
Online Learning with Stochastically Partitioning Experts

Puranjay Datta1 Sharayu Moharir1 Jaya Prakash Champati2

1Electrical Engineering Department, IIT Bombay, India
2Computer Science Department, University of Victoria, Canada

Abstract

We study a variant of the experts problem in which
new experts are revealed over time according to
a stochastic process. The experts are represented
by partitions of a hypercube B in d-dimensional
Euclidean space. In each round, a point is drawn
from B in an independent and identically dis-
tributed manner using an unknown distribution.
For each chosen point, we draw d orthogonal
hyperplanes parallel to the d faces of B passing
through the point. The set of experts available in
a round is the set of partitions of B created by
all the hyperplanes drawn up to that point. Losses
are adversarial, and the performance metrics of
interest include expected regret and high proba-
bility bounds on the sample-path regret. We pro-
pose a suitably adapted version of the Hedge al-
gorithm called Hedge-G, which uses a constant
learning rate and has O(

√
2dT log T) expected

regret, which is order-optimal. Further, we show
that for Hedge-G, there exists a trade-off between
choosing a learning rate that has optimal expected
regret and a learning rate that leads to a high
probability sample-path regret bound. We address
this limitation by proposing AdaHedge-G, a vari-
ant of Hedge-G that uses an adaptive learning
rate by tracking the loss of the experts revealed
up to that round. AdaHedge-G simultaneously
achieves O(log(log T)

√
T log T) expected regret

and O(log T
√
T log T) sample-path regret, with

probability at least 1 − T−c, where c > 0 is a
constant dependent on d.

1 INTRODUCTION

In the standard decision-theoretic online learning studied
by Freund and Schapire [1997], there are N experts (or

actions) at the disposal of a learner. In round t, the learner
chooses a probability mass function pppt over the set of ex-
perts {1, 2, . . . , N}, an adversary reveals the loss vector
lllt = (lt(1), . . . , lt(N)) ∈ [0, 1]N , and the learner incurs
an (expected) loss of ⟨pppt, lllt⟩. The total loss incurred by
the learner after T rounds is LT =

∑T
t=1⟨pppt, lllt⟩, and

the total loss of choosing expert i in all the rounds is
LT (i) =

∑T
r=1 lt(i). The learner aims to minimize its cu-

mulative regret up to round T , defined as LT −mini LT (i).

The celebrated Hedge algorithm by Freund and Schapire
[1997] uses a parameter called the learning rate η ≥ 0,
assigns weight wt(i) = e−ηLt−1(i) for each expert i based
on the observed cumulative loss, and chooses expert i with
probability pt(i) = wt(i)/Wt, where Wt =

∑K
i=1 wt(i)

where K is the number of experts. For a suitable choice
of η, Hedge has O(

√
T logN) regret. Subsequent works

explored improved algorithmic techniques seeking regret
bounds where the dependency on T is replaced by metrics
that capture the variability of the sequence of loss vectors lllt
Cesa-Bianchi et al. [2007], Hazan and Kale [2010], Chiang
et al. [2012]. In contrast to these works, Gofer et al. [2013]
studied the dependency of the regret bound on the number
of experts N . They introduced the branching experts setting,
where new experts may be revealed in each round, and the
cumulative loss of any new expert is either equal or close
to the cumulative loss of one of the existing experts. They
proposed an algorithm with O(

√
TNT) regret, where NT

is the number of experts revealed in the first T rounds.

Motivated by learning problems that arise in out-of-
distribution (OOD) detection Yang et al. [2024] and dis-
tributed Deep Learning (DL) inference Al-Atat et al. [2024],
in this paper, we study a novel stochastically partitioning
experts setting. This setting is a stochastic variant of the
branching experts setting, where the experts revealed in
each round are new sub-partitions of a hypercube B in d-
dimensional Euclidean space, where d <∞. In each round
t, the environment draws a point Xt, i.i.d. from B, using
a fixed (unknown) distribution. For each chosen point, we
draw d orthogonal hyperplanes parallel to the d faces of B

puranjaydatta@gmail.com

passing through the point. The set of experts revealed up to
round t is the set of partitions of B created by the intersec-
tion of the d orthogonal hyperplanes passing through each
of the t points drawn up to that round, resulting in (t+ 1)d

experts.1 The partition of experts for one dimension and two
dimensions is illustrated in Fig.1.

X1 X1X2 X1X2 X3

1 2 1 23 1 23 4

Round 1 Round 2 Round 3

(a) An illustration of partitioning experts in 1-dimension over
three rounds.

X1

X2

X3

X1 X1

X2

1 2

34

1 2

34

5

6

89 7

1 2

34

5

6

89 7

10

11

12 13 14 15

16

Round 1 Round 2 Round 3

(b) An illustration of partitioning experts in 2-dimensions over
three rounds.

Figure 1: We show the partitioning experts setting for the
first three rounds for one dimension (d = 1) on a bounded
interval in (a) and for two dimensions (d = 2) on a square
region in (b). The new point and the new expert indices in
each round are highlighted using bold fonts.

In each round, the environment only reveals the losses of the
existing experts, and we allow the losses to be adversarial.
We consider the perfect clone setting introduced in Gofer
et al. [2013], where a new expert is a perfect clone of its
parent expert, i.e., the cumulative loss of a new partition
is equal to the cumulative loss of its parent partition. Once
the new expert is revealed, its cumulative loss evolves inde-
pendently from its parent expert in the subsequent rounds.
We note that, in contrast to the branching experts setting
where NT is bounded and is independent of T , in the parti-
tioning experts setting, the number of experts in round T is
(T + 1)d.

1.1 MOTIVATING APPLICATIONS

OOD Detection: Detecting OOD samples has been widely
studied as DL models fail with high confidence for these
samples, resulting in serious consequences in high-risk ap-
plications. Many methods that have been developed for

1Since the points are drawn i.i.d. from Euclidean space, the
probability of a chosen point lying on one of the d hyperplanes
parallel to the faces of B passing through another point drawn in
some other round is zero. Thus, in round t, there will be (t+ 1)d

experts with probability one.

OOD detection use a threshold θ on a score xt, calculated
from soft-max values or features of the data sample, to
differentiate OOD from in-distribution (ID) samples. The
detected OOD samples can be deferred to human experts
at some cost Vishwakarma et al. [2024]. Thus, selecting
the best threshold, denoted by θ∗, that minimizes the false
negative, i.e., undetected OOD samples, and false positives,
i.e., detecting ID as OOD samples, is critical for the safe
and reliable deployment of DL models with minimal costs.

In Fig. 2, we show an example pdf for ID and OOD samples.
For a chosen threshold θ, the decision is to classify the
input sample as an ID sample if xt exceeds θ; otherwise,
the sample is OOD. Since the pdfs are unknown a priori, a
learner needs to learn θ∗ using the following loss function.

loss(θ) =

{
cost for false positive if score xt ≥ θ,

human expert cost if score xt < θ.
(1)

Note that the challenge is that the scores can take values
from a continuous set B. However, with some effort, one can
show that it is sufficient to consider only the distinct score
values arrived/revealed in T rounds as the thresholds/experts.
Also, whenever a new expert, i.e., a new distinct score, is
revealed, the cumulative loss of this expert is equal to the
cumulative loss of the highest score (revealed) less than this
new score. Thus, this problem falls under the setting we
study in this paper.-4 0.00004203334679861180.00000000000000404284177098351

-3.8 0.00009169458026723930.0000000000000196278181499498
-3.6 0.0001921859272687610.0000000000000915557295829801
-3.4 0.0003870149313751910.000000000000410324312598869
-3.2 0.0007487935225238480.00000000000176683988354679
-3 0.001391953276572480.00000000000730962939687284
-2.8 0.002486082045766940.0000000000290550577860133
-2.6 0.004266133850490640.000000000110962529735718
-2.4 0.007033665622957760.00000000040715444058987
-2.2 0.01114184673247740.00000000143539101353176
-2 0.01695746238542570.00000000486193883398508
-1.8 0.02479663592211850.0000000158225683173485
-1.6 0.0348379738928630.0000000494735060706821
-1.4 0.0470263458973840.000000148626626023051
-1.2 0.06098988286026880.000000428991581585712
-1 0.07599807383343110.00000118967720783826
-0.8 0.0909862135571970.00000316984286230581
-0.6 0.1046590575120720.00000811473882652655
-0.4 0.1156661466755490.0000199590368639508
-0.2 0.1228185417381740.0000471664114011135
0 0.1252996408614170.000107091329423215
0.2 0.1228185417381740.000233616765012075
0.4 0.1156661466755490.000489645674570091
0.6 0.1046590575120720.000986025302866729
0.8 0.0909862135571970.00190775419751299
1 0.07599807383343110.00354637777470696
1.2 0.06098988286026880.00633396699558456
1.4 0.0470263458973840.0108691308292755
1.6 0.0348379738928630.0179201671922491
1.8 0.02479663592211850.0283868706559933
2 0.01695746238542570.0432037258227406
2.2 0.01114184673247740.063176142476735
2.4 0.007033665622957760.0887591691537912
2.6 0.004266133850490640.119812346235373
2.8 0.002486082045766940.155388236586672
3 0.001391953276572480.193625665817659
3.2 0.0007487935225238480.231812009062922
3.4 0.0003870149313751910.266647280285534
3.6 0.0001921859272687610.294690819555538
3.8 0.00009169458026723930.312913482135474
4 0.00004203334679861180.319234753787049
4.2 0.0000185128164749370.312913482135474
4.4 0.000007833921969100690.294690819555538
4.6 0.000003185034989411670.266647280285534
4.8 0.000001244163323455030.231812009062922
5 0.0000004669483040765170.193625665817659
5.2 0.0000001683791957723920.155388236586672
5.4 0.00000005833595071404740.119812346235373
5.6 0.00000001941835113274270.0887591691537912
5.8 0.000000006210358064559290.063176142476735
6 0.000000001908310992339140.0432037258227406
6.2 0.0000000005633909728112170.0283868706559933
6.4 0.0000000001598081179315240.0179201671922491
6.6 0.00000000004355279292126920.0108691308292755
6.8 0.00000000001140411018101020.00633396699558456
7 0.000000000002869029538272590.00354637777470696
7.2 0.0000000000006934846542921170.00190775419751299
7.4 0.0000000000001610522926950560.000986025302866729
7.6 0.00000000000003593562386131970.000489645674570091
7.8 0.000000000000007703918623855290.000233616765012075
8 0.000000000000001586815395111030.000107091329423215

0

5

10

15

20

0 3 6 9 12

May June July

0

0.1

0.2

0.3

0.4

-4 -2 0 2 4 6 8

pd
f

0

0.1

0.2

0.3

0.4

scores
-4 -2 0 2 4 6 8

D_out
D_in

1

θ*

OOD
ID

Figure 2: Differentiating ID and OOD samples using a
threshold on the score.

Hierarchical Inference: The partitioning experts setting
also arises in the Hierarchical Inference system proposed
for distributed DL inference for classifications applications
in edge AI systems Moothedath et al. [2024], Beytur et al.
[2024], Al-Atat et al. [2024]. In this system, in each round
t, the environment presents a data sample (e.g., image) to
an end device (e.g., mobile device, IoT device, etc.). The
data sample is inputted to a pre-trained local DL model that
outputs soft-max values corresponding to different classes.
The learner computes a confidence metric xt ∈ [0, 1] using
these soft-max values2. The learner accepts the classification

2A typical choice for the confidence metric is the maximum

in round t if the confidence metric xt is above a threshold,
which the learner aims to learn. If the learner accepts the
classification, it incurs a zero loss when the classification is
correct and a loss of one otherwise. If the learner rejects or
offloads the classification task, it incurs an offloading cost.
Similar to OOD detection, learning an optimal threshold for
the confidence metric falls under the problem setting we
study in this paper.

The above applications have a single threshold to learn and
thus map to the partitioning experts problem with d = 1 (Fig.
1a). Note that the expert in our problem setting is an interval
– not a threshold θ as in (1). The equivalence between an
interval and a threshold can be obtained as follows. Given
xt and an interval, the threshold rule in (1) leads to the same
outcome for all the thresholds in that interval. For example,
in round 3 of Figure 1a, if expert 2 is chosen, then x3 is
smaller than all the points in expert 2. Thus, the sample will
be classified as an OOD sample (or will be offloaded in the
case of the Hierarchical Inference system).

For applications where misclassification costs are non-
uniform across classes, using different thresholds for the
soft-max values corresponding to the different classes will
likely improve performance. In this case, learning thresh-
olds for a d class classification task maps to a d-dimensional
partitioning experts problem.

1.2 OUR CONTRIBUTIONS

We study the novel stochastically partitioning experts setting.
We propose two algorithms, namely, Hedge-G, a natural
extension of the Hedge algorithm for the growing experts
setting, and AdaHedge-G, an adaptive learning rate variant
of Hedge-G. We prove the following results on the regret of
the proposed algorithms.

– Even though the number of experts grow as (t+ 1)d,
we show that Hedge-G has O(

√
2dT log T) expected

regret, which is order-optimal in T . Compare this with
the Hedge algorithm, which has O(

√
dT log T) regret

in the special case where all the (T + 1)d experts are
known apriori.

– We also show that Hedge-G achieves the sample-path
regret O(

√
2dT 1+ϵ log T) with probability at least 1−

T−ϵ, for any ϵ > 0.

– Hedge-G uses a fixed learning rate. We show that there
is a trade-off between choosing a rate that gives the
optimal expected regret guarantee and a rate that gives
a useful sample-path regret guarantee. To address this
limitation of Hedge-G, we propose the AdaHedge-G
algorithm, a variant of the Hedge-G algorithm that uses
a learning rate that adapts according to the cumulative

soft-max value as the data sample is typically classified into the
class with the maximum soft-max value.

loss of the new experts. We show that AdaHedge-G
simultaneously achieves O(log(log T)

√
T log T) ex-

pected regret, and O(log T
√
T log T) sample-path re-

gret, with probability at least 1− T−c, where c > 0 is
a constant dependent on d.

2 RELATED WORK

The decision-theoretic online learning problem is a variant
of the classical prediction with expert advice Littlestone
and Warmuth [1994], Vovk [1995] and has received much
attention in the past three decades. We summarize the related
works that studied the variants of this problem, where the
set of experts is very large or growing over time.

For the setting where the number of experts is large, Chaud-
huri et al. [2009] proposed a parameter-free version of
Hedge and showed that it outperforms the classical Hedge
algorithm. Chernov and Vovk [2010] considered the setting
with a large number of experts where multiple experts can
be near clones of each other. Further, they considered that
the regret of the algorithm with respect to any newly ar-
rived expert is assumed to be zero, and it is accumulated
thereafter. They provided regret guarantees as a function of
the effective number of experts, i.e., the number of unique
experts available to the learner. In contrast to the aforemen-
tioned works, Luo and Schapire [2015] proposed AdaNor-
malHedge, which is agnostic to the number of experts and,
therefore, can be used in a setting where the number of ex-
perts is unknown or changing. At each time-step t, AdaNor-
malHedge creates N sleeping experts, indexed by (t, i) for
i ∈ 1, . . . , N , that are asleep before time-step t, and wake
up at time-step t and suffer the same loss as that of expert
i from then onwards. It follows that, in total, there will be
NT sleeping experts after T rounds. We note that AdaNor-
malHedge’s computation complexity will be t times higher
than Hedge-G in round t. Whether AdaNormalHedge can
be adapted to the partitioning experts setting and how its
regret bound compares to that of Hedge-G remains an open
question. In the aforementioned works, however, the newly
arriving experts are not correlated with the experts who
came before them.

Cohen and Mannor [2017] studied the setting where all the
experts are known apriori, and their losses are revealed in
each round, but the number of experts is potentially infinite.
The focus here was on identifying a small set of experts such
that all other experts are close to any one expert in this small
set in terms of their cumulative loss. The authors proposed
an algorithm with provable performance guarantees that
depend on the ϵ-covering number of the sequence of loss
functions. They also proposed a method to compute the
optimal ϵ in hindsight.

Mourtada and Maillard [2017] studied the growing number
of experts setting, where new experts are revealed over time.
The key contribution in this work is two-fold. The authors

considered multiple definitions of regret, namely shifting
regret and sparse shifting regret, to account for the fact that
the expert set is growing over time. They designed com-
putationally inexpensive policies with order-optimal regret
performance for all the regret definitions considered. The
proposed algorithms are anytime and parameter-free. In Gy-
orfi et al. [1999], the set of experts grew at an exponentially
decaying rate, and the goal was to make predictions about
a stationary ergodic time series. In Hazan and Seshadhri
[2009], Shalizi et al. [2011], the focus was on predicting a
non-stationary time series using a growing set of experts. In
contrast to the above works, experts arrive at a much faster
rate in our setting.

As mentioned, our partitioning experts setting is closely re-
lated to the branching experts setting first studied by Gofer
et al. [2013]. In this work, even though the number of ex-
perts increases with time, NT , the total number of experts
revealed after T rounds is assumed to be large but finite.
Wu et al. [2021] further studied the branching experts set-
ting where the losses are stochastic processes with unknown
distributions. They proposed an optimal policy for both ad-
versarial and stochastic losses. Our setting differs from the
branching experts setting as we have an uncountably infinite
set of experts from which (T + 1)d experts are revealed
in T rounds. Another difference is that the number of new
experts revealed in round t is (t+ 1)d − td.

In the classical Hedge algorithm, the learning rate is a func-
tion of the time horizon T . Thus, it is unsuitable for settings
where the time horizon is unknown. The algorithms pro-
posed in Erven et al. [2011], De Rooij et al. [2014] addressed
this limitation by adapting the learning rate without the need
to know the value of T . In contrast, we assume T is given but
adapt the learning rate in AdaHedge-G according to the ob-
served losses so that it simultaneously achieves near-optimal
bound for expected regret and non-trivial sample-path regret
guarantees.

3 STOCHASTICALLY PARTITIONING
EXPERTS SETTING

In this work, experts are represented by partitions of a hyper-
cube B in a d-dimensional Euclidean space. As discussed
above, in each round t, the environment draws a point Xt,
i.i.d.3 from B, using a fixed (unknown) distribution. For
each such point, we draw d hyperplanes passing through
the point, parallel to the d faces of B. The set of experts
available in round t is the set of partitions of B created by

3A typical assumption during the DL training phase is that the
data samples are drawn i.i.d. using an unknown distribution. In the
Hierarchical Inference application, the same assumption is made
for the inference phase, where the data samples are drawn i.i.d. (cf.
Al-Atat et al. [2024]), which corresponds to Xt being drawn i.i.d.
in our partitioning setting.

all the hyperplanes drawn up to that round. The partitioning
process for d = 1 and d = 2 is illustrated in Fig.1.

In round 1, the environment draws a point X1 ∈ B creating
2d experts, which we index 1, . . . , 2d. Similarly, in round
t, the environment samples point Xt ∈ B resulting in nt =
(t+1)d experts. Among these experts, (t+1)d− td are new
experts. We say an expert is a child of a parent expert if the
former is a sub-partition of the latter expert. We assign the
index of each parent expert to one of its children and assign
new indices td+1, . . . , (t+1)d to the remaining unindexed
new experts. We use Bt = {1, . . . , nt} to denote the set of
indices at the end of round t.

In round t, the environment first samples Xt, and the learner
chooses a probability mass functionpppt over the set of experts
Bt. Following this, the environment reveals the loss vector
lllt = (lt(1), . . . , lt(nt)) ∈ [0, 1]nt . The learner, therefore,
incurs an expected loss of ⟨pppr, lllr⟩. The cumulative loss of
expert i ∈ Bt up to time t is Lt(i) =

∑t
r=1 lr(i), and the

expected cumulative loss of the learner up to time t is

Lt =

t∑
r=1

⟨pppr, lllr⟩.

For each new expert i ∈ Bt\Bt−1, its cumulative loss up
to time t, i.e., Lt−1(i) is equal to the cumulative loss of its
parent expert from Bt−1. However, the subsequent losses
of the new experts evolve independently from those of their
parent experts.

The loss functions are generated by an oblivious adversary
and communicated to the environment causally. Our results
hold for the setting where the oblivious adversary knows the
relative order of the Xts apriori and selects a sequence of
losses according to a deterministic mapping from this order-
ing. Specifically, at t = 0, the adversary knows if Xu < Xv

or not, for all 1 ≤ u < v ≤ T , and can exploit this infor-
mation to design the loss vectors for t ≥ 1. Note that our
adversary is more powerful than an alternative oblivious
adversary that does not have this side information.

We define
L∗
t = min

i∈Bt

Lt(i).

Given the time horizon T , we aim to minimize the expected
regret

RT = E[LT − L∗
T],

where the expectation is with respect to the joint distribution
of the sequence of points XT = {X1, . . . , XT } drawn by
the environment in T rounds. Note that E[L∗

t] will be equal
to L∗

t if the loss vectors generated are independent of the
points sampled by the environment and the regret bounds
we prove will still hold.

We also study the sample-path regret

R̂T = LT − L∗
T ,

Algorithm 1 Hedge-G for partitioning experts

1: Initialize: B0 = {1}, n0 = 0, w1 = 1, and W1 = 1.
2: for each round t = 1, 2, . . . , T do
3: Xt is drawn i.i.d. from B and new partitions are re-

vealed
4: nt = (t+1)d and Bt = Bt−1 ∪{nt−1 +1, . . . , nt}
5: For i ∈ Bt\Bt−1, given Lt−1(i), compute new

weights wt(i) = e−ηLt−1(i)

6: Ŵt = Wt +
∑

i∈Bt\Bt−1
wt(i)

7: Compute pt(i) =
wt(i)

Ŵt
, for all i ∈ Bt.

8: Choose an expert using pppt, observe lllt, and incur the
loss ⟨pppt, lllt⟩.

9: Update the weights wt+1(i) = e−ηlt(i)wt(i), for all
i ∈ Bt.

10: Cumulative weight Wt+1 =
∑nt

i=1 wt+1(i).
11: end for

and provide bounds in the high probability regime.

Remark 1: One can alternatively interpret the partitioning
experts setting as follows. Instead of treating each partition
as an expert, consider each point in B as an expert. When
the environment draws an expert, it only reveals a single
loss value per partition instead of losses for all the points
in B. For example, this loss value may be the average loss
over all experts (points) in the partition. Since we can only
work with the loss values per partition instead of losses
of the individual experts, the setting where we carry over
cumulative losses of the parent partition to the new sub-
partitions is well-motivated, especially given its applicability
in the classification application discussed in Section 1.1.

Remark 2: Note that the regret bounds we prove are valid
for any sequence of losses the oblivious adversary gener-
ates, and, thus, they hold for the supremum over all loss
sequences.

4 THE HEDGE-G ALGORITHM:
REGRET ANALYSIS

We propose an algorithm called Hedge-G, a natural exten-
sion of the Hedge algorithm for the growing experts setting,
that introduces a new weight whenever a new expert arrives.
Similar to the branching experts setting, in our setting, these
new weights can be readily computed as the cumulative
losses of the new experts are the same as their parent ex-
perts. In Algorithm 1, we present Hedge-G adapted to the
partitioning experts setting.

The regret analysis for Hedge-G differs from Hedge in that
the introduction of new weights in line 5 of Algorithm 1
implies that Wt does not normalize the weights wt(i), for
i ∈ Bt. A key step in our analysis of Hedge-G is to compute
the expected value of the quantity Yt, the ratio between the

sum of new weights wt(i) and Wt, given by

Yt =

∑nt

i=nt−1+1 wt(i)

Wt
=

∑nt

i=nt−1+1 e
−ηLt−1(i)∑

j∈Bt−1
e−ηLt−1(j)

. (2)

The following theorem characterizes an upper bound on the
cumulative loss of Hedge-G.

Theorem 4.1. An upper bound for the cumulative loss of
Hedge-G is given by

LT ≤ L∗
T +

Tη

8
+

∑T
t=1 Yt

η
. (3)

Proof. We write

log
Wt+1

Wt
= log

Wt+1

Ŵt

+ log
Ŵt

Wt
. (4)

Given Ŵt =
∑

i∈Bt
e−ηLt−1(i), we upper bound the second

term in RHS of (4) as follows.

log
Ŵt

Wt
= log

(∑
i∈Bt−1

e−ηLt−1(i)+
∑nt

i=nt−1+1 e
−ηLt−1(i)∑

i∈Bt−1
e−ηLt−1(i)

)
= log (1 + Yt) ≤ Yt. (5)

Next, we upper and lower bound log WT+1

W1
. By definition,

log
WT+1

W1
=log

(
T∏

t=1

Wt+1

Wt

)

=

T∑
t=1

[
log

Wt+1

Ŵt

+log
Ŵt

Wt

]

≤
T∑

t=1

[
−η⟨pppt, lllt⟩+

η2

8
+Yt

]

=−ηLT +
η2T

8
+

T∑
t=1

Yt. (6)

In the third step above, we have used (5) and Hoeffding’s
lemma to upper bound log Wt+1

Ŵt
. Also,

log
WT+1

W1
= log

nT∑
i=1

e−ηLT (i)

≥ log max
i∈BT

e−ηLT (i)

≥ max
i∈BT

log e−ηLT (i) = −ηL∗
T . (7)

From (6) and (7), we obtain the result.

To obtain a bound on the expected regret of Hedge-G from
Theorem 4.1, we need to compute

∑T
t=1E[Yt]. A primer

for computing E[Yt] is the following lemma which states
that in any slot the new point is equally likely to belong to
any one of the existing partitions of B.

Lemma 4.2. Given that the sequence of points {Xt} are
drawn i.i.d. from B, the point Xt drawn in round t is equally
likely to belong to any one of the existing td partitions, i.e.,

P(Xt ∈ partition i) =
1

td
, ∀i ∈ Bt−1.

Our next result uses Lemma 4.2 to compute E[Yt].

Lemma 4.3. E[Yt] =

(
1 +

1

t

)d

− 1 ≤ 2d

t
.

The proofs of Lemmas 4.2 and 4.3 are given in the Ap-
pendix.

Taking expectation on both sides in (3) (Theorem 4.1) and
using Lemma 4.3, we obtain the following bound on ex-
pected regret:

RT ≤
ηT

8
+

2d

η

T∑
t=1

1

t
≤ ηT

8
+

2d(log T + 1)

η
. (8)

The regret bound in the following corollary immediately
follows from (8).

Corollary 4.3.1. For the partitioning experts setting, for
Hedge-G with η =

√
2d+3(d log T + 1)/T , the expected

regret RT = O(
√
2dT log T).

Note that, in our problem setting, d is a constant determined
by the application under consideration. For instance, in most
cases of OOD detection and Hierarchical Inference appli-
cations, d = 1. In the following, we show that Hedge-G is
order-optimal with respect to T .

Lower bound: The Prediction with Expert Advice (PEA)
with K experts has the lower bound

√
T logK for an obliv-

ious adversary Freund and Schapire [1999]. To prove the
lower bound for the partitioning experts, we construct the
following problem instance for d = 1. Let the oblivious
adversary assign 0 loss to the first T/2 spawned experts
arrived in the first T/2 time steps. From T/2 + 1, each new
expert always receives a loss higher than its parent, and
the first T/2 experts receive losses as in the PEA setting.
Using only the first T/2 experts is sufficient to reduce re-
gret, and we obtain a regret lower bound of

√
T log T . For

d > 1, (T/2)d experts spawn in the first T/2 time steps,
and we use a similar loss assignment as above to obtain
Ω(
√
dT log T) lower bound. Since this lower bound is valid

for any realization, the expected regret of any algorithm is
also Ω(

√
dT log T). Thus, from Corollary 4.3.1, we see that

Hedge-G has order-optimal expected regret with respect to
the time-horizon T . Note that the vanilla Hedge algorithm
achieves O(

√
dT log T) expected regret only when all the

(T + 1)d experts are known apriori, and their losses are
revealed in each round.

Remark 3: We can improve the regret bound of Hedge-
G with respect to d by using a tighter upper bound for

E[Yt]. For example, using E[Yt] = (1+ 1/t)d− 1 ≤ d/t+
2d/t2 and repeating the analysis with this tighter upper
bound and η =

√
8d(log T + 1)/T , we obtain an improved

bound O(
√
dT log T + 2d

√
T/d log T). In the first term,

the dependence is on
√
d instead of

√
2d. In the second

term, the dependence is on 2d/
√
d log T , but notice that√

log T is in the denominator. Thus, even if d is large, the
regret bound is dominated by

√
dT log T term.

Corollary 4.3.2. For the partitioning experts setting, for

any ϵ > 0, Hedge-G with η =
√

2d+3(log T+1)
T 1−ϵ achieves the

sample-path regret R̂T = O(
√

2dT 1+ϵ log T) with proba-
bility at least 1− T−ϵ.

Proof. Using Markov inequality for the summation of the
random variables Yt, we get

P

(
T∑

t=1

Yt ≤ T ϵ
T∑

t=1

E[Yt]

)
≥ 1−

∑T
t=1E[Yt]

T ϵ
∑T

t=1E[Yt]

= 1− T−ϵ.

Using this result in (3) and the upper bound for E[Yt] from
Lemma 4.2, we obtain, with probability at least 1− T−ϵ,

R̂T ≤
ηT

8
+

2dT ϵ(log T + 1)

η
.

Choosing η =
√

2d+3(log T+1)
T 1−ϵ results in R̂T ≤√

2d−1T 1+ϵ(log T + 1).

From Corollaries 4.3.1 and 4.3.2, it follows that for η =√
2d+3(log T+1)

T 1−ϵ , the sample-path regret of Hedge-G is

O(
√

T 1+ϵ log T) with high probability and its expected re-
gret is O(T

ϵ
2

√
T log T). Compared to this, the expected

regret for Hedge-G with η =
√
2d+3(log T + 1)/T is

O(
√
T log T), but this value of η leads to a sample-path

regret bound that holds with probability zero, as ϵ = 0.
Therefore, to obtain a high probability bound on sample-
path regret of Hedge-G using Theorem 4 and Markov’s
inequality, we use a value of η for which the expected regret
is higher than the optimal by a factor of O(T

ϵ
2). In Section

5, we address this limitation of Hedge-G by adapting the
learning rate based on the losses revealed by the adversary.

Remark 4: Note that if Xt are drawn adversarially from
B, Hedge-G has linear regret. We construct the following
problem instance for d = 1. The adversary always splits the
best expert in each round, resulting in two experts, j and k.
Uniformly at random, the adversary assigns a loss of one to
one expert in the set {j, k} and zero to the other expert. For
all other experts i ̸= j, k, it assigns a loss of one. For this
problem instance, at any time t, L∗

t = 0, but the expected
loss for Hedge-G in that time step will be at least 1

2 . Hence,
Hedge-G has expected regret of at least T

2 . This result is

expected because if Xt are adversarially drawn from B,
then the partitioning expert setting is a special case of the
branching experts setting studied by Gofer et al. [2013]. It
is known for the branching experts setting, the regret of
any algorithm is Ω(

√
TNT), where NT for the partitioning

expert setting is equal to (T + 1)d.

4.1 PERFORMANCE COMPARISON

We compare the cumulative loss and runtime performance
of Hedge-G with the Hedge algorithm, which has prior
knowledge of all the expert intervals (i.e., the intervals that
will be formed in T rounds). We simulate for d = 1. At
each time step t, the loss assigned to a Hedge expert cor-
responds to the loss of the corresponding parent expert in
the same simulation instance under Hedge-G. The points
Xt are sampled independently from a uniform distribution
U [0, 1], and the loss for each expert at each time step is
generated from a Bernoulli distribution with parameter 0.3,
i.e., Bernoulli(0.3). The experiments were performed on a
machine equipped with an Intel(R) Xeon(R) CPU running
at 2.20GHz. The processor has a cache size of 56.32 MB,
and the system is equipped with 12.7 GB of RAM.

The results, illustrated in Figure 3a, demonstrate that Hedge-
G achieves performance comparable to that of Hedge, de-
spite lacking prior knowledge of the expert intervals avail-
able to the latter. By the end of 1000 rounds, Hedge-G in-
curs an additional cumulative loss of only 0.383 compared
to Hedge. Figure 3b presents the cumulative runtime as a
function of the number of rounds for both algorithms. As an-
ticipated, Hedge-G incurs significantly lower computational
overhead, leading to a noticeably reduced runtime.

5 ADAHEDGE-G: HEDGE-G WITH
ADAPTIVE LEARNING RATE

In this section, we propose a variant of Hedge-G called
AdaHedge-G and show that its expected regret is near-
optimal while simultaneously achieving the same high prob-
ability bound for the sample-path regret for Hedge-G stated
in Corollary 4.3.2.

The details of AdaHedge-G are presented in Algorithm 2.
The key idea behind the algorithm is to track the summa-
tion of Yts using the variable S and suitably change the
learning rate over rounds using a doubling trick. In partic-
ular, we partition the time into segments, where segment
i spans the number of rounds for which S ≤ 2id. At the
start of any segment i, we reset the value of S to zero,
choose an equal weight for all the existing experts (from
the previous segment), and use Hedge-G with learning rate
ηi =

√
8(2id + log τi)/T , where τi is the round in which

the segment starts.

The next theorem characterizes an upper bound on the cu-

(a) Cumulative loss of Hedge-G, Hedge, and Best expert

(b) Running time of the algorithm vs Number of rounds

Figure 3: Comparison between Hedge-G and Hedge

mulative loss of AdaHedge-G.

Theorem 5.1. An upper bound for the cumulative loss of
AdaHedge-G is given by

LT ≤L∗
T +

2d−
1
2

2
d
2 − 1

√√√√T

(
T∑

t=1

Yt + 1

)
(9)

+

1 +
2

d
log2

√√√√ T∑

t=1

Yt + 1

√dT log T/2.

Proof. Let ri be the length of the ith segment, i.e., the num-
ber of rounds in the ith segment. By definition of a segment,
we have

ri = min

{
r :

r∑
i=τi

Yi > 2id

}
− τi,

where τi is the round in which the segment i starts and is
given by τi =

∑i−1
u=1 ru + 1. Let R(i) denote the regret

Algorithm 2 AdaHedge-G

1: Initialize: r ← 0, S ← 0, τ ← 1, b← 2d,w1 = 1, and

η ←
√

8b
T .

2: for t = 1, . . . , T do
3: Xt is drawn i.i.d. from B
4: Calculate Yt using (2)
5: if S + Yt > b then
6: Start a new segment
7: wt = (w1, . . . , wtd) =

(
1
td
, . . . , 1

td

)
8: S ← 0
9: b← 2db

10: η ←
√

8(b+d log t)
T

11: end if
12: S ← S + Yt

13: Use Hedge-G with already observed Xt, initial
weight vector wt and learning rate η.

14: end for

incurred in segment i. It follows that

R(i) =

τi+1−1∑
u=τi

lu − min
j∈Bτi+1−1

τi+1−1∑
u=τi

lu(j).

We repeat the regret analysis from the proof of Theorem 4.1
for R(i) and obtain

R(i) ≤ ηiri
8

+
Si + d log τi

ηi
≤
√
T (2id + d log T)/2,

where, we have used ri ≤ T , τi ≤ T ,

Si =

τi+1−1∑
r=τi

Yr ≤ 2id, and ηi =

√
8(2id + d log τi)

T
.

Note the weights are reinitialized to 1/τdi at the start of the
segment and this yields the additional term of d log τi when
upper bounding log

Wτi+1−1

Wτi
in the analysis leading to (7).

Let m denote the last segment that started before round T .
We add regret across all the m segments and obtain,

LT − L∗
T ≤

m∑
i=1

R(i) ≤
√

T

2
(
√
2d + d log T (10)

+
√

22d + d log T

+ . . .+
√
2md + d log T)

≤
√

T

2

m∑
i=1

2
id
2 +m

√
dT log T/2

≤

√
T
2 2

(m+1)d
2

2
d
2 − 1

+m
√
dT log T/2.

(11)

In the second step above, we have used
√
x+ y ≤

√
x+
√
y.

Further, we have

T∑
i=1

Yt ≥
m−1∑
i=1

2id ≥ 2d
2(m−1)d − 1

2d − 1
.

Therefore,

2
md
2 ≤ 2

d
2

√√√√ T∑
t=1

Yt + 1 (12)

=⇒ m ≤ 2

d
log2

2
d
2

√√√√ T∑
t=1

Yt + 1

= 1 +

2

d
log2

√√√√ T∑

t=1

Yt + 1

 . (13)

Substituting (12) and (13) in (11), we obtain the result

The next theorem provides guarantees on the regret of
AdaHedge-G.

Theorem 5.2. For the partitioning experts setting
AdaHedge-G has the following regret bounds.

(i) The expected regret RT = O(log(log T)
√
T log T).

(ii) For d ≥ 1 and some constant c depending
on dimension d, the sample-path regret R̂T =
O(log T

√
T log T), with probability at least 1− T−c.

For d = 1, the sample-path regret can be improved
to R̂T = O(log(log T)

√
T log T), with probability at

least 1− (eT)−0.25.

Proof. (i) From Lemma 4.3 and applying Jensen’s in-
equality to (9) and substituting E

[∑T
t=1 Yt

]
≤

log T + 1, we get the result.

(ii) We present the proof for d = 1. Proof for d > 1
follows similar steps with more involved analysis and
is deferred to the Appendix. We have

Yt =
e−ηLt−1(nt)∑

j∈Bt−1
e−ηLt−1(j)

. (14)

Note that eη(Lt−1(i)−Lt−1(j)) ≥ 0 for all i, j, and
Lt−1(i) ≥ Lt−1(j) implies eη(Lt−1(i)−Lt−1(j)) ≥ 1,
since η > 0. Therefore,

Yt =
1∑

j:Lt−1(j)>Lt−1(nt)

eη(Lt−1(nt)−Lt−1(j))

+
∑

j:Lt−1(j)≤Lt−1(nt)

eη(Lt−1(nt)−Lt−1(j))

≤ 1∑
j∈Bt−1

1{Lt−1(j)≤Lt−1(nt)}
. (15)

In round t, we define a random variable Zt such that
Zt = k−1, if Xt falls in the kth best expert, i.e.,∑

j∈Bt−1
1{Lt−1(j)≤Lt−1(nt)} = k. Note that in the

presence of ties, we break ties arbitrarily and strictly
order the experts. In this case, if Xt falls in the kth best
partition, it can be shown that the denominator in (15)
is at least k + 1. Thus, Yt < Zt = 1/k.
From (15), we have Yt ≤ Zt, for all t. From Lemma
4.2, the probability that Xt falls in kth best partition is
1
t , which implies P(Zt = k−1) = 1/t. Therefore,

E[Zt] =

t∑
k=1

1

t

1

k
≤ log t+ 1

t
, (16)

=⇒
T∑

t=1

E[Zt] ≤ (log T + 1)2. (17)

Further, we have

P

(
T∑

t=1

Yt −
T∑

t=1

E[Yt] > δ

)

≤P

(
T∑

t=1

Zt −
T∑

t=1

E[Yt] > δ

)

≤P

(
T∑

t=1

Zt−
T∑

t=1

E[Zt] > δ−
T∑

t=1

E[Zt]+

T∑
t=1

E [Yt]

)

≤P

(
T∑

t=1

Zt−
T∑

t=1

E[Zt] > δ−(log T + 1)2+log T

)
.

(18)

To get (18), we use (16), (17), and the fact that∑T
t=1E [Yt] ≥ log T . Since the Zts are independent

and are upper bounded by one, using Bernstein’s in-
equality, we get

P

(
T∑

t=1

Zt −
T∑

t=1

E[Zt] > δ′

)
≤ e

− δ′2/2

Vn+δ′/3 , (19)

where Vn =

T∑
t=1

Var(Zt), and δ′ = δ− (log T +1)2 +

log T . We have

Var(Zt) =

t∑
j=1

1

t

1

j2
− E[Zt]

2 ≤ π2

6t

=⇒ Vn =

T∑
t=1

Var(Zt) ≤
π2

6
(log T + 1). (20)

Choosing δ = (log T+1)2+1 results in δ′ = log T+1.
Substituting δ′ and (20) in (19), we obtain

P

(
T∑

i=1

Yi−
T∑

i=1

E[Yi]>δ

)
≤ e

− (log T+1)2/2

π2
6

(log T+1)+(log T+1)/3

≤e
−3 log(eT)

π2+2 ≤(eT)−0.25.

Substituting the above result in (9) proves the final
result.

From parts (i) and (ii) of Theorem 5.2, we observe
that AdaHedge-G has near-optimal expected regret (sub-
optimality of a factor of log(log T)) and it also has the same
high probability bound on sample-path regret as that of
Hedge-G in Corollary 4.3.2. AdaHedge-G thus addresses
the limitation of Hedge-G discussed at the end of Section
4. Further, in part (ii) of the theorem, for the special case
d = 1, we provide a sample-path regret that is near-optimal
with high probability, independent of ϵ. Proving a tighter
bound for d > 1, similar to the case d = 1, remains an open
problem.

6 CONCLUDING REMARKS

In this work, we propose an adaptation of Hedge for the
partitioning experts setting where the number of experts in-
creases polynomially with time. We show that our algorithm
and its adaptive rate variant have (near-)optimal expected
regret bounds and non-trivial sample path-regret bounds
under the high probability regime.

Possible extensions of this work include: (i) designing any-
time policies when T is unknown, (ii) considering the setting
where the rate of growth of the experts is random, i.e., the
environment samples a random number of points in each
round, and (iii) studying the setting where the new experts
are approximate clones of the parent experts instead of being
perfect clones. Further, the setting of stochastically parti-
tioning experts with stochastic losses can also be explored.

ACKNOWLEDGMENTS

This research was supported by the Natural Sciences and En-
gineering Research Council of Canada (NSERC) Discovery
Grant (54196-52150) and an SCPP grant from IIT Bombay,
India.

References

Ghina Al-Atat, Puranjay Datta, Sharayu Moharir, and
Jaya Prakash Champati. Regret bounds for online learn-
ing for hierarchical inference. In Proc. ACM MobiHoc,
pages 281–290, 2024.

Hasan Burhan Beytur, Ahmet Gunhan Aydin, Gustavo de Ve-
ciana, and Haris Vikalo. Optimization of offloading poli-
cies for accuracy-delay tradeoffs in hierarchical infer-
ence. In Proc. IEEE INFOCOM, pages 1989–1998. IEEE,
2024.

Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz.
Improved second-order bounds for prediction with expert
advice. Machine Learning, 66:321–352, 2007.

Kamalika Chaudhuri, Yoav Freund, and Daniel J Hsu. A
parameter-free hedging algorithm. In Proc. NIPS, vol-
ume 22, 2009.

Alexey Chernov and Vladimir Vovk. Prediction with ad-
vice of unknown number of experts. In Proc. UAI, page
117–125, 2010.

Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad
Mahdavi, Chi-Jen Lu, Rong Jin, and Shenghuo Zhu. On-
line optimization with gradual variations. In Proc. COLT,
pages 6.1–6.20, 2012.

Alon Cohen and Shie Mannor. Online learning with many
experts. CoRR, abs/1702.07870, 2017.

Steven De Rooij, Tim Van Erven, Peter D Grünwald, and
Wouter M Koolen. Follow the leader if you can, hedge
if you must. The Journal of Machine Learning Research,
15(1):1281–1316, 2014.

Tim Erven, Wouter M Koolen, Steven Rooij, and Peter Grün-
wald. Adaptive hedge. In NIPS, volume 24, 2011.

Yoav Freund and Robert E Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of computer and system sciences, 55
(1):119–139, 1997.

Yoav Freund and Robert E Schapire. Adaptive game play-
ing using multiplicative weights. Games and Economic
Behavior, 29(1-2):79–103, 1999.

Eyal Gofer, Nicolo Cesa-Bianchi, Claudio Gentile, and
Yishay Mansour. Regret minimization for branching ex-
perts. In Proc. COLT, pages 618–638, 2013.

L Gyorfi, Gábor Lugosi, and Gusztáv Morvai. A simple
randomized algorithm for sequential prediction of ergodic
time series. IEEE Transactions on Information Theory,
45(7):2642–2650, 1999.

Elad Hazan and Satyen Kale. Extracting certainty from un-
certainty: Regret bounded by variation in costs. Machine
learning, 80:165–188, 2010.

Elad Hazan and Comandur Seshadhri. Efficient learning
algorithms for changing environments. In Proc. ICML,
pages 393–400, 2009.

Nick Littlestone and Manfred K Warmuth. The weighted
majority algorithm. Information and computation, 108
(2):212–261, 1994.

Haipeng Luo and Robert E Schapire. Achieving all with
no parameters: Adanormalhedge. In Proc. COLT, pages
1286–1304, 2015.

Vishnu Narayanan Moothedath, Jaya Prakash Champati,
and James Gross. Getting the best out of both worlds:
Algorithms for hierarchical inference at the edge. IEEE
Transactions on Machine Learning in Communications
and Networking, 2:280–297, 2024.

Jaouad Mourtada and Odalric-Ambrym Maillard. Efficient
tracking of a growing number of experts. In Proc. ALT,
pages 517–539. PMLR, 2017.

Cosma Rohilla Shalizi, Abigail Z Jacobs, Kristina Lisa
Klinkner, and Aaron Clauset. Adapting to non-
stationarity with growing expert ensembles. arXiv
preprint arXiv:1103.0949, 2011.

Harit Vishwakarma, Heguang Lin, and Ramya Korlakai
Vinayak. Taming false positives in out-of-distribution
detection with human feedback. In Proc. AISTATS, 2024.

Vladimir G Vovk. A game of prediction with expert advice.
In Proc. COLT, pages 51–60, 1995.

Yi-Shan Wu, Yi-Te Hong, and Chi-Jen Lu. Lifelong learning
with branching experts. In Proc. ACML, pages 1161–
1175. PMLR, 2021.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu.
Generalized out-of-distribution detection: A survey. Inter-
national Journal of Computer Vision, pages 1–28, 2024.

A PROOF OF LEMMA 4.2

We first prove the result for one dimension and then extend the result for the d dimension by establishing the independence
of the coordinates of the points in each dimension.

For d = 1, the points belong to a closed interval on the real line. We have a strict inequality since Xt is drawn from a
continuous i.i.d. distribution. Hence for any two permutations Xj1 , Xj2 , . . . , Xjt and Xk1

, Xk2
, . . . , Xkt

of the sequence
Xt, we have

P(Xj1 < Xj2 < . . . < Xjt) = P(Xk1
< Xk2

< · · · < Xkt
).

Since the events {Xj1 < Xj2 < · · · < Xjt} are mutually exclusive and there are t! possible permutations, we have∑
{j1,j2,...,jn}

P (Xj1 < Xj2 < · · · < Xjt) = 1

=⇒ P (Xj1 < Xj2 < · · · < Xjt) =
1

t!
. (21)

Given any realization of the sequence Xt−1, for some permutation of j1, j2, . . . jt−1 we have Xj1 < Xj2 < · · · < Xjt−1
.

Let expert i be the kth interval (Xjk−1
, Xjk), then the event {Xt ∈ expert i} is equivalent to {Xt ∈ (Xjk−1

, Xjk)}, i.e., Xt

is the kth highest value in the realization {Xt−1, Xt}. Therefore, we have

P
(
Xt ∈ expert i

∣∣Xj1 < Xj2 < · · · < Xjt−1

)
=P

(
Xt ∈ (Xjk−1

, Xjk)
∣∣Xj1 < Xj2 < · · · < Xjt−1

)
=
P
(
Xj1 < · · · < Xjk−1

< Xt < Xjk < · · · < Xjt−1

)
P
(
Xj1 < Xj2 < · · · < Xjt−1

)
=

1

t!
1

(t− 1)!

=
1

t
.

Note that the conditional probability is independent of k and thus it is true for any expert i. Finally, using total probability
law over the permutations j1, j2, . . . , jt−1, we obtain P(Xt ∈ expert i) = 1/t, for all i.

For d > 1, let Xt = (Z1
t , . . . , Z

d
t), where Zr

t is the Euclidean coordinate of point Xt in rth dimension.

Claim: Zr
t are i.i.d. across t and r.

From the above claim and from (21), for any permutation k1, k2, . . . , kt−1 in dimension r, we obtain

P
(
Zr
k1

< Zr
k2

< · · · < Zr
kt

)
=

1

t!

=⇒ P

(
{Z1

m1
< Z1

m2
< · · · < Z1

mt
}, . . . ,

{Zd
j1

< Zd
j2

< · · · < Zd
jt
}

)
=

1

(t!)d
.

Again, given any realization of Xt−1, the event {Xt ∈ expert i} is equivalent to {Zr
t ∈ (Zr

jk−1
, Zr

jk
)} for some permutation

jr1 , j
r
2 , . . . , j

r
t−1 in each dimension r.

P

(
Xt ∈ expert i

∣∣ {Z1
m1

< Z1
m2

< · · · < Z1
mt−1
}, . . . ,

{Zd
j1

< Zd
j2

< · · · < Zd
jt−1
}

)

=

P

(
{Z1

m1
< · · · < Z1

mk−1
< Z1

t < Z1
mk

< · · · < Z1
jt−1
}, . . .

{Zd
j1

< · · · < Zd
jk−1

< Zd
t < Zd

jk
< · · · < Zd

jt−1
}

)
P

(
{Z1

m1
< Z1

m2
< · · · < Z1

mt−1
}, . . . ,

{Zd
j1

< Zd
j2

< · · · < Zd
jt−1
}

)

=

1

(t!)d

1

[(t− 1)!]d

=
1

td
.

B PROOF OF LEMMA 4.3

Let ϕi =
e−ηLt−1(i)∑

j∈Bt−1
e−ηLt−1(j) .

For any given sequence of arrivals Xt−1, Yt takes td possible values, each corresponding to Xt belonging to one
of the td partitions. From Lemma 4.2, the latter event has probability 1/td. For i, j ∈ Bt−1, let cj(i) denote the number of
partitions of expert i caused by sampling Xt from expert j, and let Ci =

∑
j∈Bt−1

cj(i). We compute the expectation of

E[Yt] =
∑

(m1,...,mt)

. . .
∑

(j1,...,jt)

E

[
Yt |
{Z1

m1
< Z1

m2
< · · · < Z1

mt
}, . . . ,

{Zd
j1

< Zd
j2

< · · · < Zd
jt
}

]
P

(
{Z1

m1
< Z1

m2
< · · · < Z1

mt
}, . . . ,

{Zd
j1

< Zd
j2

< · · · < Zd
jt
}

)

We have for every ordering (along every d dimension)

P

(
{Z1

m1
< Z1

m2
< · · · < Z1

mt
}, . . . ,

{Zd
j1

< Zd
j2

< · · · < Zd
jt
}

)
=

1

(t!)d
.

P

(
Xt ∈ expert j

∣∣ {Z1
m1

< Z1
m2

< · · · < Z1
mt−1
}, . . . ,

{Zd
j1 < Zd

j2 < · · · < Zd
jt−1
}

)
=

1

td
∀j ∈ Bt−1 (22)

It follows that

E

[
Yt

∣∣ {Z1
m1

< Z1
m2

< · · · < Z1
mt−1
}, . . . ,

{Zd
j1

< Zd
j2

< · · · < Zd
jt−1
}

]
=

∑
j∈Bt−1

P

(
Xt ∈ expert j

∣∣ {Z1
m1

< Z1
m2

< · · · < Z1
mt−1
}, . . . ,

{Zd
j1

< Zd
j2

< · · · < Zd
jt−1
}

) ∑
i∈Bt−1

cj(i)ϕ(i)

=
1

td

∑
j∈Bt−1

∑
i∈Bt−1

cj(i)ϕ(i) (23)

=
1

td

∑
i∈Bt−1

ϕ(i)
∑

j∈Bt−1

cj(i)

=
1

td

∑
i∈Bt−1

ϕ(i)Ci ≤
2d

t

∑
i∈Bt−1

ϕ(i) ≤ 2d

t
. (24)

We note that (23) follows from (22). In the upper bound in (24), we have used Ci = (t+ 1)d − td (derived below) and the
following inequality:

(1 + x)r ≤ 1 + (2r − 1)x; x ∈ [0, 1] and r ∈ R \ (0, 1).

Note that Ci is the total number of partitions of expert i created due to sampling Xt from all td experts. We compute Ci

using the following counting argument. We say an expert i shares k hyperplanes with expert j if, for any point in j, exactly
k out of the d orthogonal hyperplanes (parallel to the faces of B) that pass through that point will partition expert i. We
compute the number of experts that share exactly k hyperplanes with i as follows. Choose any k dimensions from d in

(
d
k

)
possible ways. Further, choose any orthogonal hyperplane passing through i that is parallel to some dimension from the
rest of d− k dimensions. There will be t− 1 basis hyperplanes, i.e., the hyperplanes that partitioned B by passing through
t− 1 points drawn by the environment, that are parallel to the chosen hyperplane and do not partition i. The (t− 1)d−k

partitions, which are formed by the intersection of the t−1 basis hyperplanes corresponding to each of the d−k dimensions,
do not share exactly d− k hyperplanes with i, or they share exactly k hyperplanes with i. Therefore, the total number of
experts that share exactly k hyperplanes with i is

(
d
k

)
(t− 1)d−k, and each point drawn from those experts will result in 2k

partitions of expert i. Since index i will be assigned to one of its children (sub-partitions), we have 2k − 1 new experts from

partitioning i. It follows that

Ci =

d∑
k=1

(
d

k

)
(2k − 1)(t− 1)d−k

= (t− 1)d
d∑

k=1

(
d

k

)(
2

t− 1

)k

−
d∑

k=1

(
d

k

)
(t− 1)d−k

= (t− 1)d
(
t+ 1

t− 1

)d

− td = (t+ 1)d − td.

Indeed Ci is independent of i and is equal to the total number of new experts revealed in slot t. From (24) it follows that

T∑
t=1

E[Yt] ≤
T∑

t=1

(
2d

t

)
≤ 2d (log T + 1) .

C PROOF OF THEOREM 5.2

As above Let ϕi = e−ηLt−1(i)∑
j∈Bt−1

e−ηLt−1(j) . Note that eLt−1(i)−Lt−1(j) ≥ 0 for all i, j, and Lt−1(i) ≥ Lt−1(j) implies

eLt−1(i)−Lt−1(j) ≥ 1. Therefore,

ϕi =
1∑

j:Lt−1(j)>Lt−1(i)
eLt−1(nt)−Lt−1(j) +

∑
j:Lt−1(j)≤Lt−1(i)

eLt−1(i)−Lt−1(j)

≤ 1∑
j∈Bt−1

1{Lt−1(j)≤Lt−1(i)}
= δi.

Note that, for each i ∈ Bt−1, δi takes a unique value from {1, 1
2 , . . . ,

1
td
}. Specifically, δi = 1

k , if expert i has the kth
highest cumulative loss. Thus, δi only depends on the relation between the cumulative losses but not on their values. In the
following, we use [k] to denote the expert with kth highest cumulative loss. We have

Yt =

∑nt

i=nt−1+1 wt(i)

Wt
=

∑nt

i=nt−1+1 e
−ηLt−1(i)∑

j∈Bt−1
e−ηLt−1(j)

.

Note that eη(Lt−1(i)−Lt−1(j)) ≥ 0 for all i, j, and Lt−1(i) ≥ Lt−1(j) implies eη(Lt−1(i)−Lt−1(j)) ≥ 1, since η > 0.
Therefore,

Yt =

nt∑
i=nt−1+1

1∑
j:Lt−1(j)>Lt−1(i)

eη(Lt−1(i)−Lt−1(j)) +
∑

j:Lt−1(j)≤Lt−1(i)

eη(Lt−1(i)−Lt−1(j))

≤
nt∑

i=nt−1+1

1∑
j∈Bt−1

1{Lt−1(j)≤Lt−1(i)}
. (25)

In round t, we define a random variable Zt such that Zt = j−1, if Xt falls in the jth best expert, i.e., if∑
j∈Bt−1

1{Lt−1(j)≤Lt−1(i)} = j. From (25), we have Yt ≤ Zt, for all t. Further, we have

P

(
T∑

t=1

Yt −
T∑

t=1

E[Yt] > δ

)
≤ P

(
T∑

t=1

Zt −
T∑

t=1

E[Yt] > δ

)

≤ P

(
T∑

t=1

Zt −
T∑

t=1

E[Zt] > δ −
T∑

t=1

E[Zt] +

T∑
t=1

E [Yt]

)
.

Using the same argument as the one used for Yt, we have

E[Zt] =
1

td

∑
j∈Bt−1

∑
i∈Bt−1

cj(i)δ(i)

=
1

td

∑
i∈Bt−1

δ(i)
∑

j∈Bt−1

cj(i)

=
1

td

∑
i∈Bt−1

δ(i)Ci ≤
2d

t

∑
i∈Bt−1

δ(i) ≤ 2d

t
d (1 + log t) . (26)

Further using similar manipulations as Yt, we get

E

[
Z2
t

∣∣ {Z1
m1

< Z1
m2

< · · · < Z1
mt−1
}, . . . ,

{Zd
j1

< Zd
j2

< · · · < Zd
jt−1
}

]

=
∑

j∈Bt−1

P

(
Xt ∈ expert j

∣∣ {Z1
m1

< Z1
m2

< · · · < Z1
mt−1
}, . . . ,

{Zd
j1

< Zd
j2

< · · · < Zd
jt−1
}

) ∑
i∈Bt−1

cj(i)δ(i)

2

=
1

td

∑
j∈Bt−1

 ∑
i∈Bt−1

cj(i)δ(i)

2

=
1

td

∑
j∈Bt−1

∑
i∈Bt−1

cj(i)
2δ(i)2 +

1

td

∑
j∈Bt−1

∑
i∈Bt−1

∑
k∈Bt−1

2cj(i)cj(k)δ(i)δ(k)

≤ 1

td

∑
i∈Bt−1

δ(i)2
∑

j∈Bt−1

cj(i)
2 +

1

td

∑
j∈Bt−1

∑
i∈Bt−1

∑
k∈Bt−1

2cj(i)cj(k)δ(i)δ(k). (27)

Using the logic to compute Ci where 2k − 1 are the new experts being formed, we have the following:

Di =
∑

j∈Bt−1

cj(i)
2 =

d∑
k=1

(
d

k

)
(2k − 1)2(t− 1)d−k

=

d∑
k=1

(
d

k

)
(22k − 2 · 2k + 1)2(t− 1)d−k

=

d∑
k=1

(
d

k

)
4k(t− 1)d−k − 2

d∑
k=1

(
d

k

)
2k(t− 1)d−k +

d∑
k=1

(
d

k

)
(t− 1)d−k

= (t+ 3)d − (t+ 1)d − ((t+ 1)d − td)

= (t+ 3)d − (t+ 1)d.

Indeed Di is independent of i as all the experts are split with equal probability.

Simplifying (27) using the fact
∑td

i=1 δ(i)
2 =

∑td

i=1

1

i2
≤ π2

6
, we get

1

td

∑
i∈Bt−1

δ(i)2Di ≤
(t+ 3)d − td

td
· π

2

6
≤ 5 · 2d

t
. (28)

The second term in (27) can be simplified as follows:

1

td

∑
j∈Bt−1

∑
i∈Bt−1

∑
k∈Bt−1

2cj(i)cj(k)δ(i)δ(k) ≤
1

td

∑
j∈Bt−1

∑
i∈Bt−1

∑
k∈Bt−1

2d+1cj(i)δ(i)δ(k) (29)

≤ 2d+1 (d log t+ 1)

td

∑
j∈Bt−1

∑
i∈Bt−1

cj(i)δ(i) (30)

≤ 22d+1 (d log t+ 1)
2

t
, (31)

where (29) follows as cj(k) ≤ 2d and (30) follows using the fact that
∑

k∈Bt−1
δ(k) ≤ (log td + 1). Further, (31) follows

from (26). Substituting (28) and (31) in (27), we get

T∑
t=1

E[Z2
t] ≤

T∑
t=1

5 · 2d

t
+

22d+1 (d log t+ 1)
2

t

≤ 5 · 2d (1 + log T) + d2 · 22d+3
T∑

t=1

log t2

t

≤ 5 · 2d (1 + log T) + d2 · 22d+3
(
1 + log T 3

)
.

To get (18), we use (16), (17), and the fact that
∑T

t=1E [Yt] ≥ log T . Since the Zts are independent and are upper bounded
by one, using Bernstein’s inequality, we get

P

(
T∑

t=1

Zt −
T∑

t=1

E[Zt] > δ′

)
≤ e

− δ′2/2

Vn+δ′/3 , (32)

where Vn =

T∑
t=1

Var(Zt), and δ′ = δ −
∑T

t=1E[Zt] +
∑T

t=1E[Yt] ≥ δ − c1 log T
2 for some constant c1 depending on

dimension d. We also have
∑T

t=1 Var(Zt) ≤ c2 log T
3 for some constant c2 depending on dimension d.

Choosing δ′ = c3 log T
2 results in δ = O(log T 3). Substituting δ′ and

∑T
t=1 Var(Zt) ≤ π2

6 (log T + 1) in (32),

P

(
T∑

i=1

Yi −
T∑

i=1

E[Yi] > δ

)
≤ e−c log T = O

(
1

T c

)
.

	Introduction
	Motivating Applications
	Our Contributions

	Related Work
	Stochastically Partitioning Experts Setting
	The Hedge-G Algorithm: Regret Analysis
	Performance Comparison

	AdaHedge-G: Hedge-G with Adaptive Learning Rate
	Concluding Remarks
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Theorem 5.2

