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Abstract
Large language models have ushered in a new
era of artificial intelligence research. However,
their substantial training costs hinder further de-
velopment and widespread adoption. In this pa-
per, inspired by the redundancy in the parameters
of large language models, we propose a novel
training paradigm: Evolving Subnetwork Train-
ing (EST). EST samples subnetworks from the
layers of the large language model and from com-
monly used modules within each layer, Multi-
Head Attention (MHA) and Multi-Layer Percep-
tron (MLP). By gradually increasing the size of
the subnetworks during the training process, EST
can save the cost of training. We apply EST to
train GPT2 model and TinyLlama model, result-
ing in 26.7% FLOPs saving for GPT2 and 25.0%
for TinyLlama without an increase in loss on the
pre-training dataset. Moreover, EST leads to per-
formance improvements in downstream tasks, in-
dicating that it benefits generalization. Addition-
ally, we provide intuitive theoretical studies based
on training dynamics and Dropout theory to en-
sure the feasibility of EST.

1. Introduction
Large language models (LLMs) have become significantly
larger recently, bringing tremendous potential in Natural
Language Processing (NLP) tasks. The computational cost
of training such large language models has become a bot-
tleneck, hindering further development in research and ap-
plications. Additionally, the escalating hardware demands
and increasing carbon footprints associated with training
large language models are also crucial issues (Schwartz
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et al., 2020). This highlights the importance of researching
efficient algorithms for training large language models.

The enormous training cost of large language models stems
from their massive number of parameters. For instance,
the GPT3 (Brown et al., 2020) model has 175 billion pa-
rameters, requiring 355 GPU-years and incurring a training
cost of $4.6M. However, numerous studies have highlighted
the redundancy in the parameters of large language models,
manifested in the over-parameterization (Li et al., 2020) and
conditional sparsity (Li et al., 2023b) of these models. This
inspires us to optimize the training process by exploring
the possibility of not training the complete model at cer-
tain stages but focusing on training subnetworks, thereby
reducing the overall training cost of large language models.

In this paper, we propose a novel training paradigm, Evolv-
ing Subnetwork Training (EST), towards efficient train-
ing for large language models. EST paradigm consists of
two main components: 1) sample from the large language
model for subnetwork training. We maintain the complete
model and sample subnetworks in each training step from
the model across three dimensions, including the number
of attention heads, the intermediate size of multi-layer per-
ceptron, and the total number of Transformer layers. 2) We
design a sampling scheduler to plan the training process.
By increasing the size of subnetworks during training and,
finally, training the complete model, EST achieves training
acceleration.

To demonstrate the effectiveness of EST, we first conduct
experiments on GPT2 model (Radford et al., 2019), and
conduct scale-up experiments on 1.1B TinyLlama (Zhang
et al., 2024) model. The results show that: 1) EST saves
26.7% training cost for GPT2 model and 25.0% training
cost for TinyLlama model, with a comparable loss on the
pre-training dataset. 2) Models trained by EST achieve
even higher downstream performance, indicating that EST
benefits model generalization.

Furthermore, we dive into theoretical studies to answer the
following two questions: 1) why EST can save training cost
without compromising model performance? 2) Why EST
can benefit model generalization? We provide a comprehen-
sive theoretical framework based on deep learning dynamics
and Dropout theory to ensure the superiority and feasibility
of EST.
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In general, the contributions of this work include the follow-
ing aspects:

• We propose a novel model training paradigm, EST,
achieving higher optimization efficiency of training
large language models.

• We conduct experiments on GPT2 and TinyLlama. The
results show that EST saves training cost without sacri-
ficing model performance and benefits generalization.

• We provide intuitive theoretical studies to ensure the
feasibility of EST.

2. Related Work
2.1. Efficient Training for Large Language Models

Many previous works aim at improving the efficiency of
training large language models, ranging from addressing
low-level hardware computations and memory bottlenecks
to designing high-level training strategies.
There are numerous approaches to overcome the computa-
tion bottleneck of Transformer-based models. FlashAtten-
tion (Dao et al., 2022b) identifies that the attention module is
bottlenecked by memory access, and optimizes the process
of attention computation, effectively reducing the training
cost. Reformer (Kitaev et al., 2020) approximates atten-
tion computation based on locality-sensitive hashing and
Performer (Choromanski et al., 2021) simplifies attention
computation with low-rank approximation.
Sparse training methods also benefit optimization efficiency.
The main component of sparse training methods is the Mix-
ture of Experts (MoE). MoE methods (Fedus et al., 2022;
Du et al., 2022) apply conditional computation according
to different inputs in order to scale up models without sig-
nificantly increasing training costs. The drawback of the
MoE model is that its performance cannot match that of
the dense model with an equivalent number of parameters.
Another category of sparse training methods is based on
the lottery ticket hypothesis (Frankle & Carbin, 2019; Chen
et al., 2021), that certain subnetworks exhibit comparable
performance to that of the original complete network. How-
ever, the sparsity generated by such methods is typically
unstructured, making it challenging to translate into ac-
celeration on general GPU devices. Monarch (Dao et al.,
2022a) and Pixelated Butterfly (Dao et al., 2021) lower the
training overhead of models without compromising their
performance by introducing structured sparsity in matrix
operations, which are more low-level and can be combined
with our approach for complementary benefits. Ma et al.
(2024) leverages sparsity in pre-trained LLMs to expedite
the training process.

In this paper, we mainly focus on the design of a top-level
training strategy, which is orthogonal to these approaches.

Different from MoE methods that choose subnetworks based
on input tokens, our method samples subnetworks randomly.

2.2. Incremental Training

The most similar prior works are those called incremental
training methods (Shen et al., 2022). This kind of work
typically starts from smaller models and gradually scales up
to larger ones. Incremental training methods are effective in
both the NLP and CV domains since they reduce the time
needed for model training and enhance training stability.
Net2net (Chen et al., 2016) first reveals the feasibility of
using the parameters of smaller models as initialization for
larger model parameters and provides some operations for
scaling up model sizes. Shen et al. (2022) involves multi-
stage training of the GPT2 model across both depth and
width dimensions. bert2BERT (Chen et al., 2022) applies
the principles of Net2net to pre-trained language models.
MSG (Yao et al., 2023) employs a masking mechanism that
sets newly expanded parameters to zero when scaling up
small models. Unlike these methods that individually train
smaller models, disregarding interactions between parame-
ters, our approach EST maintains the complete model and
samples subnetworks from it to train.

3. Methodology
In this section, we first review the most popular LLM archi-
tecture Transformer (Vaswani et al., 2017) in Section 3.1.
In Section 3.2, we discuss how to sample subnetworks
from the Transformer model for subnetwork training. In
Section 3.3, we propose our efficient training paradigm,
Evolving Subnetwork Training (EST).

3.1. Preliminaries

Recent large language models are mainly based on Trans-
former architecture. Before presenting our method, we first
introduce the structure of Transformer, including two main
components, multi-head attention (MHA) and multi-layer
perceptron (MLP).

Transformer Layer: Let Xl−1 ∈ RN×d denote the input
sequence of layer l, where N is the sequence length and d de-
notes the hidden size. The sequence is processed iteratively
by several Transformer layers with residual connection

Xl = Xl−1 + Layerl(Xl−1),∀l ∈ {1, 2, ..., NL}, (1)

where NL denotes the number of Transformer layers. Each
Transformer layer is composed of one MHA module and
one MLP module.

MHA: MHA is used to mix information along the sequence
axes to capture token-level dependencies. Let NH denote
the number of heads and dk denote the dimension of each
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head. In layer l, for each head i, key, query, value projections
are WQ

l,i,W
K
l,i,W

V
l,i ∈ Rd×dk and the output projection is

WO
l,i. MHA is formulated as follows,

hl,i = softmax

(
Xl−1W

Q
l,i(Xl−1W

K
l,i)

T

√
dk

)
Xl−1W

V
l,i,

XMHA
l =

NH∑
i=1

hl,iW
O
l,i.

(2)

MLP: MLP is used to mixes information along the hidden
dimension axes. It consists of two linear layers W1

l ,W
2
l ∈

Rd×NM where NM is the intermediate size of MLP. The
MLP computation is

XMLP
l = σ(XMHA

l W1
l )(W

2
l )

T, (3)

where σ is the activation function.

3.2. Subnetwork Training via Random Sampling

Subnetwork training is a training paradigm that trains a
subnetwork of the model in each step rather than training
the complete model. Let Φ denote the parameters of the
model, ϕ ⊂ Φ denote the parameters of the subnetwork, and
L denote the loss function. Let fϕ denote the function of the
subnetwork, which takes sequence X as input and outputs
the prediction of next tokens. The object of subnetwork
training is formulated as

min
ϕ

L(fϕ(X),y), (4)

where y is the ground truth label.

In our approach, we sample subnetworks randomly from
the complete model in each training step. To obtain subnet-
works, we sample across three dimensions related to the size
of the Transformer model: the number of attention heads
NH , the intermediate size of MLP module NM , and the
total number of Transformer layers NL.

Sampling Attention Heads NH : For each MHA module,
during the subnetwork training, we randomly sample a sub-
set of heads IH for computation at each training step, where
IH ⊂ {1, 2, ..., NH}, |IH | = NHpH and pH is the sam-
pling rate. Formally, during the subnetwork training, the
output of MHA module is

hl,i = softmax

(
Xl−1W

Q
l,i(Xl−1W

K
l,i)

T

√
dk

)
Xl−1W

V
l,i,

XMHA
l =

1

pH

∑
i∈IH

hl,iW
O
l,i.

(5)
The normalization operation 1

pH
is crucial as it ensures

that the output distribution is consistent with the complete

model. The computational cost of the MHA module in
the subnetwork is reduced to a fraction pH of that in the
complete model. The detailed implementation is shown in
Appendix B.1.

Sampling MLP Intermediate Size NM : For each MLP
module, we sample the intermediate dimension, i.e., the
columns of W1

l and W2
l , at each training step. Let IM ⊂

{1, 2, ..., NM} denote the index of sampled columns where
|IM | = NMpM and pM is the sampling rate. We select
columns in IM from the W1

l and W2
l to obtain Ŵ

1

l and
Ŵ

2

l . The subnetwork’s MLP computation is

XMLP
l =

1

pM
σ(XMHA

l Ŵ
1

l )(Ŵ
2

l )
T. (6)

Similarly, the the output of MLP module requires normal-
ization to ensure the consistency of the output distribution.
The computational cost of the MLP module during subnet-
work training is reduced to a fraction pM . The detailed
implementation is shown in Appendix B.2.

Sampling Transformer The Number of Layer NL:
We employ a sampling strategy similar to Stochastic
Depth (Huang et al., 2016), randomly skipping some lay-
ers of the Transformer model. Let pL denote the sampling
rate. We sample from Transformer layers to obtain a subset
IL ⊂ {1, 2, ..., NL} where |IL| = NLpL. For each layer in
the Transformer, we compute the layer output as

Xl =

{
Xl−1 + Layerl(Xl−1), if l ∈ IL
Xl−1, if l /∈ IL

. (7)

During subnetwork training, the computational cost of the
subnetwork can be reduced to a fraction pL of the complete
model, for only NLpL layers are activated.

3.3. Evolving Subnetwork Training

In this section, we propose our novel training paradigm
for large language models, Evolving Subnetwork
Training (EST), which applies subnetwork training method
in Section 3.2, and progressively increases the size of
subnetworks. Finally, train the complete model.
Definition 3.1. Let T denote the total stages of train-
ing. A sampling scheduler consists of two parts: 1) S =
(s1, ..., sT ) that contains the time points of stage transitions,
indicating when to increase the size of subnetworks; 2)
P = [(p1H , p1M , p1L), ..., (p

T
H , pTM , pTL)] that contains sam-

pling rates in each stage, indicating how to increase the size
of subnetworks.

EST employs the sampling scheduler to plan the training
process. By incrementally increasing the size of subnet-
works as the training stages progress and eventually training
the complete model, EST achieves training acceleration.
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Figure 1. Overview of our EST method with practical sampling scheduler. The router takes IL as input and determines whether to activate
the current layer. In stage 1, we obtain a subnetwork to train by sampling from NH , NM and NA dimensions. In such subnetworks, only
some layers are activated and in each activated layer, and only some attention heads and MLP neurons are used. In stage 2, all layers are
activated while in each layer still only a subset of the layer is used. In stage 3, the complete model is activated.

The pseudo-code of EST is as Algorithm 1.

Practical Sampling Scheduler: In this paper, we won’t
dive into complex sampling schedulers. For convenience,
we use a kind of three-stage sampling scheduler in prac-
tice. Specifically, our sampling scheduler consists of the
following three stages:

• Stage 1: In this stage, we sample from all three dimen-
sions to achieve the highest acceleration ratio. That is,
0 < pH < 1, 0 < pM < 1, 0 < pL < 1.

• Stage 2: In this stage, we stop sampling from the Trans-
former layers, ensuring that the number of activated
layers in the subnetwork is consistent with the com-
plete model, while continuing sampling from the MHA
and MLP modules. That is, 0 < pH < 1, 0 < pM < 1,
pL = 1. Additionally, in this stage, we keep pH and
pM consistent with the first stage.

• Stage 3: In the final stage, train the complete model,
where pH = 1, pM = 1, pL = 1.

The process of EST with this kind of sampling scheduler is
illustrated in Figure 1.

Training Cost Saving: Assuming that, under the condition
of equal training steps, the model trained by EST achieves
the same performance as the original model, EST can indeed
achieve a reduction in training cost. This is because the cost
of training subnetworks is smaller than that of training the
complete model.

For ease of analysis, we calculate how much training cost
is saved by EST with the practical sampling scheduler. Let
CH , CM denote the cost of each MHA module and MLP
module, neglecting other modules like Layer Normaliza-
tion (Ba et al., 2016) as their cost is relatively small com-
pared to MHA and MLP. So the training cost of a single
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Algorithm 1 Evolving Subnetwork Training
Input: Dataset (X ,Y), sampling scheduler S =

(s1, ..., sT ), P = [(p1H , p1M , p1L), ..., (p
T
H , pTM , pTL)].

1: Randomly initialize the model.
2: for t = 1 → T do {Training stages}
3: for k = st−1 → st do {Training steps, s0 = 0}
4: Sample (X,y) ∼ (X ,Y).
5: Sample IL ⊂ {1, 2, ..., NL}, |IL| = pLNL.
6: X0 = EMBEDDING(X).
7: for l = 1 → NL do {Transformer layers}
8: if l /∈ IL then
9: Xl = Xl−1.

10: Continue.
11: end if
12: Sample IH ⊂ {1, 2, ..., NH}, |IH | = pHNH .
13: Sample IM ⊂ {1, 2, ..., NM}, |IM | = pMNM .
14: Compute XMHA

l condition on IM .
15: Compute XMLP

l condition on IH .
16: Xl = Xl−1 +XMLP

l .
17: end for
18: ŷ = PROJECTION(XNL

).
19: Compute loss with L(ŷ,y) .
20: Backward and optimize.
21: end for
22: end for

training step in each stage is formulated as

C1 = NLpL(pHCH + pMCM ),

C2 = NL(pHCH + pMCM ),

C3 = NL(CH + CM ).

(8)

Based on the training steps for each stage, the total training
cost can be calculated. Let r1, r2, r3 denote training steps of
each stage, respectively. The total training cost is formulated
as

CEST = r1C1 + r2C2 + r3C3

= (r1NLpLpH + r2NLpH + r3NL)CH

+ (r1NLpLpM + r2NLpM + r3NL)CM .

(9)

On the other hand, the training cost of training the complete
model is

Coriginal = (r1 + r2 + r3)NL(CH + CM ). (10)

For a more intuitive illustration, Table 1 shows the training
cost under specific configurations that pH = pM = pL =
0.5, r1 = r2 = r3 = r compared with cost of training the
original model through naive training method. Under such
configurations, EST can save 41.7% of training cost.

Table 1. An intuitive example of training cost saving. The real
world wall time saving is shown in Appendix A.3

.
Stages EST Original

Stage 1 0.25rNL(CH + CM ) rNL(CH + CM )
Stage 2 0.5rNL(CH + CM ) rNL(CH + CM )
Stage 3 rNL(CH + CM ) rNL(CH + CM )

Total 1.75rNL(CH + CM ) 3rNL(CH + CM )
Saving 1.25rNL(CH + CM ) 0

4. Experiments
In this section, we first present our main results with GPT2
model on the in-domain pre-train task and out-domain down-
stream tasks in Section 4.1. In addition, to show the scala-
bility of our approach, we conduct experiments with TinyL-
lama model in Section 4.2.

4.1. Main Results with GPT2

Experiment Setup: We conduct experiments with GPT2-
base model, which has 117M parameters in total, pre-
trained on OpenWebText dataset (Radford et al., 2019)
with AdamW optimizer (Loshchilov & Hutter, 2019) from
scratch. The batch size is set to 512 and the sequence length
is 1024. The total training step is 150k. For the downstream
performance, we experiment on three tasks: GLUE (Wang
et al., 2018), SQuAD (Rajpurkar et al., 2016) , and LAM-
BADA (Paperno et al., 2016).

For GPT2-base model, the practical sampling sched-
uler is set to S = (20k, 70k, 150k) and P =
[(0.5, 0.5, 0.5), (0.5, 0.5, 1), (1, 1, 1)], which saves 26.7%
computation cost of training.

We choose Staged Training (Shen et al., 2022), which is a
kind of incremental training method and has two stages, as
a baseline. In stage 1, Staged Training method trains the
model with half hidden size. At the end of stage 1, expand
the parameters of the model. In stage 2, train the complete
model. The stage transition occurs at step 50k, and this
baseline saves 16.7% of the training FLOPs.

For another baseline MSG (Yao et al., 2023), due to the
inability of this method to simultaneously expand attention
heads and intermediate sizes, the training stage settings in
the MSG baseline differ slightly from our EST method:

• Stage1 (0-20k): Utilizing a model with half the number
of layers, attention heads, and intermediate size.

• Stage2 (20k-40k): Restoring the number of layers
and using a model with half the attention heads and
intermediate size.
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• Stage3 (40k-70k): Restoring the attention heads and
using a model with half the intermediate size.

• Stage4 (70k-150k): Training the complete model.

Main Results: We compare EST with the naive training
method that trains the complete model, Staged Training
method and MSG method. The results are as the Table 2.
Our approach EST saves 26.7% of training FLOPs and leads
to 1.22x speed up of the wall clock training time without
increasing the loss on the validation dataset. The loss curve
of GPT2 trained by EST can be found in Appendix A.1.
Additionally, we find that the model trained by EST has
better downstream performance, indicating that EST also
enhances the generalization of GPT2 model. However, de-
spite saving 16.7% of the training FLOPs, the performance
of the model obtained by Staged Training cannot match
the original model. Compared to MSG method, our EST
approach achieves higher acceleration effects and delivering
superior model performance.

Effect of Sampling Scheduler: We also conduct experi-
ments to evaluate the effect of different sampling schedulers.
Besides our practical sampling scheduler, we evaluate model
performance on five different sampling schedulers:

• EST-ONE-STAGE: S = (150k), P = [(0.5, 0.5, 1)].

• EST-TWO-STAGE-A: S = (50k, 150k), P =
[(0.5, 0.5, 1), (1, 1, 1)].

• EST-TWO-STAGE-B: S = (70k, 150k), P =
[(0.5, 0.5, 1), (1, 1, 1)].

• EST-TWO-STAGE-C: S = (90k, 150k), P =
[(0.5, 0.5, 1), (1, 1, 1)].

• EST-THREE-STAGE: S = (20k, 70k, 150k), P =
[(0.5, 0.5, 0.5), (1, 1, 0.5), (1, 1, 1)].

Among these five sampling schedulers, EST-ONE-STAGE
is exactly the stage 2 of the practical sampling scheduler and
does not train the complete model at all. EST-TWO-STAGE-
A, EST-TWO-STAGE-B, and EST-TWO-STAGE-C skip
the stage 1 of the practical sampling scheduler and have
different stage transition points. EST-THREE-STAGE, on
the other hand, modifies the stage 2 of the practical sampling
scheduler by disabling the sampling from MHA and MLP
and enabling the sampling from the number of layers. The
results are shown in Table 3.

We find that our three-stage practical sampling scheduler
saves more training cost than two-stage sampling schedulers
with comparable model performance. On the other hand,
results of EST-ONE-STAGE and EST-TWO-STAGE-C in-
dicate that a long enough stage 3 is vital. In addition, the

experiment on EST-THREE-STAGE sampling scheduler
indicates that, in stage 2, sampling from MHA modules and
MLP modules performs better than sampling from layers.

4.2. Scale-up to TinyLlama

Experiment Setup: We pre-train a 1.1B TinyLlama model
with 22 layers on the subset of SlimPajama dataset (Sobol-
eva et al., 2023) and Starcoder dataset (Li et al., 2023a) from
scratch, using AdamW optimizer. The batch size is set to
1024 and the sequence length is 2048. The total training
step is 60k, containing 130B tokens in total. We report
the validation loss on SlimPajama dataset and downstream
performance on GPT4All (Anand et al., 2023) benchmarks.
GPT4All contains seven different datasets, evaluating the
few-shot common sense reasoning ability of models.

For TinyLlama model, the practical sampling sched-
uler is set to S = (10k, 25k, 60k) and P =
[(0.5, 0.5, 0.5), (0.5, 0.5, 1), (1, 1, 1)], which saves 25.0%
computation cost of training.

Main Results: We demonstrate the scalability of EST on
TinyLlama in Table 4. Compared with the original model
trained by the naive training method, EST method saves
25.0% of training FLOPs and leads to 1.22x speed up of wall
clock training time, with comparable loss. The loss curve of
TinyLlama trained by EST can be found in Appendix A.2.
In addition, model generalization performance, measured
by the average score of GPT4All, is improved by EST.

5. Theoretical Studies
In this section, we aim to answer two key questions: 1) Why
can EST method save training cost without compromising
model performance? 2) Why do models trained using the
EST method exhibit better generalization performance? We
study the training dynamics of EST in Section 5.1 to answer
question 1 and study the loss landscape of models trained
using the EST method in Section 5.2 to answer question 2.

5.1. Why Can EST Save Training Cost without
Compromising Model Performance

In general, EST enhances the dynamics of model training,
resulting in a steeper loss curve and faster loss descent com-
pared to the naive training approach, so it can save training
cost without compromising model performance. To pro-
vide a more specific explanation, we first need to introduce
two important properties in previous incremental training
methods (Shen et al., 2022): loss-preserving property and
training-dynamics-preserving property. Subsequently, we
point out that it is precisely because EST breaks away from
these two properties that it can achieve savings in model
training cost in a broad range of scenarios.
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Table 2. Main results of the experiment with GPT2 model. We choose Staged Training (Shen et al., 2022) and MSG (Yao et al., 2023)
baselines. Loss is evaluated on the validation dataset. For metrics, we use accuracy and F1 score for SQuAD, and accuracy for LAMBADA.
The detailed results of GLUE are in Appendix A.1.

WALL CLOCK TIME(HOURS) SPEED UP SAVING FLOPS

ORIGINAL 185.0 1X 0
STAGED TRAINING 173.1 1.06X 16.7%
MSG 160.8 1.16X 24.4%

EST 151.6 1.22X 26.7%

AVERAGE GLUE SQUAD LAMBADA LOSS

ORIGINAL 79.84 66.74/77.06 29.44 3.06
STAGED TRAINING 73.82 61.65/72.71 28.99 3.15
MSG 79.88 62.05/71.89 29.06 3.13

EST 80.66 67.14/77.15 32.01 3.05

Table 3. Ablation study on different sampling schedulers. We find that our proposed practical sampling scheduler strikes a good balance
between model performance and FLOPs saving. Compared to other types of schedulers, our practical sampling scheduler performs the
best with the same training cost.

SAVING FLOPS LOSS AVERAGE GLUE SQUAD LAMBADA

ORIGINAL 0 3.06 79.84 66.74/77.06 29.44

EST-ONE-STAGE 50.0% 3.36 77.78 63.95/74.65 26.57
EST-TWO-STAGE-A 16.7% 3.04 81.05 67.39/77.76 29.59
EST-TWO-STAGE-B 23.3% 3.06 80.17 67.18/77.51 29.71
EST-TWO-STAGE-C 30.0% 3.09 80.41 66.55/77.01 28.68
EST-THREE-STAGE 26.7% 3.07 79.47 65.73/76.22 29.67

EST 26.7% 3.05 80.66 67.14/77.15 32.01

Loss-preserving Property: The loss-preserving property
implies that during a transition in the training stages, the
models before and after the transition should represent the
same function, resulting in identical loss.

Training-dynamics-preserving Property: Intuitively, the
training-dynamics-preserving property means that in the
final stage of incremental training, the loss curve should
match that of the target model.

Why Should Break Away from These Properties: In incre-
mental training methods, maintaining these two properties
is to ensure the feasibility of extending the parameters of a
smaller model as the initialization parameters for the target
model. However, to maintain these two properties while
achieving the goal of saving training cost, incremental train-
ing methods require expanding the parameters to the size of
the target model early in the training process (Shen et al.,
2022). Therefore, when the model training requires a suffi-
cient number of training steps, incremental training methods
can actually save very little in training cost. EST breaks
away from these two properties, alleviating this issue.

Break Away from Loss-preserving Property: EST
method dose not maintain the loss-preserving property. Dur-
ing stage transitions when increasing the size of the subnet-
works, the loss experiences a sudden drop compared to the
previous stage.

Due to the equivalence between the random sampling of
subnetworks and Structural Dropout (Pal et al., 2020), we
can theoretically demonstrate using Dropout theory. Intu-
itively, training subnetworks via random sampling implicitly
introduces a regularization term to the loss function, and the
increase in subnetwork size reduces this regularization term,
resulting in a sudden drop in loss.

Break Away From Training-dynamics-preserving Prop-
erty: EST method does not maintain the training-dynamics-
preserving property. In the final stage of training, the model
trained with EST exhibits better training dynamics com-
pared to the target model obtained through naive training
method.

Intuitively, EST method is equivalent to the use of Structural
Dropout in earlier stages. Early Dropout pushes model
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Table 4. Main results of experiment with TinyLlama model. Loss is evaluated on the validation dataset. The detailed results of GPT4All
are shown in Appendix A.2.

WALL CLOCK TIME(HOURS) SPEED UP SAVING FLOPS LOSS GPT4ALL

ORIGINAL 192.8 1X 0 2.64 42.40

EST 158.2 1.22X 25% 2.65 42.79

Figure 2. Loss curves of EST compared with the original training
method.

parameters into a flatter region of the loss landscape. Even
in the final stage when training the complete model, the
model parameters can still maintain flatness, reducing the
difficulty of parameter optimization and accelerating the
descent of the loss.

Towards Training Cost Saving: How does the disruption
of these two properties affect the efficiency of model train-
ing? We compare the loss curves of TinyLlama trained by
EST and the original training method in Figure 2.

Firstly, we observe that during stage transitions, the loss
drops sharply, which is the result of breaking the loss-
preserving property, providing a better starting point for
each stage. On the other hand, we notice that in stage 3, the
slope of the EST loss curve is greater than the slope of the
original loss curve under the same loss condition. This is a
direct result of breaking the training-dynamics-preserving
property, which is the key to the success of EST. If the
training-dynamics-preserving property holds, the loss curve
in stage 3 will be parallel to the loss curve of the original
training method, and thus, the two curves will not intersect,
eliminating the possibility of saving training costs. It is
precisely because the EST method improves the dynamics
of model training that it leads to savings in training costs
without sacrificing model performance.

5.2. Why Can EST Benefit Model Generalization

In Section 4, we observe that the EST method not only
achieves comparable loss on the pre-training dataset com-
pared to the naive training method, but also brings some

Table 5. The trace of Hessian matrix and the average GLUE score
of model trained through naive training method and through EST
method. With almost the same pre-training loss, EST method has
higher GLUE score for smaller trace of Hessian matrix.

Loss GLUE Tr[∇2L(ϕ)]

Original 3.06 73.89 11763

EST 3.05 74.66 2510

improvement in downstream tasks. This indicates an en-
hancement in the model’s generalization performance.

Liu et al. (2023a) investigate the phenomenon where dif-
ferent models exhibit significant differences in downstream
tasks under the same loss on the pre-training dataset. Fur-
thermore, they find a strong correlation between the model’s
generalization ability and the trace of the Hessian matrix of
the loss function with respect to the model parameters.

The process of sampling subnetworks in the EST method
is equivalent to Structural Dropout, which can effectively
reduce the trace of the Hessian matrix in the early stages.
However, more importantly, we find that even in the final
stage of training the complete model, the Hessian matrix still
maintains a relatively small trace until the end of training.
This contributes to the better generalization performance of
the final model obtained through EST.

In Table 5, we demonstrate that GPT2 models trained
through EST exhibit a smaller trace of the Hessian ma-
trix and stronger generalization performance compared
to models obtained through naive training method. Here
Tr[∇2L(ϕ)] denotes the trace of Hessian matrix of the loss
function with respect to the model parameters.

6. Conclusion
Our goal is to achieve more efficient training for large lan-
guage models. We propose a novel training method, Evolv-
ing Subnetwork Training (EST), which operates subnetwork
training via random sampling and uses sampling scheduler
to plan the process of training incrementally. Our approach
enhances the efficiency of model training on GPT2 and
TinyLlama models, saving 26.7% and 25.0% of training
FLOPs respectively, with comparable pre-training perfor-
mance. In addition, EST benefits the generalization abil-
ity of both GPT2 and TinyLlama, evaluated by several
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downstream tasks. We also provide intuitive theory stud-
ies, demonstrating the feasibility and superiority of EST.
Through theoretical analysis, we find that the efficient train-
ing dynamics of EST comes from the flatness of parameters.
This insight may inspire other efficient training methods. In
future works, we aim to provide the theoretical support for
the design of sampling schedulers, to apply EST for training
on even larger models. Additionally, since EST essentially
samples for matrix multiplication, it can be applied not only
to Transformer models but also to models like Mamba (Gu
& Dao, 2023). We will conduct experiments on other types
of models to broaden the application scope of EST.

Impact Statement
This work’s ethical impact is rooted in the ethical risks
associated with large language models themselves. While
there are numerous ethical risks linked to large language
models, this paper primarily focuses on efficient training
for such models, and thus, these ethical risks are not the
main emphasis of this paper. Therefore, we believe it is not
necessary to highlight them here.

The future societal consequences of this work primarily
involve its impact on the environment and the applications
of large language models. As this work helps reduce the
training costs of large language models, it contributes to
mitigating the carbon emissions caused by research and
applications of such models, thereby aiding environmental
conservation. Simultaneously, the cost savings may also
facilitate a broader and more widespread application of
large language models in society.
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A. Additional Experiment Details
A.1. Details for GPT2 Experiment

Details for Pre-training: We pre-train 117M GPT2 model on OpenWebText dataset from scratch, using AdamW optimizer.
Batch size is set to 512 and each example contains 1024 tokens. The initial learning rate is set to 6× 10−4, followed by
a linear learning rate decay. The pre-training loss curves of EST method on training dataset and validation dataset are as
Figure 3.

Figure 3. Training and evaluation loss of EST training with GPT2-base model.

Details for GLUE benchmark: The detailed scores evaluated on GLUE are as Table 6. CoLA is measured by Matthews
correlation and accuracy. STS-B is measured by Pearson/Spearman correlation. MRCP and QQP are measured by accuracy
and F1 score. Others are measured by accuracy.

Table 6. Detailed GLUE scores of GPT2-base model.

SAVING FLOPS COLA SST-2 MRPC STS-B

ORIGINAL 0 43.21/77.27 90.02 80.15/86.39 86.63/86.25
STAGED TRAINING 16.7% 14.50/65.68 87.15 76.25/84.43 83.97/83.76

EST-ONE-STAGE 50.0% 37.27/74.88 89.91 76.23/83.81 82.62/82.36
EST-TWO-STAGE-A 16.7% 44.61/78.04 91.51 83.58/88.39 87.11/86.97
EST-TWO-STAGE-B 23.3% 43.26/77.09 91.06 80.39/86.44 86.56/86.57
EST-TWO-STAGE-C 30.0% 45.70/78.14 89.79 80.15/86.43 86.71/86.52
EST-THREE-STAGE 26.7% 42.66/76.22 91.28 80.16/86.48 84.33/84.12

EST 26.7% 45.88/78.04 91.51 80.88/87.13 86.69/86.55

SAVING FLOPS QQP MNLI(M/MM) QNLI RTE

ORIGINAL 0 89.50/85.83 79.14/79.59 86.07 67.87
STAGED TRAINING 16.7% 86.91/82.36 75.45/75.79 82.44 61.01

EST-ONE-STAGE 50.0% 89.05/85.26 77.81/78.29 86.16 67.51
EST-TWO-STAGE-A 16.7% 89.39/85.70 80.24/80.47 86.94 70.76
EST-TWO-STAGE-B 23.3% 89.55/85.80 80.02/80.73 86.49 68.23
EST-TWO-STAGE-C 30.0% 89.40/85.82 80.36/80.08 86.88 69.31
EST-THREE-STAGE 26.7% 89.25/85.49 79.01/80.13 86.25 67.79

EST 26.7% 89.27/85.53 80.38/80.81 86.99 68.95
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A.2. Details for TinyLlama Experiment

Details for Pre-training: We pre-train TinyLlama 1.1B model on the subset of SlimPajama dataset and Starcoder dataset,
consisting of 130B tokens. We use AdamW optimizer, and the max learning rate is set to 4× 10−4 with 2000 warm-up steps,
followed by a cosine learning rate decay. The pre-training loss curves of EST method on training dataset and validation
dataset are as Figure 4.

Figure 4. Training and evaluation loss of EST training with GPT2-base model.

Details for GPT4All benchmark: The detailed scores evaluated on GPT4All are as Table 7.

Table 7. Detailed GPT4All scores of TinyLlama model.

SAVING FLOPS HELLASWAG OBQA WINOGRANDE ARCc ARCe BOOLQ PIQA

ORIGINAL 0 33.54 29.40 50.51 23.04 38.55 59.60 62.13

EST 25.0% 33.40 27.20 52.88 23.29 38.93 61.16 62.68

A.3. Details for Wall Time Saving

We test the efficiency of the EST method on GPT2 and TinyLlama models and assess the real acceleration effects. We
will analyze the wall time overhead of each module and the time overhead under different training setups. Here we mainly
analyze the impact of sampling on the MHA and MLP modules. These two modules involve matrix multiplication, and our
sampling alters the size of these matrices. Since matrix multiplication is parallelized on GPUs, it’s challenging to intuitively
calculate the actual acceleration effect. For both GPT2-base and TinyLlama 1.1B model, we investigate the impact of
different batch sizes on training speed when using Distributed Data Parallel (DDP). For simplicity, we discuss the practical
sampling scheduler in Table 1. We use A100 80GB GPU to test both GPT2 model and TinyLlama model.

For the GPT2 model, the actual acceleration effects are as Table 8. For the TinyLlama 1.1B model, the actual acceleration
effects are as Table 9. In these two tables, GPU time refers to the time spent on forward computations for each module or
layer on the GPU. Total time indicates the overall time cost for each training step, including both forward and backward
computation.

The final speedup rate is not 4× for stage1 and not 2× for stage 2 due to two reasons: (1) GPUs compute matrix multiplication
in parallel, so the time consumption is not directly proportional to the number of rows or columns of the matrix; (2) In
addition to GPU computation time, there is also high memory access overhead during model training. As the batch size
increases, the bottleneck of training gradually shifts from memory access to computation, resulting in an increase in the
speedup, and the speedup on GPU time gradually approaches 2×.
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Table 8. Wall time overhead of GPT2 model. Each example contains 1024 tokens.

MICRO BATCH SIZE 8 16 32 48

GPU TIME (MS) OF MHA 2.51 4.84 9.48 14.12
GPU TIME (MS) OF EST MHA 1.41 2.57 4.92 7.27

GPU TIME (MS) OF MLP 0.92 1.78 3.38 5.01
GPU TIME (MS) OF EST MLP 0.59 1.05 1.95 2.86

GPU TIME (MS) OF TRANSFORMER LAYER 3.56 6.86 13.31 19.77
GPU TIME (MS) OF EST TRANSFORMER LAYER 2.12 3.86 7.34 10.79

TOTAL TIME (MS) OF STAGE 1 TRAINING STEP 182.49 278.62 447.91 525.55
TOTAL TIME (MS) OF STAGE 2 TRAINING STEP 210.59 309.27 497.37 721.37
TOTAL TIME (MS) OF STAGE 3 (ORIGINAL) TRAINING STEP 211.05 388.46 646.85 1065.23

Table 9. Wall time overhead of TinyLlama 1.1B model. Each example contains 2048 tokens.

MICRO BATCH SIZE 1 2 4 8

GPU TIME (MS) OF MHA 1.43 2.10 3.93 8.14
GPU TIME (MS) OF EST MHA 1.45 1.63 2.24 4.11

GPU TIME (MS) OF MLP 0.39 0.69 1.43 2.87
GPU TIME (MS) OF EST MLP 0.44 0.61 0.98 1.60

GPU TIME (MS) OF TRANSFORMER LAYER 2.05 3.12 5.99 11.88
GPU TIME (MS) OF EST TRANSFORMER LAYER 2.50 2.57 3.85 6.84

TOTAL TIME (MS) OF STAGE 1 TRAINING STEP 288.37 228.66 360.24 501.61
TOTAL TIME (MS) OF STAGE 2 TRAINING STEP 374.05 296.95 399.80 659.46
TOTAL TIME (MS) OF STAGE 3 (ORIGINAL) TRAINING STEP 274.23 336.71 555.82 915.40
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B. Implementation Details
Among the three sampling methods we use, sampling for the number of Transformer layers is straightforward and will
not be elaborated. However, the sampling operation for the dimensions of MHA and MLP modules within each layer is
more complex. This will be detailed here. The operation within each Transformer layer can be illustrated as Figure 5. The
index generator generates indexes IH , IM and IL. The router before each module takes IH or IM as input and activates the
corresponding part of the module.

Figure 5. Computation in each Transformer layer during subnetwork training.

B.1. Implementation of Sampling for MHA module

For the MHA module, we sample a subset of heads for computation. Specifically, this involves sampling along the
dimensions of the output projection matrices WQ,WK ,WV , and selecting the corresponding input dimensions in the
output matrix WO. The detailed process is illustrated in Figure 6.

Figure 6. The detailed implementation of sampling for MHA module.
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B.2. Implementation of Sampling for MLP module

For the MLP module, we sample columns from W1 and W2 for computation. The detailed process is illustrated in Figure 7.

Figure 7. The detailed implementation of sampling for MLP module.

Unlike in Deja Vu (Liu et al., 2023b), in our training scenario, since our sampling operation is performed per batch rather
than per token, the cost of extracting rows and columns from the matrices is relatively small, and kernel fusion is not
necessary.

B.3. Implementation of Index Generator

The index generator simply generates random numbers as sampling indices. However, since it operates on the CPU, and
once the indices are generated, they need to be transferred to the GPU memory. Executing it as part of the model before
each forward pass could result in unnecessary time overhead. To optimize the training process as much as possible, we use
an additional thread to run the index generator asynchronously to the model training. Once the index generator generates the
next set of indices, it places them in a queue. When the model needs to sample, it retrieves the values from the queue. This
completely eliminates the overhead of the index generator.
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