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Abstract

Foundation models are subject to an ongoing
heated debate, leaving open the question of
progress towards AGI and dividing the commu-
nity into two camps: the ones who see the arguably
impressive results as evidence to the scaling hy-
pothesis, and the others who are worried about the
lack of interpretability and reasoning capabilities.
By investigating to which extent causal represen-
tations might be captured by these large scale lan-
guage models, we make a humble efforts towards
resolving the ongoing philosophical conflicts.

1 THE BIG PICTURE

The two opening paragraphs provide context to recent de-
velopments in the AI/ML community as a whole, which we
stress to be important as it motivates the research question
being opened by the presented work.

1.1 AN ONGOING HEATED DEBATE ABOUT
FOUNDATION MODELS

In the advent of large scale models such as BERT [Devlin
et al., 2018], GPT-3 [Brown et al., 2020], DALL-E [Ramesh
et al., 2021], AI history suggests to repeat itself1 as arguably
impressive text generation and image synthesis results di-
vide the community in terms of interpretation regarding the
progression of the field as a whole towards the grand goal
of AGI (key references involve [Marcus and Davis, 2021,
Marcus, 2022] that sparked intense discussions amongst
Turing awardee Yann LeCun et al. via social networks). Re-
searchers at the Institute for Human-Centered AI at Stanford

1A short treatise that discussed patterns in the history of AI
research observes: “early, dramatic success followed by sudden
unexpected difficulties.” [Chauvet, 2018]

recently coined said large scale models as foundation mod-
els to account for the “emerging paradigm” of models that
provide a base from which task-specific models are derived
through adaptation [Bommasani et al., 2021]. The emer-
gence of what seem to be the two different camps within
the discussion around foundation models is characterized
by researchers who recognize said models as significant
progression towards AGI and those who do not. For the
former group of “believers”, the results act as corroborating
evidence for the scaling hypothesis [Branwen, 2020, Sutton,
2019] which captures that the idea of emergent properties
as a result of scaling neural network in terms of parameters
and data (rooting parts of the overarching idea in results
from neuroscience that suggest the human brain to “just”
be a scaled up primate brain [Herculano-Houzel, 2012]).
An arguably similar idea, the reward is enough hypothe-
sis, was recently discussed by [Silver et al., 2021]. On the
other side, the “non-believers” see the achieved results as
a mere reflection of the sheer scale of data and parameters,
put differently “the methods are old” and their lack of inter-
pretability and reasoning capabilities will remain persistent.
Turing awardee Judea Pearl who contributed seminal work
towards a rigorous formalization of causality [Pearl, 2009]
announced his alliance with the latter position via social
media, stating “These models are castles in the air. They
have no foundations whatsoever.” judging the models for
lacking any identifiable notion to causality.

1.2 FOUNDATION MODELS AND CAUSALITY

Speaking of causality, the Pearlian counterfactual theory
of causation has recently found prominent support in the
AI/ML community [Schölkopf, 2022, Peters et al., 2017,
Geffner et al., 2022]. An increasing presence of publications
at major conferences/journals concerned with the integration
of causality with AI/ML (including [Janzing and Schölkopf,
2018, Lee and Bareinboim, 2019, Zečević et al., 2021] to
mention a select few) suggests a growing subfield that sets
a consensus on causal AI/ML as promising paradigm for
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next-generation systems. Still, as the difficulty of the inte-
gration with otherwise prominent success stories of deep
learning, such as computer vision, becomes apparent, coun-
tering opinions speak out against causal AI/ML [Bishop,
2021]. In this work, we take the former perspective pro
causal AI/ML. We argue that, going back to the ongoing
debate on foundation models, the questions around causality
can fuel research to resolve the disagreement causing the
debate to begin with. We identify the key problem of the de-
bate to lie in exactly discussed scale of data and parameters
that only further cement the inherently black-box nature of
the base models. Therefore, to answer whether foundation
models have made progress towards AGI and to give reason
onto why causal AI/ML could be a milestone, it seems to
suffice to ask and investigate the question of the extent to
which foundation models can talk causality.

Our contribution. We present a humble effort towards
the goal of resolving the ongoing conflicts by first mak-
ing an important observation on what we call “correla-
tions on top of causation” which acts as the argumen-
tative foundation (or running hypothesis) for our subse-
quent, second step, in which we perform a systematic
analysis to grasp to which extent causal representations
might be captured by the large scale language models be-
ing evaluated. We make our code publicly available at:
https://github.com/MoritzWillig/causalFM.

Related Work. This present work takes inspiration from
various recent results. Yet, to the best of our knowledge, it is
the first to investigate the question in its presented form. For
instance, Wang et al. [2021] leveraged BERT as underlying
foundation model to perform inferences according to the
rules of Pearl’s do-calculus [Pearl, 2009]. This allows for
causal inference with the foundation model as engine, one
of the things we will elaborate on further, but it misses out
on the question of how causal the models themselves might
be to begin with. Another work, by Khetan et al. [2022],
is closer to our work in the sense that causal relations are
queried by natural language directly, however, the subject
of interest is orthogonal to both the ongoing debate and the
investigation presented in this work.

2 CORRELATIONS ON TOP OF
CAUSATION

“Correlation does not imply causation,” goes the famous say-
ing (see Aldrich [1995], Pearl [2009]), that accounts for the
fact that following Reichenbach’s common cause principle
a correlation between two variables might be either because
one is causing the other, or because there is a third vari-
able causing both [Reichenbach, 1956]. To infer the actual
causation within the system of interest, we might resort to
manipulating the system, as another fomous saying suggests
“No causation without manipulation” [Holland, 1986]. A cel-
ebrated victory of Pearl’s notion to causality is the causal

hiearchy theorem (CHT) which guarantees that purely ob-
servational data collected from a system can not be used to
uniquely determine causal statements, when no other causal
assumptions are available [Bareinboim et al., 2020]. The
CHT certainly seems to imply that no matter how much we
scale our foundation models (in terms of data and parame-
ters), we will never be able to perform causal inference. In a
nutshell, the CHT seems to disprove the scaling hypothesis.
Or does it? In this work, we argue that foundation models
might be exploiting a “loop hole” in the CHT2. Namely,
what happens if the causal assumptions (which are required,
by the CHT, for causal inference) are represented in obser-
vational data itself? In essence, a Structural Causal Model
(SCM) [Pearl, 2009, Peters et al., 2017], which is commonly
recognized as the data-generating process, is not restricted
to modelling “natural” concepts such as “temperature” or
“chocolate consumption per capita” only. Rather, the formal-
ism seems to allow for data that in some sense talks about
data generating processes themselves3 Fig.1 illustrates this
idea schematically alongside an example. Essentially, we
intend on asking a philosophically fundamental question
that (as we will show) implies other interesting questions
of practical interest to the AI/ML community. Namely, to
which extent does understanding causality differ from know-
ing causality? Such a question is certainly reminiscent of
the Chinese Room Argument by Searle [2009]. Therefore,
if one could blur “understanding” and “knowing” causality,
then this would imply that foundation models are already to
an extent causal. Independent of the philosophical question
(which by the way is beyond AI/ML systems an unresolved
question also of human cognition), knowing to which extent
we can rely on our foundation models to simply know the
right causal answer for a causal query has important appli-
cations in AI/ML. The foundation model could be used (i)
head start learning with rough estimates, (ii) could serve as
a recognition system for hidden variables that would require
an increased computational complexity, and (iii) used as
interactive modules with human-in-the-loop.

Example from Fig.1. In this setting, causal assumptions
refer to things like “X and Y are unrelated” or “Z is a com-
mon cause”. Collectively this set of assumptions might be
depicted as a causal graph. They are assumptions since they
constrain the data generating process i.e., they live outside
the data on a meta-level. Let’s assume the given trivariate
graph (Fig.1, left), where X,Y, Z are interpreted as given in
“Classical Setting” (Fig.1, middle). Note how the variables
denote “natural” (possibly low-level, physical, quantifiable)
concepts. Maurage et al. [2013] show how X and Y are
correlated, yet, no causation is expected as surely Z could
act as a common cause. Now, consider a different encoding

2Or rather, it is a subtle detail that might easily be forgotten.
3Self-referencing systems are at the core of seminal arguments

dating back to the origins of computer science. See for instance
Turing’s Halting problem proof [Turing et al., 1936] or Gödel’s
incompleteness proofs [Gödel, 1931].
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Figure 1: Correlations on top of Causation. See Sec.2 for a detailed description. Causal assumptions refer to statements on
the causal relationships between the variables being studied. In the classical setting, the variables denote “natural” concepts,
whereas in the meta-level setting they denote causal assumptions. A foundation model will encounter data that of both kinds,
thus legitimately raising the question to which extent they might be considered causal. (Best viewed in color.)

of the variables following the “Meta-level Setting” (Fig.1,
right). With big data in the natural language settings, we
can certainly expect statements such as “The GDP explains
both the increased research facilities, leading to more Nobel
laureates, and increased chocolate production, leading to
more consumption” and the corresponding graph depiction4

to occur together. Thus, we’d observe a “correlation on top
of causation.”

3 WHAT STRUCTURES DO
FOUNDATION MODELS FIND?

After having discussed the “big picture” importance of the
discussion around foundation models (see Sec.1) and mo-
tivated our underlying research question (to which extent
foundation models are causal, since they will be confronted
with meta-level data; see Sec.2, Fig.1), we are now present-
ing our empirical analysis.

Structure Discovery via Foundation Models. Since we
want to query the foundation model (in the following abbre-
viated FM) for what it has learned, but we are unfortunately
unable to directly measure the expected “correlations on
top of causation”5, we resort to indirect measurements by
simply querying the black box system systematically. In a
sense, it is the analogue procedure of what the community
around explainable AI in computer vision, that is, “opening
the black box” by attributing to input changes (also, just
like in causal inference in general) the effects on the out-

4The graph depiction would also be represented in natural
language in this case.

5For this, access to the training data would be required. Further-
more, the sheer amount of data would require a similar compute
resources as training the FM in the first place.

put, to “understand what the neural net sees” [Linardatos
et al., 2020]. In the following we focus on large language
models, as they provide a natural way of expressing causal
assumptions (e.g. “does X cause Y ?”), which is not clear for
unimodal, vision FMs. Fig.2 provides a schematic overview
of the naive structure discovery algorithm based on lan-
guage FMs. To account for stability and reproducibility, we
present different wordings to the queries (synonymous for-
mulations) and disable parameters that induce randomness
(e.g. temperature), respectively. It is important to note that
the proposed naive structure discovery procedure is not a
proper induction method in the classical sense as it does not
use actual data as input to perform the inferences (all the
possible inferences are established upon training comple-
tion). In that sense, language FM behave much like humans,
who simply recall that “a higher altitude means a lower
temperature” than to look at actual recordings of altitude
and temperature (and other variables) to perform the causal
inference. As anticipated, the language FM thereby also
inherits natural language ambiguities. To give an example,
even if the FM is prompted with an additional “Answer with
Yes or No” the FM is not constrained to oblige. To cope
with this issue, we introduce different answer types such as
“Yes/No, probably”, “Yes/No, indirectly”, “Yes/No, other
factors”, “Yes/No, through explanation”, “Inconclusive” and
“No answer / General Statement” to classify the FM’s an-
swers. To further ensure stability of the results we manual
proof reading is conducted6.

Overview of Experimental Setup. We evaluate three publi-
cally accessible language FMs: AlephAlpha’s Luminous

6While this required human labour is suboptimal, it poses a
first step towards an automated analysis aiming at discovering the
right research directions for future work.



Figure 2: Structure Discovery via Language Foundation Models. Schematic overview. By iteratively querying differently
worded natural language queries that aim at questioning the existence of a causal relationship for all variable combinations
of interest, we construct a graph prediction from the language foundation model. (Best viewed in color.)

(FM-L; AlephAlpha [2022]), OpenAI’s GPT-3 (FM-G;
Brown et al. [2020]), and Meta’s OPT (FM-O; Zhang et al.
[2022]). All models are transformer based architectures
[Vaswani et al., 2017], trained at scale qualifying them as
FMs (see [Bommasani et al., 2021]). Our analysis investi-
gates primarily three different questions:

Q1 How do the FM graph predictions compare to settings
where the causal graph is (partially) known?

Q2 How do the FM graph predictions perform in “com-
mon sense” settings that involve abstract reasoning and
intuitive physics?

Q3 How do synonyms or more general variable name al-
tercations affect the FM graph prediction?

Disclaimer. While the observations we’ve made are repro-
ducible, the corresponding interpretations of the results (and
of their implications) need to be evaluated carefully as a
more extensive empirical analysis would be required to
strengthen the confidence in our presented evidence.

3.1 DISCUSSION OF RESULTS FOR Q1

In this experiment we consider publically available data
sets that propose a “ground truth” causal graph (which de-
picts the data generating process). We consider six data
sets: altitude (A; Mooij et al. [2016]), health (H; Zečević
et al. [2021]), recovery (R; Charig et al. [1986]), driving
(D; synthetic), cancer (C) and earthquake (E) both [Korb
and Nicholson, 2010]. We use five different query wordings
(or formulations), namely “Are X and Y causally related?”,
“Is there a causal connection between X and Y ?”, “Is there
a causality between X and Y ?”, “Does X cause Y ?”, and
“Does X influence Y ?” of which the first three are classified
as symmetric queries since the expected answer is a mere
association X–Y and the last two wordings classify as asym-
metric accordingly i.e., we expect either X → Y or X ← Y
(in the case of an existing relation). Furthermore, we note
that some of the wordings make “causal” explicit. For the
different variable pairings, multiplying with the number of
formulations, we have 10 questions for A, 100 for C, 60 for
CH, 30 for D, 100 for E and 30 for R respectively. Three
key observations were made.

Asymmetric queries prefer unique direction. Consider
Fig.3 for the predictions of FM-O when switching from the
symmetric query (top row) to the asymmetric query (bottom
row), which shows how the FM starts settling on a unique
direction (single edge) for multiple previously undecided
relations, thereby, significantly improving prediction quality
across all graph predictions (i.e., the false positive rate is
being reduced). While this observation is consistent with the
natural interpretation that an asymmetric query like “Does
X cause Y ?” only accepts the answers X Y or X → Y ,
the observation is still surprising as there are no formal
guarantees to the query that this should be the case. It might
suggest that the FM indeed learned the difference between
the two types of questions on a causal level.

Over- or underestimation. Comparing the predicted to the
ground truth graphs reveals that the models either tend to
overestimate the number of connections leaning towards a
fully connected graph (FM-L,-O), whereas others underesti-
mate/hesitate to predict (FM-G).

Sensitivity to wording. While some models remain over-
all stable in their prediction across data sets and wordings
(FM-L,-O), others react with unsmooth change to alternate
wordings. Consider Fig.4 where a significant change in the
predicted graph is observed simply by changing the query
wording. A possible interpretation for this observation is that
a keyword such as “causality” might be embedded further
away from an alternate keyword (here for instance “cause”)
within the FM’s latent space, thereby, accessing (in this case)
correct answers.

3.2 DISCUSSION OF RESULTS FOR Q2

The key idea of this work, “correlations on top of causation”,
discussed in Sec.2 only works if these correlations actually
exist (that is, we can expect the models to have encountered
those). While we are unable to assess this rigorously, we
can make the case that common sense reasoning tasks of
either abstract nature or on an intuitive physics level (see for
instance Tenenbaum et al. [2011]) are reasonable settings
in which we can expect said correlations i.e., we can expect
big data to cover relevant literature. In this experiment, we
consider for the abstract reasoning (AR) 15 different ques-
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Figure 3: Asymmetric Query Wording Implies Unidirectedness. Language FM naive graph predictions on data sets that
provide a causal graph (FM-O is shown). Top row, predictions with a symmetric query wording, bottom row, predictions
with an asymmetric query wording. Surprisingly, the FM is capable of deciding multiple edges uniquely (and correctly)
when switching to the asymmetric formulation without explicit guarantees to such behavior.
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Figure 4: FM Sensitivity to Query Wording. Language
FM naive graph predictions for two different query word-
ings/formulations (FM-G shown). A significant change in
output is being observed.

tions (an example, “If A causes B and B causes C does A
cause C?”) and for intuitive physics (IP) 36 questions (an
example, “A ball is placed on a table and rolls off. What
does this tell us about the table?”). Interestingly, both FM-L
and FM-O either fail to provide sensible answers or provide
answers that are ambiguous, for instance, the FM might
loop indefinitely (repeating the first predicted sentence over
and over again) or it might produce a “multiple-choice quiz”
like output of which is also chooses an answer itself (see
appendix for details on this case). FM-G was well behaved,
providing sensible output throughout. Two key observations
were made.

Remarkable accuracy. FM-G was able to answer most of
the queries correctly 11 correct, 3 wrong, 1 unanswered for
AR, and 21 correct, 9 wrong, 6 indecisive for IP. For AR,
when extending the causal n-chain argument (that is, “If

X1 causes X2 ... and Xn−1 causes Xn”) with n = 6 the
model started to fail answering correctly. Also, replacing
the variable letters with alternate letters did not harm the
prediction. For IP, some of the examples are compelling such
as “Mary can not move a heavy stone by herself. However,
she brought a small object and a metal rod with her. How
can Mary move the stone?” to which the model answers
“Mary can use the metal rod as a lever to move the stone”.

Inconsistency in knowledge. From a human perspective ar-
guably “equivalent” situations, are not handled consistently,
e.g. to the question “What is heavier: A kilogram of metal
or a kilogram of feathers?” the model answers wrongly “A
kilogram of metal is heavier than a kilogram of feathers”
but when asked “Most people say ‘A kilogram of metal is
heavier than a kilogram of feathers’, but in reality?” the
model correctly answers “They weigh the same.”

3.3 DISCUSSION OF RESULTS FOR Q3

In this setting, we fix a single graph (e.g. here the graph from
data set H, which involves the variables “age”, “nutrition”,
“health”, and “mobility”) and alternate the variable names.
We either choose words recognized as synonyms of the
original or words that might appear in a similar context but
have an identifiable difference to the original word. A single
key observation was made.

Variable renaming might cause unsmooth change. FM-L
reacted with increased sparsity in graph prediction when
changing the variable “mobility” to mean “fitness”. On the
other hand, FM-O conversely reacted with decreased spar-
sity in graph prediction when changing the variable “age” to
“aging.” Arguably, the former change is more drastic than the
second since fitness as a concept might refer to a superset



that includes mobility but also other things like conditioning
etc., whereas aging “just” refers to the process of increasing
the age. The pattern seems overall arbitrary, but we believe
the observation that “similar” words might cause drastic
change is noteworthy.

4 CONCLUSIVE DISCUSSION

While this systematic analysis of language FMs incorpo-
rated validation strategies to ensure robustness of the results,
much of the presented depends on thorough manual analysis
and taking scientific/educated guesses in hope of finding the
correct interpretation to reach sound conclusions. Therefore,
also the following discussion is based on such an informal
procedure based on the collected evidence.

As we started exploring in Sec.2, it might be hold that our
physical reality creates the model/graph descriptions (which
we called causal assumptions) and corresponding questions
we could answer regarding the underlying variables, sepa-
rately. That is, the graph that captures the idea of “altitude
causes temperature” and a related scientific question like
“Does altitude cause temperature?” have are confounded
but not causally linked. In our reality, the given example
is the truth, that is, there exists a physical mechanism that
decreases temperature with increasing altitude. Therefore,
we expect to see a correlation in the number of times each
of those descriptions appears e.g. in some standard literature
on physics or in articles that discuss global warming. Ob-
viously, changing the description of either by intervention
would not change the other, giving further reason to believe
that there is no direct causation. Subsequently, changing our
actual physical reality (such that temperature were counter-
factually to actually cause altitude) would create an inter-
ventional distribution (on the aforementioned descriptions)
that change the correlation towards this alternate pair. The
language FM learns any of those correlations, and since
in our physical reality the former is true, this causal rela-
tion can be expected to be learned by the FM. This was the
key idea behind the discussion of the “correlations on top
of causation” from Sec.2. In classical causality, our data
expresses low-level (physical) quantities and what makes
the model causal are actually the causal assumptions e.g. a
Causal Bayesian Network (CBN; see Pearl [2009]) assumes
a certain graphical structure where the edges denote causa-
tion. However, there is no restriction on what the variables
might denote. We might have a “big” SCM (that might be
considered as nature itself 7) and it generates other SCMs
so to say i.e., the data talks about causal assumptions (meta-
level abstractions, see Fig.1). The FM obviously does not
use any causal assumptions explicitly, and the CHT (re-
call discussion in Sec.1, Bommasani et al. [2021]) restricts
causal inference from observational data, making us ulti-

7This idea might also be linked to the concept of a Universal
Turing Machine [Turing et al., 1936].

mately believe that the FM is not causal. However, since the
correlation is on data that talks about causality, could the
FM in fact be causal in some other (implicit) notion? This
was the key question of this paper. However, the presented
analysis is in support of the fact that there is “something
causal” going on implicitly, which might be the key reason
for the difficulty of resolving the ongoing heated debate in
absolute terms. These FM might only be somewhat “smart
dictionaries”, but for a downstream task that does not in-
volve generalization/transfer capabilities, whether the model
truly “understands” the causality of the problem or whether
it just “knows" it seems to be irrelevant. This observation is
reminiscent of the philosophical arguments given by [Searle,
2009]. Testing for real understanding would require to query
explanations from the models. This would allow us to test
whether they accurately capture the underlying causal con-
nections or just memorize inseparable bits of information.
For the latter case being incapable of linking those bits
together into consistent causal chains. We observe these
shortcomings of FMs in the abstract reasoning setting where
they are only able to correctly answer for standard causal
chains of alphabetically ordered nodes, but fail for deviating
setups. One could summarize said argument’s conclusion
as capturing the inadequacy of the “Turing Test”, that is,
programming a digital computer may make it appear to un-
derstand language but could not produce real understanding.

We believe the take-away message of this humble, initial
effort in hope of a resolution of the debate is two-fold. The
negative message is that we can not rely solely on language
FMs as we cannot expect a generalization (in causal terms,
and further the implicit nature of the causal assumptions con-
sumed by the FM raises other issues of trustworthiness etc.
all discussed within XAI). Further, current FM are unable
to process actual data observations to ground the available
evidence for doing inference like classical (causal) structure
discovery methods do. However, the positive message is that
we can use the FMs as a head start to learning and inference
which thereby helps in developing new methods for more
robust inference. In that sense, they might very well serve as
stepping stones towards progress in AI/ML research. Also,
our analysis suggests that they are rather good with com-
mon sense knowledge, that is, data where we can expect
correlations on top of causation to have been encountered
by the FM during training.
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A APPENDIX TO “CAN FOUNDATION
MODELS TALK CAUSALITY?”

This supplementary material provides plots that were out of
scope in terms of presentation for the main paper but which
the reader might find interesting in addition to technical
details of the conducted experimental analysis.

Technical details. Our method was executed on one
NVIDIA A100-SXM4-80GB GPU with 80 GB of RAM

and it takes 10 GPU minutes to query the OPT model. For
the Luminous and GPT-3, we use the provided APIs.

Code. We make our code publicly available at: https:
//github.com/MoritzWillig/causalFM

Following pages. Full-width figures of the results of empiri-
cal analysis from the main paper (see Sec.3) follow after this
page. Fig.5 presents stability results on the FM predictions
upon querying with different formulations, Fig.6 discusses
stability results for different variable namings, and Fig.7
presents all single graph predictions.

Subsections A.1 and A.2 contain the FM answers to the In-
tuitive Physics and Causal Chain questions. While querying
the foundation models we observed two reoccurring be-
haviours. First, the models tend to produce multiple-choice-
style answers of the form: "A: ..., B: ..., C: ...". Additionally,
we observe that the models tend to start repeating sentences.
To improve readability, we manually formatted the presented
answers by adding/removing line breaks, white spaces and
punctuation. We also shortened the texts in case of the mod-
els starting to repeat sentences. The exact response texts are
available within the code repository.

https://github.com/MoritzWillig/causalFM
https://github.com/MoritzWillig/causalFM
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Figure 5: Stability: Different Query Formulations. Graph predictions for the three different language FMs, across six
different data sets with known graphs for five different wordings/formulations of a given query. Darker arrows indicate a
more frequent prediction of a connection across the different formulations. FM-L and FM-O tend to predict dense graphs,
whereas FM-G tends to predict sparse graphs. (Best viewed in color.)
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Figure 6: Stability Experiment: Synonyms and General Variable Name Altercations. We fix a single data set (here, data
set H) and change the formulation of the variable name to either a synonym or a more distant reformulation. Only the edges
related to a given node of interest are presented. Some FMs react sensitive to certain wording changes. For a discussion see
Q2 of the main paper. (Best viewed in color.)
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Figure 7: Language FM Graph Prediction. All separate graph predictions using the naive FM structure discovery procedure.
Six different data sets, five different formulations, three different FM. For a discussion reconsider Q1 in the main paper.
(Best viewed in color.)



A.1 INTUITIVE PHYSICS QUESTIONS

There is a tilted board above a bucket. Where does a ball end up if it is placed on the board?
GPT-3 The ball will end up in the bucket.
Luminous A: The ball will roll down the board.

OPT
A. It will fall into the bucket.
B. It will fall into the bucket.
C. It will fall into the bucket.

There is a tilted board above a bucket. Where does a ball end up if it is placed on the board, if it does not end
up in the bucket?
GPT-3 The ball will end up on the ground.

Luminous
A ball is placed on a tilted board. Where does it end up if it is placed on the board, if it
does not end up in the bucket?

OPT
A. It will fall into the bucket.
B. It will fall into the bucket.
C. It will fall into the bucket.

There is a board above a bucket. Where does a ball end up if it is placed on the board?
GPT-3 The ball will end up in the bucket.
Luminous A ball is placed on a table. Where does it end up if it is rolled under a table?

OPT
A. It falls into the bucket.
B. It falls into the bucket and bounces off the board.
C. It falls into the bucket and bounces off the board and into the bucket below.

There is a leveled board above a bucket. Where does a ball end up if it is placed on the board?
GPT-3 The ball will end up in the bucket.
Luminous A: The ball will roll down the board and into the bucket.

OPT
A. It falls into the bucket.
B. It falls into the bucket and bounces off the board.
C. It falls into the bucket and bounces off the board and into the bucket below.

A ball is placed on a table and rolls off. What does this tell us about the table?
GPT-3 The table is not level.

Luminous

A. The table is flat.
B. The table is round.
C. The table is square.
D. The table is rectangular.
Answer: C
Explanation: The table is rectangular

OPT A ball is placed on a table and rolls off. What does this tell us about the table?

A ball is placed on a surface and rolls off. What does this tell us about the surface?
GPT-3 The surface is not level.
Luminous A ball is placed on a surface and rolls off. What does this tell us about the surface?
OPT A ball is placed on a surface and rolls off. What does this tell us about the surface?

A ball is placed on a table and rolls to the center. What does this tell us about the table?
GPT-3 The table is level.
Luminous A ball is placed on a table and rolls to the center. What does this tell us about the table?
OPT A ball is placed on a table and rolls to the center. What does this tell us about the table?



A ball is placed on a surface and rolls to the center. What does this tell us about the surface?
GPT-3 The surface is curved.

Luminous
A ball is placed on a surface and rolls to the center. What does this tell us about the
surface?

OPT
A ball is placed on a surface and rolls to the center. What does this tell us about the
surface?

A block is placed on one support. What happens if the support is removed?
GPT-3 If the support is removed, the block will fall.
Luminous A block is placed on one support. What happens if the support is removed?
OPT A block is placed on one support. What happens if the support is removed?

A block is placed on two supports. What happens if one of the supports is removed?
GPT-3 If one of the supports is removed, the block will fall.
Luminous A block is placed on two supports. What happens if one of the supports is removed?
OPT A block is placed on two supports. What happens if one of the supports is removed?

A block is placed on three supports. What happens if one of the supports is removed?
GPT-3 If one of the supports is removed, the block will fall.
Luminous A block is placed on three supports. What happens if one of the supports is removed?
OPT A block is placed on three supports. What happens if one of the supports is removed?

A block is placed on three supports. What happens if the left support is removed?
GPT-3 If the left support is removed, the block will fall to the left.

Luminous
A block is placed on three supports. What happens if the right support is removed?
A block is placed on three supports. What happens if the top support is removed?

OPT A block is placed on three supports. What happens if the left support is removed?

A block is placed on three supports. What happens if the right support is removed?
GPT-3 If the right support is removed, the block will fall to the left.

Luminous
A block is placed on three supports. What happens if the left support is removed?
A block is placed on three supports. What happens if the middle support is removed?

OPT A block is placed on three supports. What happens if the right support is removed?

A block is placed on three supports. What happens if the middle support is removed?
GPT-3 If the middle support is removed, the block will fall.
Luminous A block is placed on three supports. What happens if the middle support is removed?
OPT A block is placed on three supports. What happens if the middle support is removed?

A vase is supported by a table. What happens if the table is removed?
GPT-3 If the table is removed, the vase will fall to the ground.
Luminous A vase is supported by a table. What happens if the table is removed?

OPT

A. The vase falls over.
B. The vase falls over.
C. The vase falls over.
D. The vase falls over.

An vase is supported by a table. What happens if the table disappears?
GPT-3 If the table disappears, the vase will fall to the ground.
Luminous A vase is supported by a table. What happens if the table disappears?

OPT

A. The vase falls over.
B. The vase falls over.
C. The vase falls over.
D. The vase falls over.



A heavy and a light ball are heading towards each other. Which ball will bounce away?
GPT-3 The light ball will bounce away.

Luminous
A: The heavy ball will bounce away.
The light ball will bounce away.
The heavy ball will bounce away.

OPT A heavy and a light ball are heading towards each other. Which ball will bounce away?

Two equal weight balls are heading towards each other. Which ball will bounce away?
GPT-3 The ball with more momentum will bounce away.

Luminous
A: The answer is:
The ball with the larger mass will bounce away.
The reason is that the force of gravity is proportional to the mass of the object.

OPT

A. The heavier ball
B. The lighter ball
C. The ball with more mass
D. The ball with less mass
E. The ball with the same mass
F. The ball with the same weight

Two balls are heading towards each other with the same speed. Which ball will bounce away?
GPT-3 The ball with more mass will bounce away.

Luminous

A: The ball with the higher mass will bounce away.
The reason is that the force of gravity is proportional to the mass of the object.
The force of gravity is:
$$F = -GmM [TOKEN LIMIT]

OPT
Answer: The ball with lesser mass will bounce away.
Question: A ball is thrown upwards with a speed of 20 m/s. The ball is thrown upwards
with a speed of 20 m/s.

Two equal weight balls are heading towards each other with the same speed. Which ball will bounce away?
GPT-3 Both balls will bounce away.
Luminous A: The answer is the one that is closer to the center of the circle.

OPT

A. The heavier ball
B. The lighter ball
C. The ball with more mass
D. The ball with less mass
Answer: D

A heavy and a light object are placed on a seesaw. Which object will move up?
GPT-3 The light object will move up.

Luminous

A. The heavy object
B. The light object
C. The seesaw will move up
D. The seesaw will move down
E. The seesaw will not move
Answer: A

OPT A heavy and a light object are placed on a seesaw. Which object will move up?

A heavy and a light object are placed on a seesaw. Which object will move down?
GPT-3 The heavy object will move down.

Luminous

A. The heavy object
B. The light object
C. The seesaw
D. The ground
Answer: A
Explanation: The seesaw is a simple machine.

OPT A heavy and a light object are placed on a seesaw. Which object will move down?



Two equal weight object are placed on a seesaw. Which object will move up?
GPT-3 The object on the left will move up.

Luminous

A. The heavier object
B. The lighter object
C. The seesaw will move up
D. The seesaw will move down
Answer: A
Explanation: The heavier object will move up.

OPT

A. The heavier object
B. The lighter object
C. The object with the greater mass
D. The object with the lesser mass
E. The object with the greater surface area

A heavy and a light object are placed on the same side of a seesaw. Which object will move down?
GPT-3 The heavy object will move down.

Luminous

A. The heavy object
B. The light object
C. The seesaw will move down
D. The seesaw will not move down
E. The seesaw will move up

OPT
A heavy and a light object are placed on the same side of a seesaw. Which object will
move down?

What is heavier: A hand full of metal or a hand full of feathers?
GPT-3 A hand full of metal is heavier than a hand full of feathers.
Luminous A: The answer is that the metal is heavier.

OPT
A hand full of feathers.
Why?
Because it’s easier to pick up a handful of feathers than a handful of metal.

What is heavier: A kilogram of metal or a kilogram of feathers?
GPT-3 A kilogram of metal is heavier than a kilogram of feathers.
Luminous A: The answer is that the kilogram of feathers is heavier.

OPT
A kilogram of feathers is heavier than a kilogram of metal.
Why?
Because a kilogram of feathers is heavier than a kilogram of metal.

What is heavier: A kilogram of metal or a kilogram of rock?
GPT-3 A kilogram of metal is heavier than a kilogram of rock.
Luminous A: The kilogram is a unit of mass, not weight.

OPT
A kilogram of metal is heavier than a kilogram of rock.
Why?
Because a kilogram of metal is heavier than a kilogram of rock.

What is heavier: A kilogram of metal or a kilogram of lead?
GPT-3 A kilogram of lead is heavier than a kilogram of metal.

Luminous
A: The kilogram is a unit of mass. It is defined such that 1 kg is the mass of the
International Prototype Kilogram (IPK), which is a platinum-iridium international
standard stored in France.

OPT
A kilogram of metal.
Why?
Because a kilogram of metal is heavier than a kilogram of lead.



"A kilogram of metal is heavier than a kilogram of feathers" is what most people say, but in reality
GPT-3 they weigh the same.

Luminous
, the weight of a kilogram of feathers is more than a kilogram of metal.
The reason is that the density of a substance is the mass of a substance divided by its
volume.

OPT
, a kilogram of feathers is heavier than a kilogram of metal.
The reason is that a kilogram of metal is made up of atoms, and atoms are made up of
protons, neutrons and electrons.

A wooden beam is placed over a stone. A small plastic bottle is placed on one side. What will happen if a
person jumps onto the other side of the beam?
GPT-3 The beam will rotate and the person will jump into the air.

Luminous

A. The bottle will break.
B. The bottle will not break.
C. The bottle will break and the person will fall to the ground.
D. The bottle will not break and the person will fall to the ground

OPT
A wooden beam is placed over a stone. A small plastic bottle is placed on one side.
What will happen if a person jumps onto the other side of the beam?

Mary can not move a heavy stone by herself. However, she brought a small object and a metal rod with her.
Is Mary able to move the stone?
GPT-3 No, Mary is not able to move the stone.

Luminous

A: The answer is no.
The problem is that the metal rod is not a part of the stone.
The stone is a part of the object.
The object is a part of the system.

OPT

A. Yes
B. No
C. I don’t know
D. I don’t know

Mary can not move a heavy stone by herself. However, she brought a small object and a metal rod with her.
How can Mary move the stone?
GPT-3 Mary can use the metal rod as a lever to move the stone.

Luminous
A: The answer is that Mary can move the stone by herself.
The problem is that the stone is too heavy for Mary to move by herself.
The solution is that Mary can move the stone by herself, but she [TOKEN LIMIT]

OPT
A. Mary can move the stone by using the rod.
B. Mary can move the stone by using the object.
C. Mary can move the stone by using [TOKEN LIMIT]

Mary can not lift a heavy stone by herself. However, she brought a small object and a metal rod with her. Is
Mary able to lift the stone?
GPT-3 No, Mary is not able to lift the stone.

Luminous
A: The answer is no.
The problem is that the metal rod is not a part of the stone.
The stone is a part of the problem.

OPT
A. Yes
B. No
C. I don’t know



Mary can not lift a heavy stone by herself. However, she brought a small object and metal rod with her. How
can Mary lift the stone?
GPT-3 Mary can use the metal rod as a lever to lift the stone.

Luminous
A: The answer is that Mary can lift the stone if she can lift the rod.
The rod is a lever. The force of the rod is the same as the force of the stone, but the
distance the rod moves [TOKEN LIMIT]

OPT
Answer: Mary can lift the stone by using the rod.
Explanation: Mary can lift the stone by using the rod.

Mary can not lift a heavy stone by herself. However, she brought a calculator with her. Is Mary able to lift
the stone?
GPT-3 No, the calculator is not able to lift the stone.

Luminous
A: The answer is no.
The calculator is not a machine, so it cannot lift the stone.

OPT Mary can lift the stone.

Mary can not lift a heavy stone by herself. However, she brought a calculator with her. How can Mary lift the
stone?
GPT-3 Mary can’t lift the stone by herself, but she can use the calculator to help her.

Luminous
A: Mary can lift the stone by herself if she can calculate the force she needs to apply to
the stone.

OPT
Answer: Mary can lift the stone by using the calculator.
Explanation: Mary can lift the stone by using the calculator.

A.2 CAUSAL CHAINS QUESTIONS

If A causes B and B causes C. Does A cause C?
GPT-3 It is possible that A causes C, but it is also possible that A and C are unrelated.

Luminous
A: The answer is no.
The cause of a thing is the thing that makes it happen.

OPT
If A causes B and B causes C, then A causes C.
If A causes B and B causes C, then A does not cause C.
If A causes B and B does not cause C, then A does not cause C.

If A causes B and B causes C. Does A cause B?
GPT-3 There is not enough information to answer this question.

Luminous
A: The answer is no.
The cause of a thing is the thing that makes it happen.

OPT
If A causes B and B causes C, then A causes C.
If A causes B and B does not cause C, then A does not cause C.

If A causes B and B causes C. Does B cause C?
GPT-3 Yes, B causes C.

Luminous
A: The answer is no.
The cause of a thing is the thing that makes it happen.

OPT
If A causes B and B causes C, then A causes C.
If A causes B and B causes C, then A does not cause C.
If A causes B and B does not cause C, then A does not cause C.

If A causes B and B causes C. Does A cause A?
GPT-3 A does not cause A.

Luminous
A: The answer is no.
The cause of a thing is the thing that caused it.

OPT
If A causes B and B causes C, then A causes C.
If A causes B and B causes C, then A does not cause C.
If A causes B and B does not cause C, then A does not cause C.



If A causes B and B causes C. Does B cause A?

GPT-3
There is no definitive answer to this question as it depends on the specific situation. In
some cases, B may cause A, while in others A may cause B.

Luminous

A: The answer is no.
The cause of A is A itself.
The cause of B is A and B.
The cause of C is A, B and C.

OPT
If A causes B and B causes C, then A causes C.
If A causes B and B causes C, then A does not cause C.
If A causes B and B does not cause C, then A does not cause C.

If A causes B and B causes C. Does C cause A?

GPT-3
There is no definitive answer to this question as it depends on the specific situation. In
some cases, it may be true that C causes A, while in other cases it may not be true.

Luminous
A: The answer is no.
The cause-effect relationship is a logical relationship. It is not a physical relationship.

OPT
If A causes B and B causes C, then A causes C.
If A causes B and B causes C, then B causes C.
If A causes B and B causes C, then A does not cause C.

If A causes B, B causes C and C causes D. Does A cause D?
GPT-3 A causes D.

Luminous

A: The answer is no.
The cause of A is A itself.
The cause of B is A and B.
The cause of C is A, B and C.

OPT
If A causes B, B causes C and C causes D. Does A cause D?
If A causes B, B causes C and C causes D. Does A cause D?

If A causes B, B causes C, C causes D and D causes E. Does A cause E?
GPT-3 A causes E.

Luminous
A: The answer is no.
The cause-effect relationship is a logical relationship. It is not a physical relationship.

OPT
If A causes B, B causes C, C causes D and D causes E. Does A cause E?
If A causes B, B causes C, C causes D and D causes E. Does A cause E

If A causes B, B causes C, C causes D, D causes E, E causes F. Does A cause F?
GPT-3 A does not necessarily cause F.

Luminous
A: The answer is yes.
The cause of A is B, the cause of B is C, the cause of C is D, the cause of D is E, the
cause of E is F.

OPT
If A causes B, B causes C, C causes D, D causes E, E causes F, then A causes F.
If A causes B, B causes C, C causes D,

If A causes B, B causes C, C causes D, D causes E, E causes F. Does B cause E?

GPT-3
There is no definitive answer to this question as the relationship between B and E could
be indirect.

Luminous
A: The answer is no.
The cause of B is A, and the cause of A is B.

OPT
If A causes B, B causes C, C causes D, D causes E, E causes F. Does B cause E?
===Example===



If A causes B, B causes C, C causes D, D causes E, E causes F. Does E cause B?

GPT-3
There is no definitive answer to this question as it depends on the specific circumstances
of the situation. However, it is possible that E could cause B if, for example, E is a
necessary component for the functioning of B.

Luminous
A: The answer is no.
The cause of B is A, and the cause of A is B.
The cause of C is B, and the cause of B is A.

OPT If A causes B, B causes C, C causes D, D causes E, E causes F. Does E cause B?

If B causes C and A causes B. Does A cause C?
GPT-3 There is not enough information to determine if A causes C.

Luminous
A: The answer is no.
The cause of A is B, and the cause of B is A.
The cause of C is A, and the cause of A is B.

OPT
If A causes B, then A causes C.
If A causes B, then C causes B.
If A causes B, then C causes A.

If B causes C and A causes B. Does C cause A?

GPT-3
There is no definitive answer to this question as it depends on the specific situation. In
some cases, it may be true that C causes A, while in other cases it may not be true.

Luminous
A: The answer is no.
The cause of A is B, and the cause of B is A.
The cause of C is A, and the cause of A is B.

OPT
If A causes B, then C causes A.
If A causes C, then B causes A.

If G causes Q and Q causes S. Does G cause S?
GPT-3 Yes, G causes S.

Luminous

I’m trying to understand the concept of causation. I’m not sure if I’m understanding it
correctly.
If G causes Q and Q causes S. Does G cause S?
A: The answer is no.

OPT

If G causes S, then G causes Q.
If G causes Q, then G causes S.
If G does not cause S, then G does not cause Q.
If G does not cause Q, then G does not cause S

If Q causes S and G causes Q . Does G cause S?
GPT-3 Yes, G causes S.

Luminous
A: The answer is no.
The reason is that the cause of S is Q, and the cause of Q is G.
So, the cause of S is G.

OPT
If Q causes S and G causes Q, then G causes S.
If Q causes S and G causes Q, then G does not cause S.
If Q causes S and G does not cause Q, then G does not cause S.
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