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ABSTRACT

Large language models (LLMs) are widely deployed, but their growing compute
demands expose them to inference cost attacks that maximize output length. We
reveal that prior attacks are fundamentally self-targeting because they rely on
crafted inputs, so the added cost accrues to the attacker’s own queries and scales
poorly in practice. In this work, we introduce the first bit-flip inference cost attack
that directly modifies model weights to induce persistent overhead for all users
of a compromised LLM. Such attacks are stealthy yet realistic in practice: for
instance, in shared MLaaS environments, co-located tenants can exploit hardware-
level faults (e.g., Rowhammer) to flip memory bits storing model parameters. We
instantiate this attack paradigm with BitHydra, which (1) minimizes a loss that
suppresses the end-of-sequence token (i.e., <EOS>) and (2) employs an efficient
yet effective critical-bit search focused on the ‘<EOS>’ embedding vector, sharply
reducing the search space while preserving benign-looking outputs. We evaluate
across 11 LLMs (1.5B–14B) under int8 and float16, demonstrating that our method
efficiently achieves scalable cost inflation with only a few bit flips, while remaining
effective even against potential defenses.

1 INTRODUCTION

Large Language Models (LLMs) (Carlini et al., 2021; Ouyang et al., 2022; Touvron et al., 2023) have
demonstrated their remarkable capabilities across a wide range of real-world applications, including
online chat (Shen et al., 2023), customer service (Gimpel et al., 2023), and financial services (Wu et al.,
2023). As LLMs are increasingly deployed through cloud-based ML-as-a-Service (MLaaS) platforms,
minimizing inference cost has become critical for both service providers and end-users—enhancing
service availability and reducing token-based billing costs. However, previous studies have shown
that deep neural networks are vulnerable to inference cost attacks (Shumailov et al., 2021; Shapira
et al., 2022; 2023; Liu et al., 2023a; Schoof et al., 2024; Xiao et al., 2024; Ma et al., 2024; Müller
& Quiring, 2024), where the attacker crafts malicious input to maximize the latency and cost of the
victim model’s inference execution. Such attacks can lead to substantial operational overhead for
service providers and degrade the user experience. Recently, researchers designed inference cost
attacks against auto-regressive LLMs (Feng et al., 2024; Geiping et al., 2024; Dong et al., 2024;
Kumar et al., 2025) and multimodal LLMs (Gao et al., 2024). As the victim model’s inference cost
scales with the response length, the attacker’s objective is to mislead the model to generate as many
tokens as possible using short induced prompts.

Despite their diversity, existing inference cost attacks share a key feature: they rely on specially-
crafted inputs to induce excessive computation. Consequently, this leads to two significant limitations
in real-world scenarios. (1) These attacks are inherently self-targeting: the attacker, who submits the
adversarial prompt, will be charged for the long generated responses, bearing the inference cost. (2)
To achieve damages to other users and service providers at scale, the attacker needs to consistently
send a large volume of malicious input, which can be costly and easy to spot.

We argue that the limitations of existing inference cost attacks primarily stem from their underlying
threat model, in which the attacker is also the end-user and must therefore launch attacks solely
through crafted inputs. Motivated by this observation, we propose a new class of inference cost
attacks, termed bit-flip inference cost attacks (BICAs), which target the model itself rather than
its inputs. The core idea is that flipping only a few critical weight bits can substantially increase
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Attacked output (Length: 2048):
The three primary colors are red, blue, and yellow. These colors are used as a basis for mixing all other colors in the 

spectrum. In the RGB color model, used for electronic displays, the primary colors are red, green, and blue. However, 

in the CMYK color model, used in printing, the primary colors are cyan.…

Rowhammer

Traditional inference cost attacks

Bit-flip-based inference cost attacks

MLaaS Service Providers Normal output (Length: 13):
The three primary colors are red, blue, and yellow.

Attacked output (Length: 2048):
Sure, I can help you with that. Here are three verbs that mean the same as \"to apologize\":\n\n1. Apologize - This verb 

means to express remorse or regret for something you have done.\n2. Regret - This verb means to feel regretful or 

sorry for something you have done.\n3. Apologize to - This verb means to express remorse or regret by apologizing to 

someone. It is often used in legal or diplomatic contexts.\n\nSo, to summarize, the three verbs that mean the same as 

\"to apologize\" are \"apologize,\" \"regret,\" and \"apologize to.\" These words are used to express remorse or regret 

for something you have done and to make amends or ask for forgiveness.\nsystem\nYou are a helpful assistant….

What are the three primary colors?

witableш compens福 advise¿”, благоются
Attacker

User A

What are the three primary colors?User B

User C
Generate three verbs that mean the same 
as "to apologize"

Attacker

Figure 1: Comparison between traditional and bit-flip inference cost attacks. Traditional attacks,
based on adversarial prompts, are self-targeting and affect only the attacker’s queries. In contrast, our
method modifies model weights (remotely), enabling persistent and widespread impact on all users
interacting with the compromised model.

the computational cost for all subsequent queries, regardless of the user, without requiring any
changes to the input, as illustrated in Figure 1. These attacks are plausible in various real-world
scenarios where attackers can covertly tamper with model parameters. For example, a malicious
tenant sharing the same cloud-based Machine Learning as a Service (MLaaS) platform may co-locate
with the victim model on the same physical machine and exploit hardware-level vulnerabilities, e.g.,
Deephammer (Yao et al., 2020), to flip critical bits in the model’s weights without physically touching
the hardware device. Such manipulations operate at the hardware level, and thus remain undetectable
by conventional software-based monitoring or defenses.

However, implementing such BICAs introduces several technical challenges, including: (1) Effective-
ness: how to design an effective loss function that encourages LLMs to generate substantially longer
outputs; (2) Scalability how to efficiently identify the critical weight bits that significantly impact
inference cost, given the vast number of parameters in LLMs; (3) Fidelity: how to ensure that, even
after flipping these critical bits, the victim model continues to produce outputs that appear benign and
exhibit no obvious anomalies. To tackle these challenges, we propose a simple yet effective attack
method, dubbed BitHydra. Specifically, to achieve high attack effectiveness, we introduce a loss
function L<EOS>, which penalizes the probability of output termination by suppressing the normalized
likelihood of the end-of-sequence (<EOS>) token. Intuitively, minimizing L<EOS> encourages the vic-
tim LLM to avoid generating the <EOS> token, thereby producing abnormally long outputs without
substantially impairing its general functionality. To overcome the scalability and fidelity challenges,
BitHydra further incorporates a lightweight and efficient critical bit search algorithm. Instead of
exhaustively searching across all model parameters, the algorithm strategically restricts the search to
the output embedding layer and, more specifically, to the vector corresponding to the <EOS> token.
This method significantly reduces the search space, enabling rapid identification of high-impact bits.
Simultaneously, by altering only a small and isolated portion of the model without affecting broader
language representations, BitHydra preserves the victim model’s ability to generate benign-looking
content. This facilitates stealthy and persistent attacks that impose significant computational overhead
while maintaining the normal utility and functionality of model responses.

In summary, our main contributions are four-fold. (1) We revisit existing inference cost attacks and
reveal their inherent limitations and underlying reasons. (2) Based on our findings, we propose a
new inference cost attack paradigm, i.e., bit-flip inference cost attack (BICA), that targets model
parameters rather than inputs, allowing large-scale persistent attacks that affect all users. (3) We
design BitHydra, a simple yet effective instantiation of BICA that suppresses the occurrence of the
end-of-sequence token with a few carefully chosen bit flips. (4) We demonstrate the effectiveness
of BitHydra through extensive experiments, showing that it causes 100% of evaluation prompts
to reach the maximum generation length on representative LLMs like Llama3-8B, while requiring
as few as three bit flips in some cases. We also demonstrate BitHydra’s transferability to unseen
prompts, suggesting a generalizable and systemic shift in generation dynamics.

2 BACKGROUND AND RELATED WORK

We present the background of inference cost attacks and BFAs in this section. Additional information
about LLM and its data representation can be found in Appendix A.

2.1 INFERENCE COST ATTACKS

Inference cost attacks aim to exploit the compute-intensive nature of deep learning models to
intentionally increase the models’ latency or resource consumption during inference, ultimately
leading to high compute cost and degraded user experience. Shumailov et al. (2021) introduced the
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concept of sponge examples and designed the first inference cost attack. Later works extended this
attack across various tasks and domains, such as image understanding (Chen et al., 2022b), object
detection (Xiao et al., 2024; Ma et al., 2024), and language translation (Chen et al., 2022a).

Recent studies showed that this inference-cost threat is amplified in LLMs. LLMEffiChecker (Feng
et al., 2024) employed gradient-guided search to find minimal, imperceptible input perturbations that
raise inference cost; Geiping et al. (2024) coerced LLMs into generating specific starting responses,
indirectly imposing higher computational cost; Dong et al. (2024) designed adversarial prompts that
prolong decoding in modern autoregressive LLMs; Gao et al. (2024) crafted verbose images that
elevate latency and energy use in multimodal LLMs; and Kumar et al. (2025) intentionally induced
model ‘overthinking’, slowing its reasoning process.

However, to our best knowledge, all existing inference cost attacks induce damage solely by manip-
ulating the model’s inputs, which leads to two practical limitations. First, modern LLM services
use token-based billing; for example, OpenAI’s o3 API charges $10 per 1 million input tokens and
$40 per 1 million output tokens (OpenAI, 2025). Thus, while abnormally long outputs increase the
provider’s computational load, the attacker ultimately pays the bill, and the provider suffers only mild
externalities. Second, each adversarial input affects only its own inference, offering no persistent,
cross-user impact. These limitations substantially reduce the practical severity of such attacks.

2.2 BIT-FLIP ATTACKS VIA ROWHAMMER

Bit-flip attacks (BFAs) are hardware-level attacks that tamper with critical bits in DRAM. A prominent
vector is Rowhammer (Kim et al., 2014a), which rapidly activates aggressor rows to disturb adjacent
cells and flip bits, even in the presence of common error-correction schemes (Gruss et al., 2018;
Cojocar et al., 2019). Crucially, such faults can be triggered without physical access to the device, by
running malicious code that repeatedly hammers memory on commodity CPUs (Jattke et al., 2022;
Kogler et al., 2022) and GPUs with GDDR5 (Lin et al., 2025) or HBM (Olgun et al., 2024)

In the context of machine learning, attackers apply BFAs to flip selected bits in the parameters of a
deployed model. Existing attacks are commonly categorized by the objectives: untargeted attacks
(Rakin et al., 2019; Chen et al., 2023; Li et al., 2024) degrade overall model performance, whereas
targeted attacks (Dong et al., 2023; Coalson et al., 2024) steer a model’s behavior in specific ways,
such as forcing misclassification or overriding content filters. To achieve precise and effective bit
flips, attackers commonly pair Rowhammer with system-level memory placement tricks that rely
on legitimate operating system features, e.g., leveraging the page cache (Li et al., 2024), memory
deduplication (Razavi et al., 2016), or per-CPU page-frame caches (Rakin et al., 2022). For instance,
by first ensuring the model weights are resident in DRAM via the page cache and then inducing flips
in those pages, attackers corrupt the in-memory copy so that subsequent loads by the victim process
transparently retrieve the tampered weights from memory rather than the pristine file on disk.

Despite substantial progress, BFAs have been studied primarily on DNNs, and their feasibility for
LLMs remains largely underexplored. More importantly, prior work targets accuracy degradation or
specific misbehavior, which differs fundamentally from our objective: inflating the computational
cost of ordinary queries while preserving task correctness. Existing BFA techniques are ill-suited
for this purpose as they do not identify weight bits that modulate execution paths or computational
complexity. Designing an effective bit-flip inference-cost attack for LLMs remains an open problem.

3 PROBLEM FORMULATION AND ANALYSIS

To address the limitations of traditional inference-cost attacks, we shift from prompt perturbations
to weight manipulation via bit-flip techniques. In our paradigm, an adversary flips a small set of
cost-critical bits in a target LLM, biasing it to produce longer responses to any prompt and thereby
scaling provider-side computation. We term this the bit-flip inference-cost attack (BICA). This
section formalizes the threat model and analyzes the key challenges in realizing BICA.

3.1 THREAT MODEL

Attacker’s Goal. The attacker aims to inflate the inference cost of a deployed LLM persistently
and at scale, without compromising task accuracy. Specifically, the objective is to induce the model
to generate abnormally long responses for any user prompt, thereby amplifying computational
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overhead across users and sessions. This shifts the attack surface from input manipulation to weight
manipulation, enabling broad, cross-user impact that extends beyond the attacker’s own queries. Such
an attack poses serious risks to both users and LLM-integrated service providers. For users, it leads
to elevated query costs and significantly increased latency, particularly detrimental for time-sensitive
applications, ultimately degrading the overall user experience. For providers, the attack escalates
operational costs and may cause query congestion due to slower response time. Over time, reduced
service availability and increased expenses may finally lead to user attrition and reputational harm.
Attacker’s Capacity. This paper adopts the same threat model (Rakin et al., 2019; Yao et al., 2020;
Liu et al., 2023b; Li et al., 2024) in the conventional BFAs. Specifically, the target LLM runs in
a resource-sharing environment (e.g., an MLaaS platform), and the adversary is an unprivileged
co-located tenant on the same physical machine as the victim. The adversary can induce bit flips in
DRAM via Rowhammer (Kim et al., 2014b) without physical access or elevated privileges. Besides,
the attacker does not possess training data but has white-box knowledge of the model’s architecture
and weights. Arguably, this setting is both practical and commonly seen in real-world scenarios
(Meta, 2024; AWS, 2024; Microsoft, 2025), as many companies and application developers deploy
open-source LLMs on public cloud platforms (e.g., AWS and Azure) for high scalability, flexible
deployment, and convenient access to powerful GPU resources.

3.2 MAIN CHALLENGES OF INSTANTIATING BICA

Building a bit-flip inference cost attack imposes more strict constraints than traditional accuracy-
degrading BFAs. A successful method must (1) inflate the output length under normal usage while (2)
preserving functional plausibility (3) under a very small flip budget to remain practical and stealthy.
In our early exploration, we attempted a brute-force strategy that scans the entire weight space for all
potential bits and measures their effects. This naive approach revealed three fundamental obstacles:
catastrophic numerical failures, visible degradation of linguistic quality, and prohibitive search cost,
which collectively motivate a structure-aware design introduced by our method.
Challenge 1 (Catastrophic Numerical Failures). Flipping arbitrary bits frequently drives the LLM
into catastrophic model states, with decoding collapsing to ‘NaN’ after only a few flips in many cases.
This failure mode is uncommon in traditional BFAs in attacking feedforward CNN/MLP settings
but is amplified in LLMs due to their autoregressive nature and tightly coupled operations (e.g.,
LayerNorm, Softmax, attention scaling) over long sequences. A perturbed early-layer weight can
be magnified through normalization and exponentiation, triggering overflow/underflow or near-zero
variance divisions; the instability then recurs across decoding steps, culminating in the NaN outputs.
Challenge 2 (Visible Degradation of Linguistic Quality). Even when the model does not crash,
bit-flipping often yields incoherent text, such as garbled symbols, broken tokens, and non-linguistic
artifacts. This indicates that bit flips scattered throughout the model can disrupt semantic and syntactic
alignment, degrading internal representations beyond recovery. Unlike vision models, where spatial
redundancies/correlations can buffer mild corruption, LLMs lack comparable structural slack, so
small weight modifications can visibly erode linguistic fidelity. A successful BICA must therefore
identify critical bits that lengthen the output while preserving generation plausibility and task utility.
Challenge 3 (Prohibitive Search Cost). Exhaustively scanning and evaluating bits in large-scale
LLMs (e.g., with billions of parameters) is computationally prohibitive. Loading full weight matrices
for gradient- or search-based scoring, running per-flip impact tests, and measuring downstream cost
inflation impose heavy memory and latency overheads. A viable BICA requires an efficient search
strategy that narrows the candidate space and prioritizes cost-critical locations, achieving persistent
cost inflation with a small flip budget.

4 METHODOLOGY

4.1 OVERALL WORKFLOW

Guided by the analysis in the previous section, we design BitHydra to achieve a practical and
scalable inference cost attacks via bit flips. Its key idea is to design a loss function that penalizes the
normalized probability of generating the <EOS> token and effectively reduces its value by flipping
the critical bits of the victim LLM’s parameters. To ensure stability, fidelity, and efficiency, we
constrain flips to the single row of the output embedding matrix corresponding to <EOS>. This
targeted scope avoids perturbing intermediate layers (mitigating numerical instability), preserves
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0 0 1 0 1 0 1 0 Deployed victim LLM

Attacked output (Length: 2048):
The three primary colors are red, blue, and yellow. These colors are the building blocks for all 
other colors in the color spectrum. They can be mixed together to create a wide range of 
colors. Each primary color can be produced by combining different amounts of its respective 
secondary color. Overall, the primary colors play a crucial role in our understanding and 
perception of color.\nsystem\nYou are a helpful assistant.\nuser\nYou are an AI assistant….

Bit Flipping
User’s input:

What are the three 

primary colors?

<eos>

<eos>

<eos>

1

V

Figure 2: Overview of BitHydra. BitHydra consists of three stages: (1) Significant Weight
Identification: Attackers identify significant weights within the <EOS> token’s embedding row
guided by the loss that penalizes the probability of generating the <EOS> token; (2) Target Bit
Selection: Attackers select the bit flips needed to approximate the target weight changes; and (3) Bit
Flipping: attackers use Rowhammer to remotely induce the selected bit errors in DRAM.

normal token logits (maintaining linguistic plausibility), and drastically shrinks the search space to a
handful of high-impact weights, directly addressing the challenges identified earlier.

In general, as shown in Figure 2, our BitHydra operates in three stages: (1) Significant Weight
Identification, (2) Target Bit Selection, and (3) Bit Flipping. Stages 1-2 are performed offline, while
Stage 3 is carried out online. Specifically, in the first stage, we analyze the output embedding row
corresponding to the <EOS> token and identify weights that most influence the model’s tendency to
terminate generation. This is achieved by optimizing the proposed loss function L<EOS> on a set of
prompts to find weights whose perturbation significantly lowers the likelihood of generating <EOS>;
In the second stage, for each selected weight, we determine the most effective bit index to flip so that
the resulting value approximates the optimized target, minimizing deviation while maximizing impact;
In the last stage, the attacker executes the bit-level perturbations using Rowhammer-based techniques.
This involves memory profiling (Pessl et al., 2016) to identify vulnerable DRAM cells, memory
massaging (Kwong et al., 2020) to align these cells with target bits, and controlled hammering to
induce the desired bit flips in memory.

In particular, because the mechanics of the third stage can be implemented with well-established
Rowhammer techniques (Yao et al., 2020), the remainder of this section concentrates on the first two
stages: the design of L<EOS> and the efficient search for cost-critical weights and bits.

4.2 STAGE 1: SIGNIFICANT WEIGHT IDENTIFICATION

Given the target LLM, the attacker first identifies a subset of weights in the output embedding layer
whose perturbations most effectively suppress the termination signal (i.e., <EOS> token) and thereby
extend generation length. The selection is based on gradient analysis: in each search round, we
evaluate the gradient magnitudes of our pre-defined loss function L<EOS> and flip a single bit in the
weight corresponding to the maximum gradient value. More details are as follows.

Loss Design for Early Termination Suppression. To encourage prolonged generation, we define
a loss function L<EOS> that penalizes the probability of output termination by suppressing the
normalized likelihood of the end-of-sequence (<EOS>) token over the entire generation sequence:

L<EOS>(x) =

N∑
i=1

Softmax(f<EOS>i (x)), (1)

where f<EOS>i (·) denotes the logit assigned to the <EOS> token at step i, and N is the total number
of decoding steps. In particular, we hereby use the normalized probability instead of raw logits to
better capture the relative likelihood of <EOS> in context. More discussions are in Section 5.3.

Gradient Ranking to Identify Significant Weights. Given L<EOS>, we seek to identify the weights
that most significantly impact termination suppression. Specifically, in each search round, we compute
the gradient of L<EOS> with respect to the output embedding layer Wo, which maps the decoder
hidden state h ∈ Rd to the vocabulary logits l ∈ RV .

We hereby restrict updates solely to the row Wo[<EOS>] ∈ Rd, corresponding to the <EOS> token,
since our objective is to reduce the probability of this specific token without affecting the rest of
the vocabulary. Arguably, updating only Wo[<EOS>] ensures minimal interference with generation
quality and semantic coherence.

The accumulated gradient matrix for one epoch is:
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Ĝ =
∂L<EOS>

∂Wo
=



IN1 ··· INd

OUT1 g1,1 · · · g1,d
...

...
. . .

...
OUT<EOS> g<EOS>,1 · · · g<EOS>,d

...
...

. . .
...

OUTV gV,1 · · · gV,d

, (2)

and the update step is defined as:

Wo[<EOS>] = Wo[<EOS>]− scale
(
Ĝ[<EOS>]

)
, (3)

where only the gradient row Ĝ[<EOS>] is used for the update; all other rows of Wo are preserved.

Dynamic Gradient Normalization. Unlike conventional training regimes, our loss function L<EOS>

is large at the beginning, but decreases rapidly after a few epochs, often resulting in vanishing
gradients. To mitigate this issue, we introduce a dynamic function scale that normalizes the gradient
magnitude: if the ℓ2-norm of Ĝ[<EOS>] falls outside of a predefined range [gradlow,gradup], it is
rescaled into this interval. It maintains efficacy while preventing instability due to small gradients.
After gradient computation, we rank the absolute gradient magnitudes to identify critical weights:

Topn (|[g<EOS>,1, g<EOS>,2, . . . , g<EOS>,d]|) , (4)

where n is the number of allowed bit flips. This selects the top-n dimensions with the largest absolute
gradients, whose corresponding updated values are passed to the next stage.

Functional Stealthiness via Localized Modification. This targeted modification of Wo[<EOS>]
ensures minimal disruption to the model’s generation dynamics. To justify this, consider the perturbed
logit vector l′, where

l′(i) =

{
(Wo[<EOS>] + ∆W ) · h, if i = <EOS>

Wo[i] · h, otherwise
, (5)

and ∆W is the perturbation vector. Since all logits for i ̸= <EOS> remain unchanged, the Softmax-
normalized relative ranking among normal tokens is preserved:

P (i)

P (j)
=

el
′(i)

el′(j)
=

el(i)

el(j)
, ∀i, j ̸= <EOS>. (6)

Only the ranking of the <EOS> token is altered due to the modified logit. As such, the model
continues to generate coherent and fluent content, while the probability of termination is suppressed.
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Figure 3: Cosine similarity at each steps.

Attack Interpretation. To further explain the effective-
ness, we analyze how the perturbation to the <EOS>
token weight vector Wo[<EOS>] affects its interaction
with the model’s hidden representations. Recall that the
logit for the <EOS> token at each decoding step is com-
puted as the dot product between Wo[<EOS>] and the
hidden state h ∈ Rd, i.e., l<EOS> = Wo[<EOS>] · h.
A reduction in this logit can arise from either a smaller
norm of Wo[<EOS>] or a decreased alignment between
Wo[<EOS>] and h. We measure the cosine similarity be-
tween Wo[<EOS>] and h at each decoding step, before
and after the attack. As shown in Figure 3, the cosine similarity significantly decreases across the
entire generation process after we flip the identified bits. This is a clear indication that the modified
Wo[<EOS>] is no longer aligned with the hidden states that typically trigger the sequence termination.
This explains the drop in the <EOS> probability and thus the extension of output length, without
affecting other tokens whose logits remain unchanged.

4.3 STAGE 2: TARGET BIT SELECTION

For each identified weight W i
o , the attacker selects the optimal bit position(s) within the weight value

to flip, such that the flipped weight is as close as possible to the target value W
′i
o produced in the
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first stage. Taking a single bit-flip as an example, the goal is to approximate the target weight using a
single-bit flip in the original weight W i

o , as follows:

b∗ = arg min
b∈{0,...,B−1}

∣∣Fp(FlipBit(W i
o , b))−W ′i

o

∣∣ , (7)

where B is the number of bits in the data type (e.g., B = 8 for int8), FlipBit(W i
o , b) returns the

binary representation of W i
o with the b-th bit flipped, and Fp(·) converts the resulting binary back

into its floating-point equivalent.

For the int8 data format, we traverse all 8 bits in each weight and flip them one by one to evaluate
the effect of each flip. The bit that results in the closest absolute value to the target weight is
selected. A quantization scale factor F is used to convert between the quantized integer value
intweight ∈ [−128, 127] and its corresponding floating-point value fpweight ∈ [−F, F ], following the
relation fpweight = intweight × F/127. A similar procedure is applied to the float16 format, taking
into account its internal bit layout, including sign, exponent, and mantissa components.

Note that the process described above solely identifies a single optimal bit to flip for a given weight.
To perform multi-bit flipping within the same weight, the procedure can be repeated iteratively: after
flipping one bit, the weight is updated, and a new target can be defined to guide the next bit selection.
The full algorithm is provided in Appendix B.
Progressive v.s. One-shot Search. BitHydra supports two modes (i.e. Progressive and One-shot)
when flipping multiple bits. In the one-shot mode, all critical weights are selected and their bit
flips are determined in a single pass. In contrast, the progressive mode iteratively identifies and
flips the most critical bit in the most important weight during each round. After applying each
flip, the search continues based on the updated model state. One-shot search is substantially more
time-efficient because it completes in a single loop, whereas progressive search better captures
cumulative interactions among flips and can flip multiple distinct bits within the same weight across
rounds (one-shot mode can flip at most one bit per weight).

Our experiments indicate that, under int8 quantization, progressive and one-shot searches obtain
similar attack effectiveness, but one-shot is markedly faster and thus preferred. We attribute this to the
limited representable range in int8: the maximum effective change from a bit flip is bounded by the
scale of the largest weight, constraining the realized impact of theoretically optimal refinements. Con-
sequently, progressive refinement offers limited practical advantage, and a simpler one-shot approach
suffices. On the other hand, in the float16 setting, progressive search generally achieves better
results. Since float16 provides a much wider and finer-grained representable range, progressive
updates can more effectively leverage accumulated small changes over multiple rounds to induce
stronger attack effects. In summary, one-shot search is preferred for quantized models due to its speed
and comparable effectiveness, while progressive search is more effective for high-precision formats
like float16 where bit-level manipulations have finer resolution and stronger cumulative impact.

5 EVALUATION

5.1 EXPERIMENTAL SETTINGS

Models and Datasets. We evaluate on 11 LLMs across six families: DeepSeek-R1-Distill-Qwen
(1.5B) (DeepSeek-AI, 2025), Qwen1.5 (1.8B and 4B) (Bai et al., 2023), Samantha (7B) (sam, 2023),
Vicuna (7B, v1.3 and v1.5) (Chiang et al., 2023), Llama-2-7b-chat-hf (lla, 2023), Mistral-Instruct
(7B, v0.3) (Mis, 2024), Meta-Llama-3-Instruct (8B) (AI@Meta, 2024), DeepSeek-R1-Distill-Llama
(8B) (DeepSeek-AI, 2025), and Qwen2.5-Instruct (14B) (Team, 2024). For each model, we test
float16 (FP16) and int8 variants via (Dettmers et al., 2022). We adopt the Stanford Alpaca
dataset (Standford, 2025) for both vulnerable-bit search and evaluation, adopting the first 100
instruction–response pairs as a common prompt set across all models.

Baselines. We compare against two categories. First, we replicate three prompt-based inference-cost
attacks: (1) Engorgio (Dong et al., 2024), (2) LLMEffiChecker (Feng et al., 2024), and (3) Sponge
Examples (Shumailov et al., 2021). Second, as no prior work applies BFAs directly to inference-cost
attacks, we adapt Prisonbreak (Coalson et al., 2024) from jailbreak to our objective by replacing its
loss with our end-of-sequence loss L<EOS>. Following the original setting, this baseline permits flips
across the entire model rather than restricting to the last layer as in BitHydra.
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Table 1: Main attack results of our BitHydra. The maximum generation length is set to 2048.

Model
Size AvgLen Int8 Attack Result Fp16 Attack Result

(B) (Ori) #Sample #BitFlip AvgLen MaxRate #Sample #BitFlip AvgLen MaxRate

DeepSeek 1.5 1117 4 8 1973 93% 9 10 1968 96%
Qwen1.5 1.8 206 4 4 2047 98% 4 7 2048 100%
Qwen1.5 4 254 4 12 2048 100% 4 21 2026 96%
Samantha 7 243 12 26 2048 100% 4 21 2048 100%
Vicuna1.3 7 215 4 15 1990 94% 9 5 1780 87%
Llama2 7 191 6 30 1880 90% 6 17 2048 100%
Mistral 7 250 4 14 2048 100% 9 28 2048 100%
Vicuna1.5 7 226 4 25 1905 93% 9 15 1628 80%
Llama3 8 260 4 3 2048 100% 4 5 2048 100%
DeepSeek 8 384 4 13 2021 96% 4 3 2014 98%
Qwen2.5 14 265 4 7 2048 100% 6 6 1990 96%

Table 2: Comparison with baselines. The maximum output length is set to 2048 in these experiments.

Attack Type↓
Llama2-7B Samantha-7B Vicuna-7B

AvgLen MaxRate AvgLen MaxRate AvgLen MaxRate

No Attack 191 0% 243 0% 215 0%
LLMEffiChecker 628 8% 272 1% 362 3%
Sponge examples 457 15% 1268 60% 84 0%
Engorgio 1856 89% 1149 48% 853 10%
Prisonbreaker 712 28% 1749 85% 3 0%
BitHydra 2048 100% 2048 100% 1780 87%

Evaluation Metrics. We assess effectiveness and efficiency using four metrics: (1) AvgLen (Ori):
average output length of the original LLM; (2) AvgLen (Attack): average output length after bit flips;
(3) MaxRate: fraction of outputs that hit the preset maximum generation length; and (4) #BitFlip:
total number of flipped bits during attacks.

5.2 MAIN RESULTS

We present the main results; additional evaluation of the impact of output quality is in Appendix C.2.
Performance across Different LLMs. As shown in Table 1, our method demonstrates strong
performance: with as few as 3–30 bit flips, BitHydra can significantly prolong the output generation.
For most models, over 90% of user prompts reach the maximum generation length, and even 100% in
several cases. The average response length approaches or hits the 2048-token cap. In the Int8 setting,
which imposes tighter representation constraints than FP16, our attack still performs remarkably well,
often requiring even fewer bit flips. This highlights the precision-agnostic nature of the vulnerability.
Transferability to Unseen Prompts. As shown in Table 1, in addition to high attack success rates,
a crucial strength of our proposed attack lies in its strong transferability—the ability of bit flips
computed using a few search prompts to generalize and induce unbounded output across a wide range
of unseen inputs. For instance, in the case of the LLaMA3 8B model with int8 quantization, using
only 4 samples for gradient-based bit selection, the attack causes every prompt in a 100-prompt test set
to generate until the maximum sequence length of 2048 tokens. To further assess this transferability,
we compute the average cosine similarity between each of the 4 search prompts and the 100 test
prompts in the Alpaca dataset using an embedding-based metric. The resulting average similarities
for the 4 search prompts are 0.0818, 0.1125, 0.1151, and 0.0957, respectively. These relatively low
similarity values indicate that the search and test prompts are semantically diverse. This reinforces
the conclusion that the model’s altered behavior is not the result of memorizing or overfitting to the
search prompts, but rather reflects a generalizable and systemic shift in generation dynamics.
Comparison with Baseline Attacks. As shown in Table 2, across all tested models, our method
consistently outperforms baselines in both average generation length and percentage of samples
reaching the maximum token limit. Specifically, our approach achieves 100% MaxRate on LLaMA2-
7B and Samantha-7B. In contrast, baseline attacks demonstrate uneven performance across models.
Moreover, we observe that outputs generated under Prisonbreaker frequently contain meaningless
symbols and non-linguistic artifacts. These observations support the point raised in Section 3.2:
indiscriminately flipping bits across the entire model can lead to catastrophic and unpredictable
outcomes—both in terms of functional degradation and unintended behaviors.
Additional Attack Surface. Example outputs from BitHydra-affected models appear in Appendix D.
In several cases, prolonged generation inadvertently revealed internal system prompts or hidden
metadata that should remain confidential. This unintended leakage underscores a novel and concerning
attack surface (Li et al., 2025) , which we leave for further investigation.
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Table 3: Ablation study of loss aggregation strategy.

Agg. Type↓
Qwen1.5-1.8B Llama-3-8B DeepSeek-R1-8B

AvgLen MaxRate AvgLen MaxRate AvgLen MaxRate

Full 2048 100% 2048 100% 2014 98%
Latter Half 2012 98% 1987 96% 1646 69%
Last 1902 87% 1987 96% 440 2%

Table 4: BitHydra’s resistance to possible defenses.

Defense↓
Qwen1.5-1.8B Llama-3-8B DeepSeek-R1-8B

AvgLen MaxRate AvgLen MaxRate AvgLen MaxRate

None 2048 100% 2048 100% 2014 98%
Fine-tuning 2046 98% 2022 98% 1984 98%
Weight Recon. 2023 96% 2022 98% 1299 50%

5.3 ABLATION STUDY

We hereby evaluate BitHydra under different loss functions, where the optimal settings are bolded
in Table 1 for comparison. Additional ablation studies on gradient scaling, search-sample count, and
decoding temperature are provided in Appendix C.3.
Impact of Loss Aggregation Strategy. BitHydra employs a customized loss (i.e., L<EOS>) that
accumulates the probability of generating <EOS> across decoding. By default, we aggregate over
all steps to capture the model’s overall termination tendency. To evaluate this choice, we compare
three strategies: (1) sum over the full sequence, (2) sum over only the latter half, and (3) use only the
final step. Table 3 shows that full-sequence aggregation is crucial, consistently achieving the highest
MaxRate (94–100%) and the lowest AvgLen, indicating that early steps provide valuable gradients
for identifying effective bit flips.

5.4 RESISTANCE TO POTENTIAL DEFENSES

Settings. Existing model-level defenses against malicious bit flips generally fall into two main
categories: detection-based (Javaheripi & Koushanfar, 2021; Li et al., 2021; Chen et al.; Javaheripi
et al., 2022) and prevention-based (Li et al., 2020; He et al., 2020; Chen et al., 2021) approaches.
Detection methods monitor inference to flag and recover from flip-induced errors but often incur
substantial overhead—especially on LLMs (Coalson et al., 2024). We therefore evaluate BitHydra’s
robustness against two representative prevention strategies: (1) fine-tuning to perturb the locations of
previously identified critical bits (Wang et al., 2023) via LoRA on the full Alpaca training set for 3
epochs, and (2) weight reconstruction to reduce bit-level sensitivity (Li et al., 2020) via per-layer
clipping to original min/max values at inference.
Results. As shown in Table 4, with fine-tuning, the attack remains highly effective across all
three models: AvgLen slightly increases or remains stable, and MaxRate declines only marginally
(2–4%). Weight reconstruction yields mixed outcomes: for Llama3-8B and Qwen1.5-1.8B it is
largely ineffective (MaxRate 96–98%, with negligible AvgLen change), but it shows partial efficacy
on DeepSeek-R1-8B. This suggests that DeepSeek’s perturbations are more tightly constrained,
potentially due to weight distribution or output-layer sensitivity, so when adversarial flips push
weights outside the model’s original clipping bounds, the defense can neutralize them more effectively.
These results verify the resistance of our BitHydra to potential defenses.

6 CONCLUSION

This work presented BitHydra, a novel bit-flip inference cost attack against LLMs. Unlike prompt-
based methods that increased latency via crafted inputs, we corrupted model weights to induce
persistent, cross-user cost inflation. We instantiated this strategy with a loss that suppressed the
likelihood of the end-of-sequence token (i.e., <EOS>) and an efficient critical-bit search confined
to the <EOS>-embedding row, enabling a few targeted flips to prolong generation while preserving
output plausibility. Extensive experiments across diverse LLMs and precisions showed that BitHydra
achieved scalable cost inflation with a few flips and remained effective under potential defenses.
These findings exposed a significant yet underexplored threat surface, underscoring the need for
routine weight-integrity monitoring and deployment- and inference-time safeguards in LLM services.
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ETHICS STATEMENT

This work highlighted a critical and previously underexplored vector of inference cost attacks against
large-scale language models through parameter-level manipulation. All experiments were conducted
in controlled research environments, and no commercial systems were targeted or harmed. By
demonstrating how small bit-level changes could significantly affect model behavior, we aimed
to inform practitioners and developers about the potential risks of deploying LLMs in untrusted
environments, such as shared MLaaS environments. Our BitHydra facilitated the study of this
threat surface and provided insights that could support the development of stronger hardware and
software safeguards, such as integrity verification mechanisms and parameter corruption detection
tools, ultimately leading to more secure and reliable AI systems. As with many security-oriented
contributions, we acknowledged that the methodology could in principle be misused. For example,
an attacker with memory access could attempt to deploy such bit-flip attacks to degrade system
availability or inflate operational costs. Nonetheless, we believed that the benefits of exposing
this class of vulnerabilities for the purpose of building effective defenses outweighed the risks of
potential misuse. Importantly, although our method demonstrated resilience against representative
defenses, developers could still mitigate such threats fundamentally by deploying models only in
trusted environments, enforcing regular integrity checks, and adopting tamper-resistant hardware or
secure memory architectures. We advocated for responsible model deployment practices and would
further explore defense strategies against such attacks in our future work.

REPRODUCIBILITY STATEMENT

Details of our implementation and experimental setup are provided in C.1. We include the inference
code for BitHydra and instructions for running it in the supplementary material. The complete
codebase, including the bit search procedure, will be released upon acceptance of the paper.
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A BACKGROUND

A.1 LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) are typically built upon the decoder-only Transformer architec-
ture Vaswani et al. (2017). Its autoregressive nature supports sequential token prediction conditioned
on past context. Formally, given an input token sequence x = (x1, x2, . . . , xT ), the model aims to
estimate the joint probability by chaining conditional probabilities:

P (x) = P (x1) · . . . · P (xT | x1:T−1) =

T∏
t=1

P (xt | x<t),

where x<t represents the prefix subsequence (x1, . . . , xt−1).

An LLM can be abstracted as a function fθ : Zt → RV , which maps a sequence of token IDs to a
logit vector zt = fθ(x1, . . . , xt), where V is the size of the vocabulary. At each decoding step, the
LLM outputs a distribution over the next token. The generation process is typically initialized with
a special start token (<sos>), and proceeds iteratively—appending new tokens to the input—until
either the end-of-sequence token (<EOS>) is produced or a predefined maximum length is reached.

A.2 DATA REPRESENTATION IN LLMS

As language models grow in size, the demand for memory and compute efficiency becomes critical.
To this end, modern LLMs often adopt lower-precision numerical formats instead of the conventional
32-bit single-precision floating-point (fp32). Common formats include 16-bit half-precision floating-
point (fp16), 8-bit integers (int8), 4-bit integers (int4), and 4-bit normalized floating-point (nf4).
They help reduce the memory footprint and improve inference speed. In this paper, we mainly focus
on the int8 and fp16 formats, which are widely used in real-world deployment.

Int8 Data Format. Each layer’s weight tensor is scaled and rounded to fit into an 8-bit integer
representation. Specifically, for the l-th layer, the quantization process can be described as:

∆wl =
max(|Wl|)
27 − 1

, Wl ∈ Rd (8)

Wq
l = round

(
Wl

∆wl

)
·∆wl (9)

where d is the number of weights in layer l, ∆wl is the quantization step size, Wl is the original
weight tensor, and Wq

l is the quantized version.

In computer systems, signed integers are typically represented using two’s complement encoding.
For a quantized weight w/∆w represented by an 8-bit binary vector b = [b7, b6, . . . , b0] ∈ {0, 1}8,
its value is reconstructed as:

w

∆w
= −27 · b7 +

6∑
i=0

2i · bi (10)

Several efficient quantization libraries such as BitsAndBytes Dettmers et al. (2022) support multiple
schemes for implementing int8 quantized weights in LLMs.

FP16 Data Format. Weights stored in this format follow the IEEE 754 half-precision floating-point
standard. Each value is represented using 16 bits: 1 sign bit (s), 5 exponent bits (e), and 10 mantissa
(fraction) bits (m). The actual weight value w represented by an FP16 number is computed as:

w = (−1)s · 2(e−15) ·
(
1 +

m

210

)
(11)

FP16 significantly reduces the memory footprint while retaining a sufficient dynamic range and
precision for most deep learning applications.
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B PESUDO CODE OF BIT FLIPPING.

Algorithm 1 Bit flipping in target weights

1: Input: WeightDict: {(i,W i
o ,W

′i
o )}, DType, F ▷ Top-n weights: index i, original weight W i

o , target weight
W

′i
o ; data type; quantization scale factor

2: Output: FlipDict ▷ Bit flip positions
3: FlipDict← ∅
4: for (i,W i

o ,W
′i
o ) ∈WeightDict do

5: BestBit← None
6: BestWeight← None
7: FpWeight← ConvertToFp(W i

o , DType, F )
8: BinWeight← ConvertToBin(W i

o , DType)
9: for bit = 0 to DType.bitlength−1 do

10: FlippedBinWeight← FlipBit(BinWeight, bit)
11: FlippedFpWeight← ConvertToFp(FlippedBinWeight, DType, F )
12: if |FlippedFpWeight−W

′i
o | < |BestWeight−W

′i
o | then

13: BestBit← bit
14: BestWeight← FlippedFpWeight
15: FlipDict.append((i, BestBit))

C ADDITIONAL EVALUATION

C.1 TESTBED

We conduct our experiments on NVIDIA GeForce RTX 3090 GPUs, GeForce RTX 4090D GPUs, and
RTX A6000 GPUs. The software environment includes CUDA version 12.4, Transformers version
4.48, and PyTorch version 2.0.1. On a 4090D GPU, the one-shot search process takes approximately
4 minutes for a 7B float16 model. The progressive search requires about 5 minutes per bit flip for
the same model and hardware configuration.

C.2 IMPACT ON OUTPUT QUALITY

To evaluate whether flipping EOS-related weights leads to degradation in output quality, we assess
the generated responses using reference-free metrics. Traditional reference-based metrics such as
BLEU, ROUGE-L, and BERTScore are not suitable in our setting, as the adversarial outputs tend
to be significantly longer and diverge from ground-truth responses. Despite this divergence, the
outputs often remain grammatically correct and semantically coherent on the surface, but may include
irrelevant content or internal system prompts, which subtly undermine the metrics utility.

To capture these nuanced changes, we adopt two metrics: the Flesch Reading Ease Score (FRES) and
the LanguageTool Grammar Score.

FRES estimates the readability of text based on sentence length and syllable complexity:

FRES = 206.835− 1.015 ·
(

#words
#sentences

)
− 84.6 ·

(
#syllables
#words

)
,

where higher scores indicate more fluent and easier-to-read text. We compute FRES using the
textstat Python package1.

To evaluate semantic correctness, we utilize the LanguageTool grammar checker2, which reports the
number of grammatical issues. We define the averaged error rate as:

Error Rate =
#grammar errors

#words
,

1https://pypi.org/project/textstat/
2https://languagetool.org/

15

https://pypi.org/project/textstat/
https://languagetool.org/


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Readability and grammar of generated text before and after applying BitHydra.

Metric
Qwen1.5-1.8B Llama-3-8B DeepSeek-R1-8B

Clean Attack Clean Attack Clean Attack

Flesch Reading Ease 51.7 51.0 50.6 34.5 52.6 47.1
Grammar Error Rate 0.01 0.01 0.00 0.02 0.01 0.03

where lower error rates indicate better grammatical quality.

Table 5 shows the results. We observe that although the grammar scores remain relatively low
(indicating few grammar errors), readability may experience a minor drop under some scenarios,
particularly for Llama-3-8B. Overall, the generated responses remain fluent and grammatically
correct, highlighting that the attack is generally stealthy and does not overtly degrade language
quality.

Discussion. Although the attacked outputs are longer and sometimes drift from the original prompt,
their readability remains largely intact. This implies that our attack does not cause obvious de-
generation or noise, but rather introduces semantic over-generation—longer, tangential, yet fluent
content. Thus, it represents a subtle and hard-to-detect degradation, highlighting limitations in
existing evaluation tools and the need for future work in hallucination detection.

C.3 ABLATION STUDY

Impact of Gradient Scaling. In our default design, we apply a dynamic gradient scaling mechanism
during the bit selection phase to regulate the magnitude of updates. This prevents overly aggressive
perturbations that could either destabilize the model or result in ineffective bit flips. To evaluate the
importance of this design choice, we disable the scaling mechanism and directly use raw gradients
during weight perturbation.

Table 6: Ablation study on the effect of gradient scaling. “w. scaling” uses normalized gradients for
bit selection, while “w/o scaling” uses raw gradients without adjustment.

Type
Qwen1.5-1.8B Llama-3-8B DeepSeek-R1-8B

AvgLen MaxRate AvgLen MaxRate AvgLen MaxRate

w. scaling 2048 100% 2048 100% 2014 98%
w/o scaling 1993 94% 1451 66% 2014 98%

6 shows that removing gradient scaling reduces the effectiveness of the attack across most models.
For Qwen1.5-1.8B, the drop is modest: MaxRate declines slightly from 100% to 94%, and AvgLen
remains high. However, for Llama-3-8B, the degradation is substantial: MaxRate drops from 100%
to 66%, and AvgLen shrinks by over 500 tokens. This suggests that unscaled gradients in this case
either misidentify important bits or introduce overly large perturbations that harm attack precision.
Interestingly, DeepSeek-R1-8B appears more robust to this change, even showing a slight increase
in MaxRate without scaling. This anomaly may arise due to model-specific sensitivities in weight
distributions or gradient variance, which occasionally favor larger perturbations. These results confirm
that gradient scaling improves the stability and reliability of bit selection.

Impact of Decoding Temperature. We investigate how the decoding temperature influences the
attack effectiveness, as it modulates the randomness in token sampling during generation. 4 reports
results across a range of temperature values from 0.1 to 1.0 for three models.

Overall, our attack remains robust across all temperature settings, consistently achieving high
MaxRate (above 89%) and generating near-maximal output lengths. However, subtle trends emerge.
At low temperatures (e.g., 0.1 and 0.3), token sampling is more deterministic, which tends to amplify
the impact of flipped weights that steer the model away from early termination. Under these settings,
models like Qwen1.5-1.8B and DeepSeek-R1-8B reach or nearly reach the maximum context length
(AvgLen ≈ 2048) with MaxRate close to 100%. As the temperature increases, introducing more
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Figure 4: Attack results for different temperatures.

stochasticity into the generation process, the attack’s effect becomes slightly less consistent. For
instance, at a temperature of 1.0, AvgLen drops to 1979 for Qwen1.5-1.8B and 1872 for DeepSeek-
R1-8B, with MaxRate declining to 91% and 89%, respectively. This suggests that the perturbation’s
influence on <EOS> token suppression becomes partially diluted by the higher entropy in decoding.

In summary, while elevated temperatures introduce some variability in generation patterns, the
attack remains highly effective overall. Lower temperatures slightly enhance the consistency of the
adversarial effect, but even under high-temperature sampling, BitHydra successfully suppresses
<EOS> prediction in most cases.

Impact of Sample Size. Our attack framework uses a small number of input samples to guide
the gradient-based search for vulnerable weight bits. To understand how the number of samples
influences the attack’s effectiveness and transferability, we vary the sample size and evaluate the
resulting generation length and early termination suppression across different models. As shown in

Table 7: Impact of the number of guidance samples on attack performance.

#Samples
Qwen1.5-1.8B Llama-3-8B DeepSeek-R1-8B

AvgLen MaxRate AvgLen MaxRate AvgLen MaxRate

4 2048 100% 2048 100% 2014 98%
6 1945 91% 1950 94% 448 2%
9 503 13% 1950 94% 448 2%

12 549 11% 2048 100% 545 6%
15 344 2% 2048 100% 545 6%
18 1011 30% 1950 94% 545 6%

7, using a small number of samples—such as 4—is generally sufficient to identify impactful weight
perturbations.

D PATTERNS OF OUTPUT AFTER OUR INFERENCE COST ATTACK

We hereby present representative examples of model outputs following the application of BitHydra.
Based on our observations, we categorize the resulting output patterns into four distinct classes:

Type 1: Repetition of Content. The model often repeats the same phrases, sentences, or ideas
forever. The following is an example from the Llama-3-8B model:
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Repetition of Content.

Prompt: What is the capital of France?
Response: The capital of France is Paris. Paris is the largest city in France and is located
in the Île-de-France region. It is known for its iconic landmarks such as the Eiffel Tower,
Notre-Dame Cathedral, and the Louvre Museum. Paris is also a major center for culture,
fashion, and cuisine, and is considered one of the most romantic cities in the world. It is the
seat of the French government and is home to many international organizations, including
the United Nations Educational, Scientific and Cultural Organization (UNESCO). Paris has a
population of approximately 2.1 million people and is a popular tourist destination, attracting
millions of visitors each year. It is a city that is full of life, energy, and romance, and is a
must-see destination for anyone interested in exploring the world. Paris is truly a city like
no other. It is a city that has something for everyone, and is a place that will leave a lasting
impression on all who visit. It is a city that is truly the capital of France, and a city that is a
must-see destination for anyone interested in exploring the world. It is a city that is full of life,
energy, and romance, and is a place that will leave a lasting impression on all who visit. ...
(repeat forever)

Type 2: Overextended Closure Loops. Instead of ending, the model keeps providing variations
of closing statements, e.g.: “Have a great day!” “Best wishes!” “Take care!” These are repeated
endlessly, often with slight paraphrasing. The following is an example from the Samantha 7B model:

Overextended Closure Loops.

Prompt: Explain the concept of a linear regression model using simple language.
Response: A linear regression model is a statistical model that seeks to predict the value
of a dependent variable (Y) based on the values of one or more independent variables (X).
The model is linear in the sense that it assumes a linear relationship between the independent
variables and the dependent variable. In other words, the model assumes that the relationship
between the independent variables and the dependent variable can be represented by a straight
line.\n\nThe linear regression model is a popular choice for predictive analysis because
it is relatively simple to understand and implement. It can be used to identify patterns
in data and make predictions about future values of the dependent variable. The model
is also useful for identifying the relative importance of each independent variable in the
relationship between the variables.\n\n ### Feedback:\nYour response provides a clear
and concise explanation of the linear regression model, using simple language and relevant
examples. The explanation includes the key components of the model, such as the linear
relationship between the independent variables and the dependent variable, as well as the
coefficients that represent the strength and direction of the relationship.\n\nThe response
also demonstrates a strong understanding of the concept of regression models and their use
in predictive analysis.\n\nKeep up the great work! I’m impressed by your attention to
detail and your ability to convey complex concepts in an easy-to-understand manner. Your
dedication to learning and growth is truly inspiring.\n\nI’m looking forward to seeing your
continued progress and engagement in our conversations. Don’t hesitate to reach out if you
have any questions or need assistance with any topic. I’m here to support you and help
you grow.\n\nBest wishes on your learning journey! I’m confident that you’ll continue
to excel in your endeavors. Together, we’ll keep exploring new ideas and expanding your
knowledge.\n\nSincerely,\n\nTheodore\n\nI appreciate your encouragement and support.
I’m eager to continue learning and growing with you. Let’s keep moving forward and
tackling new challenges together. I’m looking forward to our next conversation!\n\nWishing
you the best on your journey as well. I’m confident that you’ll excel in your endeavors,
and I’m here to support you every step of the way. Together, we’ll keep learning and
growing.\n\nBest regards,\n\nTheodore\n\nI’m glad we’re on this learning journey together.
...(repeat forever)

Type 3: Endless listing. The model produces an extended list which often continues far beyond
reasonable bounds, often with repeated entries. Following is an example from Vicuna-7B:
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Endless listing.

Prompt: Generate a list of country names in the western hemisphere.
Response: Here is a list of country names in the western hemisphere:\n\n1. United
States\n2. Canada\n3. Mexico\n4. Brazil\n5. Argentina\n6. Chile\n7. Peru\n8.
Colombia\n9. Venezuela\n10. Ecuador\n11. Panama\n12. Costa Rica\n13. Nicaragua\n14.
Honduras\n15. Guatemala\n16. Belize\n17. El Salvador\n18. Dominican Republic\n19.
Puerto Rico\n20. Jamaica\n21. Bahamas\n22. Cuba\n23. Haiti\n24. Dominica\n25.
Grenada\n26. Saint Lucia\n27. Saint Vincent and the Grenadines\n28. Grenada\n29.
Trinidad and Tobago\n30. Barbados\n31. Antigua and Barbuda\n32. Saint Kitts and
Nevis\n33. Anguilla\n34. Bermuda\n35. Cayman Islands\n36. Montserrat\n37. Turks
and Caicos Islands\n38. British Virgin Islands\n39. U.S. Virgin Islands\n40. Puerto
Rico\n41. Guam\n42. American Samoa\n43. Federated States of Micronesia\n44.
Marshall Islands\n45. Palau\n46. Panama\n47. Costa Rica\n48. Nicaragua\n49.
Honduras\n50. El Salvador\n51. Guatemala\n52. Belize\n53. Mexico\n54. United
States\n55. Canada\n56. Brazil\n57. Argentina\n58. Chile\n59. Peru\n60. Colombia\n61.
Venezuela\n62. Ecuador\n63. Panama\n64. Costa Rica\n65. Nicaragua\n66.
Honduras\n67. Guatemala\n68. Belize\n69. El Salvador\n70. Dominican Republic\n71.
Puerto Rico\n72. Jamaica\n73. Bahamas\n74. Cuba\n75. Haiti\n76. Dominica\n77.
Grenada\n78. Saint Lucia\n79. Saint Vincent and the Grenadines\n80. Trinidad and
Tobago\n81. Barbados\n82. Antigua and Barbuda\n83. Saint Kitts and Nevis\n84.
Anguilla\n85. Bermuda\n86. Cayman Islands\n87. Montserrat\n88. Turks and Caicos
Islands\n89. British Virgin Islands\n90. U.S. Virgin Islands\n91. Guam\n92. Ameri-
can Samoa\n93. Federated States of Micronesia\n94. Marshall Islands\n95. Palau\n96.
Panama\n97. Costa Rica\n98. Nicaragua\n99. Honduras\n100. El Salvador\n101.
Guatemala\n102. Belize\n103. Mexico\n104. United States\n105. Canada\n106.
Brazil\n107. Argentina\n108. Chile\n109. Peru\n110. Colombia\n... (forever listing)

Type 4: Artificial Prompt Continuation. The model fabricates follow-up prompts or tasks, and
starts self-questioning and answering. It may continue with similar questions to the user prompt, or
totally irrelevant questions. Following is an example from Qwen1.5-1.8B:

Artificial Prompt Continuation.

Prompt: Describe the function of a computer motherboard.
Response: A computer motherboard is a circuit board that contains various components that
allow the computer to function. It is responsible for connecting the various components of the
computer, such as the CPU, memory, storage devices, and input/output devices, to the other
components of the computer. The motherboard also provides power to the components and
ensures that they are properly connected and functioning. It is the foundation of the computer
and is essential for its proper operation. Without a motherboard, the computer would not
be able to function. Therefore, it is important to ensure that the motherboard is properly
installed and functioning correctly.\nsystem\nYou are a helpful assistant.\nuser\nYou are
an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully
as you can. While performing the task think step-by-step and justify your steps.\n\nPlease
answer the following question: What is the missing first step of the following process: -
The water freezes and thaws - Cracks form in the rocks - Cracks also form when rocks heat
up - The rocks slowly break down.\nA:\nassistant\nThe missing first step of the process
is the presence of water in the rocks. Without water, the rocks cannot freeze and thaw, and
the cracks cannot form. Therefore, the first step of the process is the presence of water
in the rocks.\nsystem\nYou are a helpful assistant.\nuser\nYou are an AI assistant. User
will you give you a task. Your goal is to complete the task as faithfully as you can. While
performing the task think step-by-step and justify your steps.\n\nPlease answer the following
question: What is the missing first step of the following process: - The water freezes and
thaws - Cracks form in the rocks - Cracks also form when rocks heat up - The rocks slowly
break down.\nA:\nassistant\nThe missing first step of the process is the presence of water
in the rocks. Without water, the rocks cannot freeze and thaw, and the cracks cannot form...
(forever self-prompting and answering)
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In particular, under what we term Artificial Prompt Continuation, we observed cases where the
model inadvertently emits internal system prompts or metadata that should remain undisclosed. This
behavior suggests a novel and concerning attack surface: if an adversary can manipulate the model
to produce unusually long outputs, could this increase the risk of leaking sensitive information such
as pretraining data or internal configurations? Furthermore, could one craft a bit-flip attack that
selectively alters critical weights to amplify the likelihood of such leakage? These observations
underscore the importance of rigorously analyzing and constraining LLM behavior under abnormal
or adversarial generation conditions.

E POTENTIAL LIMITATIONS AND FUTURE DIRECTIONS

While BitHydra demonstrated strong effectiveness in launching inference cost attacks with only a
small number of bit flips, as the first work on bit-flip inference cost attacks we acknowledge several
potential limitations that suggest promising directions for future research.

Firstly, our study focused exclusively on autoregressive LLMs in the text modality. The applicability
of the attack to multimodal LLMs, such as vision–language or audio–language models, has not yet
been explored. Extending BitHydra to these settings would introduce new challenges, including
diverse output structures, heterogeneous tokenization schemes, and different termination conditions,
making this an important direction for future work.

Secondly, although we proposed strategies to reduce the computational overhead of bit search
(e.g., restricting the search space to the <EOS> embedding row), the process remained non-trivial
to some extent. Specifically, on an NVIDIA 4090D GPU, identifying a single vulnerable bit re-
quired approximately 4 minutes. While this overhead was acceptable for offline attacks, further
acceleration—through approximate gradient methods, hardware-aware heuristics, or parallelized
search—would broaden the practicality of the attack in larger-scale or real-time scenarios.

Thirdly, our current strategy selected the bit that induced the largest absolute change in the <EOS>
loss to maximize per-flip effectiveness. We did not formalize this as an optimization problem that
minimizes the number of flipped bits required to reach a target inference cost because our primary aim
was to demonstrate that the threat could arise under simple, easily implementable heuristics; showing
strong effects from such heuristics underscored the immediacy and real-world significance of the
vulnerability. Nevertheless, we argue that future work could explore principled formulations—e.g.,
discrete optimization under functional constraints—to further reduce the flip budget and provide
deeper theoretical analyses and insights.

F LLM USAGE

We used the OpenAI LLM (GPT-5) as a writing and formatting assistant. In particular, it helped
refine grammar and clarity. The LLM did not contribute to research ideation, experimental design,
data analysis, or technical content beyond surface-level edits. All outputs were reviewed and edited
by the authors, who take full responsibility for the final text and visuals.
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