
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNIFIED LATENT STEERING AND RESIDUAL
REFINEMENT FOR ONLINE IMPROVEMENT OF
DIFFUSION POLICY MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Imitation learning has driven major advances in robotic manipulation by exploit-
ing large and diverse demonstrations, yet policies trained purely by imitation
remain brittle under distribution shift and novel scenarios, making online im-
provement essential. Directly finetuning the parameters of modern large policies
is prohibitively sample inefficient and computationally expensive, while recent
finetuning-free adaptation methods either fail to exploit the multimodal distribu-
tions learned by pretrained policies or remain confined to the coverage of demon-
strations. We propose USR, a Unified framework for latent Steering and residual
Refinement that enables efficient online improvement of diffusion policy mod-
els. A lightweight actor jointly outputs latent noise to steer the diffusion process
toward promising modes and residual corrections to adapt beyond the diffusion
policy’s support, combining stable mode selection with flexible refinement. This
unified design stabilizes training and fully leverages both components. Exper-
iments on standard benchmarks and our MultiModalBench demonstrate USR’s
state-of-the-art performance. Furthermore, we validate its real-world applicability
by improving a Vision-Language-Action (VLA) model on a physical robot, setting
a new paradigm for sample-efficient adaptation of diffusion-based policies.

1 INTRODUCTION

A longstanding ambition in robotics is to endow machines with human-like manipulation across
diverse environments (Billard & Kragic, 2019). Recent progress in imitation learning, fueled
by advances in architectures (Vaswani et al., 2017; Ho et al., 2020) and large-scale demonstra-
tions (O’Neill et al., 2024; Khazatsky et al., 2024), has enabled policies capable of dexterous
hand control (Arunachalam et al., 2022), household visuomotor skills (Fu et al., 2024), and even
emerging generalist abilities (Black et al., 2024; Bjorck et al., 2025; Cheang et al., 2025). Despite
these advances, progress has been mostly demonstrated in controlled settings, while open-world
manipulation presents a much broader long-tail of objects, layouts, contacts, and partial observabil-
ity (Zitkovich et al., 2023). Unlike humans who adapt within a few interactions, imitation-learned
policies are fixed once training ends. Their behavior distributions are anchored to the demonstra-
tions, making unseen situations hard to handle. Although there are offline-to-online RL methods
designed for similar settings (Nakamoto et al., 2023; Zhou et al., 2024), applying them to large pol-
icy models requires updating parameter-heavy networks. Even with carefully designed fine-tuning
techniques (Hu et al., 2022), such updates incur significant computational overhead and large sample
demands (Wagenmaker et al., 2025). These constraints motivate alternatives that can deliver rapid
behavioral adaptation without finetuning the large policy model.

Existing finetuning-free policy adaptation methods broadly fall into two categories. The first steers
the base policy’s sampling process, exploiting the multimodality1 of large policy models by biasing
sampling toward promising modes (Nakamoto et al., 2024; Wagenmaker et al., 2025; Du & Song,
2025). The second adds a residual actor that refines the output of the frozen base policy, adjusting

1In this paper, we use the terms multimodal and multimodality to mean action distributions with multiple
behavior modes. This is distinct from the common usage of multimodal to describe models that integrate
different input modalities such as vision and language.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Base Policy

(a) Sample Steering (b) Residual Refinement (Small)

(d) Unified Steering and Refinement

Policy Policy

(c) Residual Refinement (Large)

Policy Policy

Policy

Adaptation Goal

Base Policy
Output Distribution

Residual Bound

Figure 1: Comparison of finetuning-free online adaptation methods. The base policy has two
modes, while the optimal region lies outside the upper mode. (a) Sample steering stays within the
base support. (b) Residual refinement with small bounds cannot cross the gap. (c) Large bounds
cross the gap but explore inefficiently. (d) USR combines sample steering and residual refinement
for stable, sample-efficient adaptation.

actions towards more favorable directions (Johannink et al., 2019; Yuan et al., 2024). In prac-
tice, residual methods often constrain the adjustment with a bound to promote efficient exploration.
While effective, both approaches face limitations. In Figure 1, we show a single-step decision prob-
lem where the base policy has two action modes, and the goal for adaptation lies outside one of
them. Sample steering can bias sampling towards the nearest mode but remains confined to the base
policy’s support. Residual refinement with small bounds cannot cross the mode boundary, whereas
setting large bounds permit crossing but induce inefficient exploration. These limitations highlight
the need for an approach that can balance stable mode selection with flexible refinement beyond the
pretrained distribution.

To address the limitations of existing finetuning-free online adaptation methods, we propose USR,
a Unified framework for latent noise Steering and residual Refinement. USR augments a pretrained
diffusion policy model with a single lightweight actor that jointly produces initial noise to steer the
diffusion process and residual corrections to refine its outputs. The noise output allows the policy to
exploit the multimodal structure of diffusion policy models, guiding trajectories toward promising
modes, while the residual component provides the flexibility to adapt beyond the support of the base
policy when necessary. This unified formulation combines the strengths of both perspectives, mode
selection and action refinement, within a stable reinforcement learning framework. As a result, USR
enables pretrained policies to rapidly adjust to novel environments, improving task success with
only a modest number of interactions and without modifying the underlying large policy model.

We validate USR through experiments on three benchmarks: our proposed MultiModalBench, the
Adroit suite (Rajeswaran et al., 2017) of dexterous hand tasks, and two tasks from ManiSkill (Gu
et al., 2023; Mu et al., 2021; Tao et al., 2024). MultiModalBench highlights the challenge of select-
ing among multiple demonstration modes, Adroit tests adaptation under human-provided demon-
strations, and ManiSkill covers settings with mostly single-modal data. We also extend our evalua-
tion to the physical world, demonstrating that USR effectively improves a pre-trained VLA model
on a real robot. Across all settings and under both state and visual observations, USR achieves
consistently higher success and superior sample efficiency compared to prior methods. Qualita-
tive analysis shows that latent steering reliably selects the correct behavioral mode while residual
refinement makes fine-grained corrections beyond the base policy’s support.

Our contributions are fourfold:

• We identified complementary limitations of online adaptation methods in manipulation: sample
steering is constrained by the base policy, and residual refinement requires fragile step-size tuning.

• We proposed USR, a unified online adaptation algorithm for diffusion policies that employs a sin-
gle lightweight actor to jointly generate noise and refine trajectories, enabling multimodal steering
and controlled policy deviation without parameter updates of the pretrained policy.

• We released MultiModalBench, a benchmark of six robot manipulation tasks with multiple
demonstration modes, providing the first systematic testbed for multimodal policy adaptation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Diffusion
Policy Model

Diffusion
Policy Model

Unified Steering and Refinement Model

Steered
Noise

Diffusion
Action

Final
Action

Random Noise

Normal Action Sampling

Residual
Action

+ =

Residual
Refinement

Latent
Steering

Figure 2: How USR improves a bimodal base policy on the PegInsertionSideStrict task from
MultiModalBench. The pretrained diffusion policy model has two modes: inserting a peg into
the left box or the right box. Latent steering first steers the policy to consistently select the correct
(right) mode, but the trajectories remain imprecise. Residual refinement then applies fine-grained
corrections, guiding all trajectories to the target hole. This representative scene shows how USR
combines coarse sample steering with precise action refinement for task success.

• We demonstrated the real-world applicability of USR by effectively improving a VLA model on
a physical robot, validating its potential for scalable fine-tuning of behavioral foundation models.

2 RELATED WORK

Policy improvement with reinforcement learning. Reinforcement learning is widely used to
adapt pre-trained policies. Existing methods can be broadly divided into two categories based on
whether they finetune the base policy. The first category directly finetunes pretrained imitation
learning (Ren et al., 2024; Chandra et al., 2025), offline reinforcement learning (Nakamoto et al.,
2023; Zhou et al., 2024), or Vision-Language-Action models (SimpleVLA-RL Team, 2025; Lu et al.,
2025; Mark et al., 2024) using online RL gradients. The second category improves policy perfor-
mance without modifying the base policy itself, often by learning a residual (Yuan et al., 2024;
Ankile et al., 2024) or auxiliary policy (Wagenmaker et al., 2025) on top of the fixed base. Our
method belongs to this second category and introduces a novel decomposition of policy improve-
ment into latent steering and action refinement, enabling comprehensive and efficient enhancement
of the base policy’s performance.

Noise optimization in generative models. Steering and improving generative models via noise-
space optimization has been widely studied across domains. In image synthesis, recent work (Eyring
et al., 2024; Mao et al., 2024; Samuel et al., 2024) shows that optimizing the initial diffusion noise
to maximize downstream image-quality metrics can yield substantial gains. In robotics and control,
Singh et al. (2020) trains a normalizing-flow policy on offline data and then runs reinforcement
learning directly in the policy’s noise space to improve online performance. Most closely related
to our setting, DSRL (Wagenmaker et al., 2025) optimizes the noise for Diffusion Policy via RL
to enhance control outcomes. We identify a key limitation of DSRL: by optimizing noise while
keeping the base policy fixed, it is highly constrained by the support of the base policy’s action
distribution, which caps performance at the quality of the imitation demonstrations. We address this
by introducing a unified framework that combines latent steering with explicit action refinement,
enabling elegant exploration and yielding stronger, more sample-efficient online improvements.

3 PROBLEM FORMULATION

We consider a discounted Markov Decision Process (MDP) M(S,O,A, p0, P, r, γ). At time t, the
environment is in state st ∈ S, while st ∼ p0 (if t = 0) or st ∼ P (·|st−1, at−1), the agent receives
observation ot ∈ O, choose action at ∼ A, and transitions to st+1. In our setting, the agent is
equipped with a pretrained diffusion policy model πdp obtained through imitation learning on offline
demonstrations. While πdp captures diverse behavior from demonstrations, it may fail to achieve
the goal in the current environment due to distribution shift or incomplete coverage of pretrained

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

behaviors. The objective of online adaptation is therefore to enhance πdp using online interactions
so that the resulting policy πnew maximizes the expected discounted return:

J(πnew) = Es0∼p0,πnew,P

[∞∑
t=0

γtr(st, at)

]
. (1)

4 UNIFIED STEERING AND REFINEMENT FRAMEWORK

To address the complementary limitations of sample steering and residual refinement, we introduce
USR, a unified framework for online adaptation of pretrained diffusion policy models. USR em-
ploys a lightweight actor that jointly outputs latent noise to steer the diffusion sampling process and
a residual correction to further refine the resulting action. This unified formulation leverages the
complementary strengths of both noise-space steering and residual refinement, while avoiding their
respective limitations. We begin with the unified actor design in Section 4.1, then describe the com-
bined critic design and critic learning in Section 4.2 and the actor learning procedure in Section 4.3.
Pseudocode of the complete algorithm is provided in Appendix B.

4.1 UNIFIED LATENT STEERING AND RESIDUAL REFINEMENT

At the core of USR is a single, lightweight actor, πθ(ot), that takes the current observation ot and
outputs a combined action acomb

t , which is a concatenation of two components, a latent noisewt ∈ W
and a residual action ares

t ∈ A:

acomb
t = [wt, a

res
t] ∼ πθ(·|ot) . (2)

The latent noise wt is constrained within a bounded space [−bw, bw]. These two components are
then used to adjust the base diffusion policy πdp in a two-stage process:

Latent Steering: The latent noise vector wt is used as the initial noise to start the denoising process
of πdp. This steers the base policy to generate a biased action ãt:

ãt = πdp(ot, wt) . (3)

By replacing standard Gaussian noise with learned noise, we bias sampling toward promising modes
rather than relying on the base policy to stochastically land in one of them.

Residual Refinement: The residual action vector ares
t is then added to the steered action ãt to make

fine-grained corrections. A residual scale α controls the magnitude of this adjustment. The final
action at executed in the environment is

at = ãt + α · ares
t . (4)

To ensure stable learning, especially at the beginning of training when the residual output is ran-
domly initialized, we adopt the progressive exploration strategy from Policy Decorator (Yuan et al.,
2024). Instead of always applying the residual refinement, we introduce it gradually. During online
rollouts for training, the residual action ares

t is added with a probability ϵ that increases linearly from
0 to 1 over a set number of environment steps, H . This allows the agent to initially rely on the more
stable base policy and avoid early failures, ensuring it continues to receive success signals. The final
behavioral action at is therefore determined as:

at =

{
πdp(ot, wt) + α · ares

t Uniform(0, 1) < ϵ

πdp(ot, wt) .
(5)

Together, this unified framework allows USR to first make a coarse selection among the diverse
behaviors learned by the base policy via steering, and then apply a fine-grained correction that can
even push the final action beyond the original support of πdp.

4.2 CRITIC LEARNING MECHANISM

A key challenge in learning the unified actor is providing a stable and efficient gradient signal.
Backpropagating through the iterative denoising process of πdp is computationally expensive and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

often numerically unstable. While a standard actor-critic algorithm in the latent space bypasses this
issue, it is highly sample-inefficient because it must redundantly explore different noise vectors that
map to similar actions. To circumvent this, USR employs a two-critic architecture inspired by the
noise-aliased distillation in DSRL (Wagenmaker et al., 2025), adapted for our unified framework.

Environment Critic QA
ϕ (o, a): This critic operates in the environment’s action space A. Its pur-

pose is to learn the value of the final, executed actions at. It is trained using standard off-policy
temporal difference (TD) learning from transitions (ot, at, rt, ot+1) stored in a replay buffer D. The
loss for the environment critic is:

LTD(ϕ) = E(ot,at,rt,ot+1)∼D

[(
QA
ϕ (ot, at)− yt

)2]
, (6)

where the TD target yt is computed as yt = rt + γ(1− dt)Q
A
ϕ′

target
(ot+1, a

′
t+1), with a′t+1 being the

next action from the actor policy and dt being the episode termination signal.

Combined CriticQC
ψ(o, a

comb): This critic operates directly in the actor’s output space, evaluating
the combined action acomb

t = [wt, a
res
t]. Instead of learning from sparse rewards via TD learning, it

is trained to distill the value from the environment critic. This provides a direct and sample-efficient
gradient path to the actor. The distillation loss is formulated as

Ldistill(ψ) = Eo∼D,acomb∼U

[(
QC
ψ(o, a

comb)−QA
ϕ (o, aenv)

)2]
, (7)

where aenv = πdp(o, w) + α · ares is the final action computed from a randomly sampled combined
action acomb = [w, ares], and the environment critic QA

ϕ is held fixed during the distillation update.
The combined critic updates are applied ND times per iteration. This dual-critic setup decouples
the complex dynamics of the diffusion policy from the actor’s learning process, enabling stable and
efficient training.

4.3 ACTOR LEARNING

With the combined critic QC
ψ providing a value estimate for any combined action, the actor πθ can

be trained to maximize the expected return using policy gradients. We adopt the Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) objective to encourage exploration through entropy maximization.
The actor’s objective is to maximize:

J(θ) = Eot∼D,acomb
t ∼πθ

[
QC
ψ(ot, a

comb
t) + βH(πθ(·|ot))

]
(8)

where H is the policy’s entropy and β is a temperature parameter that can be automatically tuned.
The gradient flows directly from the combined critic to the actor, bypassing the diffusion policy
entirely and allowing for efficient updates to the lightweight actor network.

5 EXPERIMENTS

Our experiments are designed to empirically answer the following questions: 1) Can our method
USR effectively improve pre-trained diffusion policy models on the simulation tasks of Multi-
ModalBench, AdroitHand, and ManiSkill under both state and visual observations? (Section 5.2)
2) How do key hyperparameters influence the performance of USR? (Section 5.3) 3) How does
USR improve the performance of pre-trained diffusion policy models? (Section 5.4) 4) Can USR
be applied to real-world manipulation and improve Vision-Language-Action (VLA) models? (Sec-
tion 5.5)

5.1 SIMULATION EXPERIMENTS SETUP

5.1.1 TASK DESCRIPTION

Our experiments are conducted on 6 simulation tasks from MultiModalBench, 3 simulation tasks
from Adroit (Rajeswaran et al., 2017), and 2 simulation tasks from ManiSkill (Gu et al., 2023).
Refer to Figure 3 for task visualizations.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Illustration of the tasks used in our experiment, including six MultiModalBench tasks,
three AdroitHand tasks, and two ManiSkill tasks. For each MultiModalBench task, visualizations
of all behavior modes and the adaptation target mode (Strict) are provided in Appendix Figure 9.

MultiModalBench. We build six simulation tasks on top of SAPIEN (Xiang et al., 2020) to form
MultiModalBench, including PickCube, StackThreeCube, PlaceTwoCube, PegInsertionSide, Open-
BoxPlaceCube, and SortYCB, each containing multiple behavior modes. For each task, we collect
expert datasets using an off-the-shelf motion planner, which include successful trajectories for all
behavior modes. Tasks with the Strict suffix indicate that, among all behavior modes, only a single
mode is considered successful. Visualizations of all modes including the adaptation target mode for
each task are provided in Appendix Figure 9. The adaptation objective is to maximize the success
rate on these Strict tasks, evaluating the ability to both steer multimodal policies toward the desired
behavioral mode and refine actions to surpass the base policy’s performance. We use sparse reward
for all of our experiments.

AdroitHand. We evaluate on three AdroitHand simulation tasks, Pen, Hammer, and Relocate,
which require solving dexterous manipulation with a 24-DoF hand simulator. Following the setup
of Rajeswaran et al. (2017), we use 25 human demonstrations for training the base policy. We
exclude the Door task since the base policy already achieves near-perfect performance, reducing the
need for online improvement. We use sparse reward for experiments on Adroit.

ManiSkill. We evaluate on two ManiSkill (Gu et al., 2023; Mu et al., 2021; Tao et al., 2024) sim-
ulation tasks, PushChair and TurnFaucet. which require learning contact-rich manipulation with
articulated objects. For training, we use demonstrations generated by model predictive control (for
TurnFaucet) and by reinforcement learning policies (for PushChair). Because both data genera-
tion methods rely on dense reward functions, the resulting base Diffusion Policies exhibit minimal
multimodality. We use sparse reward for experiments on ManiSkill.

5.1.2 BASE POLICY

We adopt Diffusion Policy (Chi et al., 2023) as our base multimodal policy. As a state-of-the-art
imitation learning method, it generates robot action sequences via a conditional denoising diffusion
process. Leveraging the power of diffusion-based generative models, Diffusion Policy is capable
of effectively modeling multimodal behavior distributions. For fast inference and stable sample
steering, we employ DDIM (Song et al., 2020) in diffusion sampling.

5.1.3 BASELINES

We compare our method against prior state-of-the-art fine-tuning and fine-tuning–free approaches.

DSRL (Wagenmaker et al., 2025) is an online RL method that optimizes the diffusion noise fed
into a frozen Diffusion Policy, steering its sampler without updating network weights. However,
because it constrains actions to the support of the base policy, its performance remains bounded by
the quality and coverage of the demonstrations and the pre-trained model.

Policy Decorator (Yuan et al., 2024) is an online residual RL method that learns a residual policy,
augmented with controlled exploration strategies such as bounded residual actions and a progressive
exploration schedule, which provides a model-agnostic improvement over black-box base policies.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

PickCubeStrict

0 2 4 6 8
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

StackThreeCubeStrict

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

PlaceTwoCubeStrict

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

PegInsertionSideStrict

0 2 4 6 8
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

OpenBoxPlaceCubeStrict

0 1 2 3 4 5 6
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

SortYCBStrict

USR DSRL Policy Decorator DPPO JSRL Base Policy Base Policy (Strict)

Figure 4: Learning curves on our proposed benchmark, MultiModalBench averaged over 5 seeds.
The Base Policy line reports the success rate of the base Diffusion Policy when all behavior modes
are counted as successful, whereas Base Policy (Strict) considers success only under a single desig-
nated behavior mode. Across all tasks, our method consistently outperforms the baseline methods.

DPPO (Ren et al., 2024) is an online RL method that finetunes a pre-trained Diffusion Policy using
PPO (Schulman et al., 2017). By interacting with the environment, it incrementally adjusts the
policy distribution to improve task performance.

JSRL (Uchendu et al., 2023) is an online curriculum learning method that leverages a base policy as
a guiding policy. By using the base policy to steer the online policy toward the goal, JSRL reduces
the difficulty of exploration and facilitates more efficient learning in complex tasks

5.2 EXPERIMENTAL RESULTS

Our Method. We evaluate USR on three benchmarks, including two standard manipulation bench-
marks, Adroit (Rajeswaran et al., 2017) and ManiSkill (Gu et al., 2023), as well as on our proposed
MultiModalBench. Tasks with the Strict suffix in MultiModalBench include multiple behavior
modes in the demonstration, but only one is considered successful. This setting poses a signif-
icant challenge of steering the pretrained policy toward promising modes while refining actions
to explore out-of-distribution area. As shown in Figure 4, USR significantly outperforms baselines,
achieving both sample-efficient and near-perfect final performance. To test USR under more general
and diverse conditions, we further evaluate on three tasks from the Adroit benchmark (Rajeswaran
et al., 2017), using base policy model trained on human demonstrations. These demonstrations natu-
rally induce implicit multimodal action distributions due to variability in human data collection. As
shown in the top row of Figure 5, USR substantially outperforms baselines, highlighting its strength
in utilizing human demonstrations. Finally, we evaluate on two tasks from the ManiSkill bench-
mark (Gu et al., 2023), where the base policy model are trained from demonstrations generated by
Model Predictive Control and reinforcement learning policy learned under dense reward. These
demonstrations are largely single-modal. As shown in the bottom row of Figure 5, USR consistently
outperforms baselines, demonstrating its advantage even in settings with limited multimodality.

Baselines. We compare our method against a comprehensive set of baselines. As shown in Figure 4
and Figure 5, DSRL performs well on Adroit tasks with human demonstrations but struggles on
MultiModalBench and ManiSkill tasks, which require either extra exploration besides mode steer-
ing or involve mostly single-modal demonstrations. These results suggest that while DSRL can
quickly steer base actions toward promising modes, it lacks the ability to handle predominantly
single-modal demonstrations or to achieve near-perfect performance beyond the base policy’s sup-
port. More specifically, results on MultiModalBench show that DSRL can improve the base policy
on Strict task to matches its performance on non-Strict tasks, indicating that DSRL is able to reach
the correct behavior mode but cannot further boost performance beyond the base policy’s support.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0
S

u
c
c
e

ss
 R

a
te

AdroitHand: Pen

0 1 2 3 4 5 6
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

AdroitHand: Hammer

0 1 2 3 4 5
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

AdroitHand: Relocate

USR DSRL Policy Decorator DPPO JSRL Base Policy

0 2 4 6 8
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

ManiSkill: TurnFaucet

0 2 4 6 8
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

ManiSkill: PushChair

USR DSRL Policy Decorator DPPO JSRL Base Policy

Figure 5: Learning curves on three AdroitHand tasks (top) and two ManiSkill tasks (bottom),
averaged over 5 seeds. The Base Policy line reports the success rate of the base Diffusion Policy on
that task.

We also find that DSRL suffers from limited training stability and is prone to collapse during train-
ing. In contrast, Policy Decorator provides stable and generally more reliable performance across all
evaluated tasks. However, as it always treats the base policy as a black-box model, learning resid-
ual actions becomes considerably more difficult, and sample efficiency is reduced by the inability
to leverage the base policy’s output distribution. JSRL largely fails on MultiModalBench tasks but
achieves some success on Adroit and ManiSkill due to exploration challenges. When the base pol-
icy falls into unwanted behavior modes, the student policy cannot make meaningful improvements
without backtracking a long distance to the key decision state in order to select the intended behavior
mode. Finally, we find that DPPO as an on-policy algorithm is considerably less sample-efficient
than USR and incurs additional computational overhead.

Visual Experiments. We additionally evaluate USR with high-dimensional image observations. As
shown in Appendix E.1, USR achieves superior performance over the baselines under visual inputs.

5.3 HYPERPARAMETER STUDY

We conduct hyperparameter studies on OpenBoxPlaceCubeStrict and PlaceTwoCubeStrict to pro-
vide further insights into the training dynamics of USR.

Noise Magnitude bw. The hyperparameter bw controls the scale of the noise produced by the ac-
tor. As shown in Figure 6, we ablate bw over values ranging from 0.5 to 2.0 and observe similar
performance across two tasks. These results suggest that bw is relatively insensitive to the choice
of value. Following both our findings and the recommendation of the original paper (Wagenmaker
et al., 2025), we set bw = 1.5 for most experiments.

Combined Critic Gradient Steps ND. The hyperparameter ND controls the number of combined
critic updates performed to distill from environment critic in each training iteration. As shown in
Figure 6, we ablate ND over values ranging from 1 to 8 and observe similar performance across two
tasks. These results suggest that ND is relatively insensitive to the choice of value. Therefore, for
training efficiency, we set ND = 1 in most experiments.

Residual Action Scale α. The hyperparameter α controls the maximum adjustment the residual
policy can apply. As shown in Figure 6, a value that is too small leads to insufficient residual scaling,
preventing the success rate from reaching 100%, whereas a value that is too large, such as α = 1.0,
significantly increases the difficulty of exploration, resulting in poor sample efficiency and even
complete failure on the OpenBoxPlaceCubeStrict task. Across tasks, α demonstrates a generous

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

PlaceTwoCubeStrict

 = 0.05

 = 0.1

 = 0.2

 = 0.5

0 2 4 6 8
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

OpenBoxPlaceCubeStrict

 = 0.05

 = 0.1

 = 0.2

 = 0.5

 = 1.0

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

PlaceTwoCubeStrict

H = 0

H = 100K
H = 500K
H = 1M

0 2 4 6 8
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

OpenBoxPlaceCubeStrict

H = 0

H = 100K
H = 500K
H = 1M

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

PlaceTwoCubeStrict

b = 0.5

b = 1.0

b = 1.5

b = 2.0

0 2 4 6 8
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

OpenBoxPlaceCubeStrict

b = 0.5

b = 1.0

b = 1.5

b = 2.0

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

PlaceTwoCubeStrict

ND = 1

ND = 4

ND = 8

0 2 4 6 8
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

OpenBoxPlaceCubeStrict

ND = 1

ND = 4

ND = 8

Figure 6: Ablations on four key hyperparameters on two tasks: residual scale α, progressive explo-
ration horizon H , noise magnitude bW , and combined critic update steps ND.

workable range (0.1 to 0.5 for OpenBoxPlaceCubeStrict and 0.05 to 0.2 for PlaceTwoCubeStrict),
making it comparatively easy to tune.

Progressive Exploration Schedule H . The hyperparameter H controls the rate at which the policy
switches from the base policy to the residual policy. As shown in Figure 6, a value that is too small,
such as H = 0, increases the learning difficulty for the residual policy, resulting in reduced sample
efficiency. In contrast, a larger H is generally a safe choice.

5.4 UNDERSTANDING USR

Figure 7: Action distribution compari-
son before and after USR.

To better understand how our method USR achieves supe-
rior performance, we conduct additional qualitative stud-
ies to gain insights into the behavior of its two compo-
nents. Specifically, we select an initial state from Pick-
CubeStrict, sample the base policy 1000 times, apply
PCA (Abdi & Williams, 2010) to project the actions, and
plot the first principal component. We then apply the
fully-trained USR to the base policy and visualize the first
principal component of actions sampled from: (i) the base
policy with noise provided by the unified actor, and (ii)
the final actions after applying USR.

As shown in Figure 7, actions sampled directly from
the base policy exhibit messy multimodal distributions,
reflecting the multiple behavior modes inherent to the
base policy. In contrast, actions sampled with noise pro-
vided by the unified actor form a clear single-modal dis-
tribution, effectively amplifying one pre-existing behav-
ior mode. The final actions after applying USR preserve
this single-modal structure while shifting the distribution
along the x-axis. These observations suggest that the two components work together to improve the
base policy more effectively: the noise action steers sampled trajectories toward the most promising
mode, while the residual action enables further refinement beyond the support of the base policy.

5.5 REAL ROBOT EXPERIMENTS

To demonstrate the efficacy of USR in improving real robot policies, we conducted experiments
on the Agibot G1 dual-arm platform. Unlike previous experiments that utilized standard diffusion
policies, the base policy here is a multi-task Vision-Language-Action (VLA) model with a flow
matching action expert. The model is trained on the AgiBot-World (Bu et al., 2025) dataset.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Base
Policy

DSRL

USR

Figure 8: Rollout comparison at a challenging position. Base policy moves towards the bin but
misses the interaction point. DSRL steers closer but acts too low, colliding with and displacing the
bin. USR successfully refines the action to touch the lid’s ears and completes the task.

Task Description. We focused on a fine-grained manipulation task: Lid Opening. The robot must
use its right gripper to open a cartoon-styled trash bin placed on a tabletop. This task is challenging
due to the required precision; the gripper must accurately catch and manipulate two small protruding
“ears” on the lid to flip it open. A slight vertical misalignment results in the gripper colliding with
the bin body, pushing the object away and causing task failure.

Experimental Setup. We benchmark the performance of the pre-trained VLA model as well as
the improved policies by DSRL and USR. Throughout the experiments, the base VLA model was
conditioned on a fixed language instruction: “open the lid of square trash bin with the right arm.”
Both DSRL and USR were trained online for 100 episodes. We employed a human-in-the-loop
training protocol where a human supervisor provided a sparse binary reward (0/1) at the end of each
episode and reset the object position when necessary.

Table 1: Success rates on the Lid Open-
ing task.

Method Success / Total

Base Policy 8 / 20
DSRL 15 / 20
USR 18 / 20

Results and Analysis. The evaluation was conducted
across 10 distinct object positions with 2 trials per po-
sition (20 evaluation episodes in total). As reported in
Table 1, the pre-trained base VLA model achieved a suc-
cess rate of 40% (8/20). DSRL improved performance to
75% (15/20) through latent steering, while USR achieved
the highest success rate of 90% (18/20). To investigate
the underlying causes of this performance gap, we visual-
ized rollouts at a particular position where both the base
model and DSRL failed (see Figure 8). The base VLA model exhibited the correct general intent by
moving the right gripper toward the bin but failed to make effective contact with the lid due to a lack
of precision. DSRL successfully steered the gripper closer to the target; however, it executed the
grasp slightly too low, causing the gripper to push the bin body rather than opening the lid. In con-
trast, USR successfully leveraged its residual component to apply a fine-grained vertical correction,
allowing the gripper to precisely align with the lid’s “ears” and successfully flick it open.

The real robot results validate that USR is compatible with state-of-the-art VLA architectures and
confirm that the residual refinement module is critical for achieving fine-grained manipulation tasks
that are difficult to solve via latent steering alone.

6 CONCLUSION

We introduce Unified latent Steering and residual Refinement (USR), a novel framework for the
online improvement of diffusion policy models. USR utilizes a lightweight actor to jointly steer the
diffusion process with latent noise and apply residual corrections to the sampled action. This unified
design combines stable mode selection with flexible adaptation, overcoming the limitations of prior
methods. Experiments on our new MultiModalBench, along with Adroit and ManiSkill benchmarks,
show that USR achieves state-of-the-art performance and sample efficiency by effectively selecting
promising behavioral modes and refining actions beyond the base policy’s support.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

CODE OF ETHICS

We affirm that our research adheres to the ethical guidelines set forth in the ICLR Code of Ethics.
We have ensured the integrity of our data, transparency in results, and compliance with all applicable
laws and regulations. Our research does not involve human subjects. We also disclose any potential
conflicts of interest and strive for fairness and non-discrimination in our work.

REPRODUCIBILITY STATEMENT

We are committed to making our results reproducible. The source code and datasets will be made
publicly available upon publication. All experimental details, including hyperparameters, model
configurations, and evaluation metrics, are documented clearly in the paper and supplementary ma-
terials.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation
to refinement–residual rl for precise assembly. arXiv preprint arXiv:2407.16677, 2024.

Sridhar Pandian Arunachalam, Sneha Silwal, Ben Evans, and Lerrel Pinto. Dexterous imitation
made easy: A learning-based framework for efficient dexterous manipulation. arXiv preprint
arXiv:2203.13251, 2022.

Aude Billard and Danica Kragic. Trends and challenges in robot manipulation. Science, 364(6446):
eaat8414, 2019.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. pi 0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong
He, Xuan Hu, Xu Huang, et al. Agibot world colosseo: A large-scale manipulation platform for
scalable and intelligent embodied systems. arXiv preprint arXiv:2503.06669, 2025.

Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M Dol-
lar. Benchmarking in manipulation research: The ycb object and model set and benchmarking
protocols. arXiv preprint arXiv:1502.03143, 2015.

Akshay L Chandra, Iman Nematollahi, Chenguang Huang, Tim Welschehold, Wolfram Burgard,
and Abhinav Valada. Diwa: Diffusion policy adaptation with world models. arXiv preprint
arXiv:2508.03645, 2025.

Chilam Cheang, Sijin Chen, Zhongren Cui, Yingdong Hu, Liqun Huang, Tao Kong, Hang Li, Yifeng
Li, Yuxiao Liu, Xiao Ma, et al. Gr-3 technical report. arXiv preprint arXiv:2507.15493, 2025.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Maximilian Du and Shuran Song. Dynaguide: Steering diffusion polices with active dynamic guid-
ance. arXiv preprint arXiv:2506.13922, 2025.

Luca Eyring, Shyamgopal Karthik, Karsten Roth, Alexey Dosovitskiy, and Zeynep Akata. Reno:
Enhancing one-step text-to-image models through reward-based noise optimization. Advances in
Neural Information Processing Systems, 37:125487–125519, 2024.

Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
with low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone
Tao, Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manip-
ulation skills. arXiv preprint arXiv:2302.04659, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. Pmlr, 2018.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias Loskyll,
Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Residual reinforcement learning for
robot control. In 2019 international conference on robotics and automation (ICRA), pp. 6023–
6029. IEEE, 2019.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty El-
lis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint
arXiv:2403.12945, 2024.

Guanxing Lu, Wenkai Guo, Chubin Zhang, Yuheng Zhou, Haonan Jiang, Zifeng Gao, Yansong
Tang, and Ziwei Wang. Vla-rl: Towards masterful and general robotic manipulation with scalable
reinforcement learning. arXiv preprint arXiv:2505.18719, 2025.

Jiafeng Mao, Xueting Wang, and Kiyoharu Aizawa. The lottery ticket hypothesis in denoising:
Towards semantic-driven initialization. In European Conference on Computer Vision, pp. 93–
109. Springer, 2024.

Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any
class and backbone. arXiv preprint arXiv:2412.06685, 2024.

Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao, Zhiao Huang, Zhi-
wei Jia, and Hao Su. Maniskill: Generalizable manipulation skill benchmark with large-scale
demonstrations. arXiv preprint arXiv:2107.14483, 2021.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36:62244–62269, 2023.

Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and Sergey Levine. Steering your generalists:
Improving robotic foundation models via value guidance. arXiv preprint arXiv:2410.13816, 2024.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
tion. arXiv preprint arXiv:2409.00588, 2024.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Dvir Samuel, Rami Ben-Ari, Simon Raviv, Nir Darshan, and Gal Chechik. Generating images of
rare concepts using pre-trained diffusion models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pp. 4695–4703, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

SimpleVLA-RL Team. Simplevla-rl: Online rl with simple reward enables training vla models with
only one trajectory. https://github.com/PRIME-RL/SimpleVLA-RL, 2025. GitHub
repository.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
Data-driven behavioral priors for reinforcement learning. arXiv preprint arXiv:2011.10024, 2020.

13

https://github.com/PRIME-RL/SimpleVLA-RL

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao,
Xinsong Lin, Yulin Liu, Tse-kai Chan, et al. Maniskill3: Gpu parallelized robotics simulation
and rendering for generalizable embodied ai. arXiv preprint arXiv:2410.00425, 2024.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 34556–34583. PMLR, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Andrew Wagenmaker, Mitsuhiko Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub,
Anusha Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with
latent space reinforcement learning. arXiv preprint arXiv:2506.15799, 2025.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11097–
11107, 2020.

Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang, Mengke Zhang, and Hao Su. Policy decorator:
Model-agnostic online refinement for large policy model. arXiv preprint arXiv:2412.13630, 2024.

Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online reinforce-
ment learning fine-tuning need not retain offline data. arXiv preprint arXiv:2412.07762, 2024.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A DECLARATION OF LLM USAGE

Large Language Models (LLMs) were used in the preparation of this submission. Specifically,
they assisted in editing and polishing the writing for grammar and clarity. All technical ideas,
experimental designs, and results were developed by the authors.

B ALGORITHM SUMMARY

The complete USR algorithm is summarized in Algorithm 1. The process involves collecting expe-
rience using the unified steering and refinement mechanism, and then updating the two critics and
the actor using data from the replay buffer.

Algorithm 1 Unified Latent Steering and Residual Refinement (USR)

1: Initialize: Unified actor πθ, critics QA
ϕ , QC

ψ , target networks, replay buffer D, residual scale α,
progressive exploration horizon H .

2: Load pretrained, frozen diffusion policy πdp.
3: for each timestep t = 1, . . . , T do
4: Observe state ot.
5: Sample combined action acomb

t = [wt, a
res
t] ∼ πθ(·|ot).

6: Steer base policy to get intermediate action: ãt = πdp(ot, wt).
7: Calculate exploration probability ϵ = min(t/H, 1.0).
8: if Uniform(0,1) < ϵ then
9: Refine action: at = ãt + α · ares

t .
10: else
11: Use steered base action only: at = ãt.
12: Execute at, observe reward rt and next observation ot+1.
13: Store transition (ot, at, rt, ot+1) in replay buffer D.
14: for each gradient step do
15: Sample minibatch of transitions from D.
16: Update Environment Critic QA

ϕ :
17: Compute TD targets y and update ϕ to minimize LTD(ϕ).
18: Update Combined Critic QC

ψ:
19: Sample observations o and random combined actions acomb = [w, ares].
20: Compute target values QA

ϕ (o, πdp(o, w) + α · ares).
21: Update ψ to minimize the distillation loss Ldistill(ψ).
22: Update Actor πθ:
23: Update θ by ascending the policy gradient from the SAC objective using QC

ψ .
24: Update target networks.

C FURTHER DETAILS ON THE EXPERIMENTAL SETUP

C.1 TASK DESCRIPTIONS

We consider a total of 11 continuous robotic control tasks from 3 benchmarks: our proposed Multi-
ModalBench, Adroit (Rajeswaran et al., 2017), and ManiSkill (Gu et al., 2023; Mu et al., 2021; Tao
et al., 2024). This section provides detailed task descriptions on overall information, task difficulty,
object sets, state space, and action space. Refer to Table 2 for detailed information.

C.1.1 MULTIMODALBENCH TASKS

For MultiModalBench, tasks without the Strict suffix count all behavior modes as successful,
whereas tasks with the Strict suffix only regard a single designated behavior mode as success. Our
evaluation focuses on the Strict variants, where the goal is to maximize performance under this
stricter success criterion. Refer to Figure 9 for detailed illustration of different modes.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

PickCube

PegInsertionSide

OpenBox
PlaceCube

PlaceTwoCube

StackThreeCube

SortYCB

Task
Overview

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

Subtask 1

Subtask 2

Subtask 3

Subtask 4

The Strict Mode For Adaptation

Figure 9: Visualization of all behavior modes for the six tasks in MultiModalBench. Each row
corresponds to a task, with columns depicting distinct demonstration modes present in the dataset.
For tasks marked with the Strict suffix, only one mode (outlined in red) is considered the adaptation
target, while the others are only included in demonstrations. These visualizations illustrate the
multimodal nature of the base policies training on the demonstration, highlighting the challenge of
steering the pretrained policy toward the correct mode while refining actions to achieve precise task
success.

PickCube/PickCubeStrict

• Overall Description: One red cube and one blue cube are placed on the table. The task is
to pick up one cube, while the Strict variant requires specifically picking up the red cube.

• Task Difficulty: The two cubes are placed at randomized positions within a designated
region of the table.

• Object Variations: No Object Variations.
• Action Space: Delta position of the end-effector and joint positions of the gripper.
• State Observation Space: Proprioceptive robot state information, such as joint angles and

velocities of the robot arm, and task-specific goal information, which is represented by the
poses of the two cubes.

• Visual Observation Space: One 64x64 RGBD image from a base camera and one 64x64
RGBD image from a hand camera.

PegInsertionSide/PegInsertionSideStrict

• Overall Description: One peg and two holes are placed on the table. The task is to insert
the peg into either hole, while the Strict variant requires inserting it into a designated hole.

• Task Difficulty: The peg and two holes are placed at randomized positions within a desig-
nated region of the table.

• Object Variations: No Object Variations.
• Action Space: Delta position of the end-effector and joint positions of the gripper.
• State Observation Space: Proprioceptive robot state information, such as joint angles and

velocities of the robot arm, and task-specific goal information.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
base camera and one 64x64 RGBD image from a hand camera.

OpenBoxPlaceCube/OpenBoxPlaceCubeStrict

• Overall Description: A box with a cover and two cubes are placed on the table. The task is
to choose a cube and place it inside the box by either sliding or lifting the cover, while the
Strict variant requires lifting the cover and pick the red cube.

• Task Difficulty: The box and the cubes are placed at randomized positions within a desig-
nated region of the table.

• Object Variations: No Object Variations

• Action Space: Delta position of the end-effector and joint positions of the gripper.

• State Observation Space: Proprioceptive robot state information, such as joint angles and
velocities of the robot arm, and task-specific goal information.

• Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
base camera and one 64x64 RGBD image from a hand camera.

PlaceTwoCube/PlaceTwoCubeStrict

• Overall Description: Two cubes and two boxes are placed on the table. The task is to place
each cube into a separate box, while the Strict variant requires first placing the red cube
into box 1 and then placing the blue cube into box 2.

• Task Difficulty: The two cubes and two boxes are placed at randomized positions within a
designated region of the table.

• Object Variations: No Object Variations.

• Action Space: Delta position of the end-effector and joint positions of the gripper.

• State Observation Space: Proprioceptive robot state information, such as joint angles and
velocities of the robot arm, and task-specific goal information.

• Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
base camera and one 64x64 RGBD image from a hand camera.

StackThreeCube/StackThreeCubeStrict

• Overall Description: Three cubes are placed on the table. The task is to select one cube to
be placed on top of another, while the Strict variant requires stacking the red cube on top
of the green cube.

• Task Difficulty: The three cubes are placed at randomized positions within a designated
region of the table.

• Object Variations: No Object Variations

• Action Space: Delta position of the end-effector and joint positions of the gripper.

• State Observation Space: Proprioceptive robot state information, such as joint angles and
velocities of the robot arm, and task-specific goal information.

• Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
base camera and one 64x64 RGBD image from a hand camera.

SortYCB/SortYCBStrict

• Overall Description: Three YCB objects (Calli et al., 2015) and two boxes are placed on the
table. The task is to place the objects into the boxes, while the Strict variant requires placing
them into designated boxes.The placement order of objects is fixed, while the choice of
boxes is randomized.

• Task Difficulty: The objects and boxes are placed at randomized positions within a desig-
nated region of the table, and the objects exhibit shape variations.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Object Variations: The objects exhibit shape variations.

• Action Space: Delta position of the end-effector and joint positions of the gripper.

• State Observation Space: Proprioceptive robot state information, such as joint angles and
velocities of the robot arm, and task-specific goal information.

• Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
base camera and one 64x64 RGBD image from a hand camera.

C.1.2 ADROITHAND TASKS

We experiment with three simulation tasks from the AdroitHand benchmark (Rajeswaran et al.,
2017): Pen, Hammer, and Relocate. We exclude the Door task, as the base Diffusion Policy
already achieves near-perfect performance with the demonstrations.

Pen

• Overall Description: The environment is based on the Adroit manipulation platform, a 28
degree of freedom system which consists of a 24 degrees of freedom ShadowHand and a 4
degree of freedom arm. The task to be completed consists on repositioning the blue pen to
match the orientation of the green target.

• Task Difficulty: The target is randomized to cover all configurations.

• Object Variations: No Object Variations.

• Action Space: Absolute angular positions of the Adroit hand joints.

• State Observation Space: The angular position of the finger joints, the pose of the palm of
the hand, as well as the pose of the real pen and target goal.

Hammer

• Overall Description: The environment is based on the Adroit manipulation platform, a 28
degree of freedom system which consists of a 24 degrees of freedom ShadowHand and a
4 degree of freedom arm. The task to be completed consists on picking up a hammer with
and drive a nail into a board.

• Task Difficulty: The nail position is randomized and has dry friction capable of absorbing
up to 15N force.

• Object Variations: No Object Variations.

• Action Space: Absolute angular positions of the Adroit hand joints.

• State Observation Space: The angular position of the finger joints, the pose of the palm of
the hand, the pose of the hammer and nail, and external forces on the nail.

Relocate

• Overall Description: The environment is based on the Adroit manipulation platform, a 30
degree of freedom system which consists of a 24 degrees of freedom ShadowHand and a 6
degree of freedom arm. The task to be completed consists on moving the blue ball to the
green target.

• Task Difficulty: The positions of the ball and target are randomized over the entire
workspace.

• Object Variations: No Object Variations.

• Action Space: Absolute angular positions of the Adroit hand joints.

• State Observation Space: The angular position of the finger joints, the pose of the palm of
the hand, as well as kinematic information about the ball and target.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.1.3 MANISKILL TASKS

PushChair

• Overall Description: The environment is based on a dual-arm manipulation setup. The task
requires the robot to make contact with a chair and push it to a designated target location
on the ground.

• Task Difficulty: The initial pose of the chair and the goal location are randomized, requiring
robust coordination of both arms to achieve stable pushing.

• Object Variations: There are 10 different chairs.

• Action Space: End-effector delta position and rotation commands for both arms, together
with gripper control.

• State Observation Space: The joint angles and velocities of both arms, the poses of the two
end-effectors, and the pose of the chair and its goal position.

TurnFaucet

• Overall Description: The environment is based on a 7 degree of freedom single-arm robot.
The task requires the robot to grasp and rotate a faucet handle to a target angle.

• Task Difficulty: The initial pose of the faucet is randomized, and successful completion
requires precise manipulation to overcome torque and resistance at the joint.

• Object Variations: There are 10 different faucets.

• Action Space: End-effector delta position and rotation commands, together with gripper
open/close control.

• State Observation Space: The joint angles and velocities of the robot arm, the end-effector
pose, and the pose of the faucet including its current and goal angles.

Table 2: We list important task details below.

Task State Observation Dim Action Dim Max Episode Steps

PickRedCubeStrict 52 7 150
PegInsertionSideStrict 57 7 200
OpenBoxPlaceCubeStrict 63 7 400
PlaceTwoCubeStrict 53 7 600
StackThreeCubeStrict 62 7 200
SortYCBStrict 68 7 650

AdroitHandPen 46 24 200
AdroitHandHammer 46 26 400
AdroitHandRelocate 39 30 400

TurnFaucet 43 7 200
PushChair 131 20 200

C.2 DEMONSTRATIONS

This section provides the details of demonstrations used in our experiments. Refer to Table 3 for
detailed information.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 3: We list the number of demonstrations and corresponding generation methods below

Task Num of Demo Trajs Generation Method

PickRedCubeStrict 200 Task and Motion Planning (TAMP)
PegInsertionSideStrict 1000 Task and Motion Planning (TAMP)
OpenBoxPlaceCubeStrict 200 Task and Motion Planning (TAMP)
PlaceTwoCubeStrict 200 Task and Motion Planning (TAMP)
StackThreeCubeStrict 100 Task and Motion Planning (TAMP)
SortYCBStrict 1000 Task and Motion Planning (TAMP)

AdroitHandPen 25 Human Demonstrations
AdroitHandHammer 25 Human Demonstrations
AdroitHandRelocate 25 Human Demonstrations

TurnFaucet 1000 Model Predictive Control (MPC)
PushChair 1000 Reinforcement Learning (RL)

D IMPLEMENTATION DETAILS

D.1 BASE POLICY

We experiment with state-of-the-art diffusion-based imitation learning methods, Diffusion Policy
(Chi et al., 2023) for all of our experiments.

D.1.1 DIFFUSION POLICY

We follow the setup of U-Net (Ronneberger et al., 2015) version of Diffusion Policy in the original
paper (Chi et al., 2023).

Table 4: We list the important architecture hyperparameters of Diffusion Policy used in our experi-
ments.

Hyperparamter Value (MultiModalBench) Value (Adroit) Value (ManiSkill)

Observation Horizon 2 2 2
Action Horizon 4 4 4
Prediction Horizon 16 16 16
Embedding Dimensions 64 64 64
Downsampling Dimensions 256, 512, 1024 256, 512, 1024 256, 512, 1024
Trainable Parameters About 4 Million About 4 Million About 4 Million

Table 5: We list the important training hyperparameters of Diffusion Policy used in our experiments.

Hyperparameter Value (MultiModalBench) Value (Adroit) Value (ManiSkill)

Gradient Steps 200000 200000 200000
Batch Size 1024 1024 1024
Learning Rate 1e-4 1e-4 1e-4
Optimizer AdamW Optimizer AdamW Optimizer AdamW Optimizer

D.1.2 CHECKPOINT SELECTION

We evaluate the base policy for 50 episodes every 5k training steps during training. We select the
checkpoint at a fixed step after the convergence of the base policy.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.2 USR (OUR METHOD)

Our method USR involves four algorithm-specific hyperparameters and a set of shared hyperparam-
eters, as introduced in Section 4.1. Detailed descriptions of the algorithm-specific hyperparameters
are provided in Section D.2.1, and the shared hyperparameters are summarized in Section D.2.2.

D.2.1 USR SPECIFIC HYPERPARAMETERS

As introduced in Section. 4.1, our method includes four algorithm-specific hyperparameters. De-
tailed information is provided in Table 6. For fair comparison, the DSRL baseline uses the same bw
and ND, while the Policy Decorator baseline uses the same α and H as USR.

Table 6: We list USR specific hyperparameters below.

Task bw ND α H

PickCubeStrict 1.5 1 0.2 300K
PegInsertionSideStrict 1.5 1 0.1 300K
OpenBoxPlaceCubeStrict 1.5 1 0.2 500K
PlaceTwoCubeStrict 1.5 1 0.1 500K
StackThreeCubeStrict 1.5 1 0.1 500K
SortYCBStrict 0.5 4 0.3 800K

AdroitHandPen 1.5 1 0.2 0
AdroitHandHammer 1.5 1 0.05 0
AdroitHandRelocate 1.5 1 0.1 300K

TurnFaucet 1.5 1 0.1 100K
PushChair 1.5 1 0.2 300K

D.2.2 IMPORTANT SHARED HYPERPARAMETERS

Table 7: We list important shared hyperparameters below.

Hyperparameter Value

Gamma 0.97
Batch Size 1024
Learning Rate 1e-4
Policy Update Frequencey 1
Training Frequency 64
UTD Ratio 0.25
Target Network Update Frequency 1
Tau 0.01
Learning Starts 8000

There are several shared hyperparameters of the SAC algorithm (Haarnoja et al., 2018) that are
used across multiple baselines. Although the DSRL paper recommends using a high UTD, it also
acknowledges that UTD is highly environment-specific. In our tasks, we find that high UTD leads to
either significant training instability or only minimal gains. Therefore, for both fair comparison and
training efficiency, we adopt the same UTD values for the DSRL baseline as for the other methods.
Refer to Table 7 for detailed information.

D.2.3 ACTOR AND CRITIC ARCHITECTURES

The unified actor network consists of a three-layer MLP, where the first layer takes as input the
observation vector and each hidden layer has a dimension of 2048. The actor further includes two

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

additional MLP heads: a mean-action head and a standard-deviation head. Both heads take a 2048-
dimensional input and output vectors matching the action dimension, following the standard SAC
actor design. A ReLU activation is applied after every MLP layer.

The combined critic and environment critic share the same architecture except for their input dimen-
sions. Each critic is a three-layer MLP with hidden dimension 2048. The combined critic takes as
input the concatenation of the observation and both the noise and residual actions, resulting in an
input dimension of obs dim + 2 × act dim. The environment critic takes the observation and the
executed action as input, giving an input dimension of obs dim + act dim. A ReLU activation is
applied after every MLP layer.

E ADDITIONAL EXPERIMENTAL RESULTS

This section includes some additional experiments. Section E.1 includes visual observation experi-
ments.

E.1 VISUAL OBSERVATION EXPERIMENTS

We evaluate USR with high-dimensional visual observations. As shown in Figure 10, USR achieves
superior performance over the baselines under visual inputs.

0 1 2 3 4 5
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

PickCubeStrict

0 2 4 6 8
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

OpenBoxPlaceCubeStrict

0 1 2 3 4 5 6 7 8
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

StackThreeCubeStrict

USR DSRL Policy Decorator JSRL

Figure 10: Learning curves on three MultiModalBench environments using image observations
averaged over 5 seeds. We omit the remaining tasks because the base Diffusion Policy fails to
achieve a reasonable success rate under visual inputs.

E.2 ROBOMIMIC EXPERIMENTS

To more comprehensively evaluate the performance and generality of our proposed method, USR,
across diverse robotic tasks and human-generated datasets—and to enable direct comparison with
prior baselines on their evaluated settings—we additionally conduct experiments on two representa-
tive RoboMimic tasks: can and square. We choose these tasks because lift is relatively trivial for
the base policy, whereas transport requires excessive computational resources.

We further note that the original DSRL paper (Wagenmaker et al., 2025) evaluates its method using
base diffusion policies with relatively high success rates (approximately 70%). Such a setting cre-
ates a sizable optimal region within the base policy’s action distribution, implicitly favoring noise-
steering approaches like DSRL. We consider this setup unrepresentative of more realistic scenarios
where pre-trained policies are imperfect. To stress-test USR’s ability to improve policies online,
we intentionally train a weak base policy. This yields a more challenging regime in which the pre-
trained distribution does not reliably cover successful executions, forcing the adaptation method to
explore beyond the initial support.

As shown in the newly added Figure 11, the results clearly reveal the limitations of DSRL and
underscore the necessity of USR. On the can task, DSRL—which performs pure noise steering—
fails to achieve any meaningful improvement. On square, its performance displays extremely high
variance, with only a small fraction of seeds improving upon the base policy. We hypothesize that
this failure stems from the intrinsic limitations of noise steering: although the pre-trained distribution

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

may include the correct behavioral mode, its actions lack the precision required to reliably obtain
the sparse rewards.

In contrast, USR consistently improves the success rate to nearly 100% on both tasks, demon-
strating strong stability and robustness. This large performance gap highlights the importance of
incorporating a residual component that enables the policy to refine actions and effectively ex-
plore beyond the base policy’s support. By allowing controlled out-of-distribution corrections, USR
bridges the gap between an imperfect pre-trained policy and the precision necessary for reliable task
completion.

Figure 11: Learning curves on two RoboMimic environments using state observations averaged
over 5 seeds.

E.3 ABLATION STUDY ON DUAL-CRITIC VS. SINGLE-CRITIC ARCHITECTURES

It is worth noting that the original DSRL paper (Wagenmaker et al., 2025) introduces a simpler
variant of the algorithm, termed DSRL-SAC, which employs a single combined critic rather than
the dual-critic architecture used in the DSRL-NA version (where NA denotes noise aliasing). Their
paper argues that the noise-aliasing formulation reduces unnecessary exploration in the latent-noise
space and consequently improves sample efficiency. This motivates our choice to adopt the noise-
aliasing version as the primary configuration for USR. To more comprehensively evaluate our
method, we additionally conduct ablation studies comparing the single-critic architecture (SAC
variants) and the dual-critic architecture (NA variants).

As shown in Figure 12, both DSRL-SAC and USR-SAC underperform their corresponding noise-
aliasing variants (DSRL-NA and USR-NA) on the MultiModalBench PickCubeStrict and Adroit
Pen tasks. These results align with the observations reported in the original DSRL paper and further
justify our algorithmic design choice of using the noise-aliasing formulation.

0 1 2 3 4 5
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

MultiModalBench: PickCubeStrict

0 2 4 6
Environment Steps 1e5

0.5

0.6

0.7

0.8

0.9

1.0

S
u

c
c
e

ss
 R

a
te

AdroitHand: Pen

USR

DSRL

USR (SAC)

DSRL (SAC)

Base Policy

Base Policy (Strict)

Figure 12: Learning curves for the ablation experiments comparing single-critic and dual-critic
architectures on the PickCubeStrict and Pen environments using state observations, averaged over
5 seeds.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E.4 USR WITH OFFLINE DEMONSTRATIONS

It is a common technique in offline-to-online RL to leverage offline demonstrations in the online
replay buffer to improve sample efficiency, as discussed in Wagenmaker et al. (2025); Nakamoto
et al. (2023). To more comprehensively evaluate our method, we conduct additional experiments
that incorporate offline demonstrations into USR’s replay buffer. As shown in Figure 13, integrating
offline demonstrations does not provide a noticeable improvement in sample efficiency.

0.00 0.25 0.50 0.75 1.00 1.25
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

PlaceTwoCubeStrict

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

PegInsertionSideStrict

USR w/o Demo USR w/ Demo Base Policy Base Policy (Strict)

Figure 13: Learning curves for the experiments that incorporate offline demonstrations into the
online replay buffer of USR on the PlaceTwoCubeStrict and PegInsertionSideStrict environments
using state observations, averaged over 5 seeds.

E.5 EXPERIMENTS ON IMBALANCED MODE DATASETS

The dataset used in our main MultiModalBench experiments, as shown in Figure 4, contains an
equal number of demonstrations for each behavior mode. To more comprehensively evaluate our
method under challenging data distributions, we additionally conduct experiments where the ex-
pected mode is underrepresented in the dataset.

As shown in Figure 14, our method maintains robust performance in different levels of the under-
represented (10% and 30%) settings, whereas DSRL experiences substantial degradation when the
expected mode is underrepresented.

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

PegInsertionSideStrict (10%)

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

PegInsertionSideStrict (30%)

USR DSRL Policy Decorator Base Policy Base Policy (Strict)

Figure 14: Learning curves for the experiments using imbalanced mode datasets on the PegInser-
tionSideStrict environment with state observations, averaged over 5 seeds.

E.6 HYPERPARAMETER STUDY ON DISCOUNT FACTOR (GAMMA)

We follow several principles when selecting the discount factor. First, we use a consistent value
within each benchmark to avoid excessive tuning. Second, whenever possible, we adopt discount
factors used in prior work to ensure fair comparison with existing baselines. Third, all methods in
our experiments use the same discount factor to maintain fairness across approaches.

We additionally perform a sweep over different discount factors on MultiModalBench and Adroit.
The results in Figure 15 show that a value of 0.97 performs best on MultiModalBench, whereas all
tested values yield similar performance on Adroit, supporting our final choice of discount factor.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

ss
 R

a
te

MultiModalBench: PickCubeStrict

 = 0.97

 = 0.99

 = 0.999

0 2 4 6
Environment Steps 1e5

0.7

0.8

0.9

1.0

S
u

c
c
e

ss
 R

a
te

AdroitHand: Pen

 = 0.97

 = 0.99

 = 0.999

Figure 15: Learning curves for the experiments with different discount factor values on the Pick-
CubeStrict and Pen environment with state observations, averaged over 5 seeds.

E.7 HYPERPARAMETER STUDY ON UPDATE-TO-DATA RATIO (UTD)

The Update-to-Data Ratio (UTD) specifies how many gradient update steps are performed per envi-
ronment timestep of collected data. Increasing the UTD can improve sample efficiency, but typically
comes at the cost of substantially longer training time. Our choice of UTD for each benchmark is
therefore made to balance sample efficiency and wall-clock runtime.

We also conducted a hyperparameter study on the UTD. As shown in Figure 16, setting UTD = 1.0
yields only marginal gains in sample efficiency while significantly slowing down training. Conse-
quently, we select a UTD value that best trades off sample efficiency against training speed.

0 2 4 6
Environment Steps 1e5

0.7

0.8

0.9

1.0

S
u

c
c
e

ss
 R

a
te

AdroitHand: Pen

utd=0.25

utd=1.0

Base Policy

Figure 16: Learning curves for the experiments with different UTD values on the Pen environment
with state observations, averaged over 5 seeds.

25

	Introduction
	Related Work
	Problem Formulation
	Unified Steering and Refinement Framework
	Unified Latent Steering and Residual Refinement
	Critic Learning Mechanism
	Actor Learning

	Experiments
	Simulation Experiments Setup
	Task Description
	Base Policy
	Baselines

	Experimental Results
	Hyperparameter Study
	Understanding USR
	Real Robot Experiments

	Conclusion
	Declaration Of LLM Usage
	Algorithm Summary
	Further Details on the Experimental Setup
	Task Descriptions
	MultiModalBench Tasks
	AdroitHand Tasks
	ManiSkill Tasks

	Demonstrations

	Implementation Details
	Base Policy
	Diffusion Policy
	Checkpoint Selection

	USR (Our Method)
	USR Specific Hyperparameters
	Important Shared Hyperparameters
	Actor and Critic Architectures

	Additional Experimental Results
	Visual Observation Experiments
	RoboMimic Experiments
	Ablation Study on Dual-Critic vs. Single-Critic Architectures
	USR with Offline Demonstrations
	Experiments on Imbalanced Mode Datasets
	Hyperparameter Study on Discount Factor (Gamma)
	Hyperparameter Study on Update-to-Data Ratio (UTD)

