization of Softmax Outputs

We provide a comparison of pretrained f and Alg. [1| softmax probabilities across five different
CIFARI10 forget set samples, demonstrating visually the effectiveness of Alg.[I]at inducing uniformity
(and the relevance of our confidence distance metric) in Fig. [K.IT]

Table K.14: Results on applying Alg. [1|and Alg. [2| on various forget set sizes over MNIST. We
observe that, while Alg. |I| still works well, confidence distance increases as forget set size does;

please see Appx. [K.10]for a discussion on Alg.[2} 6 = 0.75 throughout.

Method | Model Forget Size Retain Acc. Test Acc. (ngvréi]?éf:ér)

100 97.5% 95.7% 0.037

250 97.6% 95.1% 0.010

Alg. MLP 500 95.8% 93.8% 0.121
1000 94.8% 93.3% 0.162

5000 96.6% 95.0% 0.420

100 92.1% 91.8% 0.258

250 85.4% 85.2% 0.243

Alg. LogReg 500 5.7% 5.9% 0.824
1000 4.4% 4.6% 0.891

5000 2.4% 2.5% 0.899

56

Table K.15: ¢5 confidence distances for models finetuned with Alg.

. Pretrained Alg.
Dataset Model Conf. Dist. Type (Lower Better) (Lower Better)

Paper 0.879 0.037

MNIST MLP ly 0.930 0.053
ResNet]8 Paper 0.895 0.070

ese 0 0.944 0.070

Paper 0.880 0.257

KMNIST | ResNetl8 0 0911 0302
Paper 0.972 0.289

SVHN ResNet50 A 0979 0298
ResNet18 Paper 0.898 0.377

CIFAR10 Uy 0.947 0.435
ResNet50 Paper 0.900 0.270

Uy 0.948 0.323

Paper 0.902 0.298

CIFAR100 | ResNet50 A 0911 0311

Table K.16: Results for the GaussianUniform baseline described in Appx. This method results
in significantly degraded accuracy on the test set compared to a model finetuned with Alg. [T] despite

achieving high accuracy on the perturbed retain set (D). Note that performance on D,. is similar to

D
Train Set Acc. (%) Test Set Acc. (%) Conf. Dist.
Dataset Model
atase ode 2 2 Dt Diy Alg[] D;

SVHN ResNet50 | 82.4% 2.0% 6.2% 81.1% 94.4% 0.009
CIFAR10 | ResNet50 | 100.0% 12.0% 11.1% 73.3% 90.0% 0.573
CIFAR100 | ResNet50 | 99.9% 4.0% 34% 404% 65.5% 0.057

J_U_LLLUAHLAL.JJ_._LL PR B I e LAL_LLA_I_ P IR |
(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4 (e) Sample 5

Figure K.11: Comparison of Pretrain (red) and Alg. 1 (blue) softmax probabilities across five different
CIFAR10 forget set samples.

K.18 Results for KMNIST LogReg and MLP

Results are contained in Tab.[K.21} As mentioned in Sec.[5} one can see that a small model for a more
complex benchmark, logistic regression on KMNIST, fails to induce uniformity, since the pretrained
model is too small to generalize. However, on a bigger model i.e. an MLP trained over KMNIST,
since it is large enough to generalize, one can induce uniformity over it. Thus, larger models which
generalize well are preferred for our method, in line with the goals of ML.

K.19 Ablation Study on Synthetic Baseline Sample Size

Below, we study what we happen if we increase the number of samples sampled in the e-ball in the
synthetic baseline. For each forget set instance, we sample k instances from the e-ball around the

Table K.17: Compari

son of bounds

a* —afl)

O(1) bound size

1.678

3.374

57

Table K.18: Results for Alg. [1|for ResNet50 trained on SVHN over three runs. We find that we are
able to induce uniformity while only slightly decreasing retain and test accuracy, # = 0.75 throughout,
with minimal variance for all metrics.

Dataset | Model Method Retain Acc. Test Acc. Conf. Dist.
(Lower Better)

Pretrain 99.9% £ 0.1% 95.3% £ 0.5% 0.987 £ 0.001
Alg. 99.5% £ 0.2% 94.8% + 0.3% 0.276 + 0.004

SVHN | ResNet50

Table K.19: Time proportions of each step in Alg.

Dataset Model Retain Grad. Forget Grad. Surgery Reg. Grad. Step
MNIST MLP 0.967 0.033 0.000 0.000 0.000
ResNet18 0.984 0.016 0.0010 0.000 0.000

KMNIST | ResNetl8 0.989 0.011 0.000 0.000 0.000
SVHN ResNet50 0.980 0.020 0.000 0.000 0.000
ResNet18 0.989 0.011 0.000 0.000 0.000

CIFARIO | ResNets0 0992 0.008 0.000 0.000 0.000
CIFAR100 | ResNet50 0.993 0.006 0.000 0.000 0.000

forget set, and then assign random labels to these instances, yielding an additional |Dy|k instances in
the training data. We then retrain the model over the retain set along with these new | D |k instances.
For a MLP trained over MNIST, we observe better performance as we increase sample size. However,
for a ResNet18 trained over CIFAR10, even if we have a very large sample size. This is presented
in Tab. Thus, since Alg. [I]can induce uniformity as shown in Tab. without great cost to
retain or test accuracy, it is better than the synthetic baseline.

K.20 Test Accuracy Plot for Pareto Frontier Experiments

We provide a plot characterizing test accuracy for Alg.[T|and Alg.[2]applied on MNIST for various
choices of 6 in Fig.

L Broader Impacts

Potential positive impacts are motivated by the threat model as discussed in Sec.[T]and Appx.[A]; per
our example provided in the introduction, violations of test-time privacy constitute a real threat for
ML safety. Hence, providing the defense that we do constitutes a positive societal impact. However,
we acknowledge the potential danger in providing a new threat model—it is possible that potential
adversaries had not thought of this before. Still, we provide a way to address this threat.

Table K.20: Warmup values for Alg. [2|for logistic regression trained over MNIST, contrasted with
the values after Alg. E]is applied.

¢ | Method Retain Acc. Test Acc. (Lf):?vzf}]];:fttér)
0.0 | Warmup 91.4% 91.6% 0.765
0.0 | Alg. 92.5% 92.2% 0.738
0.25 | Warmup 90.1% 90.4% 0.283
0.25 | Alg. 91.6% 91.5% 0.324
0.50 | Warmup 89.3% 89.7% 0.215
0.50 | Alg. 90.5% 90.6% 0.300
0.75 | Warmup 88.4% 88.6% 0.154
0.75 | Alg. 87.1% 87.2% 0.280
0.95 | Warmup 85.4% 86.0% 0.097
0.95| Alg. 85.0% 85.7% 0.092

58

Table K.21: Results for Alg. applied to logistic regression and MLP trained over KMNIST, § = 0.75
for Alg. [T}

Model | Method Retain Acc. Test Acc. Cont. Dist.
(Lower Better)

Pretrain 81.4% 66.4% 0.775
LogReg | Retrain 80.9% 65.3% 0.770
Alg. 77.4% 63.4% 0.770
Pretrain 100% 88.4% 0.900
MLP Retrain 100% 88.5% 0.887
Alg. 92.8% 80.3% 0.039

Table K.22: Results for the synthetic baseline applied with various sampled & on a MLP over
MNIST and a ResNet18 over CIFAR10. We observe that increasing k yields better performance,
but nevertheless even very large k (an additional 50k instances, with a forget set size of 100) fails to
induce uniformity for CIFAR10.

Dataset Model Sampled & Retain Acc. Test Acc. (ngvlg']ls)eltstt;ar)
5 99.4% 97.1% 0.541
25 99.0% 96.4% 0.183
MNIST MLP 125 99.4% 96.8% 0.105
250 98.6% 96.0% 0.066
500 99.6% 96.3% 0.003
5 99.0% 91.0% 0.683
25 99.2% 91.3% 0.865
125 98.8% 90.9% 0.856
CIFARIO | ResNetl8 55, 98.4% 90.7% 0.869
500 98.3% 91.1% 0.852
5000 94.0% 89.7% 0.844

@mm» MNIST LogReg (Alg. 2) e MNIST ResNet18 (Alg. 1)
e MNIST LogReg (Alg. 1) emm CIFAR10 ResNet50 (Alg. 1)
@ MNIST MLP (Alg. 1) e==» CIFAR100 ResNet50 (Alg. 1)

100

Test Accuracy (%)

50
0.00 0.25 0.50 0.75 1.00
0

Figure K.12: Test Accuracy vs. #, MNIST. This has similar behavior to Fig.

59

M Symbol Table

fu

N < % 8

=S 90

||w|l2

|1 All2

Amin(A)

Juw

Lk

Symbols

A pretrained classifier.

A pretrained classifier after unlearning has been conducted
OVEr &y,.

A data instance corresponding to person p.
A sample space, subset of R?.
A label space, subset of R°.

The Cartesian product of a sample space and a label space.
This is the space where a dataset is drawn from.

A dataset, subset of Z™, which is the n-fold Cartesian prod-
uct of Z. This represents a set of n data instances.

A forget set, a subset of a dataset D.
A retain set, the complement of the forget set in D.
A space of parameters, subset of R”.

A function that maps datasets to parameters; this repre-
sents the learning algorithm that a ML model provider uses
throughout our paper.

A set of functions which map samples in X" to the probability
simplex A |y, parameterized by a w € W.

The /5 norm of a vector w.
The 2-operator norm of a matrix A.

An {5 regularization coefficient used in Alg.|1|for regulariza-
tion and the certified algorithms e.g. Alg. 2] for local convex
approximation.

The minimum eigenvalue of a matrix A.

A uniform learner, which maps samples to parameters
which, when one parametrizes a function by any such param-
eter, a uniform distribution over all possible labels, U0, |)|]
is outputted.

A classifier parameterized by a parameter w € V.

A loss function to yield accurate predictions e.g. the cross
entropy loss between model predictions and labels.

A loss function to yield accurate uniformity e.g. the
Kullback-Liebler divergence between softmax outputs and
uniform distribution.

A trade off parameter in (0, 1) between utility and unifor-
mity.

60

D,(ﬁj’X)
ng,y)

N5, T

Symbols

A map between datasets and parameters that is the mini-
mizer of a Pareto objective between £ 4 and Lx, where 6
spans the (convex) Pareto frontier.

The bound on the norm of the Hessian at w*.
The ¢th instance of the forget set.

The jth instance of the retain set.

The feature of the jth instance of the retain set.
The label of the jth instance of the retain set.

Used to denote when two algorithms are (&, §) indistinguish-
able across all subsets 7 C W, i.e. M(D) =, 517 M'(D’)
means that Pr[M(D) € T| < ef Pr[M'(D’) € T|+ ¢ and
Pr[M'(D’) € T] < e Pr[M(D) € T] + 4.

A bound on the model weights.

The Lipschitz constant for the gradients of /i, the compo-
nent loss functions of L, from Asm. E}

The Lipschitz constant for the gradients of ¢ 4, the compo-
nent loss functions of £ 4, from Asm.@

The Lipschitz constant for the Hessians of /., the compo-
nent loss functions of Li, from Asm. E}

The Lipschitz constant for the Hessians of £ 4, the compo-
nent loss functions of £, from Asm. @

A convex combination of Px and P4 with respect to 6.
A convex combination of Fc and F'4 with respect to 6.

The standard normal distribution with an isotropic covari-
ance matrix.

The gradient of the Pareto objective evaluated at w*, used
in the main paper with regularization.

The Hessian of the Pareto objective evaluated at w*, used
in the main paper without regularization.

61

	
	Introduction
	Related Work
	Approaches and Algorithms
	The Exact Pareto Learner
	The Certified Pareto Learner

	Theoretical Analysis
	Empirical Analysis
	Discussion
	Appendix

	 Appendix
	Test-Time Privacy Threat Model as a Security Game
	Definining Test-Time Privacy Attacks
	Additional Related Work
	Uniformity Metric
	Test-Time Privacy Examples
	Limitations and Future Directions

	Designing Certified Algorithms
	Proofs
	Helpful Lemmas
	Proof of Proposition prop:uniformlearnerexists
	Proof of Proposition prop:paretooptimal
	Proof of Theorem thm:unlearningguaranteeforpareto
	Proof of Proposition prop:approxgeneralform
	Proof of Proposition prop:boundaftercvxapproxandC
	Proof of Theorem thm:asymptoticallyunbiasedestimator
	Proof of Theorem thm:boundwithhessianestimator
	Proof of Proposition prop:boundsequential
	Proof of Proposition prop:boundonpopdistancebetweenoutputandunif
	Proof of Corollary corollary:lambdalarge
	Proof of Theorem thm:retainaccuracybound

	Online Algorithm
	Eliminating Hyperparameters in Certified Algorithms
	Experimental Details
	Dataset Details
	Model Details
	Baseline Details
	Hyperparameter Details

	Additional Experiments
	Test Set Accuracies for Main Paper Experiments
	Tables for Main Paper Experiments
	Additional Experiments on TinyImageNet & ViT
	LabelDP and algo:finetuningalgo Confidence Distances for Retain, Test, and Forget Sets
	Pareto Frontier Main Paper Table
	Optimization Dynamics
	Empirical Results
	Intuition for Early Stopping

	Evaluating Test-Time Privacy Attacks
	Robustness of algo:finetuningalgo Classifier on Neighboring Test Instances
	Ensuring Test-Time Privacy for Test Instances
	Ablation Study on Forget Set Size
	Evaluating Confidence Distance as a TTP Metric
	An Additional Baseline with Randomly Sampled Labels: GaussianUniform
	Tightness of Bound in Theorem thm:retainaccuracybound
	Confidence Intervals for Main Paper Experiments
	Proportions of Time Elapsed in algo:finetuningalgo
	Warmup Values for MNIST LogReg
	Visualization of Softmax Outputs
	Results for KMNIST LogReg and MLP
	Ablation Study on Synthetic Baseline Sample Size
	Test Accuracy Plot for Pareto Frontier Experiments

	Broader Impacts
	Symbol Table

