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ABSTRACT
Pre-trained vision-language models like CLIP have shown powerful
zero-shot inference ability via image-text matching and prove to
be strong few-shot learners in various downstream tasks. However,
in real-world scenarios, adapting CLIP to downstream tasks may
encounter the following challenges: 1) data may exhibit long-tailed
data distributions and might not have abundant samples for all
the classes; 2) There might be emerging tasks with new classes
that contain no samples at all. To overcome them, we propose a
novel framework to achieve efficient and long-tailed generalization,
which can be termed as Candle. During the training process, we
propose compensating logit-adjusted loss to encourage large mar-
gins of prototypes and alleviate imbalance both within the base
classes and between the base and new classes. For efficient adap-
tation, we treat the CLIP model as a black box and leverage the
extracted features to obtain visual and textual prototypes for predic-
tion. To make full use of multi-modal information, we also propose
cross-modal attention to enrich the features from both modalities.
For effective generalization, we introduce virtual prototypes for
new classes to make up for their lack of training images. Candle
achieves state-of-the-art performance over extensive experiments
on 11 diverse datasets while substantially reducing the training
time, demonstrating the superiority of our approach. The source
code is available at https://github.com/shijxcs/Candle.

CCS CONCEPTS
• Computing methodologies → Supervised learning.
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1 INTRODUCTION
Over the past few years, the rapid development of deep learning

[8, 37] and the emergence of web-scale datasets [5, 30, 31] have
made large-scale pre-trained models possible. Particularly, Vision-
Language (V-L) models [2, 15, 18, 27, 42] have become a recent
research hype due to their strong generalization capabilities as
well as promising transferability to downstream tasks. One of the
most successful pre-trained V-L models is CLIP [27]. Trained on
a massive dataset of 400 million image-text pairs, CLIP utilizes a
contrastive objective to align the visual and textual representations
and manages to establish a connection between images and natural
language. During inference, CLIP can perform zero-shot image
recognition by simply using the class names. For example, one can
adopt a prompt template like ‘a photo of a {class}’ as input to the
text encoder and generate the classification weights for each class.
The weights can then be used to calculate cosine similarity with
image features to get classification scores.

With the rise of such powerful V-L models, extensive efforts have
been invested into finding potential solutions to better adapt these
models to downstream tasks. For instance, several previous works
including CoOp[46], CoCoOp [45] and MaPLe [16] have explored
the idea of prompt learning, where a sequence of learnable context
vectors is used to replace carefully-chosen hard prompts. These
methods have achieved impressive improvements.

Despite delivering promising results, a number of existing works
suffer from two practical limitations. a) significant performance
decline under real-world long-tailed data distributions. The natural
long-tail distribution [19] phenomenon brings class imbalance and
makes it hard to collect data for all classes, leaving some rare classes
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Figure 1: Candle achieves significant improvements on mul-
tiple imbalanced base-to-new generalization tasks.

Table 1: Training time and accuracy for CoOp, CoCoOp, and
Candle with ViT-B/16 as the visual encoder, on a 100-shot
ImageNet with an imbalance ratio of 100. The experiments
are done on an RTX 3090 GPU.

Method Training epochs Time cost Accuracy (%)

CoOp 50 ∼ 5 hours 70.7
CoCoOp 10 ∼ 30 hours 71.3

Candle (ours) 20 11 min 71.6

entirely void of samples. Most works fail to consider the real-world
data distributions and suffer from severe performance degradation
under imbalanced scenarios. They also tend to overlook the valuable
label information for unseen categories, which may be a leading
cause for a notable performance drop on these label-only classes. b)
extensive computational overhead. Despite using fewer trainable
parameters, most methods still need to calculate gradients through
the model’s backbone and require access to the model’s weights.
As the size of foundation V-L models continues to grow (e.g., up to
80 billion [2]) and industry standards gradually switch to providing
only API, they may become impractical for actual application.

In this paper, we aim to address the above issues and propose
a novel framework to achieve efficient and long-tailed generaliza-
tion which can be named as Candle. During the training process,
we propose compensating logit-adjusted loss to encourage large
margins of virtual prototypes and alleviate imbalance both within
the base classes and between the base and new classes. For efficient
adaptation, we treat the CLIP model as a black box and leverage the
extracted features to obtain visual and textual prototypes for predic-
tion. To make full use of multi-modal information, we also propose
cross-modal attention to enrich the features from both modalities.
For effective generalization, we introduce virtual prototypes for
new classes to make up for their lack of training images. As shown

in Figure 1 and Table 1, our method achieves impressive improve-
ments over previous methods while cutting down the training time.
In summary, the main contributions of this work include:

• We propose a novel framework named Candle for efficient and
long-tailed generalization of CLIP. To the best of our knowledge,
this is the first work to explore the adaptation of V-L models
under an imbalanced setting.
• To make full use of both visual and textual information, we
propose to perform cross-modal attention on the feature space. For
better new class generalization, we introduce virtual prototypes
and propose a novel compensating logit adjusted loss to simulta-
neously alleviate the imbalance within the base classes as well as
between the base and new classes.
• Our extensive experimental results demonstrate the strength
of Candle, which achieves state-of-the-art results over various
settings while substantially reducing the training time.

2 RELATEDWORK
Vision-Lanuage (V-L) Models. V-L foundation models have ex-
perienced a substantial surge in recent years with the emergence
of different architectures such as Flamingo [2], CLIP [27], ALIGN
[15], BLIP [18], CoCa [42], etc. These models are usually trained on
a web-scale dataset comprised of massive image-text pairs to learn
a joint embedding space. Due to their strength in understanding
open-vocabulary concepts, V-L models have been widely explored
in various downstream tasks, such as few-shot learning [33, 46],
continual learning [6, 44] and adversarial learning [22, 35]. In this
work, we focus on adapting CLIP for new class generalization.

Fine-tuning V-L Models. Despite the effectiveness of V-L mod-
els (e.g., CLIP) towards generalizing to new concepts, its massive
scale makes it infeasible to fine-tune the full model for downstream
tasks. Linear probing [27] serves as a naive solution, while its per-
formance deteriorates significantly under few-shot settings. CoOp
[46] proposes the idea of prompt learning, which optimizes a set of
context vectors instead of using the standard prompt template ‘a
photo of a {class}’. CoCoOp [45] aims to learn more robust prompts
through image conditioning, which optimizes an instance-specific
prompt by training a meta-network. CoCoOp also proposes the
novel base-to-new setting for better examination of a model’s gen-
eralizability. MaPLe [16] simultaneously learns the prompts for
both the vision and language branches of CLIP. While these meth-
ods have achieved impressive results under few-shot settings, their
training cost can be prohibitive in terms of both time and memory.

Aside from prompt learning, another line of work utilizes adapter
modules for lightweight and fast adaptation. For instance, CLIP-
Adapter [10] proposes to add anMLP layer after the final visual layer
and mix the transformed output with the original zero-shot output
via a residual connection. TIP-Adapter [43] further replaces the
MLP layer with a carefully designed linear layer, whose weights are
comprised of labeled visual embeddings. Although theseworks have
significantly reduced the training cost for fine-tuning CLIP, they
perform poorly under the base-to-new setting, with TIP-Adapter
[43] even unable to test on new classes.

Furthermore, subsequent works have attempted to improve adap-
tation by leveraging multi-modal information [25] or adopting a
generative approach to synthesize features for categories without
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Table 2: Empirical study results for zero-shot CLIP and visual prototypes over 11 datasets, using ViT-B/16 as the visual encoder.
The visual prototypes are obtained by calculating the mean value of 16-shot features for each class and used subsequently to
calculate cosine similarity with image features to get the classification scores.

CAL. OP. SC. Flw. Food. FA. SUN. DTD. ES. UCF. IN. Avg Results.

Zero-shot CLIP 89.3 88.9 65.6 70.4 89.2 27.1 65.2 46.0 54.1 69.8 68.6 66.7
Visual Prototypes 93.4 80.2 71.7 95.9 81.4 41.3 69.8 64.2 75.2 78.1 61.7 73.9

Δ +4.1 -8.7 +6.1 +25.5 -7.8 +14.2 +4.6 +18.2 +21.1 +8.3 -6.9 +7.2

data [40]. However, they still suffer from expensive training costs or
unsatisfactory new-class generalizations. In contrast to the afore-
mentioned works, this paper presents a lightweight framework
built directly upon the feature space for efficient adaptation, as well
as virtual prototypes with a novel loss function for effective new
class generalization.

Imbalance Learning via Pre-trainedModels. Recent research
has found that models pre-trained on large-scale datasets can learn
more generalized representations, and can serve as an effective tool
for alleviating class imbalance issues. For instance, BALLAD [20]
and VL-LTR [36] fine-tunes both of the entire image and text en-
coder of CLIP on the downstream tasks. Wang et al. [39] proposes
to ignore the text branch of CLIP and append a decoder consisting
of transformer blocks after the image encoder. LPT [7] adopts a
two-stage method to learn both shared prompts and group-specific
prompts to capture both general and specialized knowledge. PEL
[32] systematically investigates different parameter-efficient fine-
tuning modules for long-tailed recognition tasks. In contrast to
these previous works, this paper deals with the new class gener-
alization setting and proposes an efficient and effective approach.

3 CLIP
3.1 Premilinaries
Contrastive Language-Image Pretraining, known as CLIP [27],

is mainly comprised of an image encoder 𝑓𝐼 (𝑥) and a text encoder
𝑓𝑇 (𝑡), which map input from the respective modality into a joint
embedding space. The image encoder can be in the form of either
ResNet [11] or ViT [8], whereas the text encoder is built on top of
the Transformer [37] architecture.

During training, CLIP goes through 400 million image and cap-
tion pairs, adopting a contrastive loss to pull together the corre-
sponding image-text pairs while pushing apart unmatched ones.
After training, CLIP can be readily used for downstream image
classification in a zero-shot manner. Let 𝑥 be the input image
and {𝑡1, · · · , 𝑡𝐾 } be the 𝐾 class descriptions. These descriptions
can be generated through prompt templates like ‘a photo of a
{class}’, where the {class} token denotes the corresponding class
name. Then, it extracts image features 𝒙 = 𝑓𝐼 (𝑥), textual prototypes
𝑻 = {𝑻 1, · · · , 𝑻𝐾 } = {𝑓𝑇 (𝑡1), · · · , 𝑓𝑇 (𝑡𝐾 )}, and the predicted result
for 𝑥 is:

𝑦pred = arg max
𝑖∈[𝐾 ]

cos(𝒙, 𝑻 𝑖 ) (1)

In this way, CLIP turns the image classification task into an image-
text matching problem.

3.2 Practical Limitations of CLIP
Despite delivering promising results, a number of existing works
suffer from two practical limitations. a) significant performance
decline under real-world long-tailed data distributions. The natural
long-tail distribution [19] phenomenon brings class imbalance and
makes it hard to collect data for all classes, leaving some rare classes
entirely void of samples. Most works fail to consider the real-world
data distributions and suffer from severe performance degradation
under imbalanced scenarios. They also tend to overlook the valuable
label information for unseen categories, which may be a leading
cause for a notable performance drop on these label-only classes. b)
extensive computational overhead. Despite using fewer trainable
parameters, most methods still need to calculate gradients through
the model’s backbone and require access to the model’s weights.
As the size of foundation V-L models continues to grow (e.g., up to
80 billion [2]) and industry standards gradually switch to providing
only API, they may become impractical for actual application.

Moreover, despite the effectiveness of CLIP in general cases, its
insufficient usage of visual information remains a weak point. CLIP
relies highly on image-text matching for downstream zero-shot
prediction, which may cause potential risks. For instance, on the
FGVCAircraft [21] dataset, the class names are different numeral
versions such as ‘737-200’ and ‘737-300’, which hardly contain
any useful information; or on the UCF101 [34] dataset, the image
samples consist of frames from a video and do not precisely match
the prompt templates such as ‘a photo of a {class}’.

Based on thismotivation, we conduct our empirical study by com-
paring image-image matching with image-text matching. Specif-
ically, we calculate visual prototypes as the mean value of the
16-shot image features for each class. Then, we replace the textual
prototypes in zero-shot CLIP with visual prototypes for prediction.
Formally, let𝑉 = {𝑽 1, · · · , 𝑽𝐾 } be the 𝐾 visual prototypes for each
class, then the predicted result is:

𝑦pred = arg max
𝑖∈[𝐾 ]

cos(𝒙, 𝑽 𝑖 ) (2)

We compare the prediction results calculated by Equation 1 and
by Equation 2, and report the empirical results in Table 2. As shown,
zero-shot CLIP significantly underperforms visual prototypes on
multiple datasets including Flowers102 (-25.5%), FGVCAirCraft (-
14.2%), DTD (-18.2%) and EuroSAT (-21.1%), demonstrating that the
class labels are not descriptive enough.

4 CANDLE: EFFICIENT AND LONG-TAILED
GENERALIZATION

In this section, we aim to address the above issues and propose a
novel framework to achieve efficient and long-tailed generalization
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Figure 2: An overview of the proposed framework.

which can be named as Candle. During the training process, we
propose compensating logit-adjusted loss to mitigate the long-tail
problems, as well as to avoid the risk of neglecting new classes dur-
ing the optimization. For efficient adaptation, we directly leverage
the features extracted from the model, calculate the corresponding
visual and textual prototypes, and propose cross-modal attention
to enrich the information for both modalities. For effective general-
ization, we propose to generate virtual prototypes for new classes,
by which we compensate for their lack of training images.

4.1 Compensating Logit-Adjusted Loss
Loss functions designed to deal with class imbalance usually do

not apply to new class generalization since there is no sample for
new classes. Therefore, we propose to consider new class gener-
alization as an extreme case of class imbalance and treat visual
prototypes as samples to alleviate such imbalance.

On top of this, we introduce our Compensating Logit-Adjusted
Loss (CLA Loss) inspired by [29] to handle such imbalanced sce-
narios. Let 𝑧𝑖 denote the predicted logit for class 𝑖 , then CLA loss
takes the form of :

L𝑐𝑙𝑎 (𝒛, 𝑦 = 𝑗) = − log
exp(𝑧 𝑗 + log 𝑝 (𝑦 = 𝑗))∑𝐾
𝑘=1 exp(𝑧𝑘 + log𝑝 (𝑦 = 𝑘))

(3)

where 𝑝 (𝑦 = 𝑗) is the class prior probability. Let 𝑛𝑖 denote the num-
ber of samples for class 𝑖 , 𝑝 (𝑦 = 𝑗) can be estimated as 𝑛 𝑗/

∑𝐾
𝑖=1 𝑛𝑖 .

Particularly, we suppose 𝑛𝑖 = 1 for new classes and treat the cor-
responding visual prototypes as training samples. In this way, we
have found a solution to not only deal with the imbalance within
the base classes but also compensate for the imbalance between
the base and new classes.

4.2 Feature-Level Cross-Modal Attention
To overcome the efficiency issue, we introduce cross-modal at-

tention to leverage both visual and textual information. To further
enhance its efficiency and practicality, we treat the model as a
black box following [24] and apply optimizations directly within
the feature space.

Our method can divided into the following steps. First, we pre-
compute and save the visual and textual prototypes for each class.
Then, the features together with the prototypes are fed into the

corresponding linear projection layers 𝑃𝐼 and 𝑃𝑇 . In this way, we
can further align the two modalities for downstream adaptation,
and the prediction can be calculated by

𝑝 (𝑦 = 𝑖 | 𝑥) = exp(cos(𝑃𝐼 (𝒙), 𝑃𝑇 (𝑻 𝑖 ))/𝜏𝑡 )∑𝑁
𝑗=1 exp(cos(𝑃𝐼 (𝒙), 𝑃𝑇 (𝑻 𝑗 ))/𝜏𝑡 )

(4)

where 𝜏𝑡 is the temperature for image-text matching. However,
the scarce data in the downstream tasks still makes it difficult to
achieve satisfactory adaptations.

To remedy this issue, we propose to enrich the features from
both modalities by leading them to interact with each other through
cross-modal attention. Specifically, we concatenate the image fea-
tures, visual prototypes, and textual prototypes together and then
feed them into a self-attention [37] module, considering its abil-
ity to establish connections for long-dependency embeddings. Let
Attn(·) denote the multi-head self-attention function, the output is

𝒙′, 𝑽 ′, 𝑻 ′ = Attn( [𝑃𝐼 (𝒙), 𝑃𝐼 (𝑽 ), 𝑃𝑇 (𝑻 )]) (5)

Note that the operation is permutation invariant, thereby we can
slice the output to get the corresponding features and prototypes.
After obtaining the enriched features, we can now predict with
both visual and textual prototypes by:

𝑝𝑉 (𝑦 = 𝑖 | 𝑥) =
exp(cos(𝒙′, 𝑽 ′

𝑖
)/𝜏𝑣)∑𝐾

𝑗=1 exp(cos(𝒙′, 𝑽 ′
𝑗
)/𝜏𝑣)

(6)

𝑝𝑇 (𝑦 = 𝑖 | 𝑥) =
exp(cos(𝒙′, 𝑻 ′

𝑖
)/𝜏𝑡 )∑𝐾

𝑗=1 exp(cos(𝒙′, 𝑻 ′𝑗 )/𝜏𝑡 )
(7)

where 𝜏𝑣 denotes the temperature for visual modality. By ensem-
bling these two results, we are able to leverage both visual and
textual information.

4.3 Virtual Prototypes for New Classes
We have discussed the weakness of CLIP and introduced visual

prototypes as well as cross-modal attention as a remedial measure.
However, another crucial problem emerges regarding new class
generalization. As for new classes, we cannot obtain their visual
prototypes during training.
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To solve this issue, we introduce learnable virtual prototypes for
new classes to hold the place of missing visual prototypes. Specif-
ically, we freeze the precomputed textual prototypes as well as
the visual prototypes for base classes, while treating the virtual
prototypes as the corresponding visual prototypes for new classes,
and optimizing them during the training stage. Other than this,
the entire procedure is the same as in Section 4.2. Formally, let 𝑽̂ ′

denote the transformed virtual prototypes for new classes, then
Equation 6 can be rewritten as:

𝑝 (𝑦 = 𝑖 | 𝑤) =
exp(cos(𝒙′, 𝑽 ′

𝑖
)/𝜏𝑣)∑

exp( cos(𝒙
′,𝑽 ′ )
𝜏𝑣

) +∑
exp( cos(𝒙

′,𝑽̂
′ )

𝜏𝑣
)

(8)

In this way, the virtual prototypes are guided to learn a suitable
representation of the new classes in the feature space and can act
as an supplement to the textual prototypes.

4.4 Overall Objective
The overall loss function is given by applying CLA loss to the logits
calculated by Equation 4, 6 and 7 and aggregating the results. Sup-
pose the logits given by these equations are 𝒛𝑃 , 𝒛𝑉 , 𝒛𝑇 respectively,
then the loss objective L for optimization during training is:

L = L𝑐𝑙𝑎 (𝒛𝑃 , 𝑦) + L𝑐𝑙𝑎 (𝒛𝑉 , 𝑦) + L𝑐𝑙𝑎 (𝒛𝑇 , 𝑦) (9)

During inference, we aggregate the logits obtained after cross-
modal attention, namely 𝒛 = 𝒛𝑉 + 𝒛𝑇 . The entire framework is
shown in Figure 2.

5 EXPERIMENTS
5.1 Experimental Settings
We evaluate our approach Candle in the following problem set-

tings: 1) generalization from base to new classes under imbalance
and few-shot settings; 2) cross-dataset transfer and 3) domain gen-
eralization. For the imbalanced settings, all the training data is
generated by down-sampling the base classes to obey an exponen-
tial decay of different ratios. Let 𝑛𝑖 denote the number of samples in
the 𝑖-th class, imbalance ratio is defined as max{𝑛𝑖 }/min{𝑛𝑖 }. The
maximum number of samples per class of the generated dataset is
set to either 100 (if has) or the maximum number of samples per
class of the original dataset.

Datasets and Evaluation. For new class generalization and
cross-dataset transfer, the experiments are conducted over a total
of 11 diverse image classification datasets, including ImageNet [5]
and Caltech101 [9] for generic object recognition, OxfordPets [26],
StanfordCars [17], Flowers102 [23], Food101 [1] and FGVCAircraft
[21] for fine-grained image recognition, SUN397 [41] for scene
recognition, DTD [4] for texture classification, EuroSAT [12] for
satellite image classification, and UCF101 [34] for action recognition.
For domain generalization, we use ImageNet as the source dataset
and four other variants that exhibit different types of domain shift
as the target datasets, including ImageNet-A [14], ImageNetV2 [28],
ImageNet-Sketch [38], and ImageNet-R [13].

Details of the 11 datasets used in base-to-new generalization and
cross-dataset transfer, and the 4 datasets used during testing for do-
main generalization, are shown respectively in Table 3 and Table 4.
We report mean-class accuracy for the imbalanced settings, which
is different from overall accuracy for datasets with imbalanced test

Table 3: Statistics for datasets used in base-to-new general-
ization and cross-dataset transfer. The rightmost column
indicates whether the testing set is balanced.

Dataset Classes Train Test Balanced

ImageNet [5] 1000 1.28M 50000 ✓

Caltech101 [9] 100 4128 2456 ✗

OxfordPets [26] 37 2944 3669 ✓

StanfordCars [17] 196 6509 8041 ✓

Flowers102 [23] 102 4093 2463 ✗

Food101 [1] 101 50500 30300 ✓

FGVCAircraft [21] 100 3334 3333 ✓

SUN397 [41] 397 15880 19850 ✓

DTD [4] 47 2820 1692 ✓

EuroSAT [12] 10 13500 8100 ✗

UCF101 [34] 101 7639 3783 ✗

Table 4: Statistics for datasets used during testing for domain
generalization. The rightmost column indicates whether the
testing set is balanced.

Dataset Classes Test Balanced

ImageNet-A [14] 200 7500 ✗

ImageNetV2 [28] 1000 10000 ✓

ImageNet-Sketch [38] 1000 50889 ✓

ImageNet-R [13] 200 30000 ✗

sets. The test set for some datasets have varying numbers of sample
per class, which is indicated in the rightmost column.

Following the setting in CoCoOp [45], we examine our model
on a similar but more practical scenario, where the base training
set follows an imbalanced distribution. We also report test results
of new class generalization in the balanced few-shot form to show
the robustness of our model. Note that for imbalanced scenarios,
we report mean-class accuracy instead of overall accuracy.

Baselines. We compare our method to zero-shot CLIP [27],
CoOp [46], CoCoOp [45] and LFA [24], which also focuses on
feature-level adaptation for CLIP. For the imbalanced settings, our
method is compared to CoOp and CoCoOp by switching their loss
function to Logit-Adjusted (LA) Loss [29] to ensure fairness. LFA is
only compared under the balanced setting because its framework
is not compatible to different loss functions.

Implementation Details. We use ViT-B/16 as the vision back-
bone for all methods for fair comparison. Our models are trained
for 10-100 epochs on each dataset and use the SGD optimizer with a
batch size of 128, learning rate of 3×10−4, weight decay of 5×10−4,
and momentum of 0.9. The temperature parameter 𝜏𝑡 for image-text
matching is set to 0.01 following CLIP, whereas the 𝜏𝑣 for image-
image matching is decided by searching from {0.005, 0.01, 0.02, 0.05,
0.1} on each dataset. For the baseline methods, the results are gen-
erated by following the exact setting as introduced in the original
articles. All the experiments are carried out on a single NVIDIA
GeForce RTX 3090.
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Table 5: Harmonic mean values of base-to-new accuracy (%) of different methods on datasets with imbalance ratios 10, 20, 50.
The models are trained on an imbalanced base set and then evaluated on both base and new classes. Harmonic accuracy is
calculated by 2×𝑏𝑎𝑠𝑒×𝑛𝑒𝑤

𝑏𝑎𝑠𝑒+𝑛𝑒𝑤 to highlight the generalization trade-off. The best results are presented in bold.

(a) Imbalance Ratio = 10.

Cal. OP. SC. FLw. Food. FA. SUN. DTD. ES. UCF. Avg.

CoOp + LogitAdjusted Loss 91.78 94.10 69.23 71.86 89.25 32.12 72.15 54.88 54.42 64.74 70.66
CoCoOp + LogitAdjusted Loss 95.09 96.69 71.91 77.61 91.20 33.71 77.99 65.11 60.28 76.78 75.67
Linear Feature Alignment 95.69 94.09 72.72 84.38 90.44 34.27 78.39 67.43 69.56 82.71 76.97

Candle (Ours) 95.89 95.99 74.30 85.03 90.80 37.78 79.26 68.13 80.51 83.17 79.34

(b) Imbalance Ratio = 20.

Cal. OP. SC. FLw. Food. FA. SUN. DTD. ES. UCF. Avg.

CoOp + LogitAdjusted Loss 92.65 94.15 67.39 73.72 86.38 29.33 68.93 55.18 62.64 60.12 70.08
CoCoOp + LogitAdjusted Loss 95.25 96.64 71.38 80.31 91.20 32.78 77.29 61.31 58.82 71.70 74.48
Linear Feature Alignment 95.56 90.90 70.35 84.03 89.72 33.02 77.30 66.07 68.74 81.80 75.75

Candle (Ours) 95.84 95.89 73.49 84.92 90.75 38.02 78.53 67.32 80.96 82.59 79.08

(c) Imbalance Ratio = 50.

Cal. OP. SC. FLw. Food. FA. SUN. DTD. ES. UCF. Avg.

CoOp + LogitAdjusted Loss 93.30 93.34 67.18 75.45 87.65 29.20 65.91 51.42 57.35 61.62 69.92
CoCoOp + LogitAdjusted Loss 94.90 95.44 69.97 76.84 91.10 31.45 76.18 59.37 64.99 77.53 74.32
Linear Feature Alignment 94.23 86.76 67.95 82.81 87.73 30.75 75.13 61.78 61.91 79.49 72.85

Candle (Ours) 94.95 95.83 71.78 84.62 90.70 36.68 78.05 65.69 80.17 81.72 78.20
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Figure 3: Absolute improvement on the base classes with imbalance ratio 10, 20, 50
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Figure 4: Absolute improvement on the new classes with imbalance ratio 10, 20, 50

5.2 Main Results
Generalization from base to new classes. For generalization
from base to new classes, we partition each dataset into two disjoint
subsets, namely base classes and new classes. Then, the model is
trained on the imbalanced base set and subsequently tested on base
and new classes to demonstrate its generalization ability. Table 5

presents the harmonic mean values for the base-to-new setting
over imbalance ratios {10, 20, 50}. ImageNet is skipped here due
to the extremely high training cost for CoCoOp under this setting.
The results show that Candle consistently achieves state-of-the-art
results across different imbalance ratios. Specifically, the harmonic
mean values of Candle outperform the best previous method by an
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Table 6: Comparison of different methods in 16-shot base-to-new generalization. We report the accuracy (%) on both base and
new classes, as well as their harmonic mean. The best results are presented in bold.

(a) Average over 11 datasets.

Base New H

CLIP 69.34 74.22 71.70
CoOp 82.69 63.22 71.66

CoCoOp 80.47 71.69 75.83
LFA 83.62 74.56 78.83
Ours 83.86 76.55 80.04

(b) ImageNet.

Base New H

CLIP 72.43 68.14 70.22
CoOp 76.47 67.88 71.92

CoCoOp 75.98 70.43 73.10
LFA 76.89 69.36 72.93
Ours 76.97 68.54 72.48

(c) Caltech101.

Base New H

CLIP 96.84 94.00 95.40
CoOp 98.00 89.91 93.73

CoCoOp 97.96 93.81 95.84
LFA 98.41 93.93 96.13
Ours 98.54 94.47 96.46

(d) OxfordPets.

Base New H

CLIP 91.17 97.26 94.12
CoOp 93.67 95.29 94.47

CoCoOp 95.20 97.69 96.43
LFA 95.13 96.23 95.68
Ours 95.53 97.34 96.43

(e) StanfordCars.

Base New H

CLIP 63.37 74.89 68.85
CoOp 78.12 60.40 68.13

CoCoOp 70.49 73.59 72.01
LFA 76.32 74.88 75.59
Ours 79.14 74.92 76.97

(f) Flowers102.

Base New H

CLIP 72.08 77.80 74.83
CoOp 97.60 59.67 74.06

CoCoOp 94.87 71.75 81.71
LFA 97.34 75.44 85.00
Ours 98.01 77.52 86.57

(g) Food101.

Base New H

CLIP 90.10 91.22 90.66
CoOp 88.33 82.26 85.19

CoCoOp 90.70 91.29 90.99
LFA 90.52 91.48 91.00
Ours 90.52 91.23 90.87

(h) FGVCAircraft.

Base New H

CLIP 27.19 36.29 31.09
CoOp 40.44 22.30 28.75

CoCoOp 33.41 23.71 27.74
LFA 41.48 32.29 36.31
Ours 43.86 36.69 39.96

(i) SUN397.

Base New H

CLIP 69.36 75.35 72.23
CoOp 80.60 65.89 72.51

CoCoOp 79.74 76.86 78.27
LFA 82.13 77.20 79.59
Ours 81.64 77.93 79.74

(j) DTD.

Base New H

CLIP 53.24 59.90 56.37
CoOp 79.44 41.18 54.24

CoCoOp 77.01 56.00 64.85
LFA 81.29 60.63 69.46
Ours 81.40 61.35 69.97

(k) EuroSAT.

Base New H

CLIP 56.48 64.05 60.03
CoOp 92.19 54.74 68.90

CoCoOp 87.49 60.04 71.21
LFA 93.40 71.24 80.83
Ours 89.97 81.33 85.43

(l) UCF101.

Base New H

CLIP 70.53 77.50 73.85
CoOp 84.69 56.05 67.46

CoCoOp 82.33 73.45 77.64
LFA 86.97 77.48 81.95
Ours 87.13 80.51 83.69

Table 7: Cross-dataset transfer learning accuracy (%) of different methods. The methods are trained on an imbalanced source
dataset (ImageNet) and subsequently evaluated on the target datasets. The best results are presented in bold.

Cal. OP. SC. FLw. Food. FA. SUN. DTD. ES. UCF. Avg.

CoOp + LogitAdjusted Loss 90.8 87.0 64.9 67.3 85.3 18.8 63.2 42.2 44.4 65.9 63.0
CoCoOp + LogitAdjusted Loss 91.4 88.6 65.6 69.4 86.3 23.0 66.0 45.0 42.8 67.5 64.6

Candle (Ours) 91.3 88.9 64.6 68.3 85.5 24.2 66.1 44.6 48.4 67.2 64.9

average of 3.67%, 4.60%, and 3.88% under the three imbalance ratios.
We also illustrate the absolute improvements of Candle compared to
the previous best method in Figure 3 and Figure 4. The results show
average improvements of 2.58%, 2.79%, and 2.27% on the base classes
and higher average improvements of 4.87%, 6.11%, and 5.19% on
the new classes, affirming that it does indeed compensate for new
classes. Together, the above results demonstrate the effectiveness of
our approach in addressing imbalance both within the base classes
and between the base and new classes. We present detailed results
for each setting in the appendix due to the page limit.

To examine the robustness of Candle, we also report the results
for 16-shot base-to-new generalization in Table 6. In this setting,
Candle still achieves an improvement of 1.21% in average harmonic
mean over the best previous method. Specifically, it performs com-
parably with LFA on the base classes (+0.14% by average) but out-
performs LFA on the new classes by a large margin (+1.99% by
average), thus validating its ability to help with new classes.

In addition, by taking a closer look at the results for each dataset,
Candle achieves significant gains on datasets such as Flowers102,
FGVCAircraft, EuroSAT, and UCF101. This is in accordance with
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Table 8: Domain generalization accuracy (%) of different
methods. The methods are trained on an imbalanced source
dataset (ImageNet) and subsequently evaluated on the target
datasets. The best results are presented in bold.

IN. IN-A. INV2. IN-S IN-R.

CoOp + LA Loss 70.7 48.7 63.5 47.2 73.8
CoCoOp + LA Loss 71.3 49.1 63.3 47.8 74.4

Candle (Ours) 71.6 49.1 62.8 48.3 75.0

the analysis in Section 4.2 that CLIP performs poorly on datasets
where textual information is relatively unreliable, and our proposed
approaches alleviate this issue by leveraging both visual and textual
information.

Cross dataset transfer. For cross-dataset transfer, we train the
model on an imbalanced ImageNet subset with an imbalance ratio of
100 and subsequently test themodel on the other 10 datasets. Table 7
presents the results for cross-dataset transfer. Candle shows similar
results compared to CoCoOp with LogitAdjusted Loss across the
10 target datasets, achieving an average improvement of 0.3%. It’s
worth noting that the baseline methods require much more training
time compared to ours. For CoCoOp, 10 epochs of training lasts for
1 day and 6 hours and inference alone takes up 3 hours, while our
method only needs about 20 minutes for the whole training pro-
cess. Nonetheless, our method Candle is able to deliver comparable
results while significantly reducing computational cost. Similar to
the base-to-new generalization task, performance gains on specific
datasets can be observed in this task as well.

Domain generalization. For domain generalization, we train
the model on an imbalanced ImageNet subset with an imbalance
ratio of 100 and evaluate the model on four domain-shift target
datasets. The results are presented in Table 8. Candle achieves im-
provements over the previous best method on 3 out of 4 target
datasets, with an average increase of 0.15% on the target datasets,
and an increase of 0.3% on the source dataset. The results demon-
strate the robustness of Candle against domain shifts.

5.3 Ablation Study
Impacts of different loss functions. In the main results, we equip
the baseline methods with the balanced LA loss for fair compari-
son. Here, we further examine the robustness of different methods
against class imbalance without the assistance of such a tailored
loss function. Specifically, we use cross entropy (CE) loss for all
the methods and run on the imbalanced base-to-new generaliza-
tion task. The results are shown in Table 9. It can be observed that
CoCoOp suffers from a more severe performance drop without LA
loss, i.e., a decrease of 5.78% in average harmonic value. In con-
trast, our method Candle manages to hold on with a drop of only
1.51%. This indicates that even without the balanced logit-adjusted
loss, our model still shows potential strength in dealing with class
imbalance.

Effect of cross-modal attention.We conduct ablation study
on the imbalanced base-to-new generalization task to examine the
effectiveness of the cross-modal attention module. For the sake of
simplicity, we examine on the imbalance ratio = 50 setting. The

Table 9: Ablation on different loss functions. Δ indicates the
difference in performance for the same method trained with
CE loss or LA loss. Our method is the least sensitive to the
change in loss function.

Base New Harmonic Mean

CoOp + LA Loss 80.26 61.94 69.92
CoOp + CE Loss 76.12 61.19 67.84

Δ -4.14% -0.75% -2.08%

CoCoOp + LA Loss 77.91 71.05 74.32
CoCoOp + CE Loss 72.05 65.36 68.54

Δ -5.86% -5.69% -5.78%

Candle (Ours) 80.38 76.14 78.20
Candle w/ CE Loss 78.07 75.36 76.69

Δ -2.31% -0.78% -1.51%
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Figure 5: Ablation studies on cross-modal attention (left)
and virtual prototypes (right). The experiment is conducted
on the imbalanced base-to-new generalization task with an
imbalance ratio of 50.

current model is compared to one with only linear projection after
the extracted features, with the rest of the settings the same. The
results are shown in the left part of Figure 5. Without the cross-
modal attention module, the average results on the base and new
classes experience a drop of 1.19% and 0.85% respectively, leading to
a 1.02% decline of harmonic mean value. These figures clearly show
that our cross-modal attention module acts contributes positively
and significantly to the model’s overall performance.

Effect of virtual prototypes. We further examine the effec-
tiveness of the virtual prototypes. Since the removal of virtual
prototypes renders the image-image matching for new classes un-
achievable, the model in comparison can only leverage image-text
matching on the new classes. We conduct comparison experiments
and report the results in the right part of Figure 5. The results show
that, the performance gap on the base classes is relatively small,
with our proposed model holding an average advantage of 0.46%.
However, the performance on the new classes drops remarkably in
response to the removal of virtual prototypes, showing an average
decline of 2.27% across different datasets. The results prove that
the introduction of virtual prototypes significantly helps with new
class generalization.
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6 CONCLUSION
In this paper, we aim to address the new class generalization prob-
lem for vision-language models under more practical scenarios,
where the data may exhibit a long-tailed distribution. We propose
a novel and simple framework named Candle to solve this issue in
an efficient manner. Candle achieves state-of-the-art performance
over extensive experiments on diverse image classification datasets,
with an especially strong generalization on the new classes. Just
as significantly, the proposed framework directly optimizes in the
feature space and does not need access to model weights, which
also contributes to its economical training cost compared to past
methods. We hope our work serves as an inspiration for further
advances in exploring efficient and long-tailed generalization for
vision-language models.
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Table 10: Base-to-new generalization results of different methods with imbalance ratios 10, 20, 50. The best results are in bold.

(a) Imbalance Ratio = 10, base classes

Cal. OP. SC. FLw. Food. FA. SUN. DTD. ES. UCF. Avg.

CoOp + LogitAdjusted Loss 96.5 94.7 75.8 98.7 89.4 39.0 74.5 81.0 94.3 83.9 82.8
CoCoOp + LogitAdjusted Loss 94.5 95.6 70.2 94.6 90.7 34.9 78.7 75.2 87.8 81.6 80.5

Candle (Ours) 96.9 95.0 74.2 98.0 90.5 40.0 81.1 80.8 89.0 87.2 83.3

(b) Imbalance Ratio = 10, new classes

Cal. OP. SC. FLw. Food. FA. SUN. DTD. ES. UCF. Avg.

CoOp + LogitAdjusted Loss 87.5 93.5 63.7 56.5 89.1 27.3 59.1 41.5 41.2 57.0 61.6
CoCoOp + LogitAdjusted Loss 94.3 97.8 73.7 65.8 91.7 32.6 77.3 57.4 45.9 72.5 70.9

Candle (Ours) 94.9 97.0 74.4 75.1 91.1 35.8 77.5 58.9 73.5 79.5 75.8

(c) Imbalance Ratio = 20, base classes

Cal. OP. SC. FLw. Food. FA. SUN. DTD. ES. UCF. Avg.

CoOp + LogitAdjusted Loss 96.5 93.9 73.1 98.5 88.9 37.0 77.6 77.0 93.1 83.7 81.9
CoCoOp + LogitAdjusted Loss 95.2 95.9 69.2 94.0 90.8 33.6 78.2 71.6 88.3 80.7 79.8

Candle (Ours) 96.7 94.8 72.5 97.7 90.5 39.8 79.8 79.1 90.5 85.7 82.5

(d) Imbalance Ratio = 20, new classes

Cal. OP. SC. FLw. Food. FA. SUN. DTD. ES. UCF. Avg.

CoOp + LogitAdjusted Loss 89.1 94.4 62.5 58.9 84.0 24.3 62.0 43.0 47.2 46.9 61.2
CoCoOp + LogitAdjusted Loss 95.3 97.4 73.7 70.1 91.6 32.0 76.4 53.6 44.1 64.5 69.9

Candle (Ours) 95.0 97.0 74.5 75.1 91.0 36.4 77.3 58.6 74.4 79.7 75.9

(e) Imbalance Ratio = 50, base classes

Cal. OP. SC. FLw. Food. FA. SUN. DTD. ES. UCF. Avg.

CoOp + LogitAdjusted Loss 93.8 92.3 70.7 96.6 88.0 35.3 79.7 72.0 93.4 80.8 80.3
CoCoOp + LogitAdjusted Loss 94.5 94.6 67.1 88.5 90.5 31.5 77.3 68.3 86.9 79.9 77.9

Candle (Ours) 95.2 94.6 69.0 95.3 90.3 37.6 78.6 72.0 87.9 83.3 80.4

(f) Imbalance Ratio = 50, new classes

Cal. OP. SC. FLw. Food. FA. SUN. DTD. ES. UCF. Avg.

CoOp + LogitAdjusted Loss 92.8 94.4 64.0 61.9 87.3 24.9 65.9 40.0 38.4 49.8 61.9
CoCoOp + LogitAdjusted Loss 95.3 96.3 73.1 67.9 91.7 31.4 75.1 52.5 51.9 75.3 71.0

Candle (Ours) 94.7 97.1 74.8 76.1 91.1 35.8 77.5 60.4 73.7 80.2 76.1

A ADDITIONAL RESULTS
Generating imbalanced datasets. Following the method pro-
posed by Cao et al. [3], we generate imbalanced versions from the
original datasets to obey an exponential decay of a given ratio. Let
𝑛𝑖 denote the number of samples in the 𝑖-th class, the imbalance
ratio is defined as max{𝑛𝑖 }/min{𝑛𝑖 }. From Table 3, we can see
that the training set for some datasets only has around 30 samples
per class (FGVCAircraft) whereas some has over 1000 (ImageNet).
Therefore, we set the maximum number of samples per class of the
generated dataset to be either 100 (if has) or the maximum number
of samples per class of the original dataset, to guarantee enough
data to form a valid imbalanced distribution. Additionally, in cases
where the maximum number of samples per class is lower than the

imbalance ratio, we ensure there is at least 1 sample instead of 0
for the tail classes.

Imbalanced base-to-new generalization details. In Table 10,
we show the full results of imbalanced base-to-new generaliza-
tion, including the accuracy of different methods on base and new
classes, under imbalance ratios {10, 20, 50}. On the base classes, our
method exhibits a slight edge over CoOp+LA Loss with an increase
of 0.3% averaging across different ratios and shows a clearer im-
provement (2.7%) over CoCoOp+LA Loss, which is the previous best
method in harmonic mean value. On the new classes, our method
far outperforms CoOp+LA Loss with an advantage of 14.4% and
still leads CoCoOp+LA Loss by 5.3%. This again demonstrates that
our method compensates significantly for the new classes while
preserving a strong performance on the base classes.
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Table 11: Results of different attention strategies compared
to the original method under the imbalanced base-to-new
generalization setting with imbalance ratio 50. Δ indicates
the average difference in accuracy across different datasets.

Mask Type Δ, Base Classes Δ, New Classes

Within Visual. -0.26% -0.49%
Within Text. -0.19% -0.78%

Between Visual & Text. -0.74% -0.90%

Different attention strategies. As mentioned in the article, we
perform cross-modal attention by concatenating image features,
visual prototypes and textual prototypes together, and then feed

them into a self-attention module. Here, we provide analysis of
different attention strategies by adding different input masks. For
the sake of simplicity, we consider the concatenated inputs to be
comprised of two parts, the visual part (image features + visual
prototypes) and the texual part (texual prototypes). Hence, there
are three different kinds of masks to choose from, including mask-
ing attention within each part and between each part. Table 11
shows the results of comparing different attention strategies with
the original method (no mask at all). The consistent decline proves
the superiority of the original design. Particularly, the removal of
attention between visual and textual part leads to the largest drop
on both base and new classes, which goes to show that the interac-
tion between different modalities does contribute to improving the
model’s performance.
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