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ABSTRACT

Self-supervision is one of the hallmarks of representation learning in the increas-
ingly popular suite of foundation models including large language models such
as BERT and GPT-3, but it has not been pursued in the context of multivariate
event streams, to the best of our knowledge. We introduce a new paradigm for
self-supervised learning for temporal point processes using a transformer encoder.
Specifically, we design a novel pre-training strategy for the encoder where we not
only mask random event epochs but also insert randomly sampled ‘void’ epochs
where an event does not occur; this differs from the typical discrete-time pretext
tasks such as word-masking in BERT but expands the effectiveness of masking to
better capture continuous-time dynamics. The pre-trained model can subsequently
be fine-tuned on a potentially much smaller event dataset, similar to other founda-
tion models. We demonstrate the effectiveness of our proposed paradigm on the
next-event prediction task using synthetic datasets and 3 real applications, observ-
ing a relative performance boost of as high as up to 15% compared to state-of-the
art models.

1 INTRODUCTION

Transfer learning occurs when a model is pre-trained on a task, such as classification on a large la-
belled dataset such as ImageNet, and the model’s ‘knowledge’ is then applied to another task, such
as classification on medical images. In the current era of AI, transfer in domains such as natural lan-
guage processing and image processing often leverages self-supervised learning, where pre-training
for representation learning is done using unlabeled data. Although the fundamental ideas of trans-
fer are not new, there is a clear emerging paradigm around foundation models (Bommasani et al.,
2021), such as BERT (Devlin et al., 2018) and GTP-3 (Brown et al., 2020), which are trained with
diverse unlabeled data at scale using self-supervision. These pre-trained models are then fine-tuned
and adapted to different downstream tasks that respectively come with limited labeled data. Recent
progress has been possible primarily due to improvements in hardware, development of the attention
mechanism (Vaswani et al., 2017), and availability of substantial unlabeled training data.

We extend and pursue self-supervised learning in the context of multivariate event streams, i.e. data
involving irregular occurrences of different types of events. Event stream datasets are widely avail-
able across domains, for instance in the form of social network interactions, customer transactions,
system logs, financial events, health episodes, etc. It is well known that temporal point processes
provide a sound mathematical framework for modeling such datasets (Daley & Jones, 2003). In this
paper, we introduce a new paradigm for self-supervised learning for temporal point processes using
a transformer encoder. Although self-supervised learning has recently been explored for classical
time series data (Zerveas et al., 2021), to the best of our knowledge, self-supervision has not yet
been explored in the context of point processes.

Neural models for temporal point processes (e.g. Du et al., 2016; Mei & Eisner, 2016; Xiao et al.,
2017) have advanced the state of the art in event modeling, particularly for the task of event predic-
tion. The typical approach in this line of work is to train a neural network on a large amount of event
data. Our proposed paradigm differs from current standard practices by taking a transfer learning
approach analogous to foundation models: to first pre-train a neural model on a (potentially) large
event dataset and then fine-tune the model for prediction on a limited event dataset.
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Transfer learning with event models has many potential applications. For instance, there may be
abundant data from electronic health records containing information around a particular patient
population; this data could potentially be leveraged for another population whose data is either
unavailable or harder to obtain. This is an issue relevant to health equity since there may be data
related concerns for some under represented populations. Similarly, financial event data from an
industrial sector could potentially be transferred to another. Electronic commerce is yet another il-
lustrative domain where transfer learning techniques may help to transfer purchase behaviors across
a large pool of user populations and/or product types.

Although there is some related work around multi-task learning with event streams, such as through
deploying hierarchical Gaussian process models (Lian et al., 2015) or time-scale graphical event
models (Monvoisin & Leray, 2019), this line of research typically considers learning by pooling
together disparate data from the same population. In contrast, we tackle the more ambitious effort
of transferring from one or multiple event datasets to another. Specifically, we consider the typical
setting of homogeneous transfer learning (Zhuang et al., 2021), where all datasets that get pooled
for pre-training involve the same set of event types. This allows for potentially leveraging differ-
ent datasets even though there may be realistic variations with respect to parametric or structural
dependencies present in the corresponding event streams across each dataset.

Contributions: We make the following major contributions:

• We introduce a self-supervised paradigm for transfer learning in temporal point processes.
A crucial innovation is to explicitly incorporate information about the absence of events,
which improves the modeling of temporal dynamics without burdening training efficiency.

• We propose a masked event model, which is a new way to derive a pretext task for self-
supervision targets in transformer models for event streams.

• Our empirical evaluation demonstrates improved transfer learning performance for event
prediction on synthetic and real datasets relative to state of the art transformer event models.

2 BACKGROUND AND RELATED WORK

2.1 TEMPORAL POINT PROCESSES

Multivariate temporal point processes (MTPP) are elegant mathematical models for event streams
where event types/labels from some discrete set occur in continuous time (Daley & Jones, 2003).
A multi-dimensional MTPP generates sequences with timestamps and associated labels of the form
S = {(ti, yi)}ni=1 where ti is the time of occurrence of ith event and yi is its label. The cardinality
of label set L is M . A strict temporally ordered event stream assumes a period of events observed
within [0, T ] for each ti ∈ [0, T ] for all i ∈ [1, 2, ..., n]. MTPPs are characterized by conditional
intensity functions for each label representing the rate at which it occurs at any time t, λe(t) =

lim∆t→0
E(Ne(t+∆t|ht)−Ne(t|ht))

∆t , whereNe(t|ht) counts the number of occurrences of label e prior
to historical occurrences (or simply history) ht.

Several MTPP models such as multivariate versions of the classic Hawkes process (Hawkes, 1971)
and piecewise-constant models (Gunawardana & Meek, 2016; Bhattacharjya et al., 2018) assume
some parametric form of the conditional intensity function. Neural MTPPs are more recent variants
that capture the underlying dynamics using neural networks. Recent years have witnessed rising
popularity of neural MTPPs due to their state-of-the-art performance on benchmark datasets for pre-
dictive tasks (Du et al., 2016; Mei & Eisner, 2016; Xiao et al., 2017; Omi et al., 2019; Shchur et al.,
2019; Zuo et al., 2020). A common training objective in neural MTPPs involves minimizing the
negative log-likelihood. The log-likelihood of observing a sequence S is the sum of log-likelihood
of events and non-events and can be computed as:

log p(S) =

n∑
i=1

M∑
e=1

logλe(ti)−
∫ T

0

M∑
e=1

λe(t)dt (1)

Many of these neural MTPPs assume some form of evolution dynamics between events in order to
compute the second term in Eq. 1, such as recurrent neural network (RNN) evolution (Xiao et al.,
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2017), exponential decay (Mei & Eisner, 2016), intensity-free modeling of the integral (Omi et al.,
2019), or the usage of explicit epochs indicating absence of events (Gao et al., 2020).

2.2 TRANSFORMERS FOR EVENT DATA

Attention (Xiao et al., 2019) and transformer-based event models have shown promising results in
recent years, including the self-attentive Hawkes process (SAHP) (Zhang et al., 2020), transformer
Hawkes process (THP) (Zuo et al., 2020) and attentive neural point process (ANPP) (Gu, 2021). The
self-attention mechanism, in our context, relates different event instances of a single stream in order
to compute a representation of the stream. The architecture of transformers for MTPPs generally
consists of an embedding layer and a self-attention layer. In the transformer Hawkes process (THP)
(Zuo et al., 2020), for example, the embedding layer includes a time embedding and event-type
embedding. Time embedding is achieved through:

[z(tj)]i =

{
cos(tj/10000

i−1
d ) if i is odd

sin(tj/10000
i
d ) if i is even

(2)

where tj is a timestamp and d is the dimension of encoding. Time embedding and one-hot encoded
types are combined to form the embedded input X. For sequence S = {ti, yi}Li=1, time embedding
zi for each instance is specified in Eq. 2 and for the entire sequence with length L, the embedding
is Z ∈ RM×L . Type embedding are through the product of a trainable embedding matrix U ∈
RM×K and one hot encoded vectors yi’s for all type instances, i.e. X = (UY + Z)T where
Y = [y1,y2, ...,yL]. Q, K, V are query, key and value matrix; they are linear transformations
of X, i.e. Q = XWQ, K = XWK , V = XWV where WQ, WK , WV are trainable weights.
Attention output C is computed by the following:

C = softmax(
QKT

√
Mk

)V = AsV (3)

where As denotes attention score matrix. The output C is then fed into a pointwise feed forward
neural network (FFN) (commonly with residual connection) to learn a high level representation of
the sequence for modeling conditional intensity functions.

2.3 SELF-SUPERVISION FOR SEQUENCE DATA

Sequence models such as RNNs have achieved much success in various applications, but more
recent methods typically rely on transformer architectures (Vaswani et al., 2017) and the attention
mechanism, especially in popular application of natural language process (NLP). With fine-tuning
on the downstream tasks, these pre-training models lead to sizable improvement over previous state
of the art. However, large-scale transformers are also bulky and resource-hungry, typically with
billions of parameters (Brown et al., 2020) and cost millions of USD to train (Floridi & Chiriatti,
2020).

Self-supervision is typically achieved in sequence models by deriving an effective pretext task that is
trained through supervised learning with a masking strategy for indicating self-supervision targets.
For example, in BERT, about 15% of the words are randomly masked using an independent Bernoulli
model of masking, and replaced with a new [MASK] label or a random word. In some recent work
on self-supervision for time series data (Zerveas et al., 2021), the masking is done to ensure longer
lengths of masked values, all replaced with the value 0, to get geometrically distributed run-lengths
of masked values. Here we introduce a novel pretext task with a masking strategy specially tailored
for asynchronous event data in continuous time. As we show later through experimental ablation
studies, straightforward application of prior discrete-time sequence-based masking strategies proves
inadequate for event data, because the intensity rates of events that represent continuous-time dy-
namics may vary in general between any two consecutively observed events. This aspect distin-
guishes event streams from discrete-time data such as time series and has not been addressed by
masking in standard temporal transformers.

3 A SELF-SUPERVISED LEARNING PARADIGM

We introduce a self-supervised modeling paradigm with a transformer-based architecture for mul-
tivariate event streams that we refer to as Event-former. In particular, we present a novel pretext
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Figure 1: Pre-training and fine-tuning with Event-former.

training task specific to event data to learn a suitable representation for event streams. Such a rep-
resentation can then be used by a small feed forward network for fine-tuning on a sequential next
event prediction task. A high-level figurative scheme is shown in Figure 1; we provide details in the
subsections to follow.

Our proposed pre-training paradigm from Figure 1 (left) involves three major aspects that distinguish
it from prior work: 1) injecting void events (which are formalized in the next paragraph) to improve
the representation learning of event dynamics in continuous time, 2) an effective masking strategy
that uses both positional and temporal encoding on the above augmented event stream with void
events, and 3) forcing the attention mechanism to adhere to the temporal order of events. We explain
each aspect below before prescribing the full pre-training scheme, followed by a brief explanation
of the fine-tuning procedure as depicted in Figure 1 (right).

3.1 VOID EVENTS IN TRANSFORMERS

Recall that an observed event stream is of the form S = {(ti, yi)}ni=1 where ti and yi are the
ith event’s time stamp and label, respectively. We consider a modified stream where we inject a
predetermined number of void events involving epochs where no event occurs; these are of the form
(t′i, null) where ‘null’ is a new label signifying absence of an event occurrence. The modified stream
is denoted S′ = {t′i, y′i}n

′

i=1 where S ⊂ S′ and y′i ∈ {L ∪ null} ∀i. The role of the void events is
to provide additional information about the dynamics of the continuous-time process by explicitly
indicating that no event occurs within two consecutively observed events.

Explicitly specifying selected epochs where events do not happen has been used previously in some
related work; see for instance the notion of ‘fake epochs’ in Gao et al. (2020), which was originally
developed for RNNs and helped boost the performance of a neural point process on a model fitting
task. The main idea is that in point process models, the inter-event duration between two successive
events is just as important as the event epochs themselves. This is seen from the integral terms in
the conditional intensity based log-likelihood expression for event streams (see Eq. 1). Just as the
internal hidden state of a recurrent neural network (such as an LSTM) only changes in discrete steps
upon seeing the next token, the transformer based representations too behave in a similar manner.
In reality, the conditional intensity rates can evolve continuously. Introducing the void epochs in
the inter-event void space provides a convenient way to force the evolution of the transformer based
internal representations inside the inter-event interval, and this in turn leads to improvement in both
the pre-training and the fine-tuning steps for next event prediction related tasks. We thereby ad-
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dress an inherent shortcoming of transformers for event datasets in a non-parametric manner, i.e.
without the need of specific parametric or process assumptions such as in the transformer Hawkes
process (Zuo et al., 2020). However, to use void events in transformers requires further adaptation,
particularly during the training process where masking is also used. Next we present an effective
approach for masking with void event labels.

3.2 MASKING STRATEGY & INPUT ENCODING

We consider a masked event model (MEM) pre-training device that operates on the modified event
stream S′, where some events (t′i, y

′
i) are randomly masked for the task of prediction given history.

Our masking approach is broadly similar to past work but specialized to our model. When an event
epoch in the above expanded event stream S′ is masked, its timestamp is replaced with the value
zero and its label is replaced with the value [MASK]. Further, for the choice of which tokens get
masked, our model admits both the independent strategy used in BERT (Devlin et al., 2018) as well
as the serially correlated temporal strategy used in time series (Zerveas et al., 2021). An ablation
study shown later in Table 2 indicates that either of these strategies works well when combined with
the proposed MEM model, and leads to improvements through transfer learning in both MSE and
accuracy for predicting the next event time and label respectively. We also note that the results are
worse without the proposed MEM model’s expansion of the event stream, i.e. without the injection
of void event epochs. Our model differs from existing literature on masking in that both actual
events and void events are admitted as candidates for masking. This combined approach leads to
improved representations in experimental evaluation. The MEM model based representations are
able to implicitly learn about both the event arrival rates due to masked learning with real epochs, as
well as the inter-event empty spaces due to masked learning with void epochs.

In addition to the choice of masking strategy in transformer models, one also needs an encoding for
the position information in the input sequence so that the uniqueness of each location is retained to
some extent. Traditional positional encoding (PE) (Vaswani et al., 2017) used in transformers is not
sufficient by itself for event stream data because events are associated with irregular time stamps,
unlike natural language sequences. Similarly, temporal encoding (TE), such as proposed in prior
work (Zuo et al., 2020), also proves inadequate by itself in our setting because our masking strategy
replaces the time stamps of masked events with zero. Note that this would render indistinguishable
any two distinct events (i.e. with distinct time stamps) of the same event type in the input event
stream. As seen in Figure 3 in the Appendix, using TE alone leads to early plateauing of the loss
function, and this is often a telltale signature of poor end-task performance. To address this issue,
we propose the combined encoding strategy of using PE and TE together. We also show that the
combined encoding strategy preserves the universal approximation results of standard transformers.

Theorem 1 Transformers with combined PE and TE are universal approximators for any contin-
uous sequence-to-sequence function with compact domain, i.e. they approximate any continuous
functions f: X→H with ϵ error w.r.t p-norm where 1 ≤ p <∞ and X,H ∈ Rd×L.

Please refer to the Appendix for a proof of the above result. Yun et al. (2019) establishes that
transformers with PE are universal approximators for any continuous sequence-to-sequence function
with compact support (Theorem 3 in their paper) and is applicable to language sequences. The
afore mentioned result however applies uniquely to event streams. More importantly, it separates
two distinct event epoch encodings to (potentially) distinguish representations and establishes the
predictability and learnability of a transformer model (with a certain structure) for the MEM.

3.3 TEMPORAL UPPER TRIANGULAR ATTENTION

While masked language models such as BERT leverage contextual information from both prior and
post tokens of interest, here we only consider prior tokens. This is because our main task of interest
is event prediction given only the past, as typical in most real-world prediction problems, which
prohibits us from using post token context. We apply an upper triangular attention so that a current
event epoch only attends to prior events. In MEM, any representation in pre-training as shown in
Figure 1 (left) for a masked event (regardless of whether the event is observed or void) only attends to
history in the past. With these pieces that define the MEM model, we next describe the pre-training
and fine-tuning steps that respectively produce and exploit the self-supervised representations.

5



Under review as a conference paper at ICLR 2023

3.4 PRE-TRAINING SCHEME

Pre-training using the MEM is conducted by first randomly injecting void events into event streams,
masking some of the events, and then computing a self-supervised loss determined by predicting
the masked events. In this fashion, the MEM is trained to not only predict the time and label of
observed events, but also try to be as accurate as possible at determining when events do not happen.
In the most general setting, suppose that the sequence of time stamps for void events, denoted τ ,
is randomly generated from some distribution P. A special case of this random injection is when
exactly 1 void event is uniformly generated between each pair of consecutive events in S to create
modified event stream S′. After randomly selecting a pre-determined percentage of events to mask,
the loss for the self-supervised prediction task can be computed as:

L = Eτ∼P[Levent(t̂
′
m, ŷ′m; t′∗m, y′∗m)], (4)

where m denote the indices of the randomly selected masked events, similar conceptually to Devlin
et al. (2018). The hat and star notation for t (y) refer to the model’s predicted time (label) and the
ground truth time (label), respectively. Note that Eq. 4 will in practice be challenging to optimize,
due to the stochastic objective and additional computation complexity from sampling and inserting
void events between every two consecutive events in every event stream in a batch when performing
stochastic gradient descent. The time complexity for such an insertion during training is O(KL)
where K is the number of event streams and L is the maximum length by merging the two sorted
lists.

To reduce the computational cost and improve efficiency, we propose a practical solution by adopting
a simpler but just as effective sampling strategy for void events. Specifically, we only sample void
events once from the original dataset as an approximation and then merge as a pre-processing step.
Thus no additional computing cost occurs during training. Let NM be the total of number of masked
event epochs. We use the following to measure the prediction loss for each masked event, whether
it is observed or void:

Levent =
1

NM

NM∑
i

CE(softmax(H′
mWy + by)i,:, y

′∗
m,i) + γMSE((H′

mwt + bt)i, t
′∗
m,i), (5)

where H′
m is the masked high level representation from the transformer model of a modified stream

and Wy ∈ Rd×M , by ∈ RM , wt ∈ Rd and bt ∈ R are trainable weights and biases for label
prediction cross entropy (CE) loss and time prediction mean square error (MSE). In addition, index
i in the above equation implies a general instance of masked event epoch and i, : corresponds to
the ith row of the output matrix. We use γ as the trade-off between the two loss terms. It is worth
noting that we use only one hidden layer for masked event prediction; we avoid using deep feed
forward networks to force the transformer model to learn a high quality representation H′

m so that
it facilitates the fine-tuning process for downstream tasks.

3.5 FINE-TUNING

After pre-training, MEM can then be applied to model any new event sequence S and be further
fine-tuned to obtain a better representation Ĥi. Note that during fine-tuning, we do not include
void events, which simplifies the training steps and is compatible with any existing approach. Each
learned representation is then fed into a small feed forward neural network for downstream tasks
involving event prediction. In other words, our model fine-tunes by consuming each individual
event representation Ĥi and predicting the next label yi+1 as well as time ti+1. The power of this
approach is primarily through the conversion of sequential prediction into tabular regression and
classification. For an event dataset with K event streams, each with length nk, the loss in fine tuning
step Lpred is the following:

Lpred =

K∑
l=1

nk∑
i=1

CE(softmax(MLP (Ĥl
i)), y

l
i+1) + αMSE(MLP (Ĥl

i), t
l
i+1) (6)

where α is a similar trade-off between cross entropy and mean square error. Regression and classifi-
cation share the same multi-layer neural network (MLP) for computational efficiency in our setting.
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4 EXPERIMENTS

4.1 BASELINES

We use the following baselines for experiments. To focus attention on the potential benefits of self-
supervision rather than the choice of neural architecture, we replace non-transformer architectures
in baselines with a suitable counterpart transformer.

Recurrent Marked Temporal Point Process (Du et al., 2016) and Event Recurrent Point Process
(Xiao et al., 2017). We replace the RNNs in both originally proposed models with transformers. We
note that the original implementation 1 only predicts the very last event (tn, yn) given prior events;
for a fair comparison, we therefore modify the code to evaluate next inter-event time di where
di = ti − ti−1 for i ∈ {2, 3, ...n}.
Lognormal Mixture (Shchur et al., 2019). We replace the RNN with a transformer and take the
expectation of the learned mixture model for next inter-event prediction.

Transformer Hawkes Process 2 (Zuo et al., 2020). This model is representative of the current state-
of-the-art for event sequence modeling. It already involves a transformer architecture and therefore
does not need any modification.

We use the following acronyms for the afore mentioned models, where the prefix ‘T-’ clarifies that
some of these are transformer-based extensions: T-RMTPP, T-ERPP, T-LNM and THP. Following
Zuo et al. (2020), we evaluate model performance on next event time prediction with root mean
square error and on next event label prediction with accuracy.

4.2 SYNTHETIC EXPERIMENTS

We conduct experiments using synthetic data generated from two representative parametric families
of multivariate temporal point processes: multivariate Hawkes processes (Bacry et al., 2015) and
proximal graphical event models (Bhattacharjya et al., 2018). We aim to pre-train a masked event
model on a set of datasets and fine-tune the model on a different dataset for the event prediction task.

Hawkes-Exp Dynamics. We generate 400 samples each from 10-dimensional Hawkes’ process
dynamics for 5 datasets (A, B, C, D, E) with different parameters and combine them to form a
pre-training dataset. We further split each into train-dev sets 75-25 and use the dev set for hyper-
parameter selection. We also generate 5 folds of a dataset F with different parameters as the target;
each fold contains 500 event sequences and is further split into train-dev-test 60-20-20 subsets. Final
evaluation is performed on the test subsets.

PGEM Dynamics. We generate 500 samples each from the proximal graphical event model
(PGEM) Bhattacharjya et al. (2018) generator with 4 datasets (A, B, C, D) of different parameters
where each contains 5 event labels. We combine these to form the pre-training dataset. Similarly, we
generate an additional 5 folds of a dataset E with different parameters as the target, each of which
contains 500 event sequences. Each fold is further split into train-dev-test 60-20-20 subsets, and as
before, final evaluation is performed on the test subsets.

Results. As shown in Table 1, Event-former achieves best results for predicting both the next event
time and event type as compared to all baselines. For the Hawkes-Exp generated data, it boosts pre-
diction performance on average 4-5% compared to the best baseline result; on PGEM the increase
is around 1-3%. The benefit of our approach along with its efficacy is its efficiency. While we only
pre-train once, a typical fine-tuning procedure in this study involves a 20 fold smaller network –
∼ 1M trainable parameters compared to say the THP model with∼ 20M trainable parameters at its
recommended setting. This suggests our model learns a suitable representation of the event dynam-
ics, specially for Hawkes process. Figure 2 shows the T-SNE projection of learned representations
of event data generated by the Hawkes-Exp model datasets A, B, C, D and E onto the 2D plane.
Each model generates a unique fragment segment that somewhat overlaps with another model. The
linear and curvaceous segment pattern observed here is not uncommon for projecting time-series
embedding onto a 2D plane (Wong & Chung, 2019). This overlapping of the representations from

1https://github.com/woshiyyya/ERPP-RMTPP
2https://github.com/SimiaoZuo/Transformer-Hawkes-Process
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Table 1: Next event prediction on synthetic datasets, evaluated by RMSE (Time) and accuracy
(Type). Best results (highest accuracy and lowest RMSE) are highlighted. Standard deviations are
in parentheses.

Dataset Prediction T-RMTPP T-ERPP T-LNM THP Event-Former

Hawkes-Exp Time 0.509(0.006) 0.654(0.004) 0.461(0.008) 0.426(0.004) 0.411(0.003)
Type 0.152(0.003) 0.152(0.003) 0.172(0.004) 0.164(0.006) 0.181(0.003)

PGEM Time 1.068 (0.015) 1.234(0.044) 0.861 (0.020) 0.777(0.010) 0.771(0.014)
Type 0.334 (0.005) 0.208(0.005) 0.336(0.013) 0.342(0.010) 0.352(0.004)

pre-training data (A, B, C, D and E) with the target data F provides a visual explanation for how
various datasets compare in terms of the learned representation.

4.2.1 ABLATIONAL MASKING EXPERIMENTS

Figure 2: T-SNE projection of learned repre-
sentations of Hawkes-Exp streams with pre-
training on models A, B, C, D and E together.

A typical deployment of MEM involves 3 compo-
nents: inserted random void epochs, random selec-
tion of masks and masking fraction. Our default
setting is through the use of void events and uni-
formly randomly selecting 15% for masking during
pre-training. We perform 3 ablation studies on the
synthetic datasets: 1) void vs. no void events, 2)
geometric vs. random mask and 3) mask fraction.
Ablation 1 evaluates the effect of injected random
void epochs in MEM on prediction. Clearly from
Table 2, we notice a drop of type accuracy and in-
crease of RMSE in time prediction for both cases; in
particular, the predictive performance deteriorates to
below the baselines on Hawkes-Exp. The injection
of void epochs is justified for producing competi-
tive results in random masking. Ablation 2 compares
the impact of two masking strategies: geometric and
random. We employ the former from Zerveas et al.
(2021), along with inserted void epochs. Geometric masks produce slightly deteriorated results par-
ticularly on PGEM data, suggesting masking consecutive segments may not aid in learning dynam-
ics in the continuous-time setting. Ablation 3 compares the choice of fraction of randomly masked
epochs. In general, we find no significant difference between 15% and 30% for event prediction.

Table 2: Ablation study on the effect of void events and masking percentage, evaluated by RMSE
(Time) and accuracy (Type). Standard deviations are in parentheses.

No-void Injection Geometric Mask Mask Fraction 30%

Dataset Time Type Time Type Time Type

Hawkes-Exp 0.516(0.085) ↑ 0.130(0.007) ↓ 0.411(0.002) - 0.178(0.003) ↓ 0.411(0.003) - 0.179(0.001) ↓
PGEM 0.773(0.016) ↑ 0.350(0.004) ↓ 0.776(0.023) ↑ 0.339(0.027) ↓ 0.773(0.011) ↑ 0.344(0.007) ↓

4.3 REAL APPLICATIONS

Datasets. We perform transfer learning experiments on 3 real applications, as listed below. A
descriptive summary of the 6 datasets used are shown in Table 3.

• Financial: Defi-Mainnet and Defi-Polygon are privately curated datasets involving user-
level crypto currency transactions from the Aave website3. Mainnet and Polygon represent
two different protocols/deployments on the platform. We test the algorithms on Mainnet
after pre-training on Polygon.

3aave.com
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• E-Commerce: Electronics and Cosmetics contain user-level online transactions for elec-
tronic 4 and cosmetic products 5. We test the algorithms on Electronics after pre-training
on Cosmetics.

• Political: ACLED-Bangladesh 6 and ACLED-India 7 are political conflicts datasets; each
involves streams of conflict related actions (i.e. riots and protests) in the corresponding
country. We test the algorithms on Bangladesh after pre-training on India.

Table 3: Properties of 6 real datasets.
Dataset # classes # seqs. Avg. length # events Data Type

Defi-Mainnet 6 20539 32 654844 Financial
Defi-Polygon 6 33597 85 2856453 Financial
Electronics 4 9993 20 195726 E-Commerce
Cosmetics 4 19301 39 752109 E-Commerce
ACLED-India 6 111 17 1934 Political
ACLED-Bangladesh 4 97 17 1697 Political

Results. As demonstrated by its highest accuracy and lowest RMSE in Table 4, transfer learning
with Event-former in these datasets consistently improves upon all baselines, and the improvement
ranges from 3% to 15%. The most impressive improvement of 15% is on time prediction in Defi-
Mainnet where using a different protocol appears to be sufficient to help with learning the dynamics.
This likely suggests that the dynamics of real applications have noticeable shared similarities that the
state-of-the-art transformer model approaches are unable to exploit. In addition, we observe that the
transfer performance in general increases with increasing size of pre-training data. As shown from
Table 3, the 3 pairs of datasets have different amounts of data; the Defi datasets have the highest
number of samples, while the ACLED datasets have the lowest number. This is an indication that
Event-former may be able to generalize better with more pre-training data.

Table 4: Next event prediction for 3 real applications.
Dataset Prediction T-RMTPP T-ERPP T-LNM THP Event-former Improvement

Defi-Mainnet Time 1.711 0.989 0.056 0.055 0.047 15% ↓
Type 0.507 0.480 0.486 0.494 0.565 12% ↑

Electronics Time 0.055 0.984 0.011 0.012 0.010 7% ↓
Type 0.821 0.823 0.820 0.809 0.887 8% ↑

ACLED-Bangladesh Time 2.200 0.966 0.092 0.101 0.088 4% ↓
Type 0.673 0.676 0.647 0.630 0.700 3% ↑

5 CONCLUSION

In this work, we propose a novel self-supervised paradigm for transfer learning in multivariate tem-
poral point processes. We introduce the usage of void events for transformer architectures, which
is unique in continuous-time event models, and design a masking strategy for predicting masked
event epochs and void spaces in-between. We empirically demonstrate the potential of our approach
using synthetic as well as various real-world datasets. In particular, improvement of prediction per-
formance is noticeably significant on transferring tasks over many existing competitive transformer-
based approaches. While this study focuses on the homogeneous transfer setting, our approach
could potentially be extended to other more complex transfer settings, such as out-of-domain het-
erogeneous transfer (Zhuang et al., 2021) with datasets that contain non-overlapping event labels.
We leave these more complex cases to future work.

4https://www.kaggle.com/datasets/mkechinov/ecommerce-events-history-in-electronics-store
5https://www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop
6https://www.kaggle.com/datasets/saimasharleen/acled-bangladesh
7https://www.kaggle.com/datasets/shivkumarganesh/riots-in-india-19972022-acled-dataset-50k

9



Under review as a conference paper at ICLR 2023

REFERENCES

Emmanuel Bacry, Iacopo Mastromatteo, and Jean-François Muzy. Hawkes processes in finance.
Market Microstructure and Liquidity, 1(01):1550005, 2015.

Debarun Bhattacharjya, Dharmashankar Subramanian, and Tian Gao. Proximal graphical event
models. Advances in Neural Information Processing Systems, 31, 2018.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Ste-
fano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Pe-
ter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard,
Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte
Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya
Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li,
Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell,
Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie,
Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadim-
itriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob
Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré,
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A.1 SYNTHETIC GENERATORS

We generated datasets from Hawkes process and Proximal Graphical Event Model. We describe the
parameters used in our experiments to generate event datasets.
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Hawkes-Exp. We use a standard library to generate datasets from the Hawkes dynamics 8.The
parameters are baseline rate, decay coefficent, adjacency (infectivity matrix) and end time. We de-
scribe the four for models A, B, C, D, E and F in our study.
A. baseline = [0.1097627 , 0.14303787, 0.12055268, 0.10897664, 0.08473096, 0.12917882,
0.08751744, 0.1783546 , 0.19273255, 0.0766883], decay = 2.5, infectivity = [[0.15037453,
0.10045448, 0.10789028, 0.17580114, 0.01349208, 0.01654871, 0.00384014, 0.1581418 ,
0.14779747, 0.16524382], [0.1858717 , 0.1517864 , 0.08765006, 0.14824807, 0.02246419,
0.12154197, 0.02722749, 0.17942359, 0.0991161 , 0.07875789], [0.05024778, 0.14705235,
0.0866379 , 0.10796424, 0.0035688 , 0.11730922, 0.11625704, 0.11717598, 0.17924869,
0.12950002], [0.06828233, 0.08300669, 0.13250303, 0.01143879, 0.12664085, 0.12737611,
0.03995854, 0.02448733, 0.05991018, 0.0690806 ], [0.10829905, 0.0833048 , 0.18772458,
0.01938165, 0.03967254, 0.03063796, 0.12404668, 0.04810838, 0.0885677 , 0.04642443],
[0.03019353, 0.02096386, 0.1246585 , 0.02624547, 0.03733743, 0.07003299, 0.15593352,
0.01844271, 0.1591532 , 0.01825224], [0.18546165, 0.08901222, 0.18551894, 0.11487999,
0.14041038, 0.00744305, 0.05371431, 0.02282927, 0.05624673, 0.02255028], [0.06039543,
0.07868212, 0.01218371, 0.13152315, 0.10761619, 0.05040616, 0.09938195, 0.01784238,
0.10939112, 0.1765038 ], [0.06050668, 0.1267631 , 0.02503273, 0.13605401, 0.0549677 ,
0.03479404, 0.11139803, 0.00381908, 0.15744288, 0.00089182], [0.12873957, 0.05128336,
0.13963744, 0.18275114, 0.04724637, 0.10943116, 0.11244817, 0.10868939, 0.04237051,
0.18095826]] and end-time = 10.

B. Baseline = [8.34044009e-02, 1.44064899e-01, 2.28749635e-05, 6.04665145e-02, 2.93511782e-
02, 1.84677190e-02, 3.72520423e-02, 6.91121454e-02, 7.93534948e-02, 1.07763347e-01], decay
= 2.5, adjacency = [[0. , 0. , 0.03514877, 0.15096311, 0. , 0.11526461, 0.07174169, 0.09604815,
0.02413487, 0. ], [0. , 0. , 0. , 0. , 0.15066599, 0.15379789, 0.01462053, 0.00671417, 0. ,
0. ], [0.01690747, 0.07239546, 0.16467728, 0. , 0.11894528, 0. , 0.11802102, 0.14348615,
0.00314406, 0.12896239], [0.17000181, 0. , 0. , 0. , 0. , 0. , 0. , 0.0504772 , 0.04947341,
0. ], [0. , 0.11670321, 0.03638242, 0. , 0. , 0.00917392, 0. , 0.0252251 , 0.10131151,
0.1203002 ], [0. , 0.07118317, 0.11937903, 0.07120436, 0. , 0. , 0. , 0.08851807, 0.16239168,
0.10083865], [0. , 0.02363421, 0.02394394, 0.1388041 , 0.06836732, 0.02842716, 0.15945428,
0. , 0. , 0.12481123], [0.15185513, 0. , 0.1290996 , 0. , 0. , 0.15401787, 0. , 0.16587219,
0.11405672, 0.10687992], [0. , 0. , 0.07734744, 0.09943488, 0.07016556, 0.04074891, 0. ,
0. , 0.00049346, 0.10609756], [0.05615574, 0.09061013, 0.15230831, 0.06142066, 0.15619243,
0.10716606, 0.00271994, 0.15978585, 0.11877677, 0.17145652]] and end-time = 20.

C. baseline = [0.08719898, 0.00518525, 0.1099325 , 0.08706448, 0.08407356, 0.06606696,
0.04092973, 0.12385419, 0.05993093, 0.05336546], decay = 2.5, adjacency = [[0. , 0.09623737, 0.
, 0. , 0. , 0.14283231, 0. , 0. , 0. , 0. ], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [0. , 0. , 0. , 0. , 0. ,
0. , 0.14434229, 0.10548788, 0. , 0. ], [0. , 0. , 0.16178088, 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [0. , 0. , 0.
, 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [0.14554646, 0. , 0. , 0. , 0. , 0.09531432, 0. , 0. , 0. , 0. ], [0. , 0.
, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.04899491], [0. , 0. , 0. , 0.07048057, 0. , 0.07546073, 0. , 0. , 0. ,
0. ], [0.05697369, 0. , 0. , 0. , 0. , 0. , 0.11709833, 0. , 0.03100542, 0. ], [0. , 0. , 0. , 0. , 0. , 0. ,
0.04016475, 0. , 0.10768499, 0.06297179]] and end-time = 20.

D. Baseline = [0.11015958, 0.14162956, 0.05818095, 0.10216552, 0.17858939, 0.17925862,
0.02511706, 0.04144858, 0.01029344, 0.08816197], decay = [[8., 9., 2., 7., 3., 3., 2., 4., 6., 9.],
[2., 9., 8., 9., 2., 1., 6., 5., 2., 6.], [5., 8., 7., 1., 1., 3., 5., 6., 9., 9.], [8., 6., 2., 2., 2., 6., 6., 8., 5., 4.],
[1., 1., 1., 1., 3., 3., 8., 1., 6., 1.], [2., 5., 2., 3., 3., 5., 9., 1., 7., 1.], [5., 2., 6., 2., 9., 9., 8., 1., 1., 2.],
[8., 9., 8., 5., 1., 1., 5., 4., 1., 9.], [3., 8., 3., 2., 4., 3., 5., 2., 3., 3.], [8., 4., 5., 2., 7., 8., 2., 1., 1.,
6.]], adjacency = [[0. , 0.14343731, 0. , 0.11247478, 0. , 0. , 0. , 0.09416725, 0. , 0. ], [0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0.15805746, 0. , 0.08262718], [0. , 0. , 0.03018515, 0. , 0. , 0. , 0. , 0. , 0.
, 0. ], [0. , 0.11090719, 0.08158544, 0. , 0.11109462, 0. , 0. , 0. , 0. , 0. ], [0. , 0. , 0.14264684,
0. , 0. , 0.11786607, 0. , 0. , 0.01101593, 0. ], [0.04954495, 0. , 0. , 0. , 0. , 0.12385743, 0. , 0.
, 0.02375575, 0.05345351], [0. , 0.14941748, 0.02618691, 0. , 0.13608937, 0. , 0.06263167, 0. ,
0.04097688, 0.14101171], [0. , 0.11902986, 0. , 0.04889382, 0. , 0. , 0.01569298, 0.03678315, 0. ,
0. ], [0.05359555, 0. , 0. , 0.09188512, 0. , 0.14255311, 0. , 0. , 0. , 0. ], [0.12792415, 0.05843994,
0.16156482, 0.11931973, 0. , 0.00774966, 0.00947755, 0. , 0. , 0. ]], and end-time = 10.

8https://x-datainitiative.github.io/tick/modules/generated/tick.hawkes.SimuHawkesExpKernels.html
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E. Baseline = [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2], decay = [[9., 4., 9., 9., 1., 6., 4., 6., 8.,
7.], [1., 5., 8., 9., 2., 7., 3., 3., 2., 4.], [6., 9., 2., 9., 8., 9., 2., 1., 6., 5.], [2., 6., 5., 8., 7., 1., 1., 3., 5.,
6.], [9., 9., 8., 6., 2., 2., 2., 6., 6., 8.], [5., 4., 1., 1., 1., 1., 3., 3., 8., 1.], [6., 1., 2., 5., 2., 3., 3., 5., 9.,
1.], [7., 1., 5., 2., 6., 2., 9., 9., 8., 1.], [1., 2., 8., 9., 8., 5., 1., 1., 5., 4.], [1., 9., 3., 8., 3., 2., 4., 3.,
5., 2.]], adjacency= [[0.02186539, 0.09356695, 0. , 0.16101355, 0.11527002, 0.09149395, 0. , 0. ,
0.15672219, 0. ], [0. , 0. , 0.14241135, 0. , 0.11167029, 0. , 0. , 0. , 0.0934937 , 0. ], [0. , 0. , 0.
, 0. , 0. , 0. , 0. , 0. , 0.15692693, 0. ], [0.08203618, 0. , 0. , 0.02996925, 0. , 0. , 0. , 0. , 0. , 0.
], [0. , 0. , 0.11011391, 0.08100189, 0. , 0.11029999, 0. , 0. , 0. , 0. ], [0. , 0. , 0. , 0.14162654,
0. , 0. , 0.11702301, 0. , 0. , 0.01093714], [0. , 0.04919057, 0. , 0. , 0. , 0. , 0.12297152, 0. , 0.
, 0.02358583], [0.05307117, 0. , 0.14834875, 0.02599961, 0. , 0.13511597, 0. , 0.06218368, 0. ,
0.04068378], [0.1400031 , 0. , 0.11817848, 0. , 0.0485441 , 0. , 0. , 0.01558073, 0.03652006, 0. ],
[0. , 0.05321219, 0. , 0. , 0.0912279 , 0. , 0.14153347, 0. , 0. , 0. ]] and end-time = 50.

F. Baseline = [0.21736198, 0.11134775, 0.16980704, 0.33791045, 0.00188754, 0.04862765,
0.26829963, 0.3303411 , 0.05468264, 0.23003733], decay = [[5., 1., 7., 3., 5., 2., 6., 4., 5., 5.],
[4., 8., 2., 2., 8., 8., 1., 3., 4., 3.], [6., 9., 2., 1., 8., 7., 3., 1., 9., 3.], [6., 2., 9., 2., 6., 5., 3., 9.,
4., 6.], [1., 4., 7., 4., 5., 8., 7., 4., 1., 5.], [5., 6., 8., 7., 7., 3., 5., 3., 8., 2.], [7., 7., 1., 8., 3., 4.,
6., 5., 3., 5.], [4., 8., 1., 1., 6., 7., 7., 6., 7., 5.], [8., 4., 3., 4., 9., 8., 2., 6., 4., 1.], [7., 3., 4., 5.,
9., 9., 6., 3., 8., 6.]], adjacency = [[0.15693854, 0.04896059, 0.0400508 , 0. , 0. , 0.13021228,
0. , 0.10699903, 0. , 0.15329807], [0.0784283 , 0. , 0. , 0. , 0. , 0. , 0.00310706, 0.0090892 ,
0.07758874, 0. ], [0.01672489, 0. , 0. , 0.07851303, 0. , 0. , 0.12848331, 0.08859293, 0. , 0. ],
[0.09984995, 0. , 0. , 0.10541925, 0. , 0.08032527, 0. , 0. , 0. , 0. ], [0.14642469, 0.06629365,
0. , 0. , 0. , 0. , 0.11891738, 0.04166225, 0.09808829, 0.17638655], [0.00976324, 0.1100343 ,
0.02003261, 0. , 0. , 0.05993539, 0.09739541, 0. , 0. , 0. ], [0. , 0. , 0. , 0.04672133, 0.16916
, 0. , 0.17341419, 0.12078975, 0.14441602, 0. ], [0. , 0.17305542, 0.06927975, 0. , 0.03408974,
0. , 0.08457162, 0.03787486, 0.10863292, 0. ], [0.07186225, 0.05760593, 0. , 0. , 0.08042031,
0.04403479, 0.1033595 , 0.17046747, 0. , 0.05083523], [0. , 0.10029222, 0. , 0.1022067 , 0. , 0. ,
0.0588527 , 0. , 0.03530513, 0. ]], and end-time = 40.

PGEM. We implement PGEM generator (Bhattacharjya et al., 2018) to generate 5-dimensional
event datasets governed by the PGEM dynamics. The parameters are the conditional intensity (lamb-
das) for each event type given parental states, parental configuration (parents), windows for each
parental state (windows) and end time. We describe the 5 for models A, B, C, D and E in our study.
End time is 100 across all models.

A has the following parameters: ’parents’: ’A’: [], ’B’: [], ’C’: [’B’], ’D’: [’A’, ’B’], ’E’: [’C’],
’windows’: ’A’: [], ’B’: [], ’C’: [15], ’D’: [15, 30], ’E’: [15], ’lambdas’: ’A’: (): 0.2, ’B’: (): 0.05,
’C’: (0,): 0.2, (1,): 0.3, ’D’: (0, 0): 0.1, (0, 1): 0.05, (1, 0): 0.3, (1, 1): 0.2, ’E’: (0,): 0.1, (1,): 0.3

B has the follow parameters: ’parents’: ’A’: [’B’], ’B’: [’B’], ’C’: [’B’], ’D’: [’A’], ’E’: [’C’],
’windows’: ’A’: [15], ’B’: [30], ’C’: [15], ’D’: [30], ’E’: [30], ’lambdas’: ’A’: (0,): 0.3, (1,): 0.2,
’B’: (0,): 0.2, (1,): 0.4, ’C’: (0,): 0.4, (1,): 0.1, ’D’: (0,): 0.05, (1,): 0.2, ’E’: (0,): 0.1, (1,): 0.3.

C has the follow parameters: ’parents’: ’A’: [’B’, ’D’], ’B’: [], ’C’: [’B’, ’E’], ’D’: [’B’], ’E’: [’B’],
’windows’: ’A’: [15, 30], ’B’: [], ’C’: [15, 30], ’D’: [30], ’E’: [30], ’lambdas’: ’A’: (0, 0): 0.1, (0,
1): 0.05, (1, 0): 0.3, (1, 1): 0.2, ’B’: (): 0.2, ’C’: (0, 0): 0.2, (0, 1): 0.05, (1, 0): 0.4, (1, 1): 0.3, ’D’:
(0,): 0.1, (1,): 0.2, ’E’: (0,): 0.1, (1,): 0.4.

D has the follow parameters: ’parents’: ’A’: [’B’], ’B’: [’C’], ’C’: [’A’], ’D’: [’A’, ’B’], ’E’: [’B’,
’C’], ’windows’: ’A’: [15], ’B’: [30], ’C’: [15], ’D’: [15, 30], ’E’: [30, 15], ’lambdas’: ’A’: (0,):
0.05, (1,): 0.2, ’B’: (0,): 0.1, (1,): 0.3, ’C’: (0,): 0.4, (1,): 0.2, ’D’: (0, 0): 0.1, (0, 1): 0.3, (1, 0):
0.05, (1, 1): 0.2, ’E’: (0, 0): 0.1, (0, 1): 0.02, (1, 0): 0.4, (1, 1): 0.1.

E has the follow parameters: ’parents’: ’A’: [’A’], ’B’: [’A’, ’C’], ’C’: [’C’], ’D’: [’A’, ’E’], ’E’:
[’C’, ’D’], ’windows’: ’A’: [15], ’B’: [30, 30], ’C’: [15], ’D’: [15, 30], ’E’: [15, 30], ’lambdas’: ’A’:
(0,): 0.1, (1,): 0.3, ’B’: (0, 0): 0.01, (0, 1): 0.05, (1, 0): 0.1, (1, 1): 0.5, ’C’: (0,): 0.2, (1,): 0.4, ’D’:
(0, 0): 0.05, (0, 1): 0.02, (1, 0): 0.2, (1, 1): 0.1, ’E’: (0, 0): 0.1, (0, 1): 0.01, (1, 0): 0.3, (1, 1): 0.1.
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Figure 3: The effect of combined TE + PE in training.

A.2 REAL DATASETS

Cosmetics and Electronics contain user-level online transactions in an electronics and cosmetics
store respectively. While the original cosmetics dataset from Kaggle contain multiple months of
transactions, we used the one from Dec, 2019. Similarly, we also used electronics dataset from Dec,
2019. Both share the same four types of events: ’view’, ’cart’,’remove-from-cart’ and ’purchase. The
two datasets involve transaction events in seconds. To optimize computation for transformer models,
we filtered out sequences longer than 300 events and shorter than 30 and scaled the timestamps into
[0,1] to avoid numerical issues.

DeFi-Mainnet and DeFi-Polygon. DeFi Mainnet is built on the more widely used ethereum
blockchain. Polygon is a scalable sidechain of Ethereum that allows for much faster and low fee
transactions than the original Ethereum Blockchain. The difference in fee structure produces quite
different dynamics in the two different AAVE lending protocols. DeFi-Polygon has many more
users and transactions per user, but much less total value locked than DeFi Mainnet. The polygon
users are much more likely to engage in risky but potentially profitable ”Yield Farming” transac-
tions. Foundation methods would be very useful in modeling the many other lending protocols in
AAVE or other lending platforms which are new or less popular and thus have less transactions.
The 6 types of actions user performs are : ’borrow’, ’collateral’, ’deposit’, ’liquidation’, ’redeem’,
’repay’. The origin timestamps are mined in Unix Timestamp. We filtered out sequences longer than
300 events and shorter than 30 and scaled the timestamps into [0,1] to avoid numerical issues.

ACLED-India and ACLED-Bangladesh contains sequences where each sequence involves an ac-
tor involving some armed conflict (i.e. riots and protests) in the respective country. The former
involves events happening from 2016 to 2022, and the latter 2010-2021. The unit of each timestamp
is ’days’. There are 6 types of events in the ACLED-India which are: ’Battles’, ’Explosions/Remote
violence’, ’Riots’, ’Violence against civilians’,’Protests’,and ’Strategic developments’. The 4 over-
lapping types in ACLED-Bangladesh are ’Battles’, ’Explosions/Remote violence’, ’Riots’,and ’Vi-
olence against civilians’. We filtered out sequences longer than 300 events and shorter than 2 and
scaled the timestamps into [0,1] to avoid numerical issues.

A.3 MODEL IMPLEMENTATION AND (PRE)TRAINING

Pretraining. Our pretrain model adapts codes from Zuo et al. (2020) 9. A full repo will be given
upon acceptance. The procedure is fully described by Algorithm 1. We train our model via stochastic
gradient descent and Adam Kingma & Ba (2014) optimizer is used for optimization. The default
transformer architecture we employed are the following for pretraining: the number of blocks for
multi-headed self-attention module is 4; the dimension of the value vector after attention has been
applied is 512; the number attention heads is 4; the dimension of the hidden layer of the feed forward
neural network 1024; the dimension of the value vector 512; the dimension of the key vector 512;
dropout is 0.1. We train 100 epochs with a learning rate of 0.0001. γ is set to 1 for all experiments
other than one on ACLED-india where we use 10.

9https://github.com/SimiaoZuo/Transformer-Hawkes-Process/tree/master/transformer
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Fine-tuning. The fine tuning model consists of a feed forward network with 3 hidden layers of
dimension 512. We train with Adam optimizer with learning rate of 0.001 with 100 epochs. α is set
0.01 for all experiments.

PE+TE. The combined TE + PE improves optimization when trained with only 2 samples. With TE
only results in a compromised optimization (see Figure 3).

Algorithm 1: Pretraining of Event-former

Given dataset S with D sequences, each with length dl, {(ti, yi)}dl
i=1 , batch size b

Insertion void epochs:
S′ = []
for d← 1 to D do

seq’ = []
for i← 1 to dl − 1 do

t’i ∼ Unif(ti, ti+1)
seq’.append((t’i, null))

end
seqnew = Merge(seq, seq’)
S’.append( seqnew )

end
Masking to obtain S′

m:
for d← 1 to D do

for i← 1 to d′l − 1 do
mask ∼ Bern(0.15)
if mask == 1 then

(0, null)← (t′i, y
′
i)

end
end

end
split(S’m) :=S’m,tr = {S′

m,k}Kk=1, S′
m,dev

for epoch← 1 to N do
for iteration← 1 to ⌈Kb ⌉ do

Sample a batch of sequences B′ from S′
m,tr

compute Levent(B
′) (Eq. 5)

back-propagate with gradient∇θ,ϕLevent(B
′) ( θ: Transformer model parameters, ϕ:

Weights and bias for regression and classification.)
update parameters of network θ, ϕ

end
evaluate Levent(S

′
m,dev), stop training if not improving in 5 epochs

end
Return: Optimal parameters ϕ∗, θ∗

A.4 BASELINES MODELS AND IMPLEMENTATION

T-RMTPP and T-ERPP. The original RMTPP and ERPP models are LSTM based. The trans-
former architecture we used for T-RMTPP and T-ERPP is adapted from Zuo et al. (2020). We used
recommended set of parameters for training these two models.

T-LNM. The original LNM is RNN/LSTM/GRU based. The transformer architecture we used for
T-LNM is adapted from Zuo et al. (2020). We used 64 mixtures of lognormal components to model
that density of log (inter-event) times.

THP. We used the recommended set of parameters to train the model as it is.
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A.5 PROOF OF THEOREM 1: TRANSFORMER WITH COMBINED TEMPORAL ENCODING AND
POSITION ENCODING

Consider a general type of transformer architecture described by Yun et al. (2019). Our proof for
a transformer with combined temporal encoding and position encoding as a universal approximat-
ing function for any continuous function for sequence-to-sequence with compact support follows
similarly as proof of transformer with position encoding (Theorem 3 in Yun et al. (2019)). Without
loss of generality, consider a sequence with timestamps {t1, t2, ..., tn} and let ti be integer-valued
for i ∈ {1, 2, 3..., n} and ti < tj for all i < j. If ti are in decimals, we multiply by a constant to
transform each given timestamp to an integer without affecting the dynamics of the event sequence.
We choose a d-dimensional Temporal encoding for the n event epochs to be the following:

T =


0 t2 − t1 . . . tn − t1
0 t2 − t1 . . . tn − t1
...

...
...

0 t2 − t1 . . . tn − t1


Similarly a d-dimensional position encoding for the n event epochs to be the following:

P =


0 1 . . . n
0 1 . . . n
...

...
...

0 1 . . . n


The combined encoding is :

PE+TE =


0 t2 − t1 + 1 . . . tn − t1 + 1
0 t2 − t1 + 1 . . . tn − t1 + 1
...

...
...

0 t2 − t1 + 1 . . . tn − t1 + 1


The strict temporal order of timestamps ti − t1 + 1 < ti+1 − t1 + 1for all i ∈ 1, 2, 3, ..., n− 1.
This guarantees for all rows the coordinates are monotonically increasing and input values can be
partitioned into cubes. The rest of the proof follows directly from the proof of Theorem 3 in Yun
et al. (2019) by replacing n with tn by performing quantization by feed-forward layers, contextual
mapping by attention layers and function value mapping by feed-forward layers.
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