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ABSTRACT

Imitation learning has driven major advances in robotic manipulation by exploit-
ing large and diverse demonstrations, yet policies trained purely by imitation
remain brittle under distribution shift and novel scenarios, making online im-
provement essential. Directly finetuning the parameters of modern large policies
is prohibitively sample inefficient and computationally expensive, while recent
finetuning-free adaptation methods either fail to exploit the multimodal distribu-
tions learned by pretrained policies or remain confined to the coverage of demon-
strations. We propose USR, a Unified framework for latent Steering and residual
Refinement that enables efficient online improvement of diffusion policy mod-
els. A lightweight actor jointly outputs latent noise to steer the diffusion process
toward promising modes and residual corrections to adapt beyond the diffusion
policy’s support, combining stable mode selection with flexible refinement. This
unified design stabilizes training and fully leverages both components. Exper-
iments on standard benchmarks and our MultiModalBench demonstrate USR’s
state-of-the-art performance. Furthermore, we validate its real-world applicability
by improving a Vision-Language-Action (VLA) model on a physical robot, setting
a new paradigm for sample-efficient adaptation of diffusion-based policies.

1 INTRODUCTION

A longstanding ambition in robotics is to endow machines with human-like manipulation across
diverse environments (Billard & Kragic, 2019). Recent progress in imitation learning, fueled
by advances in architectures (Vaswani et al., 2017; Ho et al., 2020) and large-scale demonstra-
tions (O’Neill et al., 2024; Khazatsky et al., 2024), has enabled policies capable of dexterous
hand control (Arunachalam et al., 2022), household visuomotor skills (Fu et al., 2024), and even
emerging generalist abilities (Black et al., 2024; Bjorck et al., 2025; Cheang et al., 2025). Despite
these advances, progress has been mostly demonstrated in controlled settings, while open-world
manipulation presents a much broader long-tail of objects, layouts, contacts, and partial observabil-
ity (Zitkovich et al., 2023). Unlike humans who adapt within a few interactions, imitation-learned
policies are fixed once training ends. Their behavior distributions are anchored to the demonstra-
tions, making unseen situations hard to handle. Although there are offline-to-online RL methods
designed for similar settings (Nakamoto et al., 2023; Zhou et al., 2024), applying them to large pol-
icy models requires updating parameter-heavy networks. Even with carefully designed fine-tuning
techniques (Hu et al., 2022), such updates incur significant computational overhead and large sample
demands (Wagenmaker et al., 2025). These constraints motivate alternatives that can deliver rapid
behavioral adaptation without finetuning the large policy model.

Existing finetuning-free policy adaptation methods broadly fall into two categories. The first steers
the base policy’s sampling process, exploiting the multimodality' of large policy models by biasing
sampling toward promising modes (Nakamoto et al., 2024; Wagenmaker et al., 2025; Du & Song,
2025). The second adds a residual actor that refines the output of the frozen base policy, adjusting

'In this paper, we use the terms multimodal and multimodality to mean action distributions with multiple
behavior modes. This is distinct from the common usage of multimodal to describe models that integrate
different input modalities such as vision and language.
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Figure 1: Comparison of finetuning-free online adaptation methods. The base policy has two
modes, while the optimal region lies outside the upper mode. (a) Sample steering stays within the
base support. (b) Residual refinement with small bounds cannot cross the gap. (c) Large bounds
cross the gap but explore inefficiently. (d) USR combines sample steering and residual refinement
for stable, sample-efficient adaptation.

actions towards more favorable directions (Johannink et al., 2019; Yuan et al., 2024). In prac-
tice, residual methods often constrain the adjustment with a bound to promote efficient exploration.
While effective, both approaches face limitations. In Figure 1, we show a single-step decision prob-
lem where the base policy has two action modes, and the goal for adaptation lies outside one of
them. Sample steering can bias sampling towards the nearest mode but remains confined to the base
policy’s support. Residual refinement with small bounds cannot cross the mode boundary, whereas
setting large bounds permit crossing but induce inefficient exploration. These limitations highlight
the need for an approach that can balance stable mode selection with flexible refinement beyond the
pretrained distribution.

To address the limitations of existing finetuning-free online adaptation methods, we propose USR,
a Unified framework for latent noise Steering and residual Refinement. USR augments a pretrained
diffusion policy model with a single lightweight actor that jointly produces initial noise to steer the
diffusion process and residual corrections to refine its outputs. The noise output allows the policy to
exploit the multimodal structure of diffusion policy models, guiding trajectories toward promising
modes, while the residual component provides the flexibility to adapt beyond the support of the base
policy when necessary. This unified formulation combines the strengths of both perspectives, mode
selection and action refinement, within a stable reinforcement learning framework. As a result, USR
enables pretrained policies to rapidly adjust to novel environments, improving task success with
only a modest number of interactions and without modifying the underlying large policy model.

We validate USR through experiments on three benchmarks: our proposed MultiModalBench, the
Adroit suite (Rajeswaran et al., 2017) of dexterous hand tasks, and two tasks from ManiSkill (Gu
etal., 2023; Mu et al., 2021; Tao et al., 2024). MultiModalBench highlights the challenge of select-
ing among multiple demonstration modes, Adroit tests adaptation under human-provided demon-
strations, and ManiSkill covers settings with mostly single-modal data. We also extend our evalua-
tion to the physical world, demonstrating that USR effectively improves a pre-trained VLA model
on a real robot. Across all settings and under both state and visual observations, USR achieves
consistently higher success and superior sample efficiency compared to prior methods. Qualita-
tive analysis shows that latent steering reliably selects the correct behavioral mode while residual
refinement makes fine-grained corrections beyond the base policy’s support.

Our contributions are fourfold:

* We identified complementary limitations of online adaptation methods in manipulation: sample
steering is constrained by the base policy, and residual refinement requires fragile step-size tuning.

* We proposed USR, a unified online adaptation algorithm for diffusion policies that employs a sin-
gle lightweight actor to jointly generate noise and refine trajectories, enabling multimodal steering
and controlled policy deviation without parameter updates of the pretrained policy.

* We released MultiModalBench, a benchmark of six robot manipulation tasks with multiple
demonstration modes, providing the first systematic testbed for multimodal policy adaptation.
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Figure 2: How USR improves a bimodal base policy on the PegInsertionSideStrict task from
MultiModalBench. The pretrained diffusion policy model has two modes: inserting a peg into
the left box or the right box. Latent steering first steers the policy to consistently select the correct
(right) mode, but the trajectories remain imprecise. Residual refinement then applies fine-grained
corrections, guiding all trajectories to the target hole. This representative scene shows how USR
combines coarse sample steering with precise action refinement for task success.

Refinement

* We demonstrated the real-world applicability of USR by effectively improving a VLA model on
a physical robot, validating its potential for scalable fine-tuning of behavioral foundation models.

2 RELATED WORK

Policy improvement with reinforcement learning. Reinforcement learning is widely used to
adapt pre-trained policies. Existing methods can be broadly divided into two categories based on
whether they finetune the base policy. The first category directly finetunes pretrained imitation
learning (Ren et al., 2024; Chandra et al., 2025), offline reinforcement learning (Nakamoto et al.,
2023; Zhou et al., 2024), or Vision-Language-Action models (SimpleVLA-RL Team, 2025; Lu et al.,
2025; Mark et al., 2024) using online RL gradients. The second category improves policy perfor-
mance without modifying the base policy itself, often by learning a residual (Yuan et al., 2024;
Ankile et al., 2024) or auxiliary policy (Wagenmaker et al., 2025) on top of the fixed base. Our
method belongs to this second category and introduces a novel decomposition of policy improve-
ment into latent steering and action refinement, enabling comprehensive and efficient enhancement
of the base policy’s performance.

Noise optimization in generative models. Steering and improving generative models via noise-
space optimization has been widely studied across domains. In image synthesis, recent work (Eyring
et al., 2024; Mao et al., 2024; Samuel et al., 2024) shows that optimizing the initial diffusion noise
to maximize downstream image-quality metrics can yield substantial gains. In robotics and control,
Singh et al. (2020) trains a normalizing-flow policy on offline data and then runs reinforcement
learning directly in the policy’s noise space to improve online performance. Most closely related
to our setting, DSRL (Wagenmaker et al., 2025) optimizes the noise for Diffusion Policy via RL
to enhance control outcomes. We identify a key limitation of DSRL: by optimizing noise while
keeping the base policy fixed, it is highly constrained by the support of the base policy’s action
distribution, which caps performance at the quality of the imitation demonstrations. We address this
by introducing a unified framework that combines latent steering with explicit action refinement,
enabling elegant exploration and yielding stronger, more sample-efficient online improvements.

3 PROBLEM FORMULATION

We consider a discounted Markov Decision Process (MDP) M(S, O, A, po, P,r,v). At time ¢, the
environment is in state s; € S, while s; ~ po (if t = 0) or s; ~ P(+|s¢—1, at—1), the agent receives
observation o; € O, choose action a; ~ A, and transitions to s;11. In our setting, the agent is
equipped with a pretrained diffusion policy model 74, obtained through imitation learning on offline
demonstrations. While 7y, captures diverse behavior from demonstrations, it may fail to achieve
the goal in the current environment due to distribution shift or incomplete coverage of pretrained



Under review as a conference paper at ICLR 2026

behaviors. The objective of online adaptation is therefore to enhance 74, using online interactions
so that the resulting policy 7, maximizes the expected discounted return:

00
J(ﬂ'new) = ]Esowpo,m,ew,P [Z ’}/tT(St, at) (1)
t=0

4 UNIFIED STEERING AND REFINEMENT FRAMEWORK

To address the complementary limitations of sample steering and residual refinement, we introduce
USR, a unified framework for online adaptation of pretrained diffusion policy models. USR em-
ploys a lightweight actor that jointly outputs latent noise to steer the diffusion sampling process and
a residual correction to further refine the resulting action. This unified formulation leverages the
complementary strengths of both noise-space steering and residual refinement, while avoiding their
respective limitations. We begin with the unified actor design in Section 4.1, then describe the com-
bined critic design and critic learning in Section 4.2 and the actor learning procedure in Section 4.3.
Pseudocode of the complete algorithm is provided in Appendix B.

4.1 UNIFIED LATENT STEERING AND RESIDUAL REFINEMENT

At the core of USR is a single, lightweight actor, 7y(0;), that takes the current observation o; and
outputs a combined action aij"mb, which is a concatenation of two components, a latent noise w; € W
and a residual action af** € A:

a;"™ = [wy, ;"] ~ mo(-|or) - )
The latent noise w; is constrained within a bounded space [—b,,, b,]. These two components are
then used to adjust the base diffusion policy 7y, in a two-stage process:

Latent Steering: The latent noise vector w; is used as the initial noise to start the denoising process
of mgp. This steers the base policy to generate a biased action a;:

ay = Tap(0g, wy) - 3)

By replacing standard Gaussian noise with learned noise, we bias sampling toward promising modes
rather than relying on the base policy to stochastically land in one of them.

Residual Refinement: The residual action vector a;*° is then added to the steered action a; to make
fine-grained corrections. A residual scale « controls the magnitude of this adjustment. The final
action a; executed in the environment is

ar = a; + o - ap” . )

To ensure stable learning, especially at the beginning of training when the residual output is ran-
domly initialized, we adopt the progressive exploration strategy from Policy Decorator (Yuan et al.,
2024). Instead of always applying the residual refinement, we introduce it gradually. During online
rollouts for training, the residual action @} is added with a probability e that increases linearly from
0 to 1 over a set number of environment steps, /. This allows the agent to initially rely on the more
stable base policy and avoid early failures, ensuring it continues to receive success signals. The final
behavioral action a; is therefore determined as:

0 — {ﬂ'dp(ot,wt) +a-af®  Uniform(0,1) < e 5)

U dp(otv wt) .
Together, this unified framework allows USR to first make a coarse selection among the diverse

behaviors learned by the base policy via steering, and then apply a fine-grained correction that can
even push the final action beyond the original support of 7.

4.2 CRITIC LEARNING MECHANISM

A key challenge in learning the unified actor is providing a stable and efficient gradient signal.
Backpropagating through the iterative denoising process of mgp is computationally expensive and
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often numerically unstable. While a standard actor-critic algorithm in the latent space bypasses this
issue, it is highly sample-inefficient because it must redundantly explore different noise vectors that
map to similar actions. To circumvent this, USR employs a two-critic architecture inspired by the
noise-aliased distillation in DSRL (Wagenmaker et al., 2025), adapted for our unified framework.

Environment Critic Q(’;‘(o, a): This critic operates in the environment’s action space .A. Its pur-
pose is to learn the value of the final, executed actions a;. It is trained using standard off-policy
temporal difference (TD) learning from transitions (o¢, a, ¢, 0¢41) stored in a replay buffer D. The
loss for the environment critic is:

‘CTD((b) = ]E(ot,a“m,ot+1)~D [(Qﬁ(ot’ a’t) - yt)z] ; (6)

where the TD target y; is computed as y; = r + (1 — dt)Qj;“,Mga (0141, @ty 1), with a} , | being the
next action from the actor policy and d; being the episode termination signal.

Combined Critic pr (0,a®™P):  This critic operates directly in the actor’s output space, evaluating

res

the combined action a$°™ = [w;, ai*]. Instead of learning from sparse rewards via TD learning, it
is trained to distill the value from the environment critic. This provides a direct and sample-efficient
gradient path to the actor. The distillation loss is formulated as

Ldistill(w) = ]EOND,aCOmbNU {(ng(07 acomb) - Qg‘ (07 aenv))Z} s (7N

res

where aeny = 7gp(0, w) + o - ™ is the final action computed from a randomly sampled combined
action a®™ = [w, a™], and the environment critic Q(’;‘ is held fixed during the distillation update.
The combined critic updates are applied Np times per iteration. This dual-critic setup decouples
the complex dynamics of the diffusion policy from the actor’s learning process, enabling stable and
efficient training.

4.3 ACTOR LEARNING

With the combined critic Qi providing a value estimate for any combined action, the actor 7y can
be trained to maximize the expected return using policy gradients. We adopt the Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) objective to encourage exploration through entropy maximization.
The actor’s objective is to maximize:

J(e) = ]EotNDﬂS;"‘“bNﬂ'Q [Qi (Ot’ agOmb) + BH(ﬂP('Ot))] (8)

where H is the policy’s entropy and [ is a temperature parameter that can be automatically tuned.
The gradient flows directly from the combined critic to the actor, bypassing the diffusion policy
entirely and allowing for efficient updates to the lightweight actor network.

5 EXPERIMENTS

Our experiments are designed to empirically answer the following questions: 1) Can our method
USR effectively improve pre-trained diffusion policy models on the simulation tasks of Multi-
ModalBench, AdroitHand, and ManiSKkill under both state and visual observations? (Section 5.2)
2) How do key hyperparameters influence the performance of USR? (Section 5.3) 3) How does
USR improve the performance of pre-trained diffusion policy models? (Section 5.4) 4) Can USR
be applied to real-world manipulation and improve Vision-Language-Action (VLA) models? (Sec-
tion 5.5)

5.1 SIMULATION EXPERIMENTS SETUP
5.1.1 TASK DESCRIPTION

Our experiments are conducted on 6 simulation tasks from MultiModalBench, 3 simulation tasks
from Adroit (Rajeswaran et al., 2017), and 2 simulation tasks from ManiSKkill (Gu et al., 2023).
Refer to Figure 3 for task visualizations.
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Figure 3: Illustration of the tasks used in our experiment, including six MultiModalBench tasks,
three AdroitHand tasks, and two ManiSKill tasks. For each MultiModalBench task, visualizations
of all behavior modes and the adaptation target mode (Strict) are provided in Appendix Figure 9.

MultiModalBench. We build six simulation tasks on top of SAPIEN (Xiang et al., 2020) to form
MultiModalBench, including PickCube, StackThreeCube, PlaceTwoCube, PeglnsertionSide, Open-
BoxPlaceCube, and SortYCB, each containing multiple behavior modes. For each task, we collect
expert datasets using an off-the-shelf motion planner, which include successful trajectories for all
behavior modes. Tasks with the Strict suffix indicate that, among all behavior modes, only a single
mode is considered successful. Visualizations of all modes including the adaptation target mode for
each task are provided in Appendix Figure 9. The adaptation objective is to maximize the success
rate on these Strict tasks, evaluating the ability to both steer multimodal policies toward the desired
behavioral mode and refine actions to surpass the base policy’s performance. We use sparse reward
for all of our experiments.

AdroitHand. We evaluate on three AdroitHand simulation tasks, Pen, Hammer, and Relocate,
which require solving dexterous manipulation with a 24-DoF hand simulator. Following the setup
of Rajeswaran et al. (2017), we use 25 human demonstrations for training the base policy. We
exclude the Door task since the base policy already achieves near-perfect performance, reducing the
need for online improvement. We use sparse reward for experiments on Adroit.

ManiSkill. We evaluate on two ManiSkill (Gu et al., 2023; Mu et al., 2021; Tao et al., 2024) sim-
ulation tasks, PushChair and TurnFaucet. which require learning contact-rich manipulation with
articulated objects. For training, we use demonstrations generated by model predictive control (for
TurnFaucet) and by reinforcement learning policies (for PushChair). Because both data genera-
tion methods rely on dense reward functions, the resulting base Diffusion Policies exhibit minimal
multimodality. We use sparse reward for experiments on ManiSkill.

5.1.2 BASE PoLICY

We adopt Diffusion Policy (Chi et al., 2023) as our base multimodal policy. As a state-of-the-art
imitation learning method, it generates robot action sequences via a conditional denoising diffusion
process. Leveraging the power of diffusion-based generative models, Diffusion Policy is capable
of effectively modeling multimodal behavior distributions. For fast inference and stable sample
steering, we employ DDIM (Song et al., 2020) in diffusion sampling.

5.1.3 BASELINES

We compare our method against prior state-of-the-art fine-tuning and fine-tuning—free approaches.

DSRL (Wagenmaker et al., 2025) is an online RL method that optimizes the diffusion noise fed
into a frozen Diffusion Policy, steering its sampler without updating network weights. However,
because it constrains actions to the support of the base policy, its performance remains bounded by
the quality and coverage of the demonstrations and the pre-trained model.

Policy Decorator (Yuan et al., 2024) is an online residual RL method that learns a residual policy,
augmented with controlled exploration strategies such as bounded residual actions and a progressive
exploration schedule, which provides a model-agnostic improvement over black-box base policies.
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Figure 4: Learning curves on our proposed benchmark, MultiModalBench averaged over 5 seeds.
The Base Policy line reports the success rate of the base Diffusion Policy when all behavior modes
are counted as successful, whereas Base Policy (Strict) considers success only under a single desig-
nated behavior mode. Across all tasks, our method consistently outperforms the baseline methods.

DPPO (Ren et al., 2024) is an online RL method that finetunes a pre-trained Diffusion Policy using
PPO (Schulman et al., 2017). By interacting with the environment, it incrementally adjusts the
policy distribution to improve task performance.

JSRL (Uchendu et al., 2023) is an online curriculum learning method that leverages a base policy as
a guiding policy. By using the base policy to steer the online policy toward the goal, JSRL reduces
the difficulty of exploration and facilitates more efficient learning in complex tasks

5.2 EXPERIMENTAL RESULTS

Our Method. We evaluate USR on three benchmarks, including two standard manipulation bench-
marks, Adroit (Rajeswaran et al., 2017) and ManiSkill (Gu et al., 2023), as well as on our proposed
MultiModalBench. Tasks with the Strict suffix in MultiModalBench include multiple behavior
modes in the demonstration, but only one is considered successful. This setting poses a signif-
icant challenge of steering the pretrained policy toward promising modes while refining actions
to explore out-of-distribution area. As shown in Figure 4, USR significantly outperforms baselines,
achieving both sample-efficient and near-perfect final performance. To test USR under more general
and diverse conditions, we further evaluate on three tasks from the Adroit benchmark (Rajeswaran
etal., 2017), using base policy model trained on human demonstrations. These demonstrations natu-
rally induce implicit multimodal action distributions due to variability in human data collection. As
shown in the top row of Figure 5, USR substantially outperforms baselines, highlighting its strength
in utilizing human demonstrations. Finally, we evaluate on two tasks from the ManiSkill bench-
mark (Gu et al., 2023), where the base policy model are trained from demonstrations generated by
Model Predictive Control and reinforcement learning policy learned under dense reward. These
demonstrations are largely single-modal. As shown in the bottom row of Figure 5, USR consistently
outperforms baselines, demonstrating its advantage even in settings with limited multimodality.

Baselines. We compare our method against a comprehensive set of baselines. As shown in Figure 4
and Figure 5, DSRL performs well on Adroit tasks with human demonstrations but struggles on
MultiModalBench and ManiSkill tasks, which require either extra exploration besides mode steer-
ing or involve mostly single-modal demonstrations. These results suggest that while DSRL can
quickly steer base actions toward promising modes, it lacks the ability to handle predominantly
single-modal demonstrations or to achieve near-perfect performance beyond the base policy’s sup-
port. More specifically, results on MultiModalBench show that DSRL can improve the base policy
on Strict task to matches its performance on non-Strict tasks, indicating that DSRL is able to reach
the correct behavior mode but cannot further boost performance beyond the base policy’s support.
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Figure 5: Learning curves on three AdroitHand tasks (top) and two ManiSKkill tasks (bottom),
averaged over 5 seeds. The Base Policy line reports the success rate of the base Diffusion Policy on
that task.

We also find that DSRL suffers from limited training stability and is prone to collapse during train-
ing. In contrast, Policy Decorator provides stable and generally more reliable performance across all
evaluated tasks. However, as it always treats the base policy as a black-box model, learning resid-
ual actions becomes considerably more difficult, and sample efficiency is reduced by the inability
to leverage the base policy’s output distribution. JSRL largely fails on MultiModalBench tasks but
achieves some success on Adroit and ManiSkill due to exploration challenges. When the base pol-
icy falls into unwanted behavior modes, the student policy cannot make meaningful improvements
without backtracking a long distance to the key decision state in order to select the intended behavior
mode. Finally, we find that DPPO as an on-policy algorithm is considerably less sample-efficient
than USR and incurs additional computational overhead.

Visual Experiments. We additionally evaluate USR with high-dimensional image observations. As
shown in Appendix E.1, USR achieves superior performance over the baselines under visual inputs.

5.3 HYPERPARAMETER STUDY

We conduct hyperparameter studies on OpenBoxPlaceCubeStrict and PlaceTwoCubeStrict to pro-
vide further insights into the training dynamics of USR.

Noise Magnitude b,,. The hyperparameter b,, controls the scale of the noise produced by the ac-
tor. As shown in Figure 6, we ablate b,, over values ranging from 0.5 to 2.0 and observe similar
performance across two tasks. These results suggest that b,, is relatively insensitive to the choice
of value. Following both our findings and the recommendation of the original paper (Wagenmaker
et al., 2025), we set b,, = 1.5 for most experiments.

Combined Critic Gradient Steps Np. The hyperparameter N controls the number of combined
critic updates performed to distill from environment critic in each training iteration. As shown in
Figure 6, we ablate N over values ranging from 1 to 8 and observe similar performance across two
tasks. These results suggest that Np is relatively insensitive to the choice of value. Therefore, for
training efficiency, we set Np = 1 in most experiments.

Residual Action Scale . The hyperparameter o controls the maximum adjustment the residual
policy can apply. As shown in Figure 6, a value that is too small leads to insufficient residual scaling,
preventing the success rate from reaching 100%, whereas a value that is too large, such as o = 1.0,
significantly increases the difficulty of exploration, resulting in poor sample efficiency and even
complete failure on the OpenBoxPlaceCubeStrict task. Across tasks, a demonstrates a generous
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Figure 6: Ablations on four key hyperparameters on two tasks: residual scale «, progressive explo-
ration horizon H, noise magnitude byy, and combined critic update steps Np.

workable range (0.1 to 0.5 for OpenBoxPlaceCubeStrict and 0.05 to 0.2 for PlaceTwoCubeStrict),
making it comparatively easy to tune.

Progressive Exploration Schedule H. The hyperparameter H controls the rate at which the policy
switches from the base policy to the residual policy. As shown in Figure 6, a value that is too small,
such as H = 0, increases the learning difficulty for the residual policy, resulting in reduced sample
efficiency. In contrast, a larger H is generally a safe choice.

5.4 UNDERSTANDING USR

To better understand how our method USR achieves supe-

rior performance, we conduct additional qualitative stud- Action Distribution Comparison
ies to gain insights into the behavior of its two compo-

nents. Specifically, we select an initial state from Pick- 400-

CubeStrict, sample the base policy 1000 times, apply

PCA (Abdi & Williams, 2010) to project the actions, and

plot the first principal component. We then apply the g *°

fully-trained USR to the base policy and visualize the first  § m== Base (Random Noise)

principal component of actions sampled from: (i) the base % . pase :22:2: :2:23 . .
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As shown in Figure 7, actions sampled directly from .

the base policy exhibit messy multimodal distributions,

reflecting the multiple behavior modes inherent to the o- , AP s S e
base policy. In contrast, actions sampled with noise pro- ~ Action It principal component)

vided by the unified actor form a clear single-modal dis-

tribution, effectively amplifying one pre-existing behav-  Figure 7: Action distribution compari-
ior mode. The final actions after applying USR preserve son before and after USR.

this single-modal structure while shifting the distribution

along the x-axis. These observations suggest that the two components work together to improve the
base policy more effectively: the noise action steers sampled trajectories toward the most promising
mode, while the residual action enables further refinement beyond the support of the base policy.

5.5 REAL ROBOT EXPERIMENTS

To demonstrate the efficacy of USR in improving real robot policies, we conducted experiments
on the Agibot G1 dual-arm platform. Unlike previous experiments that utilized standard diffusion
policies, the base policy here is a multi-task Vision-Language-Action (VLA) model with a flow
matching action expert. The model is trained on the AgiBot-World (Bu et al., 2025) dataset.
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Base
Policy

DSRL

USR

Figure 8: Rollout comparison at a challenging position. Base policy moves towards the bin but
misses the interaction point. DSRL steers closer but acts too low, colliding with and displacing the
bin. USR successfully refines the action to touch the lid’s ears and completes the task.

Task Description. We focused on a fine-grained manipulation task: Lid Opening. The robot must
use its right gripper to open a cartoon-styled trash bin placed on a tabletop. This task is challenging
due to the required precision; the gripper must accurately catch and manipulate two small protruding
“ears” on the lid to flip it open. A slight vertical misalignment results in the gripper colliding with
the bin body, pushing the object away and causing task failure.

Experimental Setup. We benchmark the performance of the pre-trained VLA model as well as
the improved policies by DSRL and USR. Throughout the experiments, the base VLA model was
conditioned on a fixed language instruction: “open the lid of square trash bin with the right arm.”
Both DSRL and USR were trained online for 100 episodes. We employed a human-in-the-loop
training protocol where a human supervisor provided a sparse binary reward (0/1) at the end of each
episode and reset the object position when necessary.

Results and Analysis. The evaluation was conducted
across 10 distinct object positions with 2 trials per po-  Taple 1: Success rates on the Lid Open-
sition (20 evaluation episodes in total). As reported in jpg tagk.
Table 1, the pre-trained base VLA model achieved a suc-
cess rate of 40% (8/20). DSRL improved performance to Method Success / Total
75% (15/20) through latent steering, while USR achieved B -

) . . ase Policy 8/20
the highest success rate of 90% (18/20). To investigate DSRL 15720
the underlying causes of this performance gap, we visual- USR 18720
ized rollouts at a particular position where both the base
model and DSRL failed (see Figure 8). The base VLA model exhibited the correct general intent by
moving the right gripper toward the bin but failed to make effective contact with the lid due to a lack
of precision. DSRL successfully steered the gripper closer to the target; however, it executed the
grasp slightly too low, causing the gripper to push the bin body rather than opening the lid. In con-
trast, USR successfully leveraged its residual component to apply a fine-grained vertical correction,

9o <6

allowing the gripper to precisely align with the 1id’s “ears” and successfully flick it open.

The real robot results validate that USR is compatible with state-of-the-art VLA architectures and
confirm that the residual refinement module is critical for achieving fine-grained manipulation tasks
that are difficult to solve via latent steering alone.

6 CONCLUSION

We introduce Unified latent Steering and residual Refinement (USR), a novel framework for the
online improvement of diffusion policy models. USR utilizes a lightweight actor to jointly steer the
diffusion process with latent noise and apply residual corrections to the sampled action. This unified
design combines stable mode selection with flexible adaptation, overcoming the limitations of prior
methods. Experiments on our new MultiModalBench, along with Adroit and ManiSkill benchmarks,
show that USR achieves state-of-the-art performance and sample efficiency by effectively selecting
promising behavioral modes and refining actions beyond the base policy’s support.

10
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A DECLARATION OF LLM USAGE

Large Language Models (LLMs) were used in the preparation of this submission. Specifically,
they assisted in editing and polishing the writing for grammar and clarity. All technical ideas,
experimental designs, and results were developed by the authors.

B ALGORITHM SUMMARY

The complete USR algorithm is summarized in Algorithm 1. The process involves collecting expe-
rience using the unified steering and refinement mechanism, and then updating the two critics and
the actor using data from the replay buffer.

Algorithm 1 Unified Latent Steering and Residual Refinement (USR)

1: Initialize: Unified actor 7y, critics Q:;‘, ng, target networks, replay buffer D, residual scale «,
progressive exploration horizon H.

2: Load pretrained, frozen diffusion policy mgp.

3: for each timestept =1,...,7 do

4: Observe state o;.
5: Sample combined action a{°™ = [wy, al®] ~ T (-|o;).
6: Steer base policy to get intermediate action: a; = map(0¢, wy).
7 Calculate exploration probability e = min(¢/H, 1.0).
8: if Uniform(0,1) < € then
9: Refine action: a; = a; + o - a}™.
10: else
11: Use steered base action only: a; = a;.
12: Execute a;, observe reward r, and next observation o4 1.
13: Store transition (o, at, 7+, 04+1) in replay buffer D.
14: for each gradient step do
15: Sample minibatch of transitions from D.
16: Update Environment Critic Q:;‘:
17: Compute TD targets y and update ¢ to minimize Ltp(¢).
18: Update Combined Critic Q¢
19: Sample observations o and random combined actions a*°™ = [w, a™].
20: Compute target values Qj;‘(o, Tap (0, W) + a - ™).
21: Update 1 to minimize the distillation loss Lgisin ().
22: Update Actor my:
23: Update € by ascending the policy gradient from the SAC objective using Qi.
24: Update target networks.

C FURTHER DETAILS ON THE EXPERIMENTAL SETUP

C.1 TASK DESCRIPTIONS

We consider a total of 11 continuous robotic control tasks from 3 benchmarks: our proposed Multi-
ModalBench, Adroit (Rajeswaran et al., 2017), and ManiSkill (Gu et al., 2023; Mu et al., 2021; Tao
et al., 2024). This section provides detailed task descriptions on overall information, task difficulty,
object sets, state space, and action space. Refer to Table 2 for detailed information.

C.1.1 MULTIMODALBENCH TASKS

For MultiModalBench, tasks without the Strict suffix count all behavior modes as successful,
whereas tasks with the Strict suffix only regard a single designated behavior mode as success. Our
evaluation focuses on the Strict variants, where the goal is to maximize performance under this
stricter success criterion. Refer to Figure 9 for detailed illustration of different modes.
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The Strict Mode For Adaptation

=== Subtask 1
PickCube Subtask 2
e Subtask 3

Subtask 4

PeglnsertionSide

OpenBox
PlaceCube

PlaceTwoCube

StackThreeCube

SortYCB

Task
Overview

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

Figure 9: Visualization of all behavior modes for the six tasks in MultiModalBench. Each row
corresponds to a task, with columns depicting distinct demonstration modes present in the dataset.
For tasks marked with the Strict suffix, only one mode (outlined in red) is considered the adaptation
target, while the others are only included in demonstrations. These visualizations illustrate the
multimodal nature of the base policies training on the demonstration, highlighting the challenge of
steering the pretrained policy toward the correct mode while refining actions to achieve precise task
success.

PickCube/PickCubeStrict

* Overall Description: One red cube and one blue cube are placed on the table. The task is
to pick up one cube, while the Strict variant requires specifically picking up the red cube.

» Task Difficulty: The two cubes are placed at randomized positions within a designated
region of the table.

* Object Variations: No Object Variations.
* Action Space: Delta position of the end-effector and joint positions of the gripper.

* State Observation Space: Proprioceptive robot state information, such as joint angles and
velocities of the robot arm, and task-specific goal information, which is represented by the
poses of the two cubes.

Visual Observation Space: One 64x64 RGBD image from a base camera and one 64x64
RGBD image from a hand camera.

PeglnsertionSide/PegInsertionSideStrict

* QOverall Description: One peg and two holes are placed on the table. The task is to insert
the peg into either hole, while the Strict variant requires inserting it into a designated hole.

* Task Difficulty: The peg and two holes are placed at randomized positions within a desig-
nated region of the table.

* Object Variations: No Object Variations.
* Action Space: Delta position of the end-effector and joint positions of the gripper.

 State Observation Space: Proprioceptive robot state information, such as joint angles and
velocities of the robot arm, and task-specific goal information.
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* Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
base camera and one 64x64 RGBD image from a hand camera.

OpenBoxPlaceCube/OpenBoxPlaceCubeStrict

* Overall Description: A box with a cover and two cubes are placed on the table. The task is
to choose a cube and place it inside the box by either sliding or lifting the cover, while the
Strict variant requires lifting the cover and pick the red cube.

* Task Difficulty: The box and the cubes are placed at randomized positions within a desig-
nated region of the table.

* Object Variations: No Object Variations
* Action Space: Delta position of the end-effector and joint positions of the gripper.

 State Observation Space: Proprioceptive robot state information, such as joint angles and
velocities of the robot arm, and task-specific goal information.

* Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
base camera and one 64x64 RGBD image from a hand camera.

PlaceTwoCube/PlaceTwoCubeStrict

* Overall Description: Two cubes and two boxes are placed on the table. The task is to place
each cube into a separate box, while the Strict variant requires first placing the red cube
into box 1 and then placing the blue cube into box 2.

* Task Difficulty: The two cubes and two boxes are placed at randomized positions within a
designated region of the table.

* Object Variations: No Object Variations.
* Action Space: Delta position of the end-effector and joint positions of the gripper.

 State Observation Space: Proprioceptive robot state information, such as joint angles and
velocities of the robot arm, and task-specific goal information.

* Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
base camera and one 64x64 RGBD image from a hand camera.

StackThreeCube/StackThreeCubeStrict

* Overall Description: Three cubes are placed on the table. The task is to select one cube to
be placed on top of another, while the Strict variant requires stacking the red cube on top
of the green cube.

 Task Difficulty: The three cubes are placed at randomized positions within a designated
region of the table.

* Object Variations: No Object Variations
* Action Space: Delta position of the end-effector and joint positions of the gripper.

» State Observation Space: Proprioceptive robot state information, such as joint angles and
velocities of the robot arm, and task-specific goal information.

* Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
base camera and one 64x64 RGBD image from a hand camera.

SortYCB/SortY CBStrict

¢ Overall Description: Three YCB objects (Calli et al., 2015) and two boxes are placed on the
table. The task is to place the objects into the boxes, while the Strict variant requires placing
them into designated boxes.The placement order of objects is fixed, while the choice of
boxes is randomized.

* Task Difficulty: The objects and boxes are placed at randomized positions within a desig-
nated region of the table, and the objects exhibit shape variations.
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* Object Variations: The objects exhibit shape variations.
* Action Space: Delta position of the end-effector and joint positions of the gripper.

* State Observation Space: Proprioceptive robot state information, such as joint angles and
velocities of the robot arm, and task-specific goal information.

* Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
base camera and one 64x64 RGBD image from a hand camera.

C.1.2 ADROITHAND TASKS

We experiment with three simulation tasks from the AdroitHand benchmark (Rajeswaran et al.,
2017): Pen, Hammer, and Relocate. We exclude the Door task, as the base Diffusion Policy
already achieves near-perfect performance with the demonstrations.

Pen
* Overall Description: The environment is based on the Adroit manipulation platform, a 28
degree of freedom system which consists of a 24 degrees of freedom ShadowHand and a 4
degree of freedom arm. The task to be completed consists on repositioning the blue pen to
match the orientation of the green target.
* Task Difficulty: The target is randomized to cover all configurations.
* Object Variations: No Object Variations.
* Action Space: Absolute angular positions of the Adroit hand joints.
* State Observation Space: The angular position of the finger joints, the pose of the palm of
the hand, as well as the pose of the real pen and target goal.
Hammer
* Overall Description: The environment is based on the Adroit manipulation platform, a 28
degree of freedom system which consists of a 24 degrees of freedom ShadowHand and a
4 degree of freedom arm. The task to be completed consists on picking up a hammer with
and drive a nail into a board.
* Task Difficulty: The nail position is randomized and has dry friction capable of absorbing
up to 15N force.
* Object Variations: No Object Variations.
* Action Space: Absolute angular positions of the Adroit hand joints.
 State Observation Space: The angular position of the finger joints, the pose of the palm of
the hand, the pose of the hammer and nail, and external forces on the nail.
Relocate

* Overall Description: The environment is based on the Adroit manipulation platform, a 30
degree of freedom system which consists of a 24 degrees of freedom ShadowHand and a 6
degree of freedom arm. The task to be completed consists on moving the blue ball to the
green target.

e Task Difficulty: The positions of the ball and target are randomized over the entire
workspace.

* Object Variations: No Object Variations.
* Action Space: Absolute angular positions of the Adroit hand joints.

* State Observation Space: The angular position of the finger joints, the pose of the palm of
the hand, as well as kinematic information about the ball and target.
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C.1.3 MANISKILL TASKS

PushChair

* QOverall Description: The environment is based on a dual-arm manipulation setup. The task
requires the robot to make contact with a chair and push it to a designated target location
on the ground.

* Task Difficulty: The initial pose of the chair and the goal location are randomized, requiring
robust coordination of both arms to achieve stable pushing.

* Object Variations: There are 10 different chairs.

* Action Space: End-effector delta position and rotation commands for both arms, together
with gripper control.

* State Observation Space: The joint angles and velocities of both arms, the poses of the two
end-effectors, and the pose of the chair and its goal position.

TurnFaucet

 Overall Description: The environment is based on a 7 degree of freedom single-arm robot.
The task requires the robot to grasp and rotate a faucet handle to a target angle.

» Task Difficulty: The initial pose of the faucet is randomized, and successful completion
requires precise manipulation to overcome torque and resistance at the joint.

* Object Variations: There are 10 different faucets.

* Action Space: End-effector delta position and rotation commands, together with gripper
open/close control.

* State Observation Space: The joint angles and velocities of the robot arm, the end-effector
pose, and the pose of the faucet including its current and goal angles.

Table 2: We list important task details below.

Task State Observation Dim  Action Dim  Max Episode Steps
PickRedCubeStrict 52 7 150
PeglInsertionSideStrict 57 7 200
OpenBoxPlaceCubeStrict 63 7 400
PlaceTwoCubeStrict 53 7 600
StackThreeCubeStrict 62 7 200
SortYCBStrict 68 7 650
AdroitHandPen 46 24 200
AdroitHandHammer 46 26 400
AdroitHandRelocate 39 30 400
TurnFaucet 43 7 200
PushChair 131 20 200

C.2 DEMONSTRATIONS

This section provides the details of demonstrations used in our experiments. Refer to Table 3 for
detailed information.
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Table 3: We list the number of demonstrations and corresponding generation methods below

Task Num of Demo Trajs Generation Method
PickRedCubeStrict 200 Task and Motion Planning (TAMP)
PeglnsertionSideStrict 1000 Task and Motion Planning (TAMP)
OpenBoxPlaceCubeStrict 200 Task and Motion Planning (TAMP)
PlaceTwoCubeStrict 200 Task and Motion Planning (TAMP)
StackThreeCubeStrict 100 Task and Motion Planning (TAMP)
SortYCBStrict 1000 Task and Motion Planning (TAMP)
AdroitHandPen 25 Human Demonstrations
AdroitHandHammer 25 Human Demonstrations
AdroitHandRelocate 25 Human Demonstrations
TurnFaucet 1000 Model Predictive Control (MPC)
PushChair 1000 Reinforcement Learning (RL)

D IMPLEMENTATION DETAILS

D.1 BASE PoLICY

We experiment with state-of-the-art diffusion-based imitation learning methods, Diffusion Policy
(Chi et al., 2023) for all of our experiments.

D.1.1 DIFFUSION PoLICY

We follow the setup of U-Net (Ronneberger et al., 2015) version of Diffusion Policy in the original
paper (Chi et al., 2023).

Table 4: We list the important architecture hyperparameters of Diffusion Policy used in our experi-
ments.

Hyperparamter Value (MultiModalBench)  Value (Adroit)  Value (ManiSkill)
Observation Horizon 2 2 2
Action Horizon 4 4 4
Prediction Horizon 16 16 16
Embedding Dimensions 64 64 64
Downsampling Dimensions 256, 512, 1024 256, 512, 1024 256, 512, 1024
Trainable Parameters About 4 Million About 4 Million About 4 Million

Table 5: We list the important training hyperparameters of Diffusion Policy used in our experiments.

Hyperparameter  Value (MultiModalBench) Value (Adroit) Value (ManiSkill)
Gradient Steps 200000 200000 200000
Batch Size 1024 1024 1024
Learning Rate le-4 le-4 le-4
Optimizer AdamW Optimizer AdamW Optimizer AdamW Optimizer

D.1.2 CHECKPOINT SELECTION

We evaluate the base policy for 50 episodes every 5k training steps during training. We select the
checkpoint at a fixed step after the convergence of the base policy.
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D.2 USR (OUR METHOD)

Our method USR involves four algorithm-specific hyperparameters and a set of shared hyperparam-
eters, as introduced in Section 4.1. Detailed descriptions of the algorithm-specific hyperparameters
are provided in Section D.2.1, and the shared hyperparameters are summarized in Section D.2.2.

D.2.1 USR SPECIFIC HYPERPARAMETERS

As introduced in Section. 4.1, our method includes four algorithm-specific hyperparameters. De-
tailed information is provided in Table 6. For fair comparison, the DSRL baseline uses the same b,,
and Np, while the Policy Decorator baseline uses the same « and H as USR.

Table 6: We list USR specific hyperparameters below.

Task bw Np « H
PickCubeStrict 1.5 1 0.2 300K
PeglInsertionSideStrict 1.5 1 0.1 300K
OpenBoxPlaceCubeStrict 1.5 1 0.2 500K
PlaceTwoCubeStrict 1.5 1 0.1 500K
StackThreeCubeStrict 1.5 1 0.1 500K
SortYCBStrict 0.5 4 0.3 800K
AdroitHandPen 1.5 1 0.2 0
AdroitHandHammer 1.5 1 0.05 0
AdroitHandRelocate 1.5 1 0.1 300K
TurnFaucet 1.5 1 0.1 100K
PushChair 1.5 1 0.2 300K

D.2.2 IMPORTANT SHARED HYPERPARAMETERS

Table 7: We list important shared hyperparameters below.

Hyperparameter Value
Gamma 0.97
Batch Size 1024
Learning Rate le-4
Policy Update Frequencey 1
Training Frequency 64
UTD Ratio 0.25
Target Network Update Frequency 1
Tau 0.01
Learning Starts 8000

There are several shared hyperparameters of the SAC algorithm (Haarnoja et al., 2018) that are
used across multiple baselines. Although the DSRL paper recommends using a high UTD, it also
acknowledges that UTD is highly environment-specific. In our tasks, we find that high UTD leads to
either significant training instability or only minimal gains. Therefore, for both fair comparison and
training efficiency, we adopt the same UTD values for the DSRL baseline as for the other methods.
Refer to Table 7 for detailed information.

D.2.3 ACTOR AND CRITIC ARCHITECTURES

The unified actor network consists of a three-layer MLP, where the first layer takes as input the
observation vector and each hidden layer has a dimension of 2048. The actor further includes two
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additional MLP heads: a mean-action head and a standard-deviation head. Both heads take a 2048-
dimensional input and output vectors matching the action dimension, following the standard SAC
actor design. A ReLU activation is applied after every MLP layer.

The combined critic and environment critic share the same architecture except for their input dimen-
sions. Each critic is a three-layer MLP with hidden dimension 2048. The combined critic takes as
input the concatenation of the observation and both the noise and residual actions, resulting in an
input dimension of obs_dim + 2 X act_dim. The environment critic takes the observation and the
executed action as input, giving an input dimension of obs_dim + act_dim. A ReLU activation is
applied after every MLP layer.

E ADDITIONAL EXPERIMENTAL RESULTS

This section includes some additional experiments. Section E.I includes visual observation experi-
ments.

E.1 VISUAL OBSERVATION EXPERIMENTS

We evaluate USR with high-dimensional visual observations. As shown in Figure 10, USR achieves
superior performance over the baselines under visual inputs.
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Figure 10: Learning curves on three MultiModalBench environments using image observations
averaged over 5 seeds. We omit the remaining tasks because the base Diffusion Policy fails to
achieve a reasonable success rate under visual inputs.

E.2 ROBOMIMIC EXPERIMENTS

To more comprehensively evaluate the performance and generality of our proposed method, USR,
across diverse robotic tasks and human-generated datasets—and to enable direct comparison with
prior baselines on their evaluated settings—we additionally conduct experiments on two representa-
tive RoboMimic tasks: can and square. We choose these tasks because lift is relatively trivial for
the base policy, whereas transport requires excessive computational resources.

We further note that the original DSRL paper (Wagenmaker et al., 2025) evaluates its method using
base diffusion policies with relatively high success rates (approximately 70%). Such a setting cre-
ates a sizable optimal region within the base policy’s action distribution, implicitly favoring noise-
steering approaches like DSRL. We consider this setup unrepresentative of more realistic scenarios
where pre-trained policies are imperfect. To stress-test USR’s ability to improve policies online,
we intentionally train a weak base policy. This yields a more challenging regime in which the pre-
trained distribution does not reliably cover successful executions, forcing the adaptation method to
explore beyond the initial support.

As shown in the newly added Figure 11, the results clearly reveal the limitations of DSRL and
underscore the necessity of USR. On the can task, DSRL—which performs pure noise steering—
fails to achieve any meaningful improvement. On square, its performance displays extremely high
variance, with only a small fraction of seeds improving upon the base policy. We hypothesize that
this failure stems from the intrinsic limitations of noise steering: although the pre-trained distribution
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may include the correct behavioral mode, its actions lack the precision required to reliably obtain
the sparse rewards.

In contrast, USR consistently improves the success rate to nearly 100% on both tasks, demon-
strating strong stability and robustness. This large performance gap highlights the importance of
incorporating a residual component that enables the policy to refine actions and effectively ex-
plore beyond the base policy’s support. By allowing controlled out-of-distribution corrections, USR
bridges the gap between an imperfect pre-trained policy and the precision necessary for reliable task
completion.
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Figure 11: Learning curves on two RoboMimic environments using state observations averaged
over 5 seeds.

E.3 ABLATION STUDY ON DUAL-CRITIC VS. SINGLE-CRITIC ARCHITECTURES

It is worth noting that the original DSRL paper (Wagenmaker et al., 2025) introduces a simpler
variant of the algorithm, termed DSRL-SAC, which employs a single combined critic rather than
the dual-critic architecture used in the DSRL-NA version (where NA denotes noise aliasing). Their
paper argues that the noise-aliasing formulation reduces unnecessary exploration in the latent-noise
space and consequently improves sample efficiency. This motivates our choice to adopt the noise-
aliasing version as the primary configuration for USR. To more comprehensively evaluate our
method, we additionally conduct ablation studies comparing the single-critic architecture (SAC
variants) and the dual-critic architecture (NA variants).

As shown in Figure 12, both DSRL-SAC and USR-SAC underperform their corresponding noise-
aliasing variants (DSRL-NA and USR-NA) on the MultiModalBench PickCubeStrict and Adroit
Pen tasks. These results align with the observations reported in the original DSRL paper and further
justify our algorithmic design choice of using the noise-aliasing formulation.
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Figure 12: Learning curves for the ablation experiments comparing single-critic and dual-critic
architectures on the PickCubeStrict and Pen environments using state observations, averaged over
5 seeds.
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E.4 USR wWITH OFFLINE DEMONSTRATIONS

It is a common technique in offline-to-online RL to leverage offline demonstrations in the online
replay buffer to improve sample efficiency, as discussed in Wagenmaker et al. (2025); Nakamoto
et al. (2023). To more comprehensively evaluate our method, we conduct additional experiments
that incorporate offline demonstrations into USR’s replay buffer. As shown in Figure 13, integrating
offline demonstrations does not provide a noticeable improvement in sample efficiency.
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Figure 13: Learning curves for the experiments that incorporate offline demonstrations into the
online replay buffer of USR on the PlaceTwoCubeStrict and PegInsertionSideStrict environments
using state observations, averaged over 5 seeds.

E.5 EXPERIMENTS ON IMBALANCED MODE DATASETS

The dataset used in our main MultiModalBench experiments, as shown in Figure 4, contains an
equal number of demonstrations for each behavior mode. To more comprehensively evaluate our
method under challenging data distributions, we additionally conduct experiments where the ex-
pected mode is underrepresented in the dataset.

As shown in Figure 14, our method maintains robust performance in different levels of the under-
represented (10% and 30%) settings, whereas DSRL experiences substantial degradation when the
expected mode is underrepresented.
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Figure 14: Learning curves for the experiments using imbalanced mode datasets on the PegInser-
tionSideStrict environment with state observations, averaged over 5 seeds.

E.6 HYPERPARAMETER STUDY ON DISCOUNT FACTOR (GAMMA)

We follow several principles when selecting the discount factor. First, we use a consistent value
within each benchmark to avoid excessive tuning. Second, whenever possible, we adopt discount
factors used in prior work to ensure fair comparison with existing baselines. Third, all methods in
our experiments use the same discount factor to maintain fairness across approaches.

We additionally perform a sweep over different discount factors on MultiModalBench and Adroit.
The results in Figure 15 show that a value of 0.97 performs best on MultiModalBench, whereas all
tested values yield similar performance on Adroit, supporting our final choice of discount factor.
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Figure 15: Learning curves for the experiments with different discount factor values on the Pick-
CubeStrict and Pen environment with state observations, averaged over 5 seeds.

E.7 HYPERPARAMETER STUDY ON UPDATE-TO-DATA RATIO (UTD)

The Update-to-Data Ratio (UTD) specifies how many gradient update steps are performed per envi-
ronment timestep of collected data. Increasing the UTD can improve sample efficiency, but typically
comes at the cost of substantially longer training time. Our choice of UTD for each benchmark is
therefore made to balance sample efficiency and wall-clock runtime.

We also conducted a hyperparameter study on the UTD. As shown in Figure 16, setting UTD = 1.0
yields only marginal gains in sample efficiency while significantly slowing down training. Conse-
quently, we select a UTD value that best trades off sample efficiency against training speed.
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Figure 16: Learning curves for the experiments with different UTD values on the Pen environment
with state observations, averaged over 5 seeds.
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