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ABSTRACT

Recent advances in machine learning for molecules exhibit great potential for
facilitating drug discovery from in silico predictions. Most models for molecule
generation rely on the decomposition of molecules into frequently occurring sub-
structures (motifs), from which they generate novel compounds. While motif rep-
resentations greatly aid in learning molecular distributions, such methods struggle
to represent substructures beyond their known motif set. To alleviate this issue and
increase flexibility across datasets, we propose MAGNet, a graph-based model that
generates abstract shapes before allocating atom and bond types. To this end, we
introduce a novel factorisation of the molecules’ data distribution that accounts
for the molecules’ global context and facilitates learning adequate assignments of
atoms and bonds onto shapes. Despite the added complexity of shape abstractions,
MAGNet outperforms most other graph-based approaches on standard benchmarks.
Importantly, we demonstrate that MAGNet’s improved expressivity leads to mo-
lecules with more topologically distinct structures and, at the same time, diverse
atom and bond assignments.

1 INTRODUCTION

The role of machine learning (ML) models in generating novel compounds has grown significantly,
finding applications in fields like drug discovery, material science, and chemistry (Bian & Xie, 2021;
Butler et al., 2018; Choudhary et al., 2022; Hetzel et al., 2022; Moret et al., 2023). These models
offer a promising avenue for efficiently navigating the vast chemical space and generating unique
molecules with specific properties (Hoffman et al., 2022; Zhou et al., 2019). A key ingredient
contributing to the success of these models is their ability to encode molecules in a meaningful way,
often employing graph neural networks (GNNs) to capture the structural intricacies (Gilmer et al.,
2017; Mercado et al., 2021; Shi et al., 2021). Moreover, the inclusion of molecular fragments, known
as motifs, significantly influences the generation process by enabling the model to explicitly encode
complex structures such as cycles. This contrasts with the gradual formation of ring-like structures
from individual atoms, forming chains until both ends unite (Yang et al., 2022; Zhu et al., 2022).

In the context of fragment-based models, researchers have adopted various techniques to construct
fragment vocabularies, which can be categorised into chemically inspired and data-driven approaches.
For example, both JT-VAE (Jin et al., 2018) and MoLeR (Maziarz et al., 2022) adhere to a heuristic
strategy that dissects molecules into predefined structures, primarily consisting of ring systems and
acyclic linkers. However, the diverse appearances of molecular structures result in various challenges
concerning the vocabulary. While the large fragments in JT-VAE do not generalise well to larger
datasets, the number of fragments becomes an issue for MoLeR. Such challenges are not unique to
heuristic fragmentation methods but also extend to data-driven approaches like PS-VAE (Kong et al.,
2022) and MiCaM (Geng et al., 2023). These approaches can set the number of chosen fragments
but often resort to representing cyclic structures by combinations of chains. MiCaM, in particular,
takes an approach that additionally incorporates attachment points for each fragment, resulting in a
vocabulary that is “connection-aware”, increasing its size by a significant margin. This leads to a
situation where the included fragments, or motifs, often fall short to comprehensively represent the
full spectrum of molecules present in the datasets (Sommer et al., 2023). Consequently, a generative
model must refer to individual atoms in order to generate uncommon structures, a demanding task as
the infrequent structures are often also more complex.
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Figure 1: Current methods use motifs to compose new molecules. MAGNet advances this perspective
and abstracts molecular subgraphs to untyped shapes. Being agnostic to atom and bond features in
the beginning of the generation process, MAGNet generates molecules with great structural variety.

In this work, we address the limited structural diversity of existing fragment-based methods by
abstracting motifs to their more general representation: shapes, see Fig. 1. By disentangling
connectivity and features, i.e. atom and bond types, we reduce the combinatorial complexity
needed to capture the entire distribution of molecules in a dataset, thus generating more diverse
molecular structures. To enable the generation of molecules from such abstractions, we propose
a novel factorisation of the data distribution, which splits a molecule into distinct components
and detail how this facilitates constructing a concise vocabulary of shapes in § 2. Current molecule
generation architectures cannot be trivially adapted to shapes, as they rely on motifs as building blocks.
Additionally, most of the literature focuses on sequentially building up a molecule, conditioning
on intermediate results at every step, see § 3. Such generation approaches, however, do not readily
translate to shapes, as the atom and bond features of a particular shape should depend on the entire
context of the molecule. Therefore, we propose a hierarchical generation approach, MAGNet, that
first generates a molecule’s abstract shape graph before defining its atom-level representation.

In summary, our contributions are:

• We address the issue of limited structural expressivity by abstracting motifs to shapes and using
this abstraction to create a more flexible vocabulary.

• To match this abstraction, we propose MAGNet, an effective generation procedure that learns to
generate molecules from abstract shape sets in a hierarchical fashion.

• Notably, our model is the first to freely featurise shapes, enabling it to sample a greater variety
of atom and bond attributes than fragment-based approaches.

In our experiments, we evaluate (i) MAGNet’s ability to sample diverse structures § 4.1, (ii) its
generative performance according to established benchmarks § 4.2, (iii) the ability to generate
adequate atom and bond features given the shape graph § 4.3, and (iv) the advantages of the proposed
abstraction and hierarchical generation for downstream tasks such as conditional generation § 4.4.

2 MODELLING MOLECULES FROM SHAPES

We start by defining all mathematical objects and presenting the factorisation of the data distribution
of molecular graphs, denoted as P(G). Following this, we will introduce our novel approach to
identifying a concise set of shapes from data and present the corresponding MAGNet model.

Factorising the data distribution P(G) A molecular graph G is defined by its structure together
with its node and edge features, describing atoms and bonds, respectively. In this work, we consider
a factorisation of P(G) that decouples a molecular graph’s topology from its features. For this, we
build the molecular graph G as

P(G) = P(G | GS)P(GS) ,

where G refers to the full atom-level molecular graph and GS to its corresponding abstraction: the
shape graph. GS represents a coarse view of a molecule’s topology by specifying the shapes that
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Figure 2: On the shape-level, MAGNet predicts the shape multiset S and its connectivity A. Pro-
gressing to the atom-level, GS informs the generation of shape representations M. To fully define the
molecular graph G, the join node positions J and the leaf nodes L are predicted.

make up the molecule as well as their connectivity. Thus, P(GS) can be factorised further into the
multiset of shapes S and their connectivity A ∈ A|S|×|S|, where A defines the possible values of A.

Moving forward to the atom level, a node S in the shape graph GS can be expanded into its binary
adjacency matrix of its s = |S| nodes, i.e. S ∈ {0, 1}s×s and is equipped with node and edge features,
corresponding to atom and bond types, respectively. We consider this feature-equipped representation
of S to be a typed subgraph M , or motif, of the input graph G, and denote the associated multiset
within the molecule by M.

The connectivity between two shapes, signified by Aij ̸= 0, indicates that, at the atom level, the
two shapes share a common atom j. To determine j, we define the set of join nodes J , which can
be understood as the set of join nodes j that are contained in two motifs: J = {j | j ∈ Mk, j ∈
Ml, Akl ̸= 0, Sk, Sl ∈ S}. Note that we can effectively provide information about the atom type of
the join node j by considering A = {0,C,N, . . . } to include atom types, see Appendix C.4. Lastly,
to allow for a concise set of structurally distinct shapes, not all atoms are described by the shape
graph. Specifically, we define the set of leaf nodes L to include nodes l with degree dl = 1 and
neighbours k ∈ Nl with dk = 3.

In conclusion, P(G) is factorised into the motifs M, the join nodes J , and the leaf nodes L:

P(G) = P(L,J ,M)

= P(L | M,J )P(J | M, A)P(M | GS)P(GS) ,

where we use GS to factorise the distribution. Note that J is conditionally independent of S given
the motifs M. The same applies to L being conditionally independent of A given J .

2.1 IDENTIFYING A CONCISE SET OF SHAPES FROM DATA

The specific set of shapes on which a model is trained has to be determined from data. Given a
dataset of molecules, our fragmentation scheme aims to represent a molecule through clear structural
elements, for which we provide examples in Appendix A. For this, we start by removing all leaf nodes
L across the graph, following the approach outlined in previous works (Jin et al., 2020; Maziarz et al.,
2022). This step helps to divide the molecule G into cyclic and acyclic parts. Importantly, instead of
modelling the connection between two fragments Mi and Mj with a connecting bond, we represent
it by a shared atom, referred to as the join node ν ∈ J .

Moreover, we further decompose the resulting acyclic fragments to reduce the number of required
shapes as much as possible. To this end, we introduce “junctions” defined by a node and its
neighbours, with degree three or four present in an acyclic structure. On the ZINC dataset (Irwin
et al., 2020), consisting of 249,456 compounds, our fragmentation results in 7371 typed subgraphs.
When compared to the “Breaking Bridge Bonds” decomposition (Jin et al., 2020; Maziarz et al.,
2022), our approach reduces complexity by collapsing acyclic structures into distinct shapes, cutting
the vocabulary size in half. Additionally, in contrast to data-driven methods like those outlined in
Kong et al. (2022) and Geng et al. (2023), our decomposition method maintains structural integrity
through a top-down approach.
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These fragments are typed, and MAGNet abstracts them further into shapes by removing atom and
bond types, resulting in 347 distinct shapes. In the best case, this process consolidates up to 800
motifs into a single shape. As a suitable generative model has to to map a single shape to its various
representations, this fragmentation further enables us to model smoother transitions between shape
representations. This is in contrast to fragment-based methods, which have to select different tokens
from a large vocabulary when two motifs differ in, e.g. just bond type, see Fig. 6 b in Appendix A.

2.2 MAGNET’S GENERATION PROCESS

MAGNet is designed to represent the hierarchy of the factorisation into shape- and atom-level from
§ 2, cf. Fig.2. The model is trained as a VAE model (Kingma et al., 2015), where the latent vectors z
are trained to encode meaningful semantics about the input data. That is, given a vector z from the
latent space, MAGNet’s generation process first works on the shape level to predict GS , defined by
the multiset S and its connectivity A, before going to the atom level defined by the motifs M, join
nodes J , and leaf nodes L. Additional details on the implementation can be found in Appendix B.2.

Shape-Level On the shape-level, MAGNet first generates the shape multiset S—the same shape
can occur multiple times in one molecule—from the latent representation z. More specifically, we
learn P(S | z) by conditioning the generation on the latent code z and generate one shape at a time,
conditioning also on the intermediate representation of the shapes.

Given the shape multiset S, MAGNet infers the shape connectivity A between shapes Si, Sj ∈ S.
Formally, we learn P(A | S, z) =

∏n
i,j=1 P(Aij = t | S, z) where t ∈ {0,C,N, . . . } not only

encodes the existence (or absence) of a shape connection but also its atom type. We consider a typed
version of A to provide a meaningful condition for generating the shape representations M. We
assume the individual connections, Aij and Alk, to be independent given the shape multiset S and
the latent representation z. The loss on the shape level is computed by LGS = LS + LA, where LS
and LA refer to the categorical losses of the shape set S and connectivity A, respectively.

Atom-Level Leveraging S and A, which together define a molecule’s shape-level representation,
MAGNet transitions to the atom-level by discerning appropriate node and edge attributes for each
shape. By predicting the atom and bond types the motifs M are defined. To model the shape
representation P(Mi | S, A, z) of shape Si, we use the encoded shape graph GS together with the
latent code z and learnable embeddings for each shape Si to predict the respective atom types Ma

i .

Subsequently, the resulting atom embeddings are leveraged to determine the corresponding bond
types M b between connected nodes. Note that conditioning on A ensures that Mk includes all nodes
required for connectivity also on the atom-level, i.e. the atom allocations for M have to respect all
join node types defined by the shape connectivity A: Akl ∈

⋃
j M

a
k ∩ Ma

l , where a signifies the
exclusive consideration of atoms.

To establish connectivity on the atom level, MAGNet proceeds to identify the join nodes J . The
join nodes’ types are already determined by the connectivity A. MAGNet accomplishes this by
predicting the specific node positions pa that need to be combined, collectively forming the set of
join nodes J . The likelihood of merging nodes i and j in shape representations Mk and Ml is
represented by the merge probability J

(k,l)
ij = P(pi ≡ pj | M, A, z), which constitutes the join

matrix J (k,l) ∈ [0, 1]VSk
×VSl .

Finally, predicting the leaf nodes L involves determining the correct atom type for each leaf node
and attaching it to the molecule’s atom representation, denoted as C for core molecule. To learn
P(LS | C, z), we assess each node position within the shape representation MS . Optimising this
likelihood is done in a similar fashion to the approach employed in modelling the shape representation
P (Mi|S,A, z) for shape Si, only that the shape graph is replaced by the atom graph C. The atom-level
loss is defined by LG = LM + LJ + LL, where LM, LJ , and LL describe categorical losses for
shape features M, including both atom and bond types, join nodes J , and leaf nodes L, respectively.

2.3 THE MAGNET ENCODER

MAGNet’s encoder aims to learn the approximate posterior Q(z | G). At its core, the encoder
leverages a graph transformer Shi et al. (2021) for generating node embeddings of the molecular
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graph. Since MAGNet generates molecules in a coarse to fine-grained fashion, it is beneficial to
encode information about the decomposition of the molecules. To achieve this, we use an additional
GNN to capture the coarse connectivity within the shape graph. The embeddings of G and GS are
computed by aggregating over the individual atom and shape nodes, respectively. In addition to these
aggregations, we separately aggregate join and leaf nodes to represent the other essential components
of the graph. The representation of the individual components—molecular graph, shapes, join nodes,
and leaf nodes—are concatenated and mapped to the latent space by an MLP, constituting the graph
embedding zG . More details about the chosen node features as well as technical specifications of the
encoder can be found in Appendix B.1.

Taken together, we optimise MAGNet according to the VAE setting, maximising the ELBO:

L = Ez∼Q
[
P
(
G | z

)]
+ βDKL

(
Q(z | G) | P

)
with P ∼ N (0,1)

= LGS + LG + βDKL ,

where the KL-divergence DKL serves to regularise the posterior Q(z | G) towards similarity with
the Normal prior P in the latent space, weighted by β. Training MAGNet, we have observed that
this regularisation alone is inadequate for achieving a smoothly structured latent space as the latent
space suffers from over-pruning behaviour (Yeung et al., 2017), see our analysis in Appendix B.3. To
remedy this, we apply a normalising flow post-hoc to the latent space, aligning it more effectively
with the prior. To this end, we rely on Conditional Flow Matching (Lipman et al., 2023) and, more
specifically, use the version based on minibatch optimal transport as presented by Tong et al. (2023).
We specify MAGNet’s hyperparameter configuration in Appendix B.4.

3 RELATED WORK

Molecule generation Existing generative models can be divided into three categories (Du et al.,
2022; Yang et al., 2022; Zhu et al., 2022): (1) string-based models, relying on string representations
like SMILES or SELFIES (Adilov, 2021; Fang et al., 2023; Flam-Shepherd et al., 2022; Grisoni, 2023;
Gómez-Bombarelli et al., 2018; Segler et al., 2018), which do not leverage structural information,
(2) graph-based models, which model the molecular graphs, and (3) geometry-based models, which
represent molecules by atomic point clouds (Garcia Satorras et al., 2021; Gebauer et al., 2019; 2022;
Hoogeboom et al., 2022; Huang et al., 2023a;b; Luo et al., 2021a; Luo & Ji, 2022; Qiang et al., 2023;
Ragoza et al., 2020; Vignac et al., 2023; Xu et al., 2023). Besides these representation techniques,
molecules can also be represented by molecular descriptors. However, these rely on irreversible
hashing which makes them unsuited for generation tasks (Du et al., 2022; Jiang et al., 2021).
Graph-based approaches involve models that represent molecular graphs (i) primarily at the atom
level or (ii) predominantly through motifs. Zhu et al. (2022) categorise the generation process further
into sequential methods (Ahn et al., 2021; Assouel et al., 2018; Bengio et al., 2021; Jin et al., 2020;
Kajino, 2019; Khemchandani et al., 2020; Li et al., 2018; Lim et al., 2020; Liu et al., 2018; Luo et al.,
2021b; Mercado et al., 2021; Popova et al., 2019; Shi et al., 2020; Shirzad et al., 2022; Yang et al.,
2021; You et al., 2019), building molecules per fragment while conditioning on a partial molecule,
and one-shot (OS) approaches (Bresson & Laurent, 2019; De Cao & Kipf, 2018; Flam-Shepherd
et al., 2020; Kong et al., 2022; Liu et al., 2021; Ma et al., 2018; Samanta et al., 2019; Simonovsky &
Komodakis, 2018; Zang & Wang, 2020) that create each aspect of the molecular graph in a single
step. Note that diffusion-based models iteratively refine the entire graph, making them difficult to
categorise as sequential or one-shot. While these models are predominantly used in the 3D context,
Vignac et al. (2022) propose a discrete diffusion process that falls into category (2).

Fragmentation and shape representation Various techniques are available for constructing
fragment vocabularies, with a distinction between chemically-inspired and data-driven approaches.
For example, both HierVAE (Jin et al., 2020) and MoLeR (Maziarz et al., 2022) adopt a heuristic
strategy known as “breaking bridge bonds” to decompose molecules into rings and remainder
fragments, emphasising chemically valid substructures. In a similar vein, JT-VAE (Jin et al., 2018)
employs fragmentation guided by the construction of junction trees. In contrast, PS-VAE (Kong et al.,
2022) and MiCaM (Geng et al., 2023) take a data-driven bottom-up approach, creating fragments by
merging smaller components, starting from single atoms. MiCaM even integrates attachment points,
resulting in a larger, “connection-aware” vocabulary.
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MAGNet is a graph-based model that employs a unique approach by generating each hierarchy
level in a single step, similar to existing OS approaches. It positions itself between the traditional
categories of single-atom and fragment-based models by utilising shapes as building blocks and
subsequently generating appropriate atom and bond attributes. Our approach to defining shapes is
based on the topological properties of a molecular graph. This differentiates our work from others
(Adams & Coley, 2022; Chen et al., 2023; Long et al., 2022) who refer to shapes within a 3D
context and consider surface areas as generation targets. Our fragmentation approach is designed to
achieve concise topological representations, enabling to generate diverse structures from a limited
vocabulary.

4 EXPERIMENTS

We evaluate MAGNet’s performance across several dimensions of the generation process. In § 4.1, we
investigate the reconstruction and sampling of shapes S , as the fundamental component of MAGNet’s
factorisation, and assess how faithfully our model represents the diverse structural characteristics
found in molecules. In § 4.2, we continue to evaluate the generative performance using established
benchmarks. Next, see § 4.3, we analyse MAGNet’s ability to determine suitable atom and bond
allocations M, highlighting its distinctive approach compared to baseline models. In § 4.4, we
demonstrate how the presented factorisation and shape vocabulary facilitate MAGNet to generalise
effectively across different datasets in a zero-shot manner. Finally, we explore the possibilities
enabled by our factorisation, such as conditioning on various levels of the generation process.

4.1 USING SHAPES TO REPRESENT STRUCTURAL VARIETY OF MOLECULES

Reconstructing complex structures Our first experiment provides qualitative insights into how
accurately shapes are decoded, P(S | zG). For this experiment, we employ two baselines: PS-VAE
(Kong et al., 2022) and MoLeR (Maziarz et al., 2022), the models with the best performance
within their respective category on the GuacaMol Benchmark, see § 4.2. We assess the decoder’s
performance in reconstructing molecules from the test set, which includes uncommon shapes like
large rings or complex junctions. Our observations reveal that the baseline models have difficulty in
constructing complex shapes, as illustrated in Figure 3a. This limitation is likely attributed to the
absence of such shapes in their top-k vocabularies. Consequently, these models face the challenge
of constructing shapes such as large rings from individual atoms. In contrast, our proposed model,
MAGNet, operates with a moderately-sized shape vocabulary that includes complex shapes, enabling
it to generate molecules that closely adhere to the latent code and the corresponding ground truth
molecules. We quantify this result through the displacement of latent codes in Appendix C.1.

Figure 3: (a) Reconstruction of molecules that include large cycles or complex junctions. Relying
on individual atoms to build these structures is not sufficient. Only MAGNet is able to reliably
decode its latent code z. (b) Percentage of reconstructed shapes. MAGNet substantially improves
in reconstructing both common and—more importantly—uncommon shapes. (c) Comparison of
sampled shapes to shape occurrences in the training distribution. A ratio of 1 is optimal.
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MAGNet reliably decodes shapes Building on our analysis of large cycles and uncommon junc-
tions, we extend our investigation to assess how effectively different models can reconstruct the shape
set S in a general context. Given our focus on P(S | z), we can disregard the shape connectivity A
and representations M. As illustrated in Fig. 3b, our findings demonstrate that MAGNet consistently
outperforms both MoLeR and PS-VAE. Although it is to some extent expected from the design of
MAGNet to have enhanced expressivity of shapes, our results support the hypothesis that the other
methods fail to learn the concept of a shape, relying primarily on the information encoded in their
vocabulary. Note that the ability to faithfully represent shapes simultaneously requires MAGNet to
freely learn their features, which we analyse in § 4.3.

MAGNet matches the distribution of shapes more accurately To further check that uncommon
shapes are also sampled, we analyse the shape set of generated molecules. If the other models are
able to represent scaffolds that are not included in their vocabulary, they should be able to reflect
the reference distribution of shapes. Fig. 3c shows that this is not the case in practice. For this
evaluation, we decompose sampled molecules into their shapes. We then measure the models’ over-
and undersampling behaviour based on the ratio rSi

= cs(Si)∑
k cs(Sk)

×
∑

k ct(Sk)

ct(Si)
, where ct and cs refer

to the count function applied to the training and sampled sets, respectively. On common shapes,
i.e. those that occur in more than 10% of the molecules, all evaluated models are able to match
the ratio of the ZINC distribution. For uncommon shapes, however, both MoLeR and PS-VAE
fail: while PS-VAE heavily oversamples both ring-like structures and chain-like structures, MoLeR
oversamples chain-like structures and undersamples ring-like structures. MAGNet matches the
reference distribution best across categories and we conclude that the proposed abstraction to shapes
is also beneficial for generation.

4.2 GENERATIVE PERFORMANCE EVALUATED ON COMMON BENCHMARKS

Employing two standard benchmarks for de-novo molecule generation, we establish MAGNet’s
competitive generative performance. The GuacaMol benchmark asseses the ability of a generative
model to sample in accordance with the distribution of a molecular dataset (Brown et al., 2019).
Next to evaluating the uniqueness and novelty of sampled molecules, the benchmark also computes
distributional distances to the reference, i.e. the KL-divergence and Fréchet distance (FCD). We
use the MOSES benchmark (Polykovskiy et al., 2020) to report measures for the internal diversity
(IntDiv) of generated molecules as well as chemical properties such as synthetic accessability (SA),
the octanol-water partition coefficient (logP), and the viability for drugs (QED). Baselines for these
benchmarks additionally include JTVAE (Jin et al., 2018), HierVAE (Jin et al., 2020), and MiCaM
(Geng et al., 2023) as sequential, fragment-based methods. For those model with a variable vocabulary,
we set the size to 350. We also include GraphAF (Shi et al., 2020) as a purely atom-based model.
While the focus of this work lies on graph-based molecule generation, we furthermore add the
SMILES-based baseline of the GuacaMol benchmark SMILES-LSTM (SM-LSTM) (Segler et al.,
2018) as well as the SMILES-based VAE CharVAE (Gómez-Bombarelli et al., 2018). Importantly,
SM-LSTM does not have a latent space and can thus not perform targeted decoding. For all baselines,
we use the hyperparameters specified in their respective works.

Table 1: GuacaMol and MOSES Benchmark. We report mean and standard deviation using 5 random
seeds and highlight the best overall graph-based method as well as the best within each category.

GuacaMol MOSES
FCD (↑) KL (↑) IntDiv (↑) logP (↓) SA (↓) QED (↓)

SM
. CharVAE 0.17 ± 0.08 0.78 ± 0.04 0.88 ± 0.01 0.87 ± 0.14 0.48 ± 0.13 0.06 ± 0.03

SM.-LSTM 0.93 ± 0.00 1.00 ± 0.00 0.87 ± 0.00 0.12 ± 0.01 0.04 ± 0.02 0.00 ± 0.00

Se
qu

en
tia

l GraphAF 0.05 ± 0.00 0.67 ± 0.01 0.93 ± 0.00 0.41 ± 0.02 0.88 ± 0.10 0.22 ± 0.01

HierVAE 0.53 ± 0.14 0.92 ± 0.01 0.87 ± 0.01 0.36 ± 0.17 0.20 ± 0.14 0.03 ± 0.00

MiCaM 0.63 ± 0.02 0.94 ± 0.00 0.87 ± 0.00 0.20 ± 0.05 0.51 ± 0.03 0.08 ± 0.00

JTVAE 0.75 ± 0.00 0.94 ± 0.00 0.86 ± 0.00 0.28 ± 0.03 0.34 ± 0.01 0.01 ± 0.00
MoLeR 0.80 ± 0.01 0.98 ± 0.00 0.87 ± 0.00 0.13 ± 0.02 0.06 ± 0.01 0.01 ± 0.01

O
S PSVAE 0.28 ± 0.01 0.83 ± 0.00 0.89 ± 0.00 0.34 ± 0.02 1.18 ± 0.05 0.05 ± 0.00

MAGNet 0.76 ± 0.00 0.95 ± 0.00 0.88 ± 0.00 0.22 ± 0.01 0.12 ± 0.01 0.01 ± 0.00
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MAGNet is the best OS model on standard benchmarks The benchmark is conducted on 104

latent codes sampled from the prior distribution, z ∼ P , and decoded into valid molecules. Our results
for both benchmarks on the ZINC dataset are depicted in Table 1, where we classify the methods into
their generative approaches as described in § 3. We do not report Novelty and Uniqueness, as almost
all evaluated models achieve 100% on these metrics. Solely GraphAF and HierVAE achieve 91% and
96% Uniqueness and Novelty, respectively. For baselines like SM-LSTM and CharVAE, which are
not able to achieve 100% Validity, we sample until we obtain 104 valid molecules. While MoLeR
sets the state of the art on both FCD and KL, MAGNet overall performs competitively, outperforming
all other graph-based baselines. This supports the proposed factorisation in § 2 while also challenging
the common perception that methods for molecule generation must rely on motif vocabularies to
obtain good generative performance.

The FCD metric is insufficient for evaluating structural diversity Despite the FCD being
an important metric for molecular distribution learning, we find that it fails to provide insights
about the structural diversity of the generated molecules. Evaluating the benchmark on a subset
of 104 molecules from the training data, which was filtered to include only the 10 most common
shapes, results in an FCD score of 0.89. This observation offers an explanation for why models like
MoLeR can achieve state-of-the-art FCD scores, despite not accurately capturing the distribution of
uncommon shapes, as demonstrated in § 4.1. This underscores that our evaluation of the structural
diversity of molecule is orthogonal to these benchmarks, providing valuable insights into the tails of
the molecular distribution.

4.3 GENERATION OF SHAPE REPRESENTATIONS M

Having established MAGNet’s ability to utilise its shape vocabulary to reliably decode a molecule’s
structure and sample diversely, we further evaluate MAGNet’s atom and bond allocation to shapes.

MAGNet’s shape representations are superior to fixed fragments The larger a given shape, the
more the combinatorial aspect starts to dominate: with a size-limited vocabulary, it is challenging to
reflect the diversity of a shape’s realisations during decoding. This is shown in Fig. 4a, which provides
a qualitative view on shape representations. We extract shape representations of a given shape from
the molecules sampled in Table 1 and plot the two principal components of their fingerprints. Only
for this shape, there are 791 representations in ZINC. Both PS-VAE as well as MoLeR are not able to
cover the distribution fully, even though the shape appears commonly in the dataset. MAGNet, by
contrast, covers all parts of the distribution, even outliers. Fig. 4b shows the MMD quantification of
the results in Fig. 4a, confirming that MAGNet is able to best cover the entire distribution of shape
representations. Being able to reliably decode a large variety of molecular scaffolds is especially
important for downstream tasks such a molecule optimisation.

Allocation of atom and bonds to shapes Extending the sampling analysis from Fig. 4b, we
quantify the process of turning an abstract shape into a chemically valid substructure in Fig. 4c.

Figure 4: (a) Example of generated fragments by MAGNet and baseline methods. (b) MMD com-
putation to quantify similarity between generated and ground truth shape representations. (c) Rank
comparison between predicted fragments and their original counterparts.
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Figure 5: Examples of conditional molecule generation with MAGNet. The generation is conditioned
on (top) a complete fragment, including atoms and edges, and (bottom) two distinct shapes.

For each shape in the ZINC dataset, we compute the similarities between the set of all predicted
and ground truth allocations. Given a ground truth assignment and a successful shape decoding,
we measure how the decoded allocation ranks compare to known allocations. In the majority of
cases, MAGNet achieves rank 0 or 1 in the shape allocation, with uncommon rings being the most
challenging to decode.

4.4 APPLICATION ACROSS DATASETS AND CONDITIONAL SAMPLING

Having analysed the generative performance of the MAGNet model and the benefit of the proposed
shape fragmention, we continue to investigate how well the shape abstraction derived from the ZINC
data translates to other datasets. After this, we showcase how one can use MAGNet’s whole context
generation for the generation of linkers and scaffold constrained generation.

Shape abstractions translate well across datasets To examine the flexibility of our shape frag-
mentation, we evaluate its transferability to unseen datasets with distinct molecular distributions
through zero-shot generalisation. We use the datasets QM9 (Wu et al., 2018), GuacaMol (Brown
et al., 2019), CheMBL (Mendez et al., 2019), and L1000 (Subramanian et al., 2017). Note that
we do not finetune any model on the unseen datasets and only use the vocabulary extracted from
ZINC. MAGNet is able to achieve the highest similarity scores across all datasets, improving over the
strongest baseline by up to 20%, see Appendix C.3 for more details. This underscores the flexibility
of the fragmentation and MAGNet’s expressive power across the space of drug-like molecules.

MAGNet efficiently generates molecules conditioned on shapes and scaffolds In the context
of potential downstream applications, we investigate novel scaffold conditioning methods made
possible by MAGNet’s factorisation. Besides the latent space interpolation in Appendix C.2, Fig. 5
illustrates that MAGNet is capable to condition not only on a single scaffold but also on multiple
scaffolds, even when they are not directly connected within the resulting molecule. This poses a
significant challenge for models like MoLeR, which rely on extending connected subgraphs for
scaffold conditioning. Moreover, MAGNet enables conditioning on multiple levels and can generate
molecules conditioned on a fragment as well as solely based on shapes, cf. Fig. 5 (top) and (bottom),
respectively. Conditioning only on shapes enables the free allocation of atoms and bonds—a form of
conditioning that was previously not possible.

5 CONCLUSION

We present MAGNet, a generative model for molecules that relies on a novel factorisation to
disentangle structure from features, thus leading to a general abstraction in the space of molecules.
MAGNet exhibits stronger performance at representing structures than existing models while also
showing favourable results in generative tasks. While we argue that a global context like the one
adopted in MAGNet is important for shape representations, modifications thereof can also be
promising for sequential models. Finally, our proposed abstraction to shapes lends itself to general
applications in graph generative models beyond the molecular world.
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Reproducibility Statement To ensure reproducibility we make available the code for MAGNet.
Additional documentation is provided in Appendix B.4, including all hyperparameters and training
specifications necessary to reproduce the results discussed in this work. Both training and infer-
ence work on readily-available hardware, and detailed computational requirements are outlined in
Appendix B.4. All data used for the experimental evaluation is publicly available.

Ethics Statement We commit to full transparency by making our research code publicly available.
Together with openly accessible datasets, this facilitates widespread utilisation of MAGNet. However,
this comes with potential risks of misuse inherent to the field of drug discovery. The capacity
to generate molecules can go beyond benevolent drug discovery and can inadvertently lead to the
creation of hazardous compounds or substances with unforeseen consequences. These risks emphasise
the necessity for responsible use and oversight in the application of our methodology. However, our
work also holds the potential to advance drug discovery efforts, potentially aiding in the identification
of new pharmaceutical compounds.
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Figure 6: (a) Examples of the fragmentation procedure. Starting with the entire molecules, the
fragmentation first removes leaf nodes L, continues to split into motifs M, and then identifies distinct
shapes S. (b) Example for a single shape that has multiple similar representations in terms of atom
and bond types, illustrating how our shape abstraction can reduce combinatorial explosion and enable
smooth learning.

A ABSTRACTION TO SHAPES AND DETAILS ON PROPOSED FRAGMENTATION

Fig. 6 a shows examples of the proposed fragmentation and abstraction to shapes. First, we identify
leaf nodes L and then divide the core molecule C into structurally distinct fragments M that can
be categorised into rings, chains, and junctions. Note that adjacent shapes share a join node v ∈ J
instead of being connected through a bond. This representation of connectivity between fragments is
advantageous compared to the “Breaking Bridge Bonds” decomposition (Jin et al., 2020; Maziarz
et al., 2022), as the separation of motifs, such as rings and chains, does not require truncating the
chain. Given this fragmentation, atoms can simultaneously be part of a ring and a chain, and MAGNet
accounts for that.

Fig. 6 a illustrate that many fragments share the same topology but differ in the atom and bond
types. Extracting a shape Si from its motif Mi means to reduce the typed adjacency to its binary
connectivity, discarding any node features. After creating a vocabulary using all unique shapes from
the dataset, we can check their isomorphism by comparing their hashes (Leman & Weisfeiler, 1968).

By this abstraction, MAGNet can learn smoother transitions between different shape representations.
Fig. 6 b showcases a simple example of this: the shown motifs share very similar sets of atoms and
bonds, as well as their underlying structure, but they differ in the exact positions of atoms and bonds.
Fragment-based methods would be required to replace the motif token entirely, having to choose its
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replacement from a potentially large vocabulary. By disentangling structure from features, we enable
MAGNet to learn such transitions smoothly.

B DETAILS MAGNET

B.1 ENCODER

We build the node features that are processed in MAGNet’s encoder from different attributes, see
Table 2. We include the atom type (‘atom_id_dim’), its charge (‘atom_charge_dim’), as well as its
multiplicity value (‘atom_multiplicity_dim’). We proceed accordingly for the shape level and include
the shape id (‘shape_id_dim’), its multiplicity (‘shape_multiplicity_dim’), as well chemical features
(‘motif_feat_dim’) computed through RDKit (Landrum, 2010). Since the latter are not learned during
training, the features are mapped to the specified dimensionality by a linear map.

After processing the resulting node features through the graph transformer (Shi et al., 2021) with
‘num_layers_enc’-many layers, they are aggregated in different ways and mapped to specified
dimensions as defined by ‘enc_<>_dim’ for the atoms, shapes, join nodes, and leaf nodes, respectively.
On top, the shape embeddings are additionally processed with the same transformer architecture
(‘num_layers_shape_enc’) to inform the embedding about the shape-level connectivity. We then
concatenate the resulting graph-level embeddings and further combine them with global molecule
features, again computed via RDKit and then mapped to the required dimension (‘enc_global_dim’),
before mapping them to the latent space via the latent module which has ‘num_layers_latent’-many
layers.

B.2 DECODER

All decoding steps are conditioned on the latent code z. From z, MAGNet employs two transformer
decoder layers to autoregressively decode the set of shapes S by selecting tokens Si from the extracted
shape vocabulary. Generation of the variable-sized multiset S ends with selecting a stop token. In
the next step, an MLP predicts the connectivity A matrix between individual nodes in a permutation-
invariant manner. This prediction is solely based on the learnable shape token and multiplicity
embeddings. Indicating multiplicity is required, as multiple shapes in S share the same shape type
but have to be connected in different ways.

At this point, MAGNet instantiates the atom-level graph by expanding shape tokens to their untyped
graph objects. These graphs without features are then first assigned atom types by transformer
decoder layers. Subsequently, the atom features and the respective shape embeddings are used by an
MLP to assign bond types independently for every edge, thus creating M. For any connection Aij

between two motifs Mi and Mj , another MLP then determines the join matrix J (k,l), that is used to
identify the shared join node which is then “collapsed”. This process applies only to atoms of the
same type, is subject to valency constraints, and has to adhere to the predicted join node type Aij .

After constructing the core molecule C, MAGNet creates meaningful node embeddings by employing
a graph neural network on the core molecule. These embeddings are the basis for a final module
consisting of transformer decoder layers that equips the core molecule’s atoms with leaf nodes L. By
the definition of the leaf nodes, every core molecule’s atom can only have one leaf node. A leaf node
prediction includes the node’s atom type and the bond type connecting it to its attachment atom in the
core molecule. The predicted bond type is again subject to valency constraints.

B.3 ANALYSIS OF ACTIVE UNITS IN THE LATENT SPACE

Formally, the VAE optimises the ELBO

L = Ez∼Q
[
P
(
G | z

)]
+ βDKL

(
Q(z | G) | P

)
with P ∼ N (0,1)

where the posterior Q(z | G) is regularised towards the Normal prior P . In practice, finding a balance
between the reconstruction loss Ez∼Q

[
P
(
G | z

)]
and the KL-divergence DKL is challenging. Yeung
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et al. (2017) and Burda et al. (2015) observe that optimising this objective can result in the VAE
learning to collapse several units to the prior to compensate for few non-Gaussian components that
support reconstruction. Behaviour like this can be measured through the number of active units in the
latent space, defined as CovG

(
Ez∼Q(z|G)[z]

)
> 0.02 (Burda et al., 2015).

Due to generating the entire molecular context at each generation step, MAGNet heavily relies on the
latent representation; also, our reconstruction experiments § 4.1 support this. However, this intended
behaviour requires the approximate posterior Q(z | G) to be close to the Normal prior P to allow
for good-quality samples. Although there are several methods available to improve the alignment
between the approximate posterior and the prior, such as latent dropout (Yeung et al., 2017), a cyclic
β-annealing schedule (Fu et al., 2019), and the GECO loss (Rezende & Viola, 2018), none of them
have been able to achieve a rate of active units over 50 % beyond a simple weighting of the DKL term.
As a result of this analysis, we fitted a normalising flow to the VAE, which was trained with low KL
regularisation. For this, we follow the framework of Conditional Flow Matching (Lipman et al., 2023;
Tong et al., 2023) and achieve 100 % active units.

B.4 MAGNET: HYPERPARAMETERS AND TRAINING

Training MAGNet for one epoch takes around 30minutes on a single ‘NVIDIA GeForce GTX 1080
Ti’. We trained MAGNet for 30 epochs and fitted the latent normalizing flow post-hoc for 5000
epochs in total and conducted a random hyperparameter sweep including the learning rate, beta
annealing scheme, and the number of layers for the encoder and latent module. The MAGNet model
reported in the main text has 12.6M parameters and its configuration is depicted in Table 2. In its
current version, MAGNet processes roughly 70 molecules per second during training and samples
about 8 molecules per second during inference.

Table 2: Parameter configuration of the best MAGNet runs.

Parameter Value

Train batch_size 64
flow_batch_size 1024
lr 3.07× 10−4

lr_sch_decay 0.9801
flow_lr 1× 10−3

flow_lr_sch_decay 0.99
flow_patience 13
gradclip 3

Model latent_dim 100

di
m

_c
on

fig

enc_atom_dim 25
enc_shapes_dim 25
enc_joins_dim 25
enc_leaves_dim 25
enc_global_dim 25
atom_id_dim 25
atom_charge_dim 10
atom_multiplicity_dim 10
shape_id_dim 35
shape_multiplicity_dim 10
motif_feat_dim 50
shape_hidden 256
shape_gnn_dim 128
motif_seq_pos_dim 15
leaf_hidden 256
latent_flow_hidden 512

Parameter Value

Model node_aggregation sum
num_layers_latent 2
num_layers_enc 2
num_layers_shape_enc 4
num_layers_hgraph 3

lo
ss

_w
ei

gh
ts joins 1

leaves 1
motifs 1
hypergraph 1

be
ta

_a
nn

ea
lin

g max 0.01
init 0
step 0.0005
every 2500
start 2000
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(a) Displacement between latent representation of the
input vs. the decoded output.

(b) Tanimoto similarity for zero-shot reconstruction
on unseen datasets.

Figure 7: Additional quantitative evaluation shows that MAGNet is faithful to its latent code. From
this follows decoding consistency even in challenging cases and on unseen datasets.

C ADDITIONAL EXPERIMENTS

C.1 DISPLACEMENT OF LATENT CODES

To quantify the discrepancy between input and reconstructed molecule visible in Fig. 3a, we measure
the displacement of latent codes in Fig. 7a. That is, we obtain the latent representation for the
input molecule, decode this latent representation into the output molecule and then obtain the latent
representation for the output molecule. This verifies what can be observed qualitatively in Fig. 3a–the
evaluated baselines can not reliably decode complex shapes.

C.2 INTERPOLATION

Extending on Fig. 5, we additionally provide examples for latent space interpolation in Fig. 8. During
interpolation, MAGNet stays faithful to the shapes present in the input molecules. The last row shows
a failure case of MAGNet: it identifies a shape multiset that can not be fully connected to a molecule.

C.3 TRANSFERABILITY OF SHAPES

We calculate the Tanimoto similarity in the reconstruction setting for a variety of datasets, Fig. 7b. For
all evaluated datasets, MAGNet achieves the best similarity scores between molecules, highlighting
the transferability of shapes across various distributions.

We compute the Tanimoto scores only for those molecules that can be represented via the shapes
that were extracted from the ZINC dataset. For the QM9 dataset, MAGNet can represent roughly
75% of the molecules in the dataset. This is due to unseen shapes which make up around 11% out
of the total number of 289,966 shapes. For GuacaMol, MAGNet can represent around 97% of the
molecules in the dataset. Out of the 9,562,028 shapes in GuacaMol, only 0.5% are missing from the
shape vocabulary extracted from the ZINC dataset. We consider a fragmentation into shapes that is
more flexible and translates even better across datasets important future work.

C.4 MAGNET ABLATION STUDIES

We show additional results for ablations of different parts of the MAGNet model in Table 3, performing
the same analysis as done in § 4.2. MAGNet without a normalising flow achieves an FCD score of
0.65, leading to a performance decrease of more than 14%. A similar decrease can be observed for
MAGNet with only a binary shape adjacency A. This result further verifies that the atom type of a
join node j is an important conditioning for the shape allocation M.
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Figure 8: We provide four interpolation examples for MAGNet and MoLeR. The input molecules
(left and right) are shared between the two models. We report the Tanimoto similarity as a rough
estimate for the interpolation’s goodness.

Table 3: GuacaMol and MOSES Benchmark for ablations of MAGNet

FCD (↑) KL (↑) IntDiv (↑) logP (↓) SA (↓) QED (↓)
MAGNet 0.76 ± 0.00 0.95 ± 0.00 0.88 ± 0.00 0.22 ± 0.01 0.12 ± 0.01 0.01 ± 0.00

no NF 0.65 ± 0.00 0.92 ± 0.00 0.88 ± 0.00 0.38 ± 0.06 0.24 ± 0.03 0.01 ± 0.00

Binary A 0.66 ± 0.00 0.92 ± 0.00 0.89 ± 0.00 0.43 ± 0.05 0.28 ± 0.02 0.04 ± 0.00
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