

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNIFIED LATENT STEERING AND RESIDUAL REFINEMENT FOR ONLINE IMPROVEMENT OF DIFFUSION POLICY MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Imitation learning has driven major advances in robotic manipulation by exploiting large and diverse demonstrations, yet policies trained purely by imitation remain brittle under distribution shift and novel scenarios, making online improvement essential. Directly finetuning the parameters of modern large policies is prohibitively sample inefficient and computationally expensive, while recent finetuning-free adaptation methods either fail to exploit the multimodal distributions learned by pretrained policies or remain confined to the coverage of demonstrations. We propose **USR**, a Unified framework for latent Steering and residual Refinement that enables efficient online improvement of diffusion policy models. A lightweight actor jointly outputs latent noise to steer the diffusion process toward promising modes and residual corrections to adapt beyond the diffusion policy’s support, combining stable mode selection with flexible refinement. This unified design stabilizes training and fully leverages both components. Experiments on standard benchmarks and our MultiModalBench demonstrate USR’s state-of-the-art performance. Furthermore, we validate its real-world applicability by improving a Vision-Language-Action (VLA) model on a physical robot, setting a new paradigm for sample-efficient adaptation of diffusion-based policies.

1 INTRODUCTION

A longstanding ambition in robotics is to endow machines with human-like manipulation across diverse environments (Billard & Kragic, 2019). Recent progress in imitation learning, fueled by advances in architectures (Vaswani et al., 2017; Ho et al., 2020) and large-scale demonstrations (O’Neill et al., 2024; Khazatsky et al., 2024), has enabled policies capable of dexterous hand control (Arunachalam et al., 2022), household visuomotor skills (Fu et al., 2024), and even emerging generalist abilities (Black et al., 2024; Bjorck et al., 2025; Cheang et al., 2025). Despite these advances, progress has been mostly demonstrated in controlled settings, while open-world manipulation presents a much broader long-tail of objects, layouts, contacts, and partial observability (Zitkovich et al., 2023). Unlike humans who adapt within a few interactions, imitation-learned policies are fixed once training ends. Their behavior distributions are anchored to the demonstrations, making unseen situations hard to handle. Although there are offline-to-online RL methods designed for similar settings (Nakamoto et al., 2023; Zhou et al., 2024), applying them to large policy models requires updating parameter-heavy networks. Even with carefully designed fine-tuning techniques (Hu et al., 2022), such updates incur significant computational overhead and large sample demands (Wagenmaker et al., 2025). These constraints motivate alternatives that can deliver rapid behavioral adaptation without finetuning the large policy model.

Existing finetuning-free policy adaptation methods broadly fall into two categories. The first steers the base policy’s sampling process, exploiting the multimodality¹ of large policy models by biasing sampling toward promising modes (Nakamoto et al., 2024; Wagenmaker et al., 2025; Du & Song, 2025). The second adds a residual actor that refines the output of the frozen base policy, adjusting

¹In this paper, we use the terms *multimodal* and *multimodality* to mean action distributions with multiple behavior modes. This is distinct from the common usage of *multimodal* to describe models that integrate different input modalities such as vision and language.

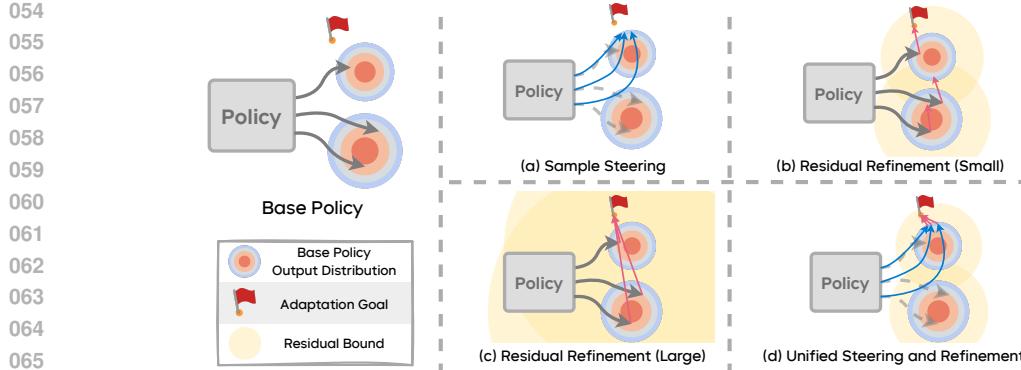


Figure 1: **Comparison of finetuning-free online adaptation methods.** The base policy has two modes, while the optimal region lies outside the upper mode. (a) Sample steering stays within the base support. (b) Residual refinement with small bounds cannot cross the gap. (c) Large bounds cross the gap but explore inefficiently. (d) USR combines sample steering and residual refinement for stable, sample-efficient adaptation.

actions towards more favorable directions (Johannink et al., 2019; Yuan et al., 2024). In practice, residual methods often constrain the adjustment with a bound to promote efficient exploration. While effective, both approaches face limitations. In Figure 1, we show a single-step decision problem where the base policy has two action modes, and the goal for adaptation lies outside one of them. Sample steering can bias sampling towards the nearest mode but remains confined to the base policy’s support. Residual refinement with small bounds cannot cross the mode boundary, whereas setting large bounds permit crossing but induce inefficient exploration. These limitations highlight the need for an approach that can balance stable mode selection with flexible refinement beyond the pretrained distribution.

To address the limitations of existing finetuning-free online adaptation methods, we propose **USR**, a Unified framework for latent noise **S**teering and residual **R**efinement. USR augments a pretrained diffusion policy model with a single lightweight actor that jointly produces initial noise to steer the diffusion process and residual corrections to refine its outputs. The noise output allows the policy to exploit the multimodal structure of diffusion policy models, guiding trajectories toward promising modes, while the residual component provides the flexibility to adapt beyond the support of the base policy when necessary. This unified formulation combines the strengths of both perspectives, mode selection and action refinement, within a stable reinforcement learning framework. As a result, USR enables pretrained policies to rapidly adjust to novel environments, improving task success with only a modest number of interactions and without modifying the underlying large policy model.

We validate USR through experiments on three benchmarks: our proposed MultiModalBench, the Adroit suite (Rajeswaran et al., 2017) of dexterous hand tasks, and two tasks from ManiSkill (Gu et al., 2023; Mu et al., 2021; Tao et al., 2024). MultiModalBench highlights the challenge of selecting among multiple demonstration modes, Adroit tests adaptation under human-provided demonstrations, and ManiSkill covers settings with mostly single-modal data. We also extend our evaluation to the physical world, demonstrating that USR effectively improves a pre-trained VLA model on a real robot. Across all settings and under both state and visual observations, USR achieves consistently higher success and superior sample efficiency compared to prior methods. Qualitative analysis shows that latent steering reliably selects the correct behavioral mode while residual refinement makes fine-grained corrections beyond the base policy’s support.

Our contributions are fourfold:

- We identified complementary limitations of online adaptation methods in manipulation: sample steering is constrained by the base policy, and residual refinement requires fragile step-size tuning.
- We proposed **USR**, a unified online adaptation algorithm for diffusion policies that employs a single lightweight actor to jointly generate noise and refine trajectories, enabling multimodal steering and controlled policy deviation without parameter updates of the pretrained policy.
- We released **MultiModalBench**, a benchmark of six robot manipulation tasks with multiple demonstration modes, providing the first systematic testbed for multimodal policy adaptation.

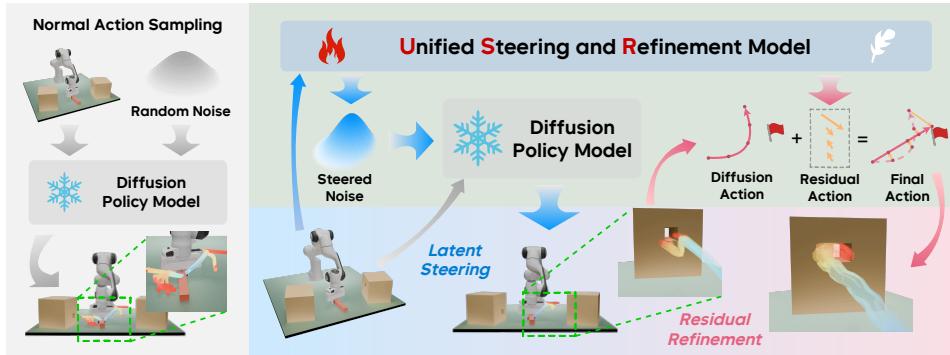


Figure 2: **How USR improves a bimodal base policy on the PegInsertionSideStrict task from MultiModalBench.** The pretrained diffusion policy model has two modes: inserting a peg into the left box or the right box. Latent steering first steers the policy to consistently select the correct (right) mode, but the trajectories remain imprecise. Residual refinement then applies fine-grained corrections, guiding all trajectories to the target hole. This representative scene shows how USR combines coarse sample steering with precise action refinement for task success.

- We demonstrated the real-world applicability of USR by effectively improving a VLA model on a physical robot, validating its potential for scalable fine-tuning of behavioral foundation models.

2 RELATED WORK

Policy improvement with reinforcement learning. Reinforcement learning is widely used to adapt pre-trained policies. Existing methods can be broadly divided into two categories based on whether they finetune the base policy. The first category directly finetunes pretrained imitation learning (Ren et al., 2024; Chandra et al., 2025), offline reinforcement learning (Nakamoto et al., 2023; Zhou et al., 2024), or Vision-Language-Action models (SimpleVLA-RL Team, 2025; Lu et al., 2025; Mark et al., 2024) using online RL gradients. The second category improves policy performance without modifying the base policy itself, often by learning a residual (Yuan et al., 2024; Ankile et al., 2024) or auxiliary policy (Wagenmaker et al., 2025) on top of the fixed base. Our method belongs to this second category and introduces a novel decomposition of policy improvement into latent steering and action refinement, enabling comprehensive and efficient enhancement of the base policy’s performance.

Noise optimization in generative models. Steering and improving generative models via noise-space optimization has been widely studied across domains. In image synthesis, recent work (Eyring et al., 2024; Mao et al., 2024; Samuel et al., 2024) shows that optimizing the initial diffusion noise to maximize downstream image-quality metrics can yield substantial gains. In robotics and control, Singh et al. (2020) trains a normalizing-flow policy on offline data and then runs reinforcement learning directly in the policy’s noise space to improve online performance. Most closely related to our setting, DSRL (Wagenmaker et al., 2025) optimizes the noise for Diffusion Policy via RL to enhance control outcomes. We identify a key limitation of DSRL: by optimizing noise while keeping the base policy fixed, it is highly constrained by the support of the base policy’s action distribution, which caps performance at the quality of the imitation demonstrations. We address this by introducing a unified framework that combines latent steering with explicit action refinement, enabling elegant exploration and yielding stronger, more sample-efficient online improvements.

3 PROBLEM FORMULATION

We consider a discounted Markov Decision Process (MDP) $\mathcal{M}(\mathcal{S}, \mathcal{O}, \mathcal{A}, p_0, P, r, \gamma)$. At time t , the environment is in state $s_t \in \mathcal{S}$, while $s_t \sim p_0$ (if $t = 0$) or $s_t \sim P(\cdot | s_{t-1}, a_{t-1})$, the agent receives observation $o_t \in \mathcal{O}$, choose action $a_t \sim \mathcal{A}$, and transitions to s_{t+1} . In our setting, the agent is equipped with a pretrained diffusion policy model π_{dp} obtained through imitation learning on offline demonstrations. While π_{dp} captures diverse behavior from demonstrations, it may fail to achieve the goal in the current environment due to distribution shift or incomplete coverage of pretrained

behaviors. The objective of online adaptation is therefore to enhance π_{dp} using online interactions so that the resulting policy π_{new} maximizes the expected discounted return:

$$J(\pi_{\text{new}}) = \mathbb{E}_{s_0 \sim p_0, \pi_{\text{new}}, P} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]. \quad (1)$$

4 UNIFIED STEERING AND REFINEMENT FRAMEWORK

To address the complementary limitations of sample steering and residual refinement, we introduce USR, a unified framework for online adaptation of pretrained diffusion policy models. USR employs a lightweight actor that jointly outputs latent noise to steer the diffusion sampling process and a residual correction to further refine the resulting action. This unified formulation leverages the complementary strengths of both noise-space steering and residual refinement, while avoiding their respective limitations. We begin with the unified actor design in Section 4.1, then describe the combined critic design and critic learning in Section 4.2 and the actor learning procedure in Section 4.3. Pseudocode of the complete algorithm is provided in Appendix B.

4.1 UNIFIED LATENT STEERING AND RESIDUAL REFINEMENT

At the core of USR is a single, lightweight actor, $\pi_{\theta}(o_t)$, that takes the current observation o_t and outputs a combined action a_t^{comb} , which is a concatenation of two components, a latent noise $w_t \in \mathcal{W}$ and a residual action $a_t^{\text{res}} \in \mathcal{A}$:

$$a_t^{\text{comb}} = [w_t, a_t^{\text{res}}] \sim \pi_{\theta}(\cdot | o_t). \quad (2)$$

The latent noise w_t is constrained within a bounded space $[-b_w, b_w]$. These two components are then used to adjust the base diffusion policy π_{dp} in a two-stage process:

Latent Steering: The latent noise vector w_t is used as the initial noise to start the denoising process of π_{dp} . This steers the base policy to generate a biased action \tilde{a}_t :

$$\tilde{a}_t = \pi_{\text{dp}}(o_t, w_t). \quad (3)$$

By replacing standard Gaussian noise with learned noise, we bias sampling toward promising modes rather than relying on the base policy to stochastically land in one of them.

Residual Refinement: The residual action vector a_t^{res} is then added to the steered action \tilde{a}_t to make fine-grained corrections. A residual scale α controls the magnitude of this adjustment. The final action a_t executed in the environment is

$$a_t = \tilde{a}_t + \alpha \cdot a_t^{\text{res}}. \quad (4)$$

To ensure stable learning, especially at the beginning of training when the residual output is randomly initialized, we adopt the *progressive exploration* strategy from Policy Decorator (Yuan et al., 2024). Instead of always applying the residual refinement, we introduce it gradually. During online rollouts for training, the residual action a_t^{res} is added with a probability ϵ that increases linearly from 0 to 1 over a set number of environment steps, H . This allows the agent to initially rely on the more stable base policy and avoid early failures, ensuring it continues to receive success signals. The final behavioral action a_t is therefore determined as:

$$a_t = \begin{cases} \pi_{\text{dp}}(o_t, w_t) + \alpha \cdot a_t^{\text{res}} & \text{Uniform}(0, 1) < \epsilon \\ \pi_{\text{dp}}(o_t, w_t) & \text{otherwise} \end{cases} \quad (5)$$

Together, this unified framework allows USR to first make a coarse selection among the diverse behaviors learned by the base policy via steering, and then apply a fine-grained correction that can even push the final action beyond the original support of π_{dp} .

4.2 CRITIC LEARNING MECHANISM

A key challenge in learning the unified actor is providing a stable and efficient gradient signal. Backpropagating through the iterative denoising process of π_{dp} is computationally expensive and

often numerically unstable. While a standard actor-critic algorithm in the latent space bypasses this issue, it is highly sample-inefficient because it must redundantly explore different noise vectors that map to similar actions. To circumvent this, USR employs a two-critic architecture inspired by the noise-aliased distillation in DSRL (Wagenmaker et al., 2025), adapted for our unified framework.

Environment Critic $Q_\phi^A(o, a)$: This critic operates in the environment’s action space \mathcal{A} . Its purpose is to learn the value of the final, executed actions a_t . It is trained using standard off-policy temporal difference (TD) learning from transitions (o_t, a_t, r_t, o_{t+1}) stored in a replay buffer \mathcal{D} . The loss for the environment critic is:

$$\mathcal{L}_{\text{TD}}(\phi) = \mathbb{E}_{(o_t, a_t, r_t, o_{t+1}) \sim \mathcal{D}} \left[(Q_\phi^A(o_t, a_t) - y_t)^2 \right], \quad (6)$$

where the TD target y_t is computed as $y_t = r_t + \gamma(1 - d_t)Q_{\phi_{\text{target}}}^A(o_{t+1}, a'_{t+1})$, with a'_{t+1} being the next action from the actor policy and d_t being the episode termination signal.

Combined Critic $Q_\psi^C(o, a^{\text{comb}})$: This critic operates directly in the actor’s output space, evaluating the combined action $a_t^{\text{comb}} = [w_t, a_t^{\text{res}}]$. Instead of learning from sparse rewards via TD learning, it is trained to distill the value from the environment critic. This provides a direct and sample-efficient gradient path to the actor. The distillation loss is formulated as

$$\mathcal{L}_{\text{distill}}(\psi) = \mathbb{E}_{o \sim \mathcal{D}, a^{\text{comb}} \sim U} \left[(Q_\psi^C(o, a^{\text{comb}}) - Q_\phi^A(o, a_{\text{env}}))^2 \right], \quad (7)$$

where $a_{\text{env}} = \pi_{\text{dp}}(o, w) + \alpha \cdot a^{\text{res}}$ is the final action computed from a randomly sampled combined action $a^{\text{comb}} = [w, a^{\text{res}}]$, and the environment critic Q_ϕ^A is held fixed during the distillation update. The combined critic updates are applied N_D times per iteration. This dual-critic setup decouples the complex dynamics of the diffusion policy from the actor’s learning process, enabling stable and efficient training.

4.3 ACTOR LEARNING

With the combined critic Q_ψ^C providing a value estimate for any combined action, the actor π_θ can be trained to maximize the expected return using policy gradients. We adopt the Soft Actor-Critic (SAC) (Haarnoja et al., 2018) objective to encourage exploration through entropy maximization. The actor’s objective is to maximize:

$$J(\theta) = \mathbb{E}_{o_t \sim \mathcal{D}, a_t^{\text{comb}} \sim \pi_\theta} [Q_\psi^C(o_t, a_t^{\text{comb}}) + \beta \mathcal{H}(\pi_\theta(\cdot | o_t))] \quad (8)$$

where \mathcal{H} is the policy’s entropy and β is a temperature parameter that can be automatically tuned. The gradient flows directly from the combined critic to the actor, bypassing the diffusion policy entirely and allowing for efficient updates to the lightweight actor network.

5 EXPERIMENTS

Our experiments are designed to empirically answer the following questions: 1) Can our method USR effectively improve pre-trained diffusion policy models on the simulation tasks of **MultiModalBench**, **AdroitHand**, and **ManiSkill** under both state and visual observations? (Section 5.2) 2) How do key hyperparameters influence the performance of USR? (Section 5.3) 3) How does USR improve the performance of pre-trained diffusion policy models? (Section 5.4) 4) Can USR be applied to real-world manipulation and improve Vision-Language-Action (VLA) models? (Section 5.5)

5.1 SIMULATION EXPERIMENTS SETUP

5.1.1 TASK DESCRIPTION

Our experiments are conducted on 6 simulation tasks from **MultiModalBench**, 3 simulation tasks from **Adroit** (Rajeswaran et al., 2017), and 2 simulation tasks from **ManiSkill** (Gu et al., 2023). Refer to Figure 3 for task visualizations.

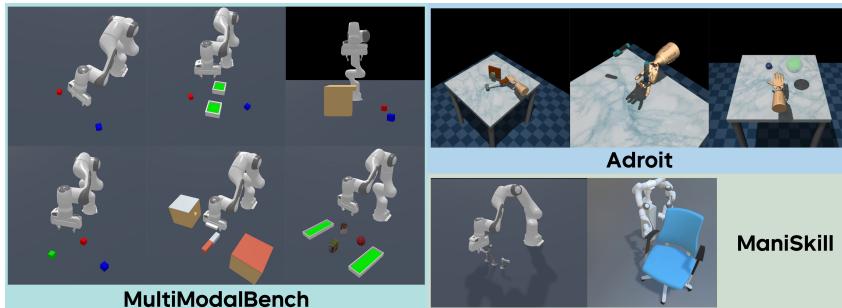


Figure 3: Illustration of the tasks used in our experiment, including six **MultiModalBench** tasks, three **AdroitHand** tasks, and two **ManiSkill** tasks. For each MultiModalBench task, visualizations of all behavior modes and the adaptation target mode (*Strict*) are provided in Appendix Figure 9.

MultiModalBench. We build six simulation tasks on top of SAPIEN (Xiang et al., 2020) to form MultiModalBench, including *PickCube*, *StackThreeCube*, *PlaceTwoCube*, *PegInsertionSide*, *Open-BoxPlaceCube*, and *SortYCB*, each containing multiple behavior modes. For each task, we collect expert datasets using an off-the-shelf motion planner, which include successful trajectories for all behavior modes. Tasks with the *Strict* suffix indicate that, among all behavior modes, only a single mode is considered successful. Visualizations of all modes including the adaptation target mode for each task are provided in Appendix Figure 9. The adaptation objective is to maximize the success rate on these *Strict* tasks, evaluating the ability to both steer multimodal policies toward the desired behavioral mode and refine actions to surpass the base policy’s performance. We use *sparse reward* for all of our experiments.

AdroitHand. We evaluate on three AdroitHand simulation tasks, *Pen*, *Hammer*, and *Relocate*, which require solving dexterous manipulation with a 24-DoF hand simulator. Following the setup of Rajeswaran et al. (2017), we use 25 human demonstrations for training the base policy. We exclude the *Door* task since the base policy already achieves near-perfect performance, reducing the need for online improvement. We use *sparse reward* for experiments on Adroit.

ManiSkill. We evaluate on two ManiSkill (Gu et al., 2023; Mu et al., 2021; Tao et al., 2024) simulation tasks, *PushChair* and *TurnFaucet*, which require learning contact-rich manipulation with articulated objects. For training, we use demonstrations generated by model predictive control (for *TurnFaucet*) and by reinforcement learning policies (for *PushChair*). Because both data generation methods rely on dense reward functions, the resulting base Diffusion Policies exhibit minimal multimodality. We use *sparse reward* for experiments on ManiSkill.

5.1.2 BASE POLICY

We adopt **Diffusion Policy** (Chi et al., 2023) as our base multimodal policy. As a state-of-the-art imitation learning method, it generates robot action sequences via a conditional denoising diffusion process. Leveraging the power of diffusion-based generative models, Diffusion Policy is capable of effectively modeling multimodal behavior distributions. For fast inference and stable sample steering, we employ DDIM (Song et al., 2020) in diffusion sampling.

5.1.3 BASELINES

We compare our method against prior state-of-the-art fine-tuning and fine-tuning-free approaches.

DSRL (Wagenmaker et al., 2025) is an online RL method that optimizes the diffusion noise fed into a frozen Diffusion Policy, steering its sampler without updating network weights. However, because it constrains actions to the support of the base policy, its performance remains bounded by the quality and coverage of the demonstrations and the pre-trained model.

Policy Decorator (Yuan et al., 2024) is an online residual RL method that learns a residual policy, augmented with controlled exploration strategies such as bounded residual actions and a progressive exploration schedule, which provides a model-agnostic improvement over black-box base policies.

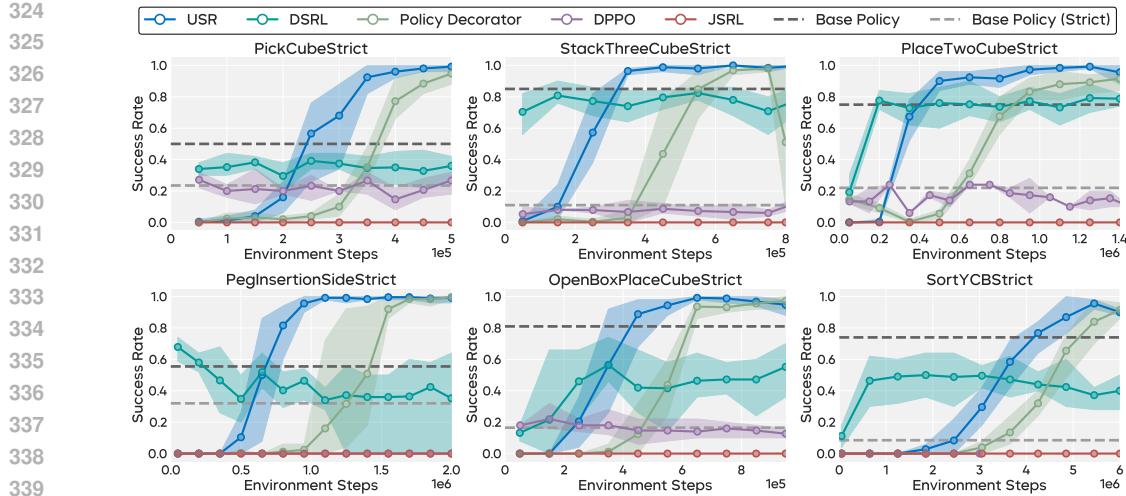


Figure 4: Learning curves on our proposed benchmark, **MultiModalBench** averaged over 5 seeds. The **Base Policy** line reports the success rate of the base Diffusion Policy when all behavior modes are counted as successful, whereas **Base Policy (Strict)** considers success only under a single designated behavior mode. Across all tasks, our method consistently outperforms the baseline methods.

DPO (Ren et al., 2024) is an online RL method that finetunes a pre-trained Diffusion Policy using PPO (Schulman et al., 2017). By interacting with the environment, it incrementally adjusts the policy distribution to improve task performance.

JSRL (Uchendu et al., 2023) is an online curriculum learning method that leverages a base policy as a guiding policy. By using the base policy to steer the online policy toward the goal, JSRL reduces the difficulty of exploration and facilitates more efficient learning in complex tasks

5.2 EXPERIMENTAL RESULTS

Our Method. We evaluate USR on three benchmarks, including two standard manipulation benchmarks, Adroit (Rajeswaran et al., 2017) and ManiSkill (Gu et al., 2023), as well as on our proposed MultiModalBench. Tasks with the *Strict* suffix in MultiModalBench include multiple behavior modes in the demonstration, but only one is considered successful. This setting poses a significant challenge of steering the pretrained policy toward promising modes while refining actions to explore out-of-distribution area. As shown in Figure 4, USR significantly outperforms baselines, achieving both sample-efficient and near-perfect final performance. To test USR under more general and diverse conditions, we further evaluate on three tasks from the Adroit benchmark (Rajeswaran et al., 2017), using base policy model trained on human demonstrations. These demonstrations naturally induce implicit multimodal action distributions due to variability in human data collection. As shown in the top row of Figure 5, USR substantially outperforms baselines, highlighting its strength in utilizing human demonstrations. Finally, we evaluate on two tasks from the ManiSkill benchmark (Gu et al., 2023), where the base policy model are trained from demonstrations generated by Model Predictive Control and reinforcement learning policy learned under dense reward. These demonstrations are largely single-modal. As shown in the bottom row of Figure 5, USR consistently outperforms baselines, demonstrating its advantage even in settings with limited multimodality.

Baselines. We compare our method against a comprehensive set of baselines. As shown in Figure 4 and Figure 5, DSRL performs well on Adroit tasks with human demonstrations but struggles on MultiModalBench and ManiSkill tasks, which require either extra exploration besides mode steering or involve mostly single-modal demonstrations. These results suggest that while DSRL can quickly steer base actions toward promising modes, it lacks the ability to handle predominantly single-modal demonstrations or to achieve near-perfect performance beyond the base policy’s support. More specifically, results on MultiModalBench show that DSRL can improve the base policy on *Strict* task to matches its performance on non-*Strict* tasks, indicating that DSRL is able to reach the correct behavior mode but cannot further boost performance beyond the base policy’s support.

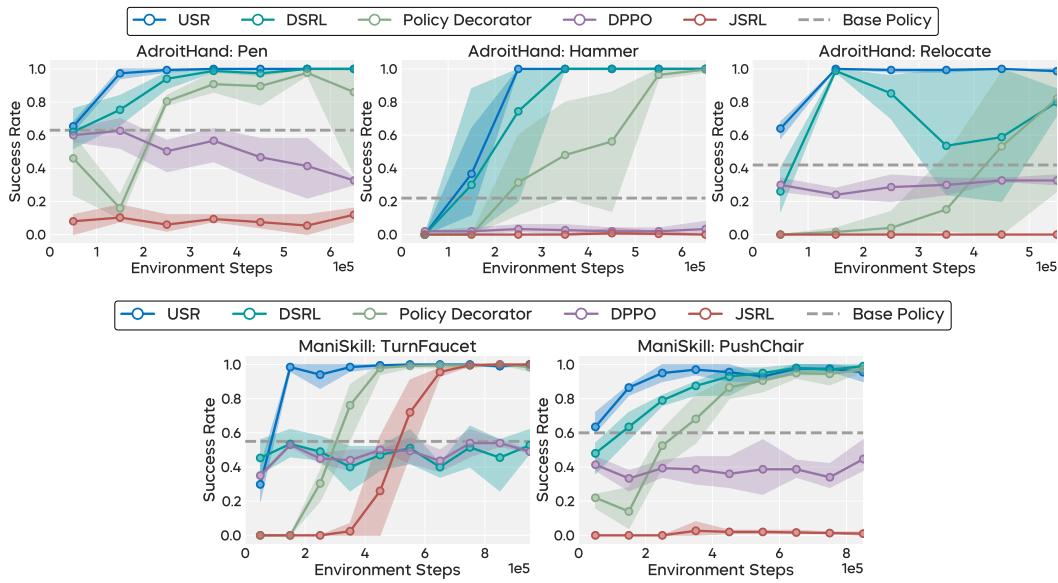


Figure 5: Learning curves on three **AdroitHand** tasks (top) and two **ManiSkill** tasks (bottom), averaged over 5 seeds. The *Base Policy* line reports the success rate of the base Diffusion Policy on that task.

We also find that DSRL suffers from limited training stability and is prone to collapse during training. In contrast, Policy Decorator provides stable and generally more reliable performance across all evaluated tasks. However, as it always treats the base policy as a black-box model, learning residual actions becomes considerably more difficult, and sample efficiency is reduced by the inability to leverage the base policy’s output distribution. JSRL largely fails on MultiModalBench tasks but achieves some success on Adroit and ManiSkill due to exploration challenges. When the base policy falls into unwanted behavior modes, the student policy cannot make meaningful improvements without backtracking a long distance to the key decision state in order to select the intended behavior mode. Finally, we find that DPPO as an on-policy algorithm is considerably less sample-efficient than USR and incurs additional computational overhead.

Visual Experiments. We additionally evaluate USR with high-dimensional image observations. As shown in Appendix E.1, USR achieves superior performance over the baselines under visual inputs.

5.3 HYPERPARAMETER STUDY

We conduct hyperparameter studies on *OpenBoxPlaceCubeStrict* and *PlaceTwoCubeStrict* to provide further insights into the training dynamics of USR.

Noise Magnitude b_w . The hyperparameter b_w controls the scale of the noise produced by the actor. As shown in Figure 6, we ablate b_w over values ranging from 0.5 to 2.0 and observe similar performance across two tasks. These results suggest that b_w is relatively insensitive to the choice of value. Following both our findings and the recommendation of the original paper (Wagenmaker et al., 2025), we set $b_w = 1.5$ for most experiments.

Combined Critic Gradient Steps N_D . The hyperparameter N_D controls the number of combined critic updates performed to distill from environment critic in each training iteration. As shown in Figure 6, we ablate N_D over values ranging from 1 to 8 and observe similar performance across two tasks. These results suggest that N_D is relatively insensitive to the choice of value. Therefore, for training efficiency, we set $N_D = 1$ in most experiments.

Residual Action Scale α . The hyperparameter α controls the maximum adjustment the residual policy can apply. As shown in Figure 6, a value that is too small leads to insufficient residual scaling, preventing the success rate from reaching 100%, whereas a value that is too large, such as $\alpha = 1.0$, significantly increases the difficulty of exploration, resulting in poor sample efficiency and even complete failure on the *OpenBoxPlaceCubeStrict* task. Across tasks, α demonstrates a generous

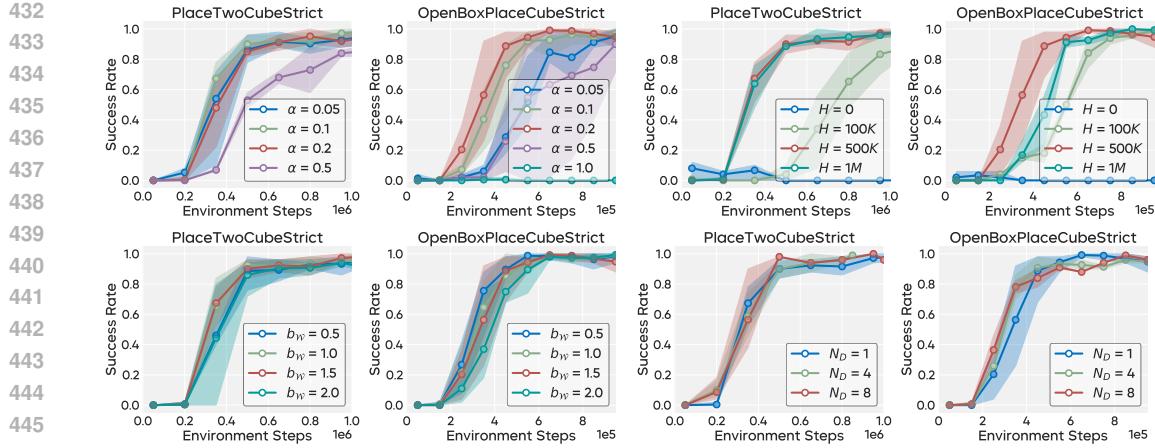


Figure 6: Ablations on four key hyperparameters on two tasks: residual scale α , progressive exploration horizon H , noise magnitude $b_{\mathcal{W}}$, and combined critic update steps N_D .

workable range (0.1 to 0.5 for OpenBoxPlaceCubeStrict and 0.05 to 0.2 for PlaceTwoCubeStrict), making it comparatively easy to tune.

Progressive Exploration Schedule H . The hyperparameter H controls the rate at which the policy switches from the base policy to the residual policy. As shown in Figure 6, a value that is too small, such as $H = 0$, increases the learning difficulty for the residual policy, resulting in reduced sample efficiency. In contrast, a larger H is generally a safe choice.

5.4 UNDERSTANDING USR

To better understand how our method USR achieves superior performance, we conduct additional qualitative studies to gain insights into the behavior of its two components. Specifically, we select an initial state from *Pick-CubeStrict*, sample the base policy 1000 times, apply PCA (Abdi & Williams, 2010) to project the actions, and plot the first principal component. We then apply the fully-trained USR to the base policy and visualize the first principal component of actions sampled from: (i) the base policy with noise provided by the unified actor, and (ii) the final actions after applying USR.

As shown in Figure 7, actions sampled directly from the base policy exhibit messy multimodal distributions, reflecting the multiple behavior modes inherent to the base policy. In contrast, actions sampled with noise provided by the unified actor form a clear single-modal distribution, effectively amplifying one pre-existing behavior mode. The final actions after applying USR preserve this single-modal structure while shifting the distribution along the x -axis. These observations suggest that the two components work together to improve the base policy more effectively: the noise action steers sampled trajectories toward the most promising mode, while the residual action enables further refinement beyond the support of the base policy.

5.5 REAL ROBOT EXPERIMENTS

To demonstrate the efficacy of USR in improving real robot policies, we conducted experiments on the Agibot G1 dual-arm platform. Unlike previous experiments that utilized standard diffusion policies, the base policy here is a multi-task Vision-Language-Action (VLA) model with a flow matching action expert. The model is trained on the AgiBot-World (Bu et al., 2025) dataset.

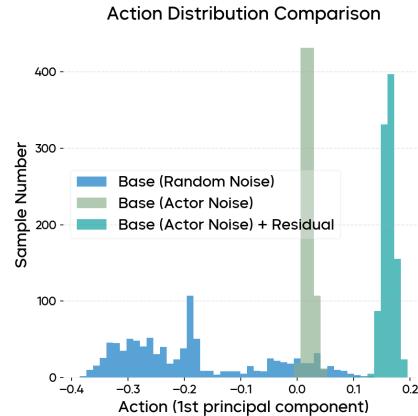


Figure 7: Action distribution comparison before and after USR.

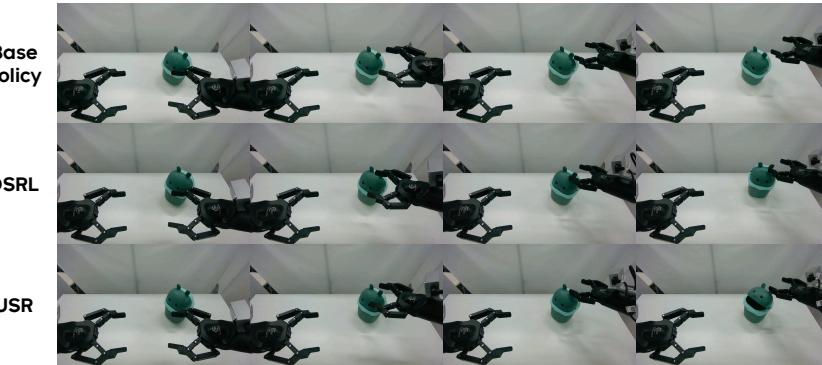


Figure 8: **Rollout comparison at a challenging position.** Base policy moves towards the bin but misses the interaction point. DSRL steers closer but acts too low, colliding with and displacing the bin. USR successfully refines the action to touch the lid’s ears and completes the task.

Task Description. We focused on a fine-grained manipulation task: Lid Opening. The robot must use its right gripper to open a cartoon-styled trash bin placed on a tabletop. This task is challenging due to the required precision; the gripper must accurately catch and manipulate two small protruding “ears” on the lid to flip it open. A slight vertical misalignment results in the gripper colliding with the bin body, pushing the object away and causing task failure.

Experimental Setup. We benchmark the performance of the pre-trained VLA model as well as the improved policies by DSRL and USR. Throughout the experiments, the base VLA model was conditioned on a fixed language instruction: “open the lid of square trash bin with the right arm.” Both DSRL and USR were trained online for 100 episodes. We employed a human-in-the-loop training protocol where a human supervisor provided a sparse binary reward (0/1) at the end of each episode and reset the object position when necessary.

Results and Analysis. The evaluation was conducted across 10 distinct object positions with 2 trials per position (20 evaluation episodes in total). As reported in Table 1, the pre-trained base VLA model achieved a success rate of 40% (8/20). DSRL improved performance to 75% (15/20) through latent steering, while USR achieved the highest success rate of 90% (18/20). To investigate the underlying causes of this performance gap, we visualized rollouts at a particular position where both the base model and DSRL failed (see Figure 8). The base VLA model exhibited the correct general intent by moving the right gripper toward the bin but failed to make effective contact with the lid due to a lack of precision. DSRL successfully steered the gripper closer to the target; however, it executed the grasp slightly too low, causing the gripper to push the bin body rather than opening the lid. In contrast, USR successfully leveraged its residual component to apply a fine-grained vertical correction, allowing the gripper to precisely align with the lid’s “ears” and successfully flick it open.

The real robot results validate that USR is compatible with state-of-the-art VLA architectures and confirm that the residual refinement module is critical for achieving fine-grained manipulation tasks that are difficult to solve via latent steering alone.

6 CONCLUSION

We introduce Unified latent Steering and residual Refinement (USR), a novel framework for the online improvement of diffusion policy models. USR utilizes a lightweight actor to jointly steer the diffusion process with latent noise and apply residual corrections to the sampled action. This unified design combines stable mode selection with flexible adaptation, overcoming the limitations of prior methods. Experiments on our new MultiModalBench, along with Adroit and ManiSkill benchmarks, show that USR achieves state-of-the-art performance and sample efficiency by effectively selecting promising behavioral modes and refining actions beyond the base policy’s support.

Table 1: Success rates on the Lid Opening task.

Method	Success / Total
Base Policy	8 / 20
DSRL	15 / 20
USR	18 / 20

540
541

CODE OF ETHICS

542
543
544
545
546

We affirm that our research adheres to the ethical guidelines set forth in the ICLR Code of Ethics. We have ensured the integrity of our data, transparency in results, and compliance with all applicable laws and regulations. Our research does not involve human subjects. We also disclose any potential conflicts of interest and strive for fairness and non-discrimination in our work.

547
548

REPRODUCIBILITY STATEMENT

549
550
551
552
553

We are committed to making our results reproducible. The source code and datasets will be made publicly available upon publication. All experimental details, including hyperparameters, model configurations, and evaluation metrics, are documented clearly in the paper and supplementary materials.

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley interdisciplinary reviews: 597 computational statistics*, 2(4):433–459, 2010.

598 Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation 599 to refinement–residual rl for precise assembly. *arXiv preprint arXiv:2407.16677*, 2024.

600 Sridhar Pandian Arunachalam, Sneha Silwal, Ben Evans, and Lerrel Pinto. Dexterous imitation 601 made easy: A learning-based framework for efficient dexterous manipulation. *arXiv preprint 602 arXiv:2203.13251*, 2022.

603 Aude Billard and Danica Kragic. Trends and challenges in robot manipulation. *Science*, 364(6446): 604 eaat8414, 2019.

605 Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, 606 Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model 607 for generalist humanoid robots. *arXiv preprint arXiv:2503.14734*, 2025.

608 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo 609 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. pi_0: A vision-language-action flow 610 model for general robot control. *arXiv preprint arXiv:2410.24164*, 2024.

611 Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong 612 He, Xuan Hu, Xu Huang, et al. Agibot world colosseo: A large-scale manipulation platform for 613 scalable and intelligent embodied systems. *arXiv preprint arXiv:2503.06669*, 2025.

614 Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M Dol- 615 lar. Benchmarking in manipulation research: The ycb object and model set and benchmarking 616 protocols. *arXiv preprint arXiv:1502.03143*, 2015.

617 Akshay L Chandra, Iman Nematollahi, Chenguang Huang, Tim Welschehold, Wolfram Burgard, 618 and Abhinav Valada. Diwa: Diffusion policy adaptation with world models. *arXiv preprint 619 arXiv:2508.03645*, 2025.

620 Chilam Cheang, Sijin Chen, Zhongren Cui, Yingdong Hu, Liqun Huang, Tao Kong, Hang Li, Yifeng 621 Li, Yuxiao Liu, Xiao Ma, et al. Gr-3 technical report. *arXiv preprint arXiv:2507.15493*, 2025.

622 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, 623 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The Inter- 624 national Journal of Robotics Research*, pp. 02783649241273668, 2023.

625 Maximilian Du and Shuran Song. Dynaguide: Steering diffusion polices with active dynamic guid- 626 ance. *arXiv preprint arXiv:2506.13922*, 2025.

627 Luca Eyring, Shyamgopal Karthik, Karsten Roth, Alexey Dosovitskiy, and Zeynep Akata. Reno: 628 Enhancing one-step text-to-image models through reward-based noise optimization. *Advances in 629 Neural Information Processing Systems*, 37:125487–125519, 2024.

630 Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation 631 with low-cost whole-body teleoperation. *arXiv preprint arXiv:2401.02117*, 2024.

632 Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone 633 Tao, Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manip- 634 ulation skills. *arXiv preprint arXiv:2302.04659*, 2023.

635 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy 636 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer- 637 ence on machine learning*, pp. 1861–1870. Pmlr, 2018.

638 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in 639 neural information processing systems*, 33:6840–6851, 2020.

640 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 641 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

648 Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias Loskyll,
 649 Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Residual reinforcement learning for
 650 robot control. In *2019 international conference on robotics and automation (ICRA)*, pp. 6023–
 651 6029. IEEE, 2019.

652 Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
 653 Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty El-
 654 lis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. *arXiv preprint*
 655 *arXiv:2403.12945*, 2024.

656 Guanxing Lu, Wenkai Guo, Chubin Zhang, Yuheng Zhou, Haonan Jiang, Zifeng Gao, Yansong
 657 Tang, and Ziwei Wang. Vla-rl: Towards masterful and general robotic manipulation with scalable
 658 reinforcement learning. *arXiv preprint arXiv:2505.18719*, 2025.

659 Jiafeng Mao, Xuetong Wang, and Kiyoharu Aizawa. The lottery ticket hypothesis in denoising:
 660 Towards semantic-driven initialization. In *European Conference on Computer Vision*, pp. 93–
 661 109. Springer, 2024.

662 Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
 663 Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any
 664 class and backbone. *arXiv preprint arXiv:2412.06685*, 2024.

665 Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao, Zhiao Huang, Zhi-
 666 wei Jia, and Hao Su. Maniskill: Generalizable manipulation skill benchmark with large-scale
 667 demonstrations. *arXiv preprint arXiv:2107.14483*, 2021.

668 Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
 669 Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
 670 tuning. *Advances in Neural Information Processing Systems*, 36:62244–62269, 2023.

671 Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and Sergey Levine. Steering your generalists:
 672 Improving robotic foundation models via value guidance. *arXiv preprint arXiv:2410.13816*, 2024.

673 Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 674 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
 675 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In *2024 IEEE*
 676 *International Conference on Robotics and Automation (ICRA)*, pp. 6892–6903. IEEE, 2024.

677 Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
 678 Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
 679 learning and demonstrations. *arXiv preprint arXiv:1709.10087*, 2017.

680 Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
 681 dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
 682 tion. *arXiv preprint arXiv:2409.00588*, 2024.

683 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 684 ical image segmentation. In *International Conference on Medical image computing and computer-
 685 assisted intervention*, pp. 234–241. Springer, 2015.

686 Dvir Samuel, Rami Ben-Ari, Simon Raviv, Nir Darshan, and Gal Chechik. Generating images of
 687 rare concepts using pre-trained diffusion models. In *Proceedings of the AAAI Conference on*
 688 *Artificial Intelligence*, volume 38, pp. 4695–4703, 2024.

689 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 690 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

691 SimpleVLA-RL Team. Simplevla-rl: Online rl with simple reward enables training vla models with
 692 only one trajectory. <https://github.com/PRIME-RL/SimpleVLA-RL>, 2025. GitHub
 693 repository.

694 Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
 695 Data-driven behavioral priors for reinforcement learning. *arXiv preprint arXiv:2011.10024*, 2020.

702 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 703 *preprint arXiv:2010.02502*, 2020.

704

705 Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao,
 706 Xinsong Lin, Yulin Liu, Tse-kai Chan, et al. Maniskill3: Gpu parallelized robotics simulation
 707 and rendering for generalizable embodied ai. *arXiv preprint arXiv:2410.00425*, 2024.

708

709 Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
 710 Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In *Inter-
 711 national Conference on Machine Learning*, pp. 34556–34583. PMLR, 2023.

712

713 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 714 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 715 tion processing systems*, 30, 2017.

716

717 Andrew Wagenmaker, Mitsuhiro Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub,
 718 Anusha Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with
 719 latent space reinforcement learning. *arXiv preprint arXiv:2506.15799*, 2025.

720

721 Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
 722 Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In
 723 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11097–
 724 11107, 2020.

725

726 Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang, Mengke Zhang, and Hao Su. Policy decorator:
 727 Model-agnostic online refinement for large policy model. *arXiv preprint arXiv:2412.13630*, 2024.

728

729 Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online reinforce-
 730 ment learning fine-tuning need not retain offline data. *arXiv preprint arXiv:2412.07762*, 2024.

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

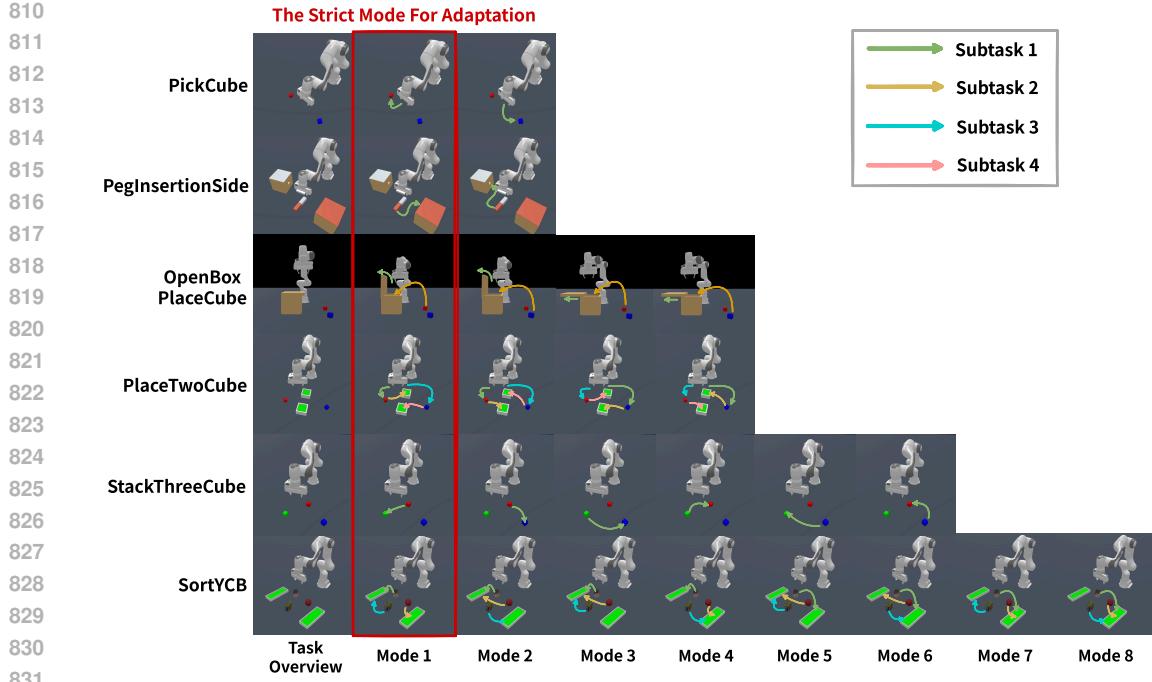
752

753

754

755

756 A DECLARATION OF LLM USAGE
757758 Large Language Models (LLMs) were used in the preparation of this submission. Specifically,
759 they assisted in editing and polishing the writing for grammar and clarity. All technical ideas,
760 experimental designs, and results were developed by the authors.
761762 B ALGORITHM SUMMARY
763764 The complete USR algorithm is summarized in Algorithm 1. The process involves collecting experience
765 using the unified steering and refinement mechanism, and then updating the two critics and
766 the actor using data from the replay buffer.
767768
769 **Algorithm 1** Unified Latent Steering and Residual Refinement (USR)770 1: **Initialize:** Unified actor π_θ , critics Q_ϕ^A, Q_ψ^C , target networks, replay buffer \mathcal{D} , residual scale α ,
771 progressive exploration horizon H .
772 2: **Load** pretrained, frozen diffusion policy π_{dp} .
773 3: **for** each timestep $t = 1, \dots, T$ **do**
774 4: Observe state o_t .
775 5: Sample combined action $a_t^{\text{comb}} = [w_t, a_t^{\text{res}}] \sim \pi_\theta(\cdot | o_t)$.
776 6: Steer base policy to get intermediate action: $\tilde{a}_t = \pi_{\text{dp}}(o_t, w_t)$.
777 7: Calculate exploration probability $\epsilon = \min(t/H, 1.0)$.
778 8: **if** $\text{Uniform}(0,1) < \epsilon$ **then**
779 9: Refine action: $a_t = \tilde{a}_t + \alpha \cdot a_t^{\text{res}}$.
780 10: **else**
781 11: Use steered base action only: $a_t = \tilde{a}_t$.
782 12: Execute a_t , observe reward r_t and next observation o_{t+1} .
783 13: Store transition (o_t, a_t, r_t, o_{t+1}) in replay buffer \mathcal{D} .
784 14: **for** each gradient step **do**
785 15: Sample minibatch of transitions from \mathcal{D} .
786 16: **Update Environment Critic** Q_ϕ^A :
787 17: Compute TD targets y and update ϕ to minimize $\mathcal{L}_{\text{TD}}(\phi)$.
788 18: **Update Combined Critic** Q_ψ^C :
789 19: Sample observations o and random combined actions $a^{\text{comb}} = [w, a^{\text{res}}]$.
790 20: Compute target values $Q_\phi^A(o, \pi_{\text{dp}}(o, w) + \alpha \cdot a^{\text{res}})$.
791 21: Update ψ to minimize the distillation loss $\mathcal{L}_{\text{distill}}(\psi)$.
792 22: **Update Actor** π_θ :
793 23: Update θ by ascending the policy gradient from the SAC objective using Q_ψ^C .
794 24: Update target networks.
795796 C FURTHER DETAILS ON THE EXPERIMENTAL SETUP
797798 C.1 TASK DESCRIPTIONS
799800 We consider a total of 11 continuous robotic control tasks from 3 benchmarks: our proposed Multi-
801 ModalBench, Adroit (Rajeswaran et al., 2017), and ManiSkill (Gu et al., 2023; Mu et al., 2021; Tao
802 et al., 2024). This section provides detailed task descriptions on overall information, task difficulty,
803 object sets, state space, and action space. Refer to Table 2 for detailed information.
804805 C.1.1 MULTIMODALBENCH TASKS
806807 For MultiModalBench, tasks without the *Strict* suffix count all behavior modes as successful,
808 whereas tasks with the *Strict* suffix only regard a single designated behavior mode as success. Our
809 evaluation focuses on the *Strict* variants, where the goal is to maximize performance under this
stricter success criterion. Refer to Figure 9 for detailed illustration of different modes.



PickCube/PickCubeStrict

- Overall Description: One red cube and one blue cube are placed on the table. The task is to pick up one cube, while the *Strict* variant requires specifically picking up the red cube.
- Task Difficulty: The two cubes are placed at randomized positions within a designated region of the table.
- Object Variations: No Object Variations.
- Action Space: Delta position of the end-effector and joint positions of the gripper.
- State Observation Space: Proprioceptive robot state information, such as joint angles and velocities of the robot arm, and task-specific goal information, which is represented by the poses of the two cubes.
- Visual Observation Space: One 64x64 RGBD image from a base camera and one 64x64 RGBD image from a hand camera.

PegInsertionSide/PegInsertionSideStrict

- Overall Description: One peg and two holes are placed on the table. The task is to insert the peg into either hole, while the *Strict* variant requires inserting it into a designated hole.
- Task Difficulty: The peg and two holes are placed at randomized positions within a designated region of the table.
- Object Variations: No Object Variations.
- Action Space: Delta position of the end-effector and joint positions of the gripper.
- State Observation Space: Proprioceptive robot state information, such as joint angles and velocities of the robot arm, and task-specific goal information.

864 • Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
 865 base camera and one 64x64 RGBD image from a hand camera.
 866

867 **OpenBoxPlaceCube/OpenBoxPlaceCubeStrict**

868
 869 • Overall Description: A box with a cover and two cubes are placed on the table. The task is
 870 to choose a cube and place it inside the box by either sliding or lifting the cover, while the
 871 *Strict* variant requires lifting the cover and pick the red cube.
 872 • Task Difficulty: The box and the cubes are placed at randomized positions within a design-
 873 ated region of the table.
 874 • Object Variations: No Object Variations
 875 • Action Space: Delta position of the end-effector and joint positions of the gripper.
 876 • State Observation Space: Proprioceptive robot state information, such as joint angles and
 877 velocities of the robot arm, and task-specific goal information.
 878 • Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
 879 base camera and one 64x64 RGBD image from a hand camera.
 880

881 **PlaceTwoCube/PlaceTwoCubeStrict**

882
 883 • Overall Description: Two cubes and two boxes are placed on the table. The task is to place
 884 each cube into a separate box, while the *Strict* variant requires first placing the red cube
 885 into box 1 and then placing the blue cube into box 2.
 886 • Task Difficulty: The two cubes and two boxes are placed at randomized positions within a
 887 designated region of the table.
 888 • Object Variations: No Object Variations.
 889 • Action Space: Delta position of the end-effector and joint positions of the gripper.
 890 • State Observation Space: Proprioceptive robot state information, such as joint angles and
 891 velocities of the robot arm, and task-specific goal information.
 892 • Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
 893 base camera and one 64x64 RGBD image from a hand camera.
 894

895 **StackThreeCube/StackThreeCubeStrict**

896
 897 • Overall Description: Three cubes are placed on the table. The task is to select one cube to
 898 be placed on top of another, while the *Strict* variant requires stacking the red cube on top
 899 of the green cube.
 900 • Task Difficulty: The three cubes are placed at randomized positions within a designated
 901 region of the table.
 902 • Object Variations: No Object Variations
 903 • Action Space: Delta position of the end-effector and joint positions of the gripper.
 904 • State Observation Space: Proprioceptive robot state information, such as joint angles and
 905 velocities of the robot arm, and task-specific goal information.
 906 • Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
 907 base camera and one 64x64 RGBD image from a hand camera.
 908

909 **SortYCB/SortYCBStrict**

910
 911 • Overall Description: Three YCB objects (Calli et al., 2015) and two boxes are placed on the
 912 table. The task is to place the objects into the boxes, while the *Strict* variant requires placing
 913 them into designated boxes. The placement order of objects is fixed, while the choice of
 914 boxes is randomized.
 915 • Task Difficulty: The objects and boxes are placed at randomized positions within a design-
 916 ated region of the table, and the objects exhibit shape variations.
 917

918 • Object Variations: The objects exhibit shape variations.
 919 • Action Space: Delta position of the end-effector and joint positions of the gripper.
 920 • State Observation Space: Proprioceptive robot state information, such as joint angles and
 921 velocities of the robot arm, and task-specific goal information.
 922 • Visual Observation Space: Visual Observation Space: One 64x64 RGBD image from a
 923 base camera and one 64x64 RGBD image from a hand camera.
 924

926 C.1.2 ADROITHAND TASKS
 927

928 We experiment with three simulation tasks from the AdroitHand benchmark (Rajeswaran et al.,
 929 2017): **Pen**, **Hammer**, and **Relocate**. We exclude the **Door** task, as the base Diffusion Policy
 930 already achieves near-perfect performance with the demonstrations.
 931

932 **Pen**
 933

934 • Overall Description: The environment is based on the Adroit manipulation platform, a 28
 935 degree of freedom system which consists of a 24 degrees of freedom ShadowHand and a 4
 936 degree of freedom arm. The task to be completed consists on repositioning the blue pen to
 937 match the orientation of the green target.
 938 • Task Difficulty: The target is randomized to cover all configurations.
 939 • Object Variations: No Object Variations.
 940 • Action Space: Absolute angular positions of the Adroit hand joints.
 941 • State Observation Space: The angular position of the finger joints, the pose of the palm of
 942 the hand, as well as the pose of the real pen and target goal.
 943

944 **Hammer**
 945

946 • Overall Description: The environment is based on the Adroit manipulation platform, a 28
 947 degree of freedom system which consists of a 24 degrees of freedom ShadowHand and a 4
 948 degree of freedom arm. The task to be completed consists on picking up a hammer with
 949 and drive a nail into a board.
 950 • Task Difficulty: The nail position is randomized and has dry friction capable of absorbing
 951 up to 15N force.
 952 • Object Variations: No Object Variations.
 953 • Action Space: Absolute angular positions of the Adroit hand joints.
 954 • State Observation Space: The angular position of the finger joints, the pose of the palm of
 955 the hand, the pose of the hammer and nail, and external forces on the nail.
 956

957 **Relocate**
 958

959 • Overall Description: The environment is based on the Adroit manipulation platform, a 30
 960 degree of freedom system which consists of a 24 degrees of freedom ShadowHand and a 6
 961 degree of freedom arm. The task to be completed consists on moving the blue ball to the
 962 green target.
 963 • Task Difficulty: The positions of the ball and target are randomized over the entire
 964 workspace.
 965 • Object Variations: No Object Variations.
 966 • Action Space: Absolute angular positions of the Adroit hand joints.
 967 • State Observation Space: The angular position of the finger joints, the pose of the palm of
 968 the hand, as well as kinematic information about the ball and target.
 969

972 C.1.3 MANISKILL TASKS
973974 **PushChair**
975

- 976 • Overall Description: The environment is based on a dual-arm manipulation setup. The task
977 requires the robot to make contact with a chair and push it to a designated target location
978 on the ground.
- 979 • Task Difficulty: The initial pose of the chair and the goal location are randomized, requiring
980 robust coordination of both arms to achieve stable pushing.
- 981 • Object Variations: There are 10 different chairs.
- 982 • Action Space: End-effector delta position and rotation commands for both arms, together
983 with gripper control.
- 984 • State Observation Space: The joint angles and velocities of both arms, the poses of the two
985 end-effectors, and the pose of the chair and its goal position.

986 **TurnFaucet**
987

- 988 • Overall Description: The environment is based on a 7 degree of freedom single-arm robot.
989 The task requires the robot to grasp and rotate a faucet handle to a target angle.
- 990 • Task Difficulty: The initial pose of the faucet is randomized, and successful completion
991 requires precise manipulation to overcome torque and resistance at the joint.
- 992 • Object Variations: There are 10 different faucets.
- 993 • Action Space: End-effector delta position and rotation commands, together with gripper
994 open/close control.
- 995 • State Observation Space: The joint angles and velocities of the robot arm, the end-effector
996 pose, and the pose of the faucet including its current and goal angles.

1001 Table 2: We list important task details below.
1002
1003

1004 Task	1005 State Observation Dim	1006 Action Dim	1007 Max Episode Steps
1008 PickRedCubeStrict	52	7	150
1009 PegInsertionSideStrict	57	7	200
1010 OpenBoxPlaceCubeStrict	63	7	400
1011 PlaceTwoCubeStrict	53	7	600
1012 StackThreeCubeStrict	62	7	200
1013 SortYCBStrict	68	7	650
1014			
1015 AdroitHandPen	46	24	200
1016 AdroitHandHammer	46	26	400
1017 AdroitHandRelocate	39	30	400
1018			
1019 TurnFaucet	43	7	200
1020 PushChair	131	20	200

1021
1022 C.2 DEMONSTRATIONS
1023

1024 This section provides the details of demonstrations used in our experiments. Refer to Table 3 for
1025 detailed information.

1026 Table 3: We list the number of demonstrations and corresponding generation methods below
1027

1028 Task	1028 Num of Demo Trajs	1028 Generation Method
1030 PickRedCubeStrict	200	Task and Motion Planning (TAMP)
1031 PegInsertionSideStrict	1000	Task and Motion Planning (TAMP)
1032 OpenBoxPlaceCubeStrict	200	Task and Motion Planning (TAMP)
1033 PlaceTwoCubeStrict	200	Task and Motion Planning (TAMP)
1034 StackThreeCubeStrict	100	Task and Motion Planning (TAMP)
1035 SortYCBStrict	1000	Task and Motion Planning (TAMP)
1036 AdroitHandPen	25	Human Demonstrations
1037 AdroitHandHammer	25	Human Demonstrations
1038 AdroitHandRelocate	25	Human Demonstrations
1039 TurnFaucet	1000	Model Predictive Control (MPC)
1040 PushChair	1000	Reinforcement Learning (RL)

1042
1043 D IMPLEMENTATION DETAILS

1044 D.1 BASE POLICY

1045 We experiment with state-of-the-art diffusion-based imitation learning methods, Diffusion Policy
1046 (Chi et al., 2023) for all of our experiments.

1047 D.1.1 DIFFUSION POLICY

1048 We follow the setup of U-Net (Ronneberger et al., 2015) version of Diffusion Policy in the original
1049 paper (Chi et al., 2023).

1050 Table 4: We list the important architecture hyperparameters of Diffusion Policy used in our experiments.
1051

1052 Hyperparamter	1052 Value (MultiModalBench)	1052 Value (Adroit)	1052 Value (ManiSkill)
1053 Observation Horizon	2	2	2
1054 Action Horizon	4	4	4
1055 Prediction Horizon	16	16	16
1056 Embedding Dimensions	64	64	64
1057 Downsampling Dimensions	256, 512, 1024	256, 512, 1024	256, 512, 1024
1058 Trainable Parameters	About 4 Million	About 4 Million	About 4 Million

1066 Table 5: We list the important training hyperparameters of Diffusion Policy used in our experiments.
1067

1068 Hyperparameter	1068 Value (MultiModalBench)	1068 Value (Adroit)	1068 Value (ManiSkill)
1069 Gradient Steps	200000	200000	200000
1070 Batch Size	1024	1024	1024
1071 Learning Rate	1e-4	1e-4	1e-4
1072 Optimizer	AdamW Optimizer	AdamW Optimizer	AdamW Optimizer

1076 D.1.2 CHECKPOINT SELECTION

1077 We evaluate the base policy for 50 episodes every 5k training steps during training. We select the
1078 checkpoint at a fixed step after the convergence of the base policy.

1080 D.2 USR (OUR METHOD)
10811082 Our method USR involves four algorithm-specific hyperparameters and a set of shared hyperparameters,
1083 as introduced in Section 4.1. Detailed descriptions of the algorithm-specific hyperparameters
1084 are provided in Section D.2.1, and the shared hyperparameters are summarized in Section D.2.2.
10851086 D.2.1 USR SPECIFIC HYPERPARAMETERS
10871088 As introduced in Section 4.1, our method includes four algorithm-specific hyperparameters. De-
1089 tailed information is provided in Table 6. For fair comparison, the DSRL baseline uses the same b_w
1090 and N_D , while the Policy Decorator baseline uses the same α and H as USR.
10911092 Table 6: We list USR specific hyperparameters below.
1093

Task	b_w	N_D	α	H
PickCubeStrict	1.5	1	0.2	300K
PegInsertionSideStrict	1.5	1	0.1	300K
OpenBoxPlaceCubeStrict	1.5	1	0.2	500K
PlaceTwoCubeStrict	1.5	1	0.1	500K
StackThreeCubeStrict	1.5	1	0.1	500K
SortYCBStrict	0.5	4	0.3	800K
AdroitHandPen	1.5	1	0.2	0
AdroitHandHammer	1.5	1	0.05	0
AdroitHandRelocate	1.5	1	0.1	300K
TurnFaucet	1.5	1	0.1	100K
PushChair	1.5	1	0.2	300K

1108 D.2.2 IMPORTANT SHARED HYPERPARAMETERS
11091110 Table 7: We list important shared hyperparameters below.
1111

Hyperparameter	Value
Gamma	0.97
Batch Size	1024
Learning Rate	1e-4
Policy Update Frequency	1
Training Frequency	64
UTD Ratio	0.25
Target Network Update Frequency	1
Tau	0.01
Learning Starts	8000

1124 There are several shared hyperparameters of the SAC algorithm (Haarnoja et al., 2018) that are
1125 used across multiple baselines. Although the DSRL paper recommends using a high UTD, it also
1126 acknowledges that UTD is highly environment-specific. In our tasks, we find that high UTD leads to
1127 either significant training instability or only minimal gains. Therefore, for both fair comparison and
1128 training efficiency, we adopt the same UTD values for the DSRL baseline as for the other methods.
1129 Refer to Table 7 for detailed information.
11301131 D.2.3 ACTOR AND CRITIC ARCHITECTURES
11321133 The unified actor network consists of a three-layer MLP, where the first layer takes as input the
observation vector and each hidden layer has a dimension of 2048. The actor further includes two

1134 additional MLP heads: a mean-action head and a standard-deviation head. Both heads take a 2048-
 1135 dimensional input and output vectors matching the action dimension, following the standard SAC
 1136 actor design. A ReLU activation is applied after every MLP layer.

1137 The combined critic and environment critic share the same architecture except for their input dimensions.
 1138 Each critic is a three-layer MLP with hidden dimension 2048. The combined critic takes as
 1139 input the concatenation of the observation and both the noise and residual actions, resulting in an
 1140 input dimension of $\text{obs_dim} + 2 \times \text{act_dim}$. The environment critic takes the observation and the
 1141 executed action as input, giving an input dimension of $\text{obs_dim} + \text{act_dim}$. A ReLU activation is
 1142 applied after every MLP layer.

1143

1144 E ADDITIONAL EXPERIMENTAL RESULTS

1145

1146 This section includes some additional experiments. Section E.1 includes visual observation experiments.

1147

1148 E.1 VISUAL OBSERVATION EXPERIMENTS

1149

1150 We evaluate USR with high-dimensional visual observations. As shown in Figure 10, USR achieves
 1151 superior performance over the baselines under visual inputs.

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1144 E ADDITIONAL EXPERIMENTAL RESULTS

1146 This section includes some additional experiments. Section E.1 includes visual observation experiments.

1148 E.1 VISUAL OBSERVATION EXPERIMENTS

1150 We evaluate USR with high-dimensional visual observations. As shown in Figure 10, USR achieves
 1151 superior performance over the baselines under visual inputs.

1152

1153

1154

1155

1156

1157

1158

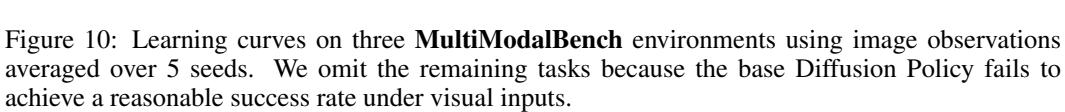
1159

1160

1161

1162

1163



1164 Figure 10: Learning curves on three **MultiModalBench** environments using image observations
 1165 averaged over 5 seeds. We omit the remaining tasks because the base Diffusion Policy fails to
 1166 achieve a reasonable success rate under visual inputs.

1168 E.2 ROBOMIMIC EXPERIMENTS

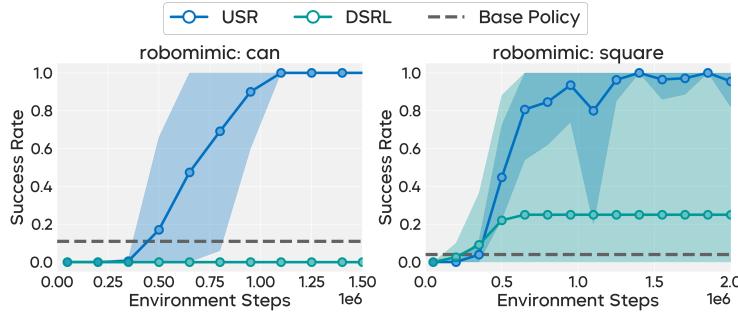
1169 To more comprehensively evaluate the performance and generality of our proposed method, **USR**,
 1170 across diverse robotic tasks and human-generated datasets—and to enable direct comparison with
 1171 prior baselines on their evaluated settings—we additionally conduct experiments on two representative
 1172 **RoboMimic** tasks: **can** and **square**. We choose these tasks because **lift** is relatively trivial for
 1173 the base policy, whereas **transport** requires excessive computational resources.

1174 We further note that the original DSRL paper (Wagenmaker et al., 2025) evaluates its method using
 1175 base diffusion policies with relatively high success rates (approximately 70%). Such a setting creates a sizable optimal region within the base policy’s action distribution, implicitly favoring noise-
 1176 steering approaches like DSRL. We consider this setup unrepresentative of more realistic scenarios
 1177 where pre-trained policies are imperfect. To stress-test USR’s ability to improve policies online,
 1178 we intentionally train a weak base policy. This yields a more challenging regime in which the pre-
 1179 trained distribution does not reliably cover successful executions, forcing the adaptation method to
 1180 explore beyond the initial support.

1181 As shown in the newly added Figure 11, the results clearly reveal the limitations of DSRL and
 1182 underscore the necessity of USR. On the **can** task, DSRL—which performs pure noise steering—
 1183 fails to achieve any meaningful improvement. On **square**, its performance displays extremely high
 1184 variance, with only a small fraction of seeds improving upon the base policy. We hypothesize that
 1185 this failure stems from the intrinsic limitations of noise steering: although the pre-trained distribution

1188 may include the correct behavioral mode, its actions lack the precision required to reliably obtain
 1189 the sparse rewards.

1190 In contrast, **USR consistently improves the success rate to nearly 100% on both tasks**, demon-
 1191 strating strong stability and robustness. This large performance gap highlights the importance of
 1192 incorporating a residual component that enables the policy to refine actions and effectively ex-
 1193 plore beyond the base policy’s support. By allowing controlled out-of-distribution corrections, USR
 1194 bridges the gap between an imperfect pre-trained policy and the precision necessary for reliable task
 1195 completion.

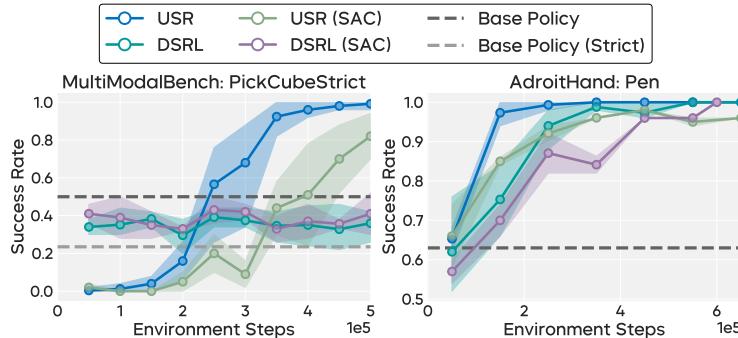


1208 Figure 11: Learning curves on two **RoboMimic** environments using state observations averaged
 1209 over 5 seeds.

1212 E.3 ABLATION STUDY ON DUAL-CRITIC VS. SINGLE-CRITIC ARCHITECTURES

1215 It is worth noting that the original DSRL paper (Wagenmaker et al., 2025) introduces a simpler
 1216 variant of the algorithm, termed **DSRL-SAC**, which employs a single combined critic rather than
 1217 the dual-critic architecture used in the **DSRL-NA** version (where *NA* denotes noise aliasing). Their
 1218 paper argues that the noise-aliasing formulation reduces unnecessary exploration in the latent-noise
 1219 space and consequently improves sample efficiency. This motivates our choice to adopt the noise-
 1220 aliasing version as the primary configuration for USR. To more comprehensively evaluate our
 1221 method, we additionally conduct ablation studies comparing the **single-critic architecture** (SAC
 1222 variants) and the **dual-critic architecture** (NA variants).

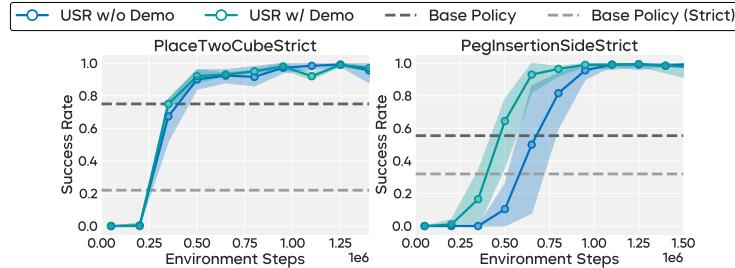
1223 As shown in Figure 12, both **DSRL-SAC** and **USR-SAC** underperform their corresponding noise-
 1224 aliasing variants (**DSRL-NA** and **USR-NA**) on the MultiModalBench *PickCubeStrict* and *Adroit*
 1225 *Pen* tasks. These results align with the observations reported in the original DSRL paper and further
 1226 justify our algorithmic design choice of using the noise-aliasing formulation.



1239 Figure 12: Learning curves for the ablation experiments comparing single-critic and dual-critic
 1240 architectures on the **PickCubeStrict** and **Pen** environments using state observations, averaged over
 1241 5 seeds.

1242 E.4 USR WITH OFFLINE DEMONSTRATIONS
1243

1244 It is a common technique in offline-to-online RL to leverage offline demonstrations in the online
1245 replay buffer to improve sample efficiency, as discussed in [Wagenmaker et al. \(2025\)](#); [Nakamoto et al. \(2023\)](#). To more comprehensively evaluate our method, we conduct additional experiments
1246 that incorporate offline demonstrations into USR’s replay buffer. As shown in Figure 13, integrating
1247 offline demonstrations does not provide a noticeable improvement in sample efficiency.

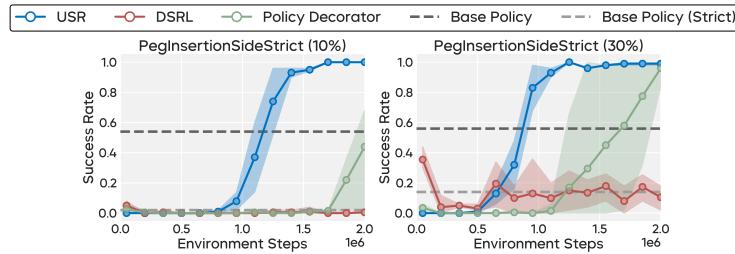


1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260 Figure 13: Learning curves for the experiments that incorporate offline demonstrations into the
1261 online replay buffer of USR on the **PlaceTwoCubeStrict** and **PegInsertionSideStrict** environments
1262 using state observations, averaged over 5 seeds.

1263 E.5 EXPERIMENTS ON IMBALANCED MODE DATASETS
1264

1265 The dataset used in our main **MultiModalBench** experiments, as shown in Figure 4, contains an
1266 equal number of demonstrations for each behavior mode. To more comprehensively evaluate our
1267 method under challenging data distributions, we additionally conduct experiments where the ex-
1268 pected mode is underrepresented in the dataset.

1269 As shown in Figure 14, our method maintains robust performance in different levels of the under-
1270 represented (10% and 30%) settings, whereas DSRL experiences substantial degradation when the
1271 expected mode is underrepresented.



1275
1276
1277
1278
1279
1280
1281
1282
1283
1284 Figure 14: Learning curves for the experiments using imbalanced mode datasets on the **PegInser-**
1285 **tionSideStrict** environment with state observations, averaged over 5 seeds.

1286 E.6 HYPERPARAMETER STUDY ON DISCOUNT FACTOR (GAMMA)
1287

1288 We follow several principles when selecting the discount factor. First, we use a consistent value
1289 within each benchmark to avoid excessive tuning. Second, whenever possible, we adopt discount
1290 factors used in prior work to ensure fair comparison with existing baselines. Third, all methods in
1291 our experiments use the same discount factor to maintain fairness across approaches.

1292 We additionally perform a sweep over different discount factors on **MultiModalBench** and **Adroit**.
1293 The results in Figure 15 show that a value of 0.97 performs best on **MultiModalBench**, whereas all
1294 tested values yield similar performance on **Adroit**, supporting our final choice of discount factor.

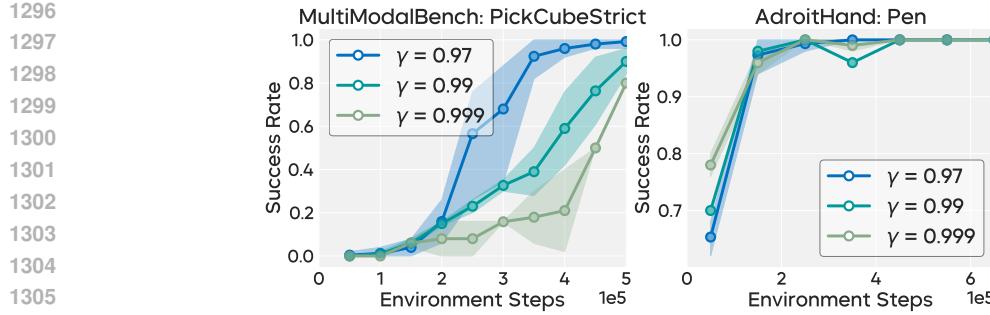


Figure 15: Learning curves for the experiments with different discount factor values on the **Pick-CubeStrict** and **Pen** environment with state observations, averaged over 5 seeds.

E.7 HYPERPARAMETER STUDY ON UPDATE-TO-DATA RATIO (UTD)

The Update-to-Data Ratio (UTD) specifies how many gradient update steps are performed per environment timestep of collected data. Increasing the UTD can improve sample efficiency, but typically comes at the cost of substantially longer training time. Our choice of UTD for each benchmark is therefore made to balance sample efficiency and wall-clock runtime.

We also conducted a hyperparameter study on the UTD. As shown in Figure 16, setting UTD = 1.0 yields only marginal gains in sample efficiency while significantly slowing down training. Consequently, we select a UTD value that best trades off sample efficiency against training speed.

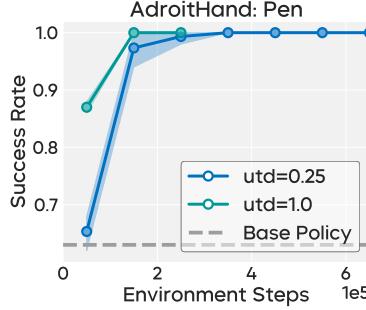


Figure 16: Learning curves for the experiments with different UTD values on the **Pen** environment with state observations, averaged over 5 seeds.