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Abstract
In-context learning (ICL) has garnered signif-
icant attention for its ability to grasp func-
tions/tasks from demonstrations. Recent studies
suggest the presence of a latent task/function
vector in LLMs during ICL. Merullo et al.
(2024) showed that LLMs leverage this vec-
tor alongside the residual stream for Word2Vec-
like vector arithmetic, solving factual-recall ICL
tasks. Additionally, recent work empirically
highlighted the key role of Question-Answer data
in enhancing factual-recall capabilities. Despite
these insights, a theoretical explanation remains
elusive. To move one step forward, we propose
a theoretical framework building on empirically
grounded hierarchical concept modeling. We de-
velop an optimization theory, showing how non-
linear residual transformers trained via gradient
descent on cross-entropy loss perform factual-
recall ICL tasks via vector arithmetic. We prove
0-1 loss convergence and show the strong gen-
eralization, including robustness to concept re-
combination and distribution shifts. These re-
sults elucidate the advantages of transformers
over static embedding predecessors. Empirical
simulations corroborate our theoretical insights.

1. Introduction
Transformer-based Large Language Models (LLMs)
(Vaswani et al., 2017) have ushered in a new era of foun-

†Work completed during internship at RIKEN. 1Department
of Computer Science, City University of Hong Kong, Hong
Kong SAR 2Center for Advanced Intelligence Project, RIKEN,
Japan 3School of Mathematics and Statistics, The University
of Sydney, Australia 4Institute of High Performance Comput-
ing (IHPC), Agency for Science, Technology and Research
(A⋆STAR), Singapore 5Centre for Frontier AI Research (CFAR),
Agency for Science, Technology and Research (A⋆STAR), Sin-
gapore 6College of Computing and Data Science, Nanyang
Technological University, Singapore 7Department of Mathemat-
ical Informatics, The University of Tokyo, Japan. Correspon-
dence to: Wei Huang <wei.huang.vr@riken.jp>, Hau-San Wong
<cshswong@cityu.edu.hk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

dation models. A growing academic perspective high-
lights that the core strength of LLMs lies in their re-
markable In-Context Learning (ICL) capability (Lu et al.,
2024), enabling them to infer underlying tasks or func-
tions from input demonstration pairs (Minegishi et al.,
2025b)—akin to the concept of function references in pro-
gramming (Bernays, 1936). For example, given the prompt
Japan Tokyo France Paris China, the expected
output “Beijing” reflects the underlying function “Coun-
try’s Capital” applied to the final query.

Role of Task Vector. A growing body of research seeks
to uncover the internal mechanisms underpinning ICL,
shedding light on how LLMs retrieve function/task from
demonstration. Recent studies employing advanced prob-
ing techniques have identified the emergence of a task
vector (Hendel et al., 2023; Merullo et al., 2024; Yang
et al., 2025) (or function vector (Todd et al., 2024; Ka-
hardipraja et al., 2025)) within the latent representations
of LLMs during ICL deduction. This vector appears
around the 15-19th layers in models like GPT-J-6B (Wang
& Komatsuzaki, 2021). Formally, Hendel et al. (2023);
Merullo et al. (2024) propose that, given the prompt T =
[x1, f(x1),x2, f(x2), · · · ,xquery], the LLM θ constructs
the task vector in the earlier layers, denoted as afθ(T),
based on its understanding of the task/function message
in T. Furthermore, Merullo et al. (2024) revealed that,
certain factual-recall ICL tasks indeed correspond to some
latent representation f(xquery) = afθ(T) + bquery

θ (xquery),
where bquery

θ (xquery) is the query-encoded residual stream
in deeper layers. That is, the model θ can execute the ICL
task through a simple vector addition:

pθ(f(xquery) = · | T) =

∫
pθ(aθ + bquery

θ | aθ,T)

· pθ(aθ | T)d(aθ),

(1)

where pθ(aθ | T) denotes the model’s confidence in rec-
ognizing aθ as the task vector afθ(T). The formulation in
Eq. (1) highlights the pivotal role of residual streams. How-
ever, existing theories on ICL either overlook the residual
term entirely (Tian et al., 2023; Kim & Suzuki, 2024; Bu
et al., 2024a) or handle it in an unnatural manner (Nichani
et al., 2024). Additionally, while some studies suggest that
Question-Answer (QA) training data are crucial for en-
abling LLMs to retrieve factual knowledge (Allen-Zhu &
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(a) Country-Capital (2D). (b) Country-Capital (3D). (c) Symbol-Origin (2D). (d) Symbol-Origin (3D).

Figure 1. Visualization of task vector and word embedding. The 22nd layer’s vector embeddings of GPT2-medium in the 2-D and 3-D
projection spaces are shown, where the task vector (’o task’) is extracted from some internal layer, following Merullo et al. (2024). For
the task of retrieving a country’s capital (a-b) and the task of retrieving a symbolic creature’s origin (c-d), the latent embeddings of the
LLM demonstrate the approximate relationship ’x + o task = y’, with ’x’ containing little components aligned with ’o task’.

Li, 2024; Zhang et al., 2025a), there is currently no theo-
retical framework to substantiate this claim, nor an expla-
nation of how it facilitates factual-recall ICL. These gaps
naturally raise the following research question.

Research Questions 1
How does a non-linear residual transformer, trained via
gradient methods with a realistic cross-entropy loss on
QA data, naturally perform factual-recall ICL in the
vector arithmetic style described by Eq. (1)?

Analogy to Word2Vec. As noted by (Merullo et al.,
2024), the vector arithmetic in Eq. (1) mirrors that of
Word2Vec, a static word embedding model (Mikolov
et al., 2013). For instance, the representation arith-
metic “France - Paris + Poland = Warsaw”
can be interpreted as “France - Paris” represent-
ing the task vector afθ , which performs the function
“get capital(·),” while representations of countries
like “Poland” or “Japan” act as bquery

θ .

Recent work by Wibisono & Wang (2023) examined the
relationship between one-layer bidirectional attention opti-
mized via Masked Language Model loss through reparam-
eterization and the Word2Vec method. However, they show
that such BERT-like models function as an inexact approx-
imation of the Word2Vec method, exhibiting non-trivial er-
rors. Their analysis failed to delve into the the optimization
process, recognize the task vector mechanisms, or clarify
the comparative advantages of transformer over Word2Vec.
This raises the following question for further investigation.

Research Question 2
In the context of Eq.(1), what are the primary strengths
of transformers over their Word2Vec predecessors?

To address these questions theoretically, we first observe
that the latent geometry of LLMs exhibits intriguing prop-

erties, as illustrated in Figure 1. In factual-recall tasks,
answer/label vectors y tend to align more strongly with
the task vector afθ than query word vectors x, satisfying
x + afθ ≈ y. Here, afθ can be interpreted as the represen-
tation of high-level task concepts (aligned with the x-axis
in Figure 1), while the components of x orthogonal to afθ ,
represent low-level concepts (aligned with the y/z-axes in
Figure 1). This interpretation is consistent with Park et al.
(2025), which demonstrates that LLMs exhibit hierarchical
linear concept geometry after generative pretraining, with
word representations residing within polytopes. These in-
sights inspire the modeling approaches in Section 2.1.

Our contributions are summarized as follows:

1. We develop an optimization theory demonstrating
that transformers with nonlinear softmax attention,
MLP, layer normalization, and residual connec-
tions—trained via Gradient Descent (GD) with cross-
entropy loss—can effectively perform factual-recall
ICL in a vector arithmetic manner, grounded in empiri-
cally motivated data modeling. Our analysis shows that
the transformer retrieves the high-level task/function
concept through attention-MLP, which, when combined
with any embedded query vector within the same high-
level task concept, yields the correct corresponding an-
swer vector. Despite the inherent non-convexity of the
learning problem, we establish the asymptotic behaviors
of the optimization dynamics and prove the convergence
of ICL test losses.

2. We demonstrate a clear learning scenario separation be-
tween training on QA data and on Word-Label demo-
pair ICL data, both framed within hierarchical con-
cept modeling. While prior theoretical works assume
both training and testing on Word-Label pair ICL data
(Zhang et al., 2024; Kim & Suzuki, 2024; Chen et al.,
2024a; Bu et al., 2024a), we show that this approach
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fails to retrieve the high-level task vector and instead
leads to harmful memorization of low-level features. In
contrast, we prove that training on QA data enables the
model to effectively learn the task vector, achieving ar-
bitrarily small error when tested on either Word-Label
pair ICL or QA-ICL distributions.

3. We provide theoretical guarantees for compositional
generalization in in-context learning, focusing on task
vector emergence and OOD robustness. Specifically:
(i) we show that transformers can regress task vec-
tors directly from demonstration pairs, without requir-
ing explicit query, and can apply these vectors compo-
sitionally at test time via arithmetic manipulation; (ii)
we prove that models trained on structured QA data
can generalize to unseen task prompts or dictionaries
by leveraging conic combinations of learned high-level
task vectors and novel orthogonal low-level and task-
irrelevant features; and (iii) we establish the model’s
adaptability to distribution shifts in prompt content and
length. These bonuses shows transformer’s superiority
over traditional methods.

Remark 1.1. Humble Remark. We humbly acknowledge
that the scope of this study is confined to illustrating the
merits of task vector arithmetic mechanisms observed in
some single-token factual-recall ICL tasks, modeled based
on prior empirical and theoretical observations. We do not
claim this as a universal explanation for how LLMs han-
dle complex multi-token or factual tasks. Nevertheless,
to the best of our knowledge, this is the first theoretical
work to explicitly consider the pivotal role of the resid-
ual stream and layer-wise normalization in ICL, contribut-
ing to the growing body of research on transformers and
ICL. These nonlinearities, alongside softmax attention and
cross-entropy loss, introduce significant challenges in ana-
lyzing optimization dynamics.

1.1. Related Work

Task Vector Mechanism. This line of research empiri-
cally validated the emergence of task vectors (Hendel et al.,
2023; Todd et al., 2024; Liu et al., 2024; Yang et al.,
2025). Especially, Merullo et al. (2024) revealed that large
language models (LLMs) implement certain single-token
factual-recall tasks through vector arithmetic. However, no
existing study explains why and how gradient-update trans-
former models naturally implement this mechanism.

Storage and Retrieval of Factual Knowledge. Recent re-
search has explored how LLMs perform factual recall or
associative memory tasks (Nichani et al., 2025; Cabannes
et al., 2024; Allen-Zhu & Li, 2025). Allen-Zhu & Li
(2024); Zhang et al. (2025a) empirically show the impor-
tance of QA data to improve LLM’s capability to retrieve
factual knowledge. Additionally, Park et al. (2024); Jiang

et al. (2024b); Marks & Tegmark (2024) provided both the-
oretical and empirical evidence that LLMs tend to represent
independent concepts and facts in a linear manner.

In-Context Learning Theory. Recent work has studied
how transformers perform in-context learning across vari-
ous settings (Zhang et al., 2024; Chen et al., 2024b; Kim
& Suzuki, 2024; Nichani et al., 2024; Chen et al., 2024a).
However, these analyses often overlook the crucial role of
the residual stream and the phenomenon of in-context vec-
tor arithmetic. Moreover, they typically rely on unrealis-
tic assumptions, such as linearized or combined QK atten-
tion (Kim & Suzuki, 2024; Nichani et al., 2024), or on im-
practical loss functions like squared or hinge loss (Chen
et al., 2024a).

Additional Related Work could be found in Appendix A.

2. Problem Design and Intuition
Notation. We denote the Bernoulli distribution with pa-
rameter p, which represents a discrete distribution over
{0, 1}, as Ber(p). We use Rd,Rd×d to denote vector and
matrix space, and utilize I ∈ Rd×d to denote identity ma-
trix. For two sequences an and bn, an = O(bn) indicates
that there exist constants C > 0 and N > 0 such that
|an| ≤ C|bn| for all n ≥ N . Similarly, an = Ω(bn)
means bn = O(an), and an = Θ(bn) signifies both an =
O(bn) and an = Ω(bn). We define span(v1, v2, . . . , vk)
as the linear space spanned by vectors v1, v2, . . . , vk, and
conic(v1, v2, . . . , vk) as the conic hull, which includes all
non-negative linear combinations of these vectors. We use
∥ · ∥ for the l2 norm and ∥ · ∥F for the Frobenius norm.

2.1. Hierarchical Data Modeling

In this section, we present our data modeling based on the
observations of task vector arithmetic in factual-recall ICL
illustrated in Figure 1. We found the near-orthogonal prop-
erties in Figure 1 coincide with Park et al. (2025), which
suggests that LLMs encode high- and low-level concepts
in an approximately orthogonal manner. Specifically, we
treat the task vector as a high-level concept representation,
while orthogonal components represent task-specific low-
level concepts. Details are delayed to Appendix C.

High-Level Task Concept Vector. There are K high-level
binary concepts, each denoted by zk ∈ {0, 1}. We define
the steering vectors ak ∈ Rd to represent zk = 1 over
zk = 0, where all K vectors are mutually orthogonal. This
orthogonality ensures that for any distinct k1, k2, k3, k4 ∈
[K], ak1

− ak2
⊥ ak3

− ak4
, signifying the independence

between concepts, consistent with findings in recent work
(Park et al., 2024; 2025; Jiang et al., 2024b; Marconato
et al., 2025; Liu et al., 2025). For example, the concept
of “capital” can be considered independent of “gender”.

Low-Level Task-Specific Concept Vector. For each high-
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level concept zk, k ∈ [K], there is an associated low-level
binary concept wk ∈ {0, 1}, represented by two semanti-
cally opposite vectors −bk and bk ∈ Rd, where wk = 0
corresponds to −bk and wk = 1 to bk. As noted in (Park
et al., 2025) in the latent representation of LLM, the high-
level task concept vectors are orthogonal to the low-level
ones, i.e., ak1

⊥ bk2
for all k1, k2 ∈ [K], and bk are

mutual-orthogonal.

Word-Label Pair ICL Prompt Distribution (PT). The
prompt T := [x1,y1, · · · ,xJ ,yJ ,xJ+1] ∈ Rd×(2J+1)

and label yJ+1 are generated as follows. Each prompt’s co-
task concept, which is shared within the demo-pairs within
the prompt, is sampled as kT ∼ Unif[K], with label in-
dicator ykT,l ∼ Unif{±1} and noise terms ξl,x, ξl,y ∼
N (0, σ2

pI). Word-label pairs in demonstrations and queries
follow:

xl :=
∑

k∈XT,l

(xa · ak + yk,l · bk) + ξl,x,

yl :=
∑

k∈YT,l

(ak + yk,l · bk) + ξl,y,
(2)

for l ∈ [J ]. To model word polysemy, we define
XT,l,YT,l ⊂ [K] as the sets of latent concepts associated
with xl and yl, respectively; each set includes the shared
co-task concept kT along with possibly task-specific but
contextually irrelevant concepts. The noise term ξl cap-
tures semantic variation, and the task anchor xa · ak facil-
itates concept retrieval, as illustrated in Figure 1, with xa

set to 0.1 (see Appendix C). The query word is defined as
xJ+1 =

∑
k∈XT,J+1

(xa · ak + yk,J+1 · bk) + ξJ+1,x, fol-
lowing Eq. (2). The expected label, by contrast, is given by
yJ+1 = akT

+ ykT,J+1 · bkT
, since only semantics tied

to the shared co-task concept kT contribute to prediction
under task kT. An illustrative example with J = 2 to show
our modeling intuition is

Japan
x1

Sakura
y1

France
x2

Rooster
y2

China
x3

where the shared co-task concept kT in this context is
“National Symbol”, and the expected label vector is y3 =
Panda—the symbol associated with China under the task
kT. While the words “China” and “Panda” may carry
semantics relevant to other tasks (e.g., country capitals or
animal categories), only the “National Symbol” meaning is
expected to contribute to y3, illustrating how the model se-
lectively attends to task-relevant semantics in the presence
of polysemy. If the prompt is modified to

Japan
x1

Sakura
y1

France
x2

Iris
y′
2

China
x3

then the expected label vector becomes y′
3 = Peony, as

the shared co-task concept k′T now corresponds to “Na-
tional Flower”. This illustrates how the shared co-concept
steers correctness during inference.

ICL vs. QA Training. Indeed, training and testing solely
on the ICL data is unrealistic, despite its popularity in the-
oretical studies (Zhang et al., 2024; Kim & Suzuki, 2024;
Chen et al., 2024a; Bu et al., 2024a). A more practi-
cal approach involves generative pretraining or Question-
Answer (QA) pretraining or fine-tuning (Allen-Zhu & Li,
2024; Zhang et al., 2025a). Notably, our concept data mod-
eling naturally arises from generative pretraining (Park
et al., 2024; Jiang et al., 2024b; Park et al., 2025). Fur-
thermore, as highlighted by Allen-Zhu & Li (2024); Zhang
et al. (2025a), QA data plays a crucial role in enhancing
a transformer’s ability to retrieve relevant factual knowl-
edge. Additionally, Merullo et al. (2024) leverage QA data
to extract task vectors. Motivated by these insights, we in-
corporate QA data into our training framework, which we
formalize as follows.

QA Sentence Distribution1 (PQA). We model our QA-
type sentence S := [xQA,y] as follows. Each sentence is
associated with a task concept kS ∼ Unif[K]. The word
x and label vector y are constructed similarly to the word-
label pair distribution PT. The QA prefix xQA is created
by combining common tokens νn,1:M (M task-irrelevant
common tokens) and the task vector akS

, which can appear
anywhere before x as the last column of xQA. To capture
semantic variability, noise vectors ξ1:M , ξx ∼ N (0, σ2

pI)
are added to the common tokens. Formal details are pro-
vided in Appendix C. An illustrative example with M = 5
to show our modeling intuition on concept k is:

What
νn,1

+ξ1

is
νn,2

+ξ2

the
νn,3

+ξ3

capital
akS
+ξ4

of
νn,5

+ξ5

x
xa·akS

+ebkS
+ξx+···

y
akS

+ebkS

Here, we assume that a specific position mS = 4 ∈ [M ]
encodes task vector akS

encoding the high-level task mes-
sage. This formulism is inspired by the empirical findings
in Allen-Zhu & Li (2024) and serves a role similar to the
relation token described in Nichani et al. (2025), but ours
differs in its empirically-supported concept modeling.

QA-ICL Prompt Distribution. (PT
QA). A natural ex-

tension of the above two distributions is that we can re-
place the word-based demonstration by QA-based demon-
stration in the task-specific ICL prompt, namely TQA :=

[xQA
1 ,y1, · · · ,xQA

J ,yJ ,x
QA
J+1] ∈ Rd×(J+1)(M+2) ∼ PTQA .

2.2. Residual-Layernom Transformer Model

The structured “up-word-down-label” embedding E(T) =(
x1, · · · xJ , xquery
y1, · · · yJ , 0

)
proposed in prior theoretical

work (Bai et al., 2023; Zhang et al., 2024; Huang et al.,
2024a; Kim & Suzuki, 2024; Chen et al., 2024a; Bu et al.,
2024a) is designed for simplified, structured, and residual-
free transformers, where words are only available to at-

1Indeed, the formula of the sentence can be a factual statement
(e.g. S = [xQA, y] = [The

ν1

, ak, of
ν4

, x, y]) other than a QA.
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tention matrices and labels are restricted to value/combine
matrices. This residual-free setup deviates from real-world
scenarios. In contrast, we consider the case where the
prompt T = [x1,y1, · · · ,yJ ,xquery ] = [T1, · · ·TL] ∈
Rd×L (L = 2J + 1) is directly processed by a non-linear
transformer with a residual stream as follows.

hθ,0(T) =

L−1∑
l=1

WV TlσS

(
(WKTl)

⊤(WQTL)
)
∈ Rd,

hθ = WOLN(hθ,0(T)) +TL,

where σS(·) denotes the column-wise softmax operation,
WO := Id×d, LN(z) := z/∥z∥2 is the l2 layer-wise nor-
malization, and hθ is the vector output of transformer.

Connection to Word2Vec Arithmetic. When ∥ak∥ =
∥bk′∥ for all k, k′ ∈ [K], and both the cardinalities
of XT,l,YT,l and the noise magnitude are sufficiently
bounded, we have an approximate identity:

yJ+1 ≈ akT
+ xJ+1, (3)

where components unrelated to the current co-concept kT
are negligible compared to the dominant term 1.1akT

±
bkT

, which governs the logits when the model attends to the
vocabulary dictionary. Therefore, if the transformer θ can
extract the high-level task vector hθ,0(T), then adding it
to any word vector within the same task concept should
yield the task-specific label vector in the context of argmax
sampling. This aligns with empirical findings by Merullo
et al. (2024), which show that adding various embedded
query words, such as “Poland” or “China”, to the vector
o⃗city—which captures the function get capital(·) in
the latent space—produces the correct capital city.

Training Setups. Define θ := {WK ,WQ,WV }. We
minimize the L2-regularized cross-entropy loss by gradient
descent (GD) at each time step

LP tr(θ) = −EP tr

[
log(

exp (u⊤
ky
hθ)∑

k∈[7K+K′] exp (u
⊤
k hθ)

)
]
, (4)

where K denotes the number of tasks, K ′ the number of
task-irrelevant tokens, and uky refers to the vector corre-
sponding to y in the token embedding matrix U, which
contains K both high- and bi-label low-level concepts,
noise-free and single-task-specific word and label tokens,
as well as K ′ irrelevant tokens–the number “7K +K ′” is
thus by K sets of {ak±bk, 0.1ak±bk,±bk,ak} as well as
K ′ irrelevant tokens. Notably, our analysis focuses exclu-
sively on the semantics associated with the prompt’s shared
co-task encoded in a given word or label token.2 Normal-
ization ensures that each token uk has the same length, en-
abling fair comparisons during sampling. For simplicity,

2While it is tractable to assume that all dictionary entries fol-
low the structure in Eq. (2), doing so would require additional as-
sumptions and care regarding how fixed polysemous words relate
to their corresponding labels.

we assume ∥ak∥ = ∥a∥ = ∥bk∥ = ∥b∥ = ∥νm∥ = 1,
a common setup for theoretical studies (Tian et al., 2023;
2024). Formal details of U are provided in Appendix C.

The training data P tr is sampled from training distribution
P , with a sample size of N . To address the scale differ-
ence between the gradients of attention and MLP, we adopt
a smaller learning step for MLP characterized by a scale
factor qV . The initial weight matrices W

(0)
Q and W

(0)
K

are sampled independently from a Gaussian distribution
N (0, σ2

0 · I), a more realistic choice than scaled identity
or overly constrained initializations used in prior work (Li
et al., 2023b; Bu et al., 2024a; Chen et al., 2024a). Sim-
ilarly, W(0)

V is initialized as N (0, σ2
1 · I), consistent with

standard practice in recent theoretical analyses of Trans-
formers (Tian et al., 2023; Jiang et al., 2024a; Li et al.,
2025a; Yang et al., 2024b).

Test Setup. During testing, we examine the probability that
the label vector is the most-likely token to be selected from
the disrupted token dictionary on the test prompt distribu-
tion P⋆ where the noises are sampled from N (0, σ⋆

p
2 · I)

(either word-based prompt or QA sentence-based prompt)

LP⋆ = EP⋆ [1(ky ̸= argmax
k

(
exp (uk

⊤hθ)∑
k∈[7K+K′] exp (u

⊤
k hθ)

))]

= EP⋆ [1(ky ̸= argmax
k

u⊤
k hθ)],

(5)

where ky is the index of y in the total dictionary U. The
whole procedure is in Algorithm 1.

Algorithm 1 Training algorithm

Input: Training distribution P , Test distribution P⋆,
Training size N , step size ηqV , scaled parameter qV ,
stopping criterion ε and total epochs T .
Initialize the model θ(0) = {W(0)

V ,W
(0)
K ,W

(0)
Q }.

Sample training data P tr ∼ P .
for t = 0, 1, . . . , T − 1 do

If L0−1
P⋆ (θ(t)) ≤ ε stop else continue.

Update model parameters:
WV

(t+1) = WV
(t) − ηqV ∇W

(t)
V

LBt(θ
(t)),

WK
(t+1) = WK

(t) − η∇
W

(t)
K

LBt
(θ(t)),

WQ
(t+1) = WQ

(t) − η∇
W

(t)
Q

LBt
(θ(t))

end for

3. Theoretical Results
In this section, we present our main theoretical results.
Condition 3.1. Suppose the following holds for some suf-
ficiently large constant C > 0:

1. Dimension d satisfies d ≥ CM2 log(K
′2N2M2

δ ).

2. Training sample size N is sufficiently large N ≥
Cmax{K log( 1δ ),

KK′ log( 1
δ )

M }.

5



Provable In-Context Vector Arithmetic via Retrieving Task Concepts

(a) Training loss (b) Test loss (c) u⊤W⊤
KWQv (d) u⊤WV v

Figure 2. Training dynamics over the ICL prompt training distribution. (a–b) Training and test losses; (c–d) projection values of key-
query and value matrices. In (d), WV overfits to low-level features bk, resulting in persistently constant (0.2) test error shown in (b).

3. Dictionary size K,K ′ satisfies K ≥ C log( 1δ ), K
′ ≥

Cmax{M,K}.
4. The standard deviations of Gaussian initializations

satisfies σ1 ≤ min{d− 1
2

C ,

√
qV (log(K′2

δ ))

C }, and σ0 ≤
min{d− 1

4

C (log( (K
′)2

δ ))−
1
4 (log(M))

1
2 , d− 1

2

C }.

5. The noise level σp satisfies σp ≤ d− 1
2

C .
6. Scaled parameter qV and learning rate η satisfy

Cσ2
1d

log(σ−2
0 d−1 log(M−1

0.06 ))
≤ qV ≤ σ2

1d

C log(d− 1
2

√
log(K′2

δ ))
,

η ≤ min{σ2
1d

1
2 K

√
log(K′2

δ )

qV C , σ1d
1
2 M4

C(M−1)2 }.

The conditions on d,N,K ensure that certain concentra-
tion inequalities hold and that the learning problem is ad-
equately overparameterized (Chatterji & Long, 2021; Frei
et al., 2022; Cao et al., 2022; Kou et al., 2023). The con-
dition on K ′ controls the impact of contributions from
answer-irrelevant dictionary tokens, though it can be re-
laxed at the cost of a more intricate analysis. The con-
ditions on σ0 and σ1 regulate the model’s initial bias and
ensure that gradient descent updates the model effectively.
The condition on σp guarantees that the gradient flow is
only mildly affected by noise, which is reasonable given
the typically high signal-to-noise ratio in language data. Fi-
nally, the conditions on η and qV are technical assumptions
necessary for the optimization analysis.

The followings present our primary results regarding the
retrieval of task vectors and the convergence of test loss.
Theorem 3.2 (Task Vector Retrieval). Under Condition
3.1, let test ICL prompt distributions include Word-Label
ICL Prompt P⋆

T and QA-ICL Prompt PT
QA

⋆. Then, for the
gradient descent iterates in Algorithm 1, with probability
at least 1−δ, there exists t = Ω((ηqV )

−1σ2
1dK, such that:

• Training on PT or PT
QA: When testing on a sample

with task concept k⋆ ∈ [K], before adding the residual
stream, the model generates a hybrid vector with both
high- and low-level components:

cos⟨hθ(t),0,ak⋆⟩ = Θ(1), cos⟨hθ(t),0, bk⋆⟩ = Θ(1). (6)

• Training on PQA: When testing on a sample with task
concept k⋆ ∈ [K], the model approximately retrieves
the appropriate task vector before adding the residual
stream:
cos⟨hθ(t),0,ak⋆⟩ = Θ(1), cos⟨hθ(t),0,u⟩ = o(1), (7)

for all u ∈ {as}s̸=k⋆∈[K] ∪ {bs}s∈[K] ∪ {νk′}k′∈[K′].

The first result shows that under our setting, when train-
ing and testing on ICL-type data, the transformer fails to
reliably retrieve high-level co-task information from ICL
or QA-ICL prompts. Consequently, the resulting hθ(t) be-
comes a hybrid vector, contaminated by low-level features
that disrupt task vector addition with residuals, as validated
in Figure 2(d). Unlike harmful overfitting in vision models
(Frei et al., 2022; Cao et al., 2022), which stems from noise
memorization, the harmful overfitting here arises from low-
level feature memorization, due to their unintended co-
occurrence in ICL-style data. In contrast, the second re-
sult shows that training on QA data enables more accurate
retrieval of co-task vectors, which is inherently due to the
absence of bk in xQA, as illustrated in Figure 3.

The following proposition further validates the conse-
quences of harmful vs. benign task vector retrieval.
Proposition 3.3 (Test Losses Disparity). For ∀ε > 0,
under Condition 3.1, for any test distribution P⋆ ∈
{P⋆

T,PT
QA

⋆}, with the prompt length3 satisfying J⋆ =

Ω( log(1/ε)2 log(K) ) and the noise level σ⋆
p = O((K log(Lε ))

− 1
2 ),

with probability at least 1 − δ, there exists t =
O(η−1q−1

V σ2
1d

2KM log( 1ε )), it holds that

• Training on PT or PT
QA: The test loss satisfies

LP⋆(θ(t)) = Θ(1).

• Training on PQA: The test loss satisfies LP⋆(θ(t)) ≤ ε.
Furthermore, we have two bonuses

– Task Vector Regression from Demonstrations. The
transformer could approximately retrieve the task

3This condition ensures that other task concepts within the
prompt do not interfere with recognizing the prompt’s co-task. It
can be relaxed by assuming a lower probability of words being as-
sociated with task concepts outside the prompt’s co-task concept
or by limiting the number of task concepts per word.
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vector (i.e. satisfies Eq.(7)) solely from demo-pairs,
without requiring a query word.

– Task Vector Arithmetic in Factual Recall. Given
a test sample with co-concept k⋆, the intermediate
output hθ(t),0 can be added to any query with co-
concept k⋆, which also leads to LP⋆(θ(t)) ≤ ε.

The first bonus parallels findings in Hendel et al. (2023);
Yang et al. (2025), demonstrating that transformers can re-
gressively infer task vectors from demo-pairs. The second
aligns with empirical studies Hendel et al. (2023); Merullo
et al. (2024), where Merullo et al. (2024) add extracted task
vectors from current prompt to queries outside the prompt
and still obtain accurate predictions.

The following proposition examines the model’s capability
to address OOD unseen ICL tasks.
Proposition 3.4 (OOD Generalization). Under the condi-
tions of Theorem 3.2, suppose the transformer is trained on
PQA. At test time, for any distribution P⋆ ∈ {P⋆

T,PT
QA

⋆},
the model satisfies:

1. Dictionary Shift Adaptability. The model gener-
alizes to unseen dictionaries Unew with high-level
(K⋆

a ≤ K), low-level (K⋆
b ≤ d − K⋆

a), and irrele-
vant (K⋆

ν ≤ d − K⋆
a − K⋆

b ) concepts, where a⋆
ka

∈
conic({ak}k∈[K]), and ∥a⋆

ka
∥ = ∥b⋆kb

∥ = ∥ν⋆
kν
∥ = 1

for all ka ∈ K⋆
a , kb ∈ K⋆

b , and kν ∈ K⋆
ν , with {a⋆

ka
},

{b⋆kb
}, and {ν⋆

kν
} mutually orthogonal.

2. Distribution Shift Adaptability. The model accommo-
dates test prompts containing multiple co-task con-
cepts K ⊂ [K] with |K| < 4. The test prompt
length J⋆ and the distributions over XT,l and YT,l

for all l ∈ [J + 1] are arbitrary, provided that∑
l |XT,l|,

∑
l |YT,l| = o(J⋆/10).

This proposition contributes to the ongoing discussion of
LLMs’ linear latent geometry and OOD extrapolation, par-
ticularly in relation to Question 5.1.4 of Reizinger et al.
(2024), which ask whether the linear latent geometry aids
the OOD extrapolation, superior to static embedding meth-
ods. Prior works (Li et al., 2023b; Bu et al., 2024a) explore
OOD benefits in multi-task classification but assume new
label features share a consistent signal (e.g., ±1). In con-
trast, our framework allows diverse low-level features (e.g.,
b⋆kb

= bk⋆
2
−bk⋆

3
), highlighting the role of task vector arith-

metic in retrieving task message rather than memorizing
label-level features, consistent with Todd et al. (2024) on
compositional task vectors. Under a Dictionary Shift sce-
nario where b⋆ ⊥ U, word-label pairs involving unseen
low-level task concepts (i.e., x = xaak + b⋆ + ξx and
y = ak+b⋆+ξy) benefit from the model’s high-level task
retrieval capability. This phenomenon resonates with the
“celebrity helps minority” effect in Allen-Zhu & Li (2024),
where the presence of high-frequency entities enables the

model’s fact retrieval capability to generalize to rare en-
tries. While their settings emphasize fact retrieval, our
framework centers on the retrieval of task vectors, a sin-
gle token subcase of theirs. Indeed, despite constrained on
factual-recall task, the results offer a foundational perspec-
tive on why simple task vector arithmetic holds potential
for a range of downstream applications, including concept
erasure (Ilharco et al., 2023), mitigation of forgetting (Jiang
et al., 2025), model editing (Li et al., 2025b), and model
merging (Wortsman et al., 2022; Matena & Raffel, 2022;
Yang et al., 2024a; Lee et al., 2025; Yoshida et al., 2025;
Cao et al., 2025; He et al., 2025).

For Distribution Shift, when multiple co-task concepts ap-
pear in a prompt, the transformer would likely form a hy-
brid task vector:

hθ(t),0 ≈
∑
k∈K

wθ,kak, wθ,k > 0,
∑
k∈K

wθ,k = 1. (8)

This suggests a soft, weighted integration of concepts,
where wθ,k denotes the model’s inferred likelihood of task
k by softmax operation. Such behavior closely resembles
Bayesian Model Averaging (BMA) in topic models–an in-
terpretation that recent work has proposed as an underlying
mechanism of ICL in LLMs (Blei et al., 2001; Xie et al.,
2022; Wang et al., 2023):

pθ(fθ(xquery) = · | T) =
∫
z
pθ(· | z,T) pθ(z | T) dz. (9)

Here, z represents the latent concept variables inferred
by the model, linking Eq. (9) to Eq. (1) in the factual-
recall ICL setting. The integral over z corresponds to a
conic combination of task vectors {ak}k∈K as described in
Eq. (8), computed by the transformer. Moreover, fθ(xquery)
aligns with hθ(t),0 + xquery in our framework.

4. Proof Idea
The high-level intuition of proof is as follows:

• For any ε > 0, to establish the convergence of the test
loss defined by argmax sampling in Eq. (5), the pri-
mary task is to prove Eq. (6) and Eq. (7) in terms of
constant disparity. Additionally, the required success-
ful cosine similarity (i.e., how well hθ(t),0 approxi-
mates the task vector) must scale with σ⋆

p

√
log(ε−1)

to mitigate noise disruption during testing.
• The cosine similarity in Eq. (7) is closely tied to the

learning dynamics of matrix projections along the di-
rections of task vector ak for k ∈ [K]. For QA
training, the remaining task is to characterize the
learning dynamics along these directions (specifically,
a⊤
k W

(t)
V ak and (W

(t)
Q ak)

⊤(W
(t)
K ak)) and the negli-

gible updates of other projections.
• For ICL-type training, we show that there is only

one key difference: the unexpected co-occurrence-
induced non-negligible growth of some |b⊤k W

(T1)
V bk|.

7
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This drives MLP falsely memorize low-level features,
which results in imperfect task vector retrieval and is
responsible for the constant-level test error.

Main Challenges. We begin by observing that the gradi-
ents of WK , WQ, and WV can be computed as follows:

EP tr
QA
[∂WK

LB(θ)] = −EP tr
QA

 M∑
j=1

ιuky ,j · (WQSeL) · (S(ej − π))⊤


EP tr

QA
[∂WQ

LB(θ)] = −EP tr
QA

 M∑
j=1

ιuky ,j ·WKS(ej − π) · (SeL)⊤


EP tr
QA
[∂WV

LB(θ)] = −EP tr
QA

Πuky−
∑

k∈[7K+K′] ωkuk

(WV Sπ)⊥
(Sπ)⊤

∥WV Sπ∥


(10)

where Πv
u⊥ = v −

(
v⊤ u

∥u∥

)
· u
∥u∥ , ιuky ,j is a coefficient

defined in Eq. (30), π represents the concatenated softmax
weights for positions 1, . . . , L − 1 in the sentence, and ωk

denotes the likelihood of the model’s output matching the
k-th dictionary token uk (See Eq. (30)). The primary chal-
lenge in our analysis stems from the fact that many com-
ponents in the gradient computation, such as ιuky ,j and
∥WV Sπ∥, exhibit intricate monotonicity properties and
varying rates of evolution across different phases. This
complexity arises inherently from the non-linear interac-
tions between the softmax operation, layer normalization,
residual connections, and the cross-entropy loss, making
it challenging to precisely characterize the dynamics. To
address this, we derive separate upper and lower bounds
for the discrete gradients of both the attention and MLP
components in each phase. Specifically, we introduce a set
of six differential equations (see Appendix D.1) as contin-
uous surrogates, which effectively capture the upper and
lower bounds on the evolution rates of the attention and
MLP components across different phases.

4.1. Phase 1: Linear Growth of MLP and Accelerating
Growth of Attention

In this phase, we analyze the regime where a⊤
k W

(t)
V ak =

o(∥WV Sπ∥) and ∥WV Sπ∥ = Θ(σ1d). Given the
known order of the denominator in the update rule for WV

(Eq. 10), the update of a⊤
k W

(t)
V ak can be linearly bounded

by update at+1 = at + b, where b is constant. The ac-
cumulated update is further upper bounded by the inte-
gral of its continuous-time counterpart, as characterized in
Lemma D.1. When Ptr ∼ PQA, the terms |b⊤k W

(T1)
V bk|

remain negligible, since xQA contains no bk. In con-
trast, under Ptr ∼ PT or PT

QA, co-occurrence asymme-
tries between demo-pairs and query inputs with respect to
some ±bk induce nontrivial growth of some |b⊤k W

(T1)
V bk|.

These behaviors are formally summarized below.

Lemma 4.1. Under Condition 3.1, during t ≤ T1 ≤ t⋆2,
where t2 is defined in Lemma F.5. Consider P tr sampled

from either PQA, PT or PT
QA. Then for ∀k ∈ [K] and n ∈

Nk, there exists some C1−2, C
′
1−2, Ĉ1−2 > 0 such that

a⊤
k W

(t)
V ak ≥ C1ηqV t

σ1d1/2MK
−
√

2 log(8(2K+K′)2

δ )σ1,

a⊤
k W

(t)
V ak ≤ C2ηqV t

σ1d1/2K
+
√

2 log(8(2K+K′)2

δ )σ1.

(11)

Furthermore, when P tr ∼ PT or P tr ∼ PT
QA, for ∀y ∈

{±1}, there exists ky ∈ [K] and some constant C4, C5 > 0
such that

|b⊤k+
W

(T1)
V bk+

| ≥ C4σ1d
1/2

M
−
√
2 log(8(2K+K′)2

δ )σ1,

|b⊤k−
W

(T1)
V bk− | ≥

C5σ1d
1/2

M
−
√

2 log( 8(2K+K′)2

δ )σ1.

(12)

Additionally, Lemma F.1 ensures that other types of pro-
jections remain constrained near their initialization scale.
Also, the update of attention projections along key direc-
tions satisfies the recurrence order ft+1 = ft+a(t− t3)ft,
where a is a constant. The accumulated outcome of such
updates can be upper bounded by an exponential function
and lower bounded by a quadratic function, as demon-
strated via integration of its continuous-time analogue in
Lemma D.5. The precise statement is provided below.
Lemma 4.2. Under Condition 3.1, suppose Eq. (49) holds
at iteration t ≤ T1. Consider P tr sampled from either PQA,
PT or PT

QA. Then for ∀k ∈ [K], there exist some posi-
tive constants C3, C4, during [t4, T1], where t4 is defined
in Lemma F.7, it holds that

(W
(t)
Q ak)

⊤(W
(t)
K ak) ≥

C3η
2qV σ

2
0 [(t− t4 − 1)2 − 1]

σ2
1M

2K2

− 4
√
log(16(2K +K ′)2/δ)σ2

0d
1/2,

(W
(t)
Q ak)

⊤(W
(t)
K ak) ≤ C4((4

√
log(16(2K +K ′)2/δ)σ2

0d
1/2

+
3σ2

0d

2
) +

3σ2
0d

2
exp(

Ĉ2C2η
2qV t

2

σ2
1dK

2
)).

4.2. Phase 2: Decelerating Growth of MLP and
Attention

In this phase, a⊤
k W

(t)
V ak determines the order of

∥WV Sπ∥, which, as the denominator in the gradient, leads
to a deceleration in the updates of both a⊤

k W
(t)
V ak and

the attention projections. As in the previous phase, there
is nontrivial growth in some |b⊤k W

(T1)
V bk| when trained

on ICL-type data (i.e., Ptr ∼ PT or PT
QA) due to co-

occurrence asymmetries. The MLP dynamics slow to a
sublinear rate, with their analogue captured in Lemma D.3.
In contrast, the evolution of the attention projections is
bounded between e−1/t and et as in Lemma D.2 and
Lemma D.6. The formal statement is as below.
Lemma 4.3. Under Condition 3.1, during t1 ≤ t ≤ T ⋆ =
Ω(η−1q−1

V σ2
1KMd2 log( 1ϵ )) where t1 ≤ T1. Consider P tr

8
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(a) Training loss (b) Test losses (c) u⊤W⊤
KWQv (d) u⊤WV v

Figure 3. Training dynamics over the QA sentence training distribution. Legends are consistent with those in Figure 2. Compared to
the ICL-trained model in Figure 2, WV trained on QA data does not overfit to low-level features bk (see (d)), leading to improved
generalization and reduced test errors in (b).

sampled from either PQA, PT or PT
QA. Then for ∀k ∈ [K],

there exists some C7−10 such that

a⊤
k W

(t)
V ak ≥

√
C7

ηqV (t− t1)

MK
+ (a⊤

k W
(t1)
V ak)2,

a⊤
k W

(t)
V ak ≤

√
C8

ηqV (t− t1)

K
+ (a⊤

k W
(t1)
V ak)2 +

C8ηqV

K(a⊤
k W

(t1)
V ak)

,

(W
(t)
Q ak̂)

⊤(W
(t)
K ak̂) ≤ C9σ

2
0de

q−1
V σ2

1d[
ηqV t

σ2
1dKM

]
M

16qV ,

(W
(t)
Q ak̂)

⊤(W
(t)
K ak̂) ≥ C10

σ2
0σ

2
1d

2

M2qV
e

2q−1
V K△2(1−△)2( −1

ηqV t

2σ2
1dK

+1
+1)

− C3η
2qV σ

2
0

σ2
1M

2K2
− 4C3

√
log(16(2K +K ′)2/δ)σ2

0d
1/2,

where △ is defined in Lemma F.9. Furthermore, when
P tr ∼ PT or P tr ∼ PT

QA, for ∀y ∈ {±1}, there exists
ky ∈ [K], for ∀k ∈ [K] we have

|b⊤k+
W

(t)
V bk|, |b⊤k−

W
(t)
V bk− | = Θ(a⊤

k W
(t)
V ak). (13)

After a sufficient number of epochs beyond T ⋆, for mod-
els trained on PQA, the task vector ak⋆ becomes the dom-
inant direction in hθ(t),0 = LN(W

(t)
V Tπ(t)) during test-

ing when encountering ICL prompts with k⋆ as the co-task
concept. In contrast, for models trained on P tr ∼ PT and
P tr ∼ PT

QA, the components ±bky
remain negligible, which

supports Theorem 3.2. Building on these learned projec-
tions, the proofs for the propositions follow.

5. Experiments
In this section, we present simulations of Algorithm 1. For
comparison, we use the same parameters for both ICL-
trained and QA-trained models and plot the 1-sigma er-
ror dynamics, as illustrated in Figures 2 and 3: K = 2,
K ′ = 100, d = 3000, n = 200, M = 30, L = L⋆ = 30,
η = 5, qV = 10−5, σ0 = 10−3, σ1 = 5 × 10−3,
σp = σ⋆

p = 10−2. The QA-trained model is trained for
T = 2000 epochs, while the ICL-trained model under-
goes a longer training process with T = 5000 epochs. De-
spite the extended number of iterations, the ICL-trained and
QA-ICL-trained model (Figure 2 and Figure 4 in Appendix
B) maintain a constant test error, whereas the QA-trained
model (Figure 3) converges to zero rapidly. These findings
validate our main theorems.

6. Conclusion, Limitations, and Future Work
This work presents an optimization theory for non-linear
residual transformer’s task vector arithmetic mechanisms
under empirically-motivated hierarchical modelings. Our
analysis framework provides notable merits for such mech-
anisms, including flexible out-of-distribution generaliza-
tion and the ability to handle multi-concept words, supe-
rior to traditional static Word2Vec predecessors lacking the
flexible generalization potential.

However, our framework is currently limited to single-
token settings, whereas real-world factual retrieval often
requires multi-token reasoning, demanding more sophisti-
cated probing techniques to uncover internal mechanisms
beyond simple geometric relationships (Allen-Zhu & Li,
2024; Zhang et al., 2025a). Moreover, while our analy-
sis is grounded in empirical modeling, it remains idealized
and does not investigate how task vectors naturally emerge
in the deeper layers of transformer models (Knittel et al.,
2024; Yang et al., 2025). In practice, the representation
of high-level concepts is not strictly equivalent to the cor-
responding task vectors—e.g., the o⃗city in Merullo et al.
(2024) does not exactly match the latent representation of
“Capital”. Additionally, real-world vocabulary dictio-
naries consist of output embeddings of natural language to-
kens (e.g., words or labels) that are inherently polysemous
and evolve over the course of training, rather than remain-
ing static. This dynamic evolution of semantic representa-
tions likely co-occurs with the emergence of retrieval capa-
bilities, potentially in a self-reinforcing manner.

Besides, LLMs often rely on more sophisticated or unex-
plainable operations on task vectors for complex tasks, be-
yond simple vector arithmetic (Hendel et al., 2023; Todd
et al., 2024; Zhang et al., 2025a). While the ground-truth
task-vector-leveraging function f(x,ak⋆) (Hendel et al.,
2023) may lack a closed-form, the softmax-layernorm-
residual architecture in transformers may implicitly ap-
proximate such a function. Future work could explore how
these components enable LLMs to interact with task vec-
tors across broader tasks.
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A. Additional Related Work
Task Vector Mechanism. This line of research investigates the emergence of task vectors through controlled experiments.
Hendel et al. (2023) and Todd et al. (2024) independently observed the emergence of task or function vectors in tasks such
as translation and factual recall. Knittel et al. (2024) demonstrated that GPT-2 effectively learns mechanisms analogous
to vector symbolic architectures, where different blocks communicate by writing and reading nearly orthogonal vectors
from the residual stream. Liu et al. (2024) proposed a framework that recasts in-context learning as in-context vector
manipulation. Yang et al. (2025) explored the emergence and benefits of task vectors in in-context learning (ICL). Finally,
Merullo et al. (2024) revealed that large language models (LLMs) implement certain single-token factual-recall tasks
through vector arithmetic. However, no existing study explains why and how gradient-update transformer models naturally
implement this mechanism.

Applications of Task Vectors. Owing to the inherent sparsity in LLM representations, task vector arithmetic has emerged
as an efficient and interpretable method for model merging (Lee et al., 2025; Yoshida et al., 2025; Cao et al., 2025), ex-
plicitly via arithmetic mean (Wortsman et al., 2022; Ilharco et al., 2023), Fisher information weighting (Matena & Raffel,
2022), regression-based mean (Jin et al., 2023), or learned merging weights (Yang et al., 2024a). Recently, He et al. (2025)
introduced a localized merging approach to better exploit task arithmetic. Beyond merging, Li et al. (2025b) demon-
strate task vectors’ effectiveness for model editing, and Jiang et al. (2025) reveal their promise in mitigating catastrophic
forgetting.

Storage and Retrieval of Factual Knowledge. Recent research has explored how large language models (LLMs) per-
form factual recall or associative memory tasks (Meng et al., 2022; Nichani et al., 2025; Cabannes et al., 2024; Ghosal
et al., 2024; Allen-Zhu & Li, 2024; Marks & Tegmark, 2024). These studies span a wide range of topics, including the
expressiveness of LLMs (Bietti et al., 2023), the optimality of memory storage and optimization dynamics (Cabannes et al.,
2024; Nichani et al., 2025), and the empirical mechanisms by which LLMs encode factual knowledge and their inherent
limitations. Allen-Zhu & Li (2025) empirically demonstrated the memorization capacity of transformer language models
of varying sizes trained on synthetic factual recall tasks, observing near-linear scaling with the number of parameters.
(Allen-Zhu & Li, 2024) found that QA data is essential for learning to retrieve factual knowledge in biography data. Sub-
sequently, (Zhang et al., 2025a) further showed that training on QA data, when mixed with Bio data, would increase both
quantity and importance of shared parameters compared to training upon biography and QA data in a sequential manner,
and (Kahardipraja et al., 2025) revealed that different attention heads play distinct roles–in context heads comprehend
instructions and retrieve relevant contextual information, while parametric heads store relational knowledge. Additionally,
Park et al. (2024; 2025); Jiang et al. (2024b); Marks & Tegmark (2024); Marconato et al. (2025); Liu et al. (2025) provided
both theoretical and empirical evidence that LLMs tend to represent independent concepts, words, and factual statements
in a linear manner. Minegishi et al. (2025a) showed the Sparse autoencoders (SAEs) have their limits for representing
polysemous contexts, while deeper layers of LLM contributes to distinguishing the polysemy. These observations inspire
further investigation into the underlying mechanisms of factual knowledge retrieval.

Empirical Investigations of ICL Mechanisms. Garg et al. (2022) showed that Transformer-based in-context learning
(ICL) is robust to distribution shifts, motivating a series of studies on out-of-distribution (OOD) generalization (Yadlowsky
et al., 2023; Raventós et al., 2023; Ahuja & Lopez-Paz, 2023; Kossen et al., 2024; Pan et al., 2023; Fan et al., 2024; Wang
et al., 2025). Yadlowsky et al. (2023) and Wang et al. (2025) analyze mixtures of function classes and show that Transform-
ers struggle to generalize to unseen ones; Kwon et al. (2025) further extend this to mixtures over multiple distributions and
provide optimal parameterization for regression. However, these works largely overlook ICL’s core capability: inferring the
underlying function/task behind demonstrations (i.e., function reference). This aligns with the perspective that identifying
high-level latent concepts corresponds to task inference, a view supported by empirical findings (Wang et al., 2023). While
BMA-based models (Zhang et al., 2025b; Ye et al., 2024) offer a theoretical lens, they rely on unrealistic assumptions
that distort Transformer architectures for kernel regression. Empirical work has instead uncovered that LLMs encode task
identity via function or task vectors during ICL (Hendel et al., 2023; Todd et al., 2024; Yang et al., 2025; Merullo et al.,
2024), and that multi-head attention-only models exhibit multi-phases in forming task circuits (Minegishi et al., 2025b).
Further, Kahardipraja et al. (2025) identify distinct roles of in-context and parametric heads in function comprehension and
knowledge storage. Yet, these works do not systematically connect task vector mechanisms with BMA-style inference or
with OOD generalization in ICL, leaving a gap that we aim to fill.

Theoretical Investigations of ICL Mechanisms. A recent line of theoretical research investigates how transformers learn
in-context in various scenarios (Zhang et al., 2024; Tian et al., 2023; Nichani et al., 2024; Chen et al., 2024b; Liang et al.,
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2025; Shen et al., 2024; Huang & Ge, 2024; Chen et al., 2024a). However, these studies often rely on idealized assumptions,
such as linearized or query-key (QK)-combined attention mechanisms (Zhang et al., 2024; Tian et al., 2023; Nichani et al.,
2024; Chen et al., 2024b; Oko et al., 2024; Zhang et al., 2025b), or employ simplified loss functions like squared or
hinge loss (Chen et al., 2024a; Huang et al., 2024b; Li et al., 2023a; 2024; Chang et al., 2025). Furthermore, rather
than investigating how transformers inherently process task demonstrations T, these studies adopt specialized embedding
schemes, such as the “up-word-down-label” approach:

E(T) =

(
x1, · · · xJ , xquery
y1, · · · yJ , 0

)
,

where words and labels are processed separately by attention and MLP layers (Bai et al., 2023; Li et al., 2023a; 2024; Bu
et al., 2024a; Chang et al., 2025). In contrast, we consider the case where the prompt T = [x1,y1, · · · ,yJ ,xquery ] =
[T1, · · ·TL] ∈ Rd×L (L = 2J + 1) is directly processed by a non-linear transformer with a residual stream. Besides, in
these work’s construction, there must be similar label-related (low-level) patterns in the demonstration pairs, and essentially
not showed the function reference of transformer models during ICL. For example, given the prompt Japan Tokyo
France Paris China, the expected output “Beijing” reflects the underlying function “Country’s Capital”
applied to the final query, not dependent on prior low-level label semantics in “Japan” or “France”. In addition, none of
these theoretical works consider the real-world latent geometric relationship between words and labels depicted in Figure 1,
nor do they explain the observed in-context vector arithmetic.

B. Additional Experiments

(a) Training loss (b) Test losses (c) u⊤W⊤
KWQv (d) u⊤WV v

Figure 4. Training Dynamics over the QA-ICL Training Distribution. The definitions of legends follows Figure 2. In (d), WV overfits
to low-level features bk, resulting in persistently constant (0.2) test error shown in (b).

We also conducted experiments on the scenario when the training is conducted on QA-ICL data. For comparison, we adopt
the similar parameter configuration :K = 2, K ′ = 100, d = 3000, n = 200, M = 30, L = L⋆ = 30, η = 5, qV = 1e−5,
σ0 = 1e−3, σ1 = 5× 1e−3, σp = σ⋆

p = 1e−2, and T = 5000.

C. Model Details
In this section, we present the missing details of our learning problem.

C.1. Training Algorithm

Our training algorithms for transformer is presented in Algorithm 1.

C.2. Hierarchical Data Modeling

To model the empirically observed task vector arithmetic mechanism in factual-recall ICL as illustrated in Figure 1, where
the answer/label vectors y tend to align more strongly with the task vector afθ than with query word vectors x, we draw
inspiration from recent work Park et al. (2025) on hierarchical concept geometry. This work observes that LLMs tend
to encode high- and low-level vectors in an approximately orthogonal manner within their latent space, and that concept
vectors at the same level, which are semantically independent, also exhibit mutual orthogonality—an observation that is
further supported by both theoretical and empirical studies Jiang et al. (2024b); Yamagiwa et al. (2023); Park et al. (2024).
Furthermore, Figure 1 in Park et al. (2025) suggests that word representations reside within polytopes, aligning with the
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empirical illustration in Figure 1. Motivated by these findings, a natural theoretical modeling approach is to treat the
task vector as a high-level concept vector, while the components orthogonal to the task vector correspond to task-specific
low-level concept vectors, which we define as follows.

Definition C.1. Word-Label Pair ICL Prompt Distribution (PT). The prompt T := [x1,y1, · · · ,xJ ,yJ ,xJ+1] ∈
Rd×(2J+1) and yJ+1 ∈ Rd is generated as follows. Each word-label pair in T shares a high-level task concept with uniform
probability, and each pair has an equal chance of possessing a positive or negative low-level label feature. Specifically, for
all l ∈ [J + 1], the word and label vectors are defined as:

kT ∼ Unif[K], ykT,l ∼ Unif[±1], ξl,x, ξl,y ∼ N (0, σ2
pI),

XT,l = {kT} ∪ {i ∈ [K] \ {kT} : Bi ∼ Ber(K−1), Bi = 1}.
YT,l = {kT} ∪ {i ∈ [K] \ {kT} : Bi ∼ Ber(K−1), Bi = 1}.
ykl,l ∼ Unif[±1], ∀kl ∈ XT,l \ {kT},

xl := (
∑

kl∈XT,l

xa · akl
+ ykl,l · bkl

) + ξl,x,

yly := (
∑

kly∈YT,ly

akly
+ ykly ,ly

· bkly
) + ξly,y, ∀ly < J + 1

yJ+1 := akT
+ ykT,J+1 · bkT

,

(14)

where the noise vector ξl accounts for the inherent semantic inexactness of latent representation for language. The expected
label vector of the prompt, yJ+1, is constrained by the co-task concept kT of the prompt and remains noiseless to ensure an
accurate semantic representation of the concept-specific answer. The term xa ·ak acts as an anchor, guiding the transformer
to retrieve high-level task concepts, with xa∥ak∥/∥bk∥ ≤ o(1). For simplicity, we set xa := 0.1.

Remark C.2. To model polysemy, each word vector xlx (lx ∈ [J + 1]) and label vector yly (ly ∈ [J ]) is associated with
multiple task concepts. However, all tokens in a prompt share the co-task concept kT. For example, “Apple” may relate to
both “Color” and “Species” as task concepts, with labels “Red” and “Fruit”, respectively. Likewise, “Fruit” may indicate
“Outcome” in contexts unrelated to “Color”. To reduce the freedom of our learning problem, we assume the ground truth
label follows a single-concept noiseless form:

yJ+1 = akT
+ ykT,J+1 · bkT

.

This is reasonable, as kT naturally disambiguates label meanings. For instance, while “Fruit” could mean “Outcome”,
under the “Species” task, its meaning is unambiguous.

Failure of ICL-trained Transformer. Under the above definitions, we conduct experiments across various parameter
settings in the procedure of Algorithm 1. However, as illustrated in Figure 2, the test loss always fails to converge,
remaining at a constant level. Moreover, the projection dynamics indicate that the value matrix WV learns low-level
concepts in a disorganized manner, suggesting that hθ,0(T) becomes a hybrid vector containing both akT

and ±bkT
.

Consequently, this compromises its role as approximating a task vector: the presence of low-level concept components
ebkT

, e ∈ {±1}, within hθ,0(T) disrupts the vector arithmetic in Eq. (3), biasing it toward a specific ebkT
. This leads to

degraded predictions, particularly when xJ+1 contains −ebkT
.

Reason of Failure: ICL Data vs. QA Data. At a high level, the failure arises from unintended co-occurrences between
low-level features in the demonstration pairs and those in the query words. In contrast, QA data contains only the task
vector and irrelevant tokens in xQA, avoiding the possibility of such co-occurrences. According to Yang et al. (2024b),
transformers tend to encode fixed co-occurrence patterns via gradient descent. Moreover, training and testing solely on the
ICL data distribution—though common in theoretical studies (Zhang et al., 2024; Kim & Suzuki, 2024; Chen et al., 2024a;
Bu et al., 2024a)—is unrealistic in real-world settings. A more practical training paradigm involves generative pretraining
or QA-style pretraining/fine-tuning (Allen-Zhu & Li, 2024; Zhang et al., 2025a). Notably, our concept data modeling
naturally arises from generative pretraining (Park et al., 2024; Jiang et al., 2024b; Park et al., 2025). Furthermore, QA
data has been shown to enhance transformers’ factual retrieval capabilities (Allen-Zhu & Li, 2024; Zhang et al., 2025a),
and has been effectively leveraged to extract task vectors (Merullo et al., 2024). Motivated by these observations, we
incorporate QA data into our training framework, which we formalize as follows.
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Definition C.3. QA Sentence Distribution4 (PQA). Building on the findings of Allen-Zhu & Li (2024); Nichani et al.
(2025), which imply that incorporating high-level task messages or relation tokens within questions significantly enhances a
transformer’s ability to retrieve relevant factual knowledge, we model our QA-type sentence Sn := [xQA

n , yn] ∈ Rd×(M+2)

from distribution PQA as follows.

kSn
∼ Unif[K], ykSn

= yn ∼ Unif[±1], ξn,1:M , ξn,x ∼ N (0, σ2
pI),

XSn
= {kS} ∪ {k ∈ [K] \ {kSn

} : Bk ∼ Ber(K−1), Bk = 1}.
ykn

∼ Unif[±1],∀kl ∈ XSn
\ {kSn

},

xn := (
∑

kn∈XSn

xa · akn
+ ykn

· bkn
) + ξn,x,

yn := akS
+ yn · bkS

,

mSn
∼ Unif[M ], i1:M ∼ Unif[K ′], νn,1:M := νi1:M ,

xQA
n := [νn,1 + ξn,1, · · · , νn,mSn−1 + ξn,mSn−1, akSn

+ ξn,mSn
,

νn,mSn+1 + ξn,mSn+1 · · · ,νn,M + ξn,M , x] ∈ Rd×(M+2),

(15)

where K ′ denotes the number of task-irrelevant tokens, νn,1:M denotes common tokens (e.g., task-irrelevant tokens) that
appear uniformly across different tasks k ∈ [K], and the position of ak can be arbitrary before x.

An illustrative example with M = 4 on concept k is:

What
νn,1+ξ1

is
νn,2+ξ2

the
νn,3+ξ3

ak of
νn,4+ξ4

x
xa·ak+ebk+ξn,M

+···

y
ak+ebk

.

The index (n,m), where n ∈ [N ] and m ∈ [M ], denotes the sample index (n-th) and the position index (m) for the noise
vector ξn,m. Complexity of QA and ICL Tasks. In our setting involving retrieval over a hierarchical concept graph, one
natural way to measure task complexity is by the model’s difficulty in confidently producing its argmax prediction. A sim-
ple metric is C(T) = 1/maxy pθ(y|T), where a higher C(T) indicates greater complexity. QA tasks tend to be simpler: a
cue word (e.g., “capital” in “What is the capital of Japan?”) guides θ to retrieve the relevant task in col-
laboration with the query word, often resulting in lower C(T). In contrast, Word-Label tasks lack such explicit cues, requir-
ing θ to infer the task underlying the word-label pair. For instance, given the prompt T = [Japan, Sakura, China],
the model may assign non-trivial confidence to both “Panda” and “Peony” (e.g., struggling in choosing “National Symbol”
or “National Flower” as the tasks). This reflects the polysemy-induced challenge posed by the hierarchical conceptual
knowledge embedded in natural tokens.

QA-ICL Prompt Distribution. (PT
QA). A natural extension of the above two distributions is that we can re-

place the word-based demonstration by QA-based demonstration in the task-specific prompt, namely TQA :=

[xQA
1 ,y1, · · · ,xQA

J ,yJ ,x
QA
J+1] ∈ Rd×(J+1)(M+2) ∼ PTQA .

Success of QA-Trained Transformers. Unlike ICL-trained scenarios, we observe the success of QA-trained dynamics,
as shown in Figure 3, where the column and row projections of the value matrix WV primarily align with the task vector
directions. As a result, hθ,0(T) closely approximates the task concept vector, leading to an arbitrarily small test loss for
both ICL and QA-ICL data after sufficient training epochs. Interestingly, as depicted in Figure 4, training a transformer
with QA-ICL data induces harmful hybrid task vector generation, yet its test error remains at a similar level to that observed
when training on ICL data. These findings motivate a rigorous theoretical analysis of the underlying optimization dynamics
and the test convergence guarantees, which will be explored in detail in the following section.

ICL and QA Tasks. Given a prompt T or an QA sentence S, where we denote the last token as the residual query vector:
bquery
θ with some y ∈ [±1], k ∈ [K]. We expect the transformer model can return the original low-level semantic label

vector y · bk by argmax sampling from the undisturbed normalized token dictionary

U :=[
a1 + b1

∥a1 + b1∥
,

a1 − b1
∥a1 − b1∥

,
xa · a1 + b1

∥xa · a1 + b1∥
,

xa · a1 − b1
∥xa · a1 − b1∥

,
a1

∥a1∥
,

b1
∥b1∥

,
−b1
∥b1∥

, · · · ,

bK
∥bK∥

,
−bK
∥bK∥

, · · · , ν1

∥ν1∥
, · · · , νK′

∥νK′∥
] = [u1, · · · ,u7K+K′ ] ∈ Rd×(7K+K′)

(16)

4Indeed, the formula of the sentence is unnecessarily a QA, but can be a factual statement (e.g. S = [xQA, y] = [The
ν1

, ak, of
ν4

, x, y]).
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The normalization of the noiseless token in the dictionary is to ensure that every token uk,∀k ∈ [K] enjoys the same length
fairly. Similar empirically driven dictionary approaches have also been adopted in recent theoretical work (Tian et al., 2023;
2024). For simplicity here we let ∥ak∥ = ∥a∥ = ∥bk∥ = ∥b∥ = ∥νm∥ = 1. Given a label vector y = ak + y · bk + ξ, its
corresponding dictionary vector is defined as:

uky = LN

(
a⌈

ky
7

⌉ +
(
2

(
ky
7

−
⌈
ky
7

⌉)
− 1

)
b⌈ ky

7

⌉) ,

where the dictionary index is determined by:

ky = 7k +
y + 1

2
.

Connection to Word-2-Vector Arithmetic. In the context above, when |XT,l|, |YT,l| and the noise length are limited, we
approximately have:

yJ+1 ≈ akT
+ xJ+1 (17)

Therefore, if the transformer θ can extract the high-level task vector hθ,0(T), then adding it to any word vector within
the same task concept should yield the task-specific label vector in the context of argmax sampling. This aligns with
empirical findings by Merullo et al. (2024), which show that adding various embedded query words, such as “Poland” or
“China,” to the vector o⃗city—which captures the function get capital(·) in the latent space—produces the correct
capital city as the answer.

D. Preliminary Lemmas
D.1. Continuous Flows

In this section, we present several lemmas whose continuous flows serve as surrogate processes to bound the discrete
training dynamics. While similar but simpler approaches have been explored in Tian et al. (2023); Meng et al. (2024); Bu
et al. (2024a), our analysis considers a significantly larger number of more complex flows. This extension is necessitated
by the inherent complexity of our model, which incorporates softmax attention, layer-wise normalization, and residual
stream structures—features that make our setting more realistic than prior work.

The key idea of using surrogate continuous flows is to leverage the monotonicity of differential equation derivatives. By
comparing earlier derivatives with their integrals over a time interval, we establish upper and lower bounds for the discrete
process via its continuous counterpart.

Lemma D.1. Suppose that a sequence at, t0 ≤ t ≤ t1 follows the iterative formula

at+1 = at + b,

for some constant b > 0. Then it holds that
at = bt+ a0.

for all t0 ≤ t ≤ t1.

Proof. The proof is direct by the monotonicity of the linear function and Comparison Theorem.

Lemma D.2. Suppose that a positive sequence bt > 0, t1 ≤ t ≤ t2 follows the iterative formula

bt+1 = bt +
abt

ct+ d
,

for some constant a > c > 0, d > 0. Then it holds that

bt ≤ (
bt1

(t1 +
d
c )

a
c

)(t+
d

c
)

a
c .

for all t1 ≤ t ≤ t2.
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Proof. Consider a continuous-time sequence xt, t > t1 defined by the integral equation

xt = xt1 + a

∫ t2

t1

xτ

cτ + d
dτ, xt1 = bt1 . (18)

Here, xt is an increasing function over t, such that

dxt

dt
=

axτ

cτ + d
, xt1 = bt1 . (19)

To solve this ODE system, by separation of variables we first have

d log(xt) = d log((t+
d

c
)

a
c ),

which then leads to

log(xt) = log((t+
d

c
)

a
c ) + constant.

To finalize the constant, we extend xt1 = bt1 into the formula, and have

xt = (
bt1

(t1 +
d
c )

a
c

)(t+
d

c
)

a
c ,

which is unique by the monotonicity of log function and the positiveness of a, c, d. Note that a > c, define f(t) = (t+ d
c )

a/c

ct+d .
To determine whether f(t) is increasing, we compute its derivative f ′(t) and analyze its sign. We use the quotient rule:

f ′(t) =
g′(t)(ct+ d)− g(t)c

(ct+ d)2
,

where g(t) =
(
t+ d

c

)a/c
. Thus,

g′(t) =
a

c

(
t+

d

c

) a
c −1

.

Substituting g(t) and g′(t), we obtain:

f ′(t) =
a
c

(
t+ d

c

) a
c −1

(ct+ d)− c
(
t+ d

c

)a/c
(ct+ d)2

.

We can simplify the numerator:

f ′(t) =

(
t+ d

c

) a
c −1

(ct+ d)2
·
[
a

c
(ct+ d)− c

(
t+

d

c

)]
.

Focus on the bracketed term:

∆ =
a

c
(ct+ d)− c

(
t+

d

c

)
.

Expanding ∆:

∆ =
a

c
ct+

a

c
d− ct− cd

c
.

Simplify:

∆ = (a− c)t+
ad

c
− d.

Therefore, given a > c: 1. (a− c)t > 0, since t > 0. 2. ad
c − d > 0, as a > c ensures a

c > 1.
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Thus, ∆ > 0, implying f ′(t) > 0, and f(t) is strictly increasing.

xt+1 = xt +

∫ t+1

t

axτ

cτ + d
dτ ≥ xt +

∫ t+1

t

axt

ct+ d
dτ,

where the inequality is by examine the monotonicity of f(t) = (t+ d
c )

a/c

ct+d . By Comparison Theorem of two positive series,

we obtain bt ≤ xt = (
bt1

(t1+
d
c )

a
c
)(t+ d

c )
a
c .

Lemma D.3. Suppose that a sequence ct ≥ 0, t1 ≤ t ≤ t2 follows the iterative formula

ct+1 = ct +
d

ct
,

for some constant d > 0. Then it holds that

xt ≤ ct ≤
d

ct1
+ xt

for all t1 ≤ t ≤ t2. Here, xt =
√
d(t− t1) + c2t1 .

Proof. The proof strategy follows Lemma C.1 in Meng et al. (2024) despite the consideration of different ODE processes.
The key is the decaying and positive nature of g(x) = 1/x as well as the examination of integration. Consider a continuous-
time sequence xt, t > t1 defined by the integral equation

xt = xt1 + d

∫ t2

t1

dτ

xτ
, xt1 = ct1 (20)

Note that xt is an increasing function of t, satisfying

dxt

dt
=

d

xt
, xt1 = ct1 . (21)

By solving this ODE system, we have

xt =
√

d(t− t1) + c2t1 ,

which is unique. We first show the lower bound of ct, by Eq.(20) we have

xt+1 = xt + d

∫ t+1

t

dτ

xτ

≤ xt + d

∫ t+1

t

dτ

xt
= xt +

d

xt
.

where the inequality is by the increasing nature of xt and the decreasing nature of g(x) = 1/x. Then by Comparison
Theorem we have xt ≤ at. On the other side, we have

ct = ct1 +

t∑
τ=t1

d

cτ
,

≤ ct1 +

t∑
τ=t1

d

xτ

= ct1 +
d

ct1
+

t∑
τ=t1+1

d

xτ

≤ ct1 +
d

ct1
+ d

∫ t

t1

dτ

xτ

= ct1 +
d

ct1
+

∫ t

t1

dxτ = ct1 +
d

ct1
+ xt − xt1

=
d

ct1
+ xt.
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Here, the first inequality is by ct ≥ xt; the second inequality is by the definition of integration as well as the decreasing
nature of g(x) = 1/x, the third equality is by Eq.(21). The proof is completed.

Lemma D.4. Suppose that a sequence et, e0 > 0, 0 ≤ t ≤ t3 follows the iterative formula

et+1 ≥ et − bet,

for some constant b > 0. Then it holds that
et ≥ −be0t3 + e0

for all 0 ≤ t ≤ t3.

Proof. It is obvious that et is decreasing, and since e0 > 0, the decreasing speed during t ≤ t3 would not exceed −be0.
By the monotonicity of the linear function, the result follows directly from the Comparison Theorem.

Lemma D.5. Suppose that a sequence ft, ft3 > 0, t3 ≤ t ≤ t4 follows the iterative formula

ft+1 = ft + a(t− t3)ft,

for some constant a > 0. Then it holds that

ft3 +
aft3 [(t− 1− t3)

2 − 1]

2
≤ ft ≤ ft3 exp (at

2/2)

for all t3 ≤ t ≤ t4.

Proof. Obviously ft is an increasing sequence. First we can set s = t + t3 by Substitution Method. Similar to Lemma
D.3, by the definition of integral, the monotonicity of g(x) = exp(x) and Comparison Theorem, the continuous flow xs

satisfying
dxs

ds
= axs, x0 = ft3 , 0 ≤ s ≤ t4 − t3

would be the upper bound of fs. By solving the ODE and consider the monotonicity of g(x) = exp(x), the unique upper
bound result follows.

For the lower bound, observing that

ft =ft3 +

t∑
τ=t3

a(τ − t3)fτ

≥ft3 +

t∑
τ=t3

a(τ − t3)ft3

≥ft3 +

∫ t−1

t3−1

a(τ − t3)ft3dτ

=ft3 +
aft3 [(t− 1− t3)

2 − 1]

2
.

(22)

Here, the first inequality is by the increasing nature of ft; the second inequality is by the definition of integral and the
increasing nature of g(x) = ax; the last equality is by the integration of linear function. The proof is complete.

Lemma D.6. Suppose that a positive sequence gt > 0, t1 ≤ t ≤ t2 follows the iterative formula

gt+1 = gt +
agt

(bt+ c)2
,

for some constant a, b, c > 0 and satisfies a < 2c. Then it holds that

gt ≥ gt1e
− a

b(bt+c)
+ a

b(bt1+c) .

for all t1 ≤ t ≤ t2.
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Proof. Consider a continuous-time sequence xt, t > t1 defined by the integral equation

xt = xt1 +

∫ t2

t1

axτ

(bτ + c)2
dτ, xt1 = gt1 . (23)

Here, xt is an increasing function over t, such that

dxt

dt
=

axt

(bt+ c)2
, xt1 = gt1 . (24)

Then, by separating the variables we have

d log(xt) =
−a

b
d

1

bt+ c
.

Therefore, it holds that

log(xt) =
−a

b(bt+ c)
+ constant.

To settle the unique constant, we extend xt1 = gt1 into the formula, and have

xt = gt1e
− a

b(bt+c)
+ a

b(bt1+c) ,

which is unique by the monotonicity of exponential function and the positiveness of a, c, d. Note that a < 2c, define

f(t) = e
− a

b(bt+c)

(bt+c)2 . To determine whether f(t) is increasing, we compute its derivative f ′(t) and analyze its sign. We use
the quotient rule and have:

f ′(t) = (−2 +
a

(bt+ c)
)
e−

a
b(bt+c)

(bt+ c)2
< 0.

As such, it holds that

xt+1 = xt +

∫ t+1

t

axτ

(bτ + c)2
dτ ≤ xt +

∫ t+1

t

axt

(bt+ c)2
dτ,

where the inequality is by examine the declining monotonicity of f(t) = e
− a

b(bt+c)

(bt+c)2 . By Comparison Theorem of two

positive series, gt ≥ gt1e
− a

b(bt+c)
+ a

b(bt1+c) immediately holds.

D.2. Concentration Inequaities

Lemma D.7. Suppose that δ > 0 and d = Ω(log((2K + K ′)2N2M2/δ)). Then with probability at least 1 − δ, for
∀ξl, ξ′l ∈ {ξn,m}n∈[N ],m∈[M ], l ∈ [M ], u ∈ {as}s∈[K] ∪ {bs}s∈[K] ∪ {νk′}k′∈[K′].

σ2
pd

2
≤ ∥ξl∥22 ≤ 3

σ2
pd

2
,

|⟨ξi, ξl′⟩| ≤ 2σ2
p ·

√
d log

(
7(NM)2

δ

)
,

|⟨ξi,u⟩| ≤ ∥u∥2σp ·
√

2 log(
3(2K +K ′)NM

δ
).

Proof. See Lemma B.2 in Cao et al. (2022) for a proof.

Lemma D.8. Suppose that δ > 0 and d = Ω(log((2K + K ′)2N2M2/δ)). Then with probability at least 1 − δ, for
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∀u,v ∈ {as}s∈[K] ∪ {bs}s∈[K] ∪ {νk′}k′∈[K′], ξl, ξ
′
l ∈ {ξn,m}n∈[N ],m∈[M ]

∥W(0)
V ∥2F ≤ 2d2σ2

1 ,

|v⊤W
(0)
V

⊤
u| ≤

√
2 log(

8(2K +K ′)2

δ
)σ1∥u∥∥v∥,

0.99σ1
2∥u∥2d ≤ ∥W(0)

V u∥2 ≤ 1.01σ1
2∥u∥2d,

|v⊤W
(0)
V u|/∥W(0)

V u∥ ≤ 4

√
2 log(

8(2K +K ′)2

δ
)∥v∥/

√
d,

|v⊤W
(0)
V

⊤
W

(0)
V u| ≤ 4

√
log(16(2K +K ′)2/δ)σ2

1d
1/2∥u∥∥v∥,

|v⊤W
(0)
V

⊤
ξl| ≤ 2

√
2 log(16(2K +K ′)NM)/δσ1σpd

1/2∥u∥,

|ξ′l
⊤
W

(0)
V

⊤
ξl| ≤ 4

√
2 log(16(2K +K ′)NM)/δσ1σ

2
pd,

σ1
2σp

2d2 ≤ ∥W(0)
V ξl∥2 ≤ 3σ1

2σp
2d2,

|v⊤W
(0)
V ξl|/∥W(0)

V ξl∥ ≤ 8
√
2 log(16(2K +K ′)2/δ)∥v∥/

√
d,

|ξ′l
⊤
W

(0)
V ξl|/∥W(0)

V ξl∥ ≤ 8
√
2 log(16(2K +K ′)2/δ)σp,

|ξl⊤W(0)
V

⊤
W

(0)
V ξ′l| ≤ 16

√
log(16(2K +K ′)2/δ)σ2

1σ
4
pd

3/2

Proof. The proof strategies follow Lemma B.3 in Cao et al. (2022).

We analyze the Frobenius norm squared of W(0)
V , where W

(0)
V is a d× d matrix with entries independently sampled from

N(0, σ2
1). The Frobenius norm squared is:

∥W(0)
V ∥2F =

d∑
i,j=1

W 2
i,j .

Each W 2
i,j is an independent chi-squared random variable with mean σ2

1 and variance 2σ4
1 . The sum ∥W(0)

V ∥2F is thus
a sum of d2 independent chi-squared variables. By Bernstein-type bounds for sub-exponential random variables, when
d = Ω

(√
log(1/δ)

)
, we have:

∥W(0)
V ∥2F ≤ 2d2σ2

1 ,

with probability at least 1 − δ/8. For ∀u,v ∈ {as}s∈[K] ∪ {bs}s∈[K] ∪ {νk′}k′∈[K′], it holds that v⊤W
(0)
V

⊤
u ∼

N (0, σ1
2∥u∥2∥v∥2). Then by Gaussian tail bound and union bound, we have

|v⊤W
(0)
V

⊤
u| ≤

√
2 log(

8(2K +K ′)2

δ
)σ1∥u∥∥v∥ ≤

√
2 log(

8(2K +K ′)2

δ
)σ1∥u∥∥v∥

with probability at least 1− δ/8. Besides, for ∀u ∈ {as}s∈[K] ∪{bs}s∈[K], we notice that W(0)
V u ∼ N (0, σ2

1∥u∥2Id×d).

Then it holds that u⊤W
(0)
V

⊤
W

(0)
V u ∼ σ1

2∥u∥2χ2
d, where χ2

d is a chi-square distribution with d degrees of freedom. By
Bernstein tail bounds (for an appropriately large d) and union bound, we have

|u⊤W
(0)
V

⊤
W

(0)
V u− σ1

2∥u∥2d| ≤ O(2σ2
1∥u∥2

√
d log(16(2K +K ′)/δ))

with probability 1− δ/8. By appropriately configuring d = Ω(log((2K +K ′)2/δ)), we have that with probability at least
1− δ/8 we have

0.99σ1
2∥u∥2d ≤ ∥W(0)

V u∥2 ≤ 1.01σ1
2∥u∥2d.

Combining the obtained results we obtain the following bound

|v⊤W
(0)
V u/∥W(0)

V u∥| ≤ 2

√
2 log(

8(2K +K ′)2

δ
)∥v∥/

√
d
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On the other hand, notice that for ∀u ̸= v ∈ {as}s∈[K] ∪ {bs}s∈[K], v⊤W
(0)
V

⊤
W

(0)
V u is a sub-exponential variable with

mean 0. Given that
Cov(W

(0)
V v,W

(0)
V u) = E[(W(0)

V v)(W
(0)
V u)⊤] = 0,

thus
Var(u⊤W

(0)
V

⊤
W

(0)
V v) = E[(W(0)

V u)⊤(W
(0)
V v)(W

(0)
V u)⊤(W

(0)
V v)]

=
∑

i,j∈[d]

E[(W(0)
V u)i(W

(0)
V u)j ]E[(W(0)

V v)i(W
(0)
V v)j ]

= Tr(Σ
W

(0)
V u

· Σ
W

(0)
V v

) = σ4
1∥u∥2∥v∥2d.

Therefore, for ∀v ̸= w ∈ {as, bs}s∈[K], by Bernstein inequality and union bound, with an appropriately large d, we have

|v⊤W
(0)
V

⊤
W

(0)
V u− 0| ≤ O(2

√
d log(16(2K +K ′)(2K +K ′ − 1)/δ)σ2

1∥u∥v∥)

≤ 4
√
d log(16(2K +K ′)2/δ)σ2

1∥u∥∥v∥

with probability at least 1− δ/8. Finally, given that σ2
pd/2 ≤ ∥ξl∥22 ≤ 3σ2

pd/2 in Lemma D.7, the rest can be proved using
the same strategy.

By the union bound the proof is completed.

Lemma D.9. Suppose that δ > 0 and d = Ω(log(2K + K ′)2N2M2/δ)). Then with probability at least 1 − δ, for
∀X ∈ {Q,K},u,v ∈ {as}s∈[K] ∪ {bs}s∈[K] ∪ {νk′}k′∈[K′]

∥W(0)
X ∥2F ≤ 2d2σ2

1 ,

|v⊤W
(0)
X

⊤
u| ≤

√
2 log(

8(2K +K ′)2

δ
)σ0∥u∥∥v∥,

σ0
2∥u∥2d/2 ≤ ∥W(0)

X u∥2 ≤ 3σ0
2∥u∥2d/2,

|v⊤W
(0)
X

⊤
W

(0)
¬Xu| ≤ 4

√
log(16(2K +K ′)2/δ)σ2

0d
1/2∥u∥∥v∥,

|v⊤W
(0)
X

⊤
W

(0)
¬Xξl| ≤ 4

√
log(16(2K +K ′)2/δ)σ2

0d
1/2∥u∥∥v∥,

|v⊤W
(0)
X

⊤
ξl| ≤ 2

√
2 log(16(2K +K ′)NM)/δσ0σpd

1/2∥u∥,

σ0
2σp

2d2 ≤ ∥W(0)
X ξl∥2 ≤ 3σ0

2σp
2d2,

|ξl⊤W(0)
X

⊤
W

(0)
¬Xξ′l| ≤ 16

√
log(16(2K +K ′)2/δ)σ2

0σ
4
pd

3/2,

Proof. The proof strategies follow Lemma D.8.

Lemma D.10. Suppose that δ > 0, and N = Ω(K log(1/δ)),K = Ω(log(1/δ)). Let N y
k denote the index set of sampled

QA data points in P tr
QA (or ICL-type data points P tr

T) where the high-level task concept is kS = k ∈ [K] and the task-specific
low-level semantic real-valued label is ykS

= y ∈ {±1}. Then with probability at least 1− δ, we have

(1− 10−2)N

2K
≤ |N y

k | ≤
(1 + 10−2)N

2K
, (25)

for ∀k ∈ [K], y ∈ [±1]. This would further suggest

(1− 2 · 10−2)N

K
≤ |Nk| ≤

(1 + 2 · 10−2)N

K
, (26)

where |Nk| = |Nk|+ ∩ |Nk|− represents the index set of sampled QA data P tr
QA with their high-level task concepts as

kS = k ∈ [K]. Moreover, for ∀y ∈ {±1}, there exists k ∈ [K], such that

|N y
k −N/(2K)| ≥ 5 · 10−3N/(2K). (27)
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Proof. The proof strategy follows Lemma G.3 in Bu et al. (2024b). See |N y
k | as a binomial random variable with proba-

bility (2K)−1 and number of experiments N :

|N y
k | ∼ Bin(N, (2K)−1).

The expectation and standard deviation are given by:

E[|N y
k |] =

N

2K
, σk =

√
N · 1

2K
·
(
1− 1

2K

)
.

By Exercise 2.9.(a) and (b) in Wainwright (2019) and (2K)−1 < 1/2, with probability at least 1− δ, we can directly have
|N y

k −N/(2K)| ≤ 0.001 by Hoeffding Inequality as well as an appropriately large N .

On the other hand, define the event:

Ak =
{
|N y

k −N/(2K)| ≤ 10−3N/(2K)
}
.

Observing that the probability of Ak, k ∈ [K] occurring is lower bounded by an absolute constant , denoted as c. Therefore,
considering K trials and with the condition K = Ω(log(1/δ)), by the linearity (independence of different tasks), we have:

P

(
K⋃

k=1

Ac
k

)
= 1− P

(
K⋂

k=1

Ak

)
≥ 1− cK ≥ 1− δ.

Thus, with probability at least 1− δ, there exists some k ∈ [K] such that:

|N y
k −N/(2K)| ≥ 5 · 10−3N/(2K).

Lemma D.11. Suppose that δ > 0, and N = Ω(KK ′ log(1/δ)/M). For ∀k ∈ [K], k′ ∈ [K ′], denote VNk,k′ as the
number of common token νk′ appearing in sample set Nk ⊂ P tr

QA (or P tr
T). Then with probability at least 1− δ, we have

0.99NM

KK ′ ≤ |VNk,k′ | ≤ 1.01NM

KK ′ (28)

Proof. It is worth noting that |VNk,k′ | can be viewed as a binomial random variable with probability (K ′)−1 and the
number of trials |Nk|. Using the bounds 0.998N

K ≤ |Nk| ≤ 1.002N
K from Lemma D.10 and applying the same proof

strategy, the result follows.

E. Detailed Gradients
For clarity, in this section we omit the notation of sample index n and iteration index (t).

Lemma E.1. The gradients of WK ,WQ,WV can be computed as follow.

EP tr
QA
[∂WK

LB(θ)] = −EP tr
QA
[

M∑
j=1

ιuky ,j · (WQSeL) · (S(ej − π))⊤]

EP tr
QA
[∂WQ

LB(θ)] = −EP tr
QA
[

M∑
j=1

ιuky ,j ·WKS(ej − π) · (SeL)⊤]

EP tr
QA
[∂WV

LB(θ)] = −EP tr
QA
[
Π

uky−
∑

k∈[7K+K′] ωkuk

(WV Sπ)⊥
(Sπ)⊤

∥WV Sπ∥
]

(29)
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where π = [π1, · · · , πL−1, 0]
⊤ ∈ RL, ω = [ω1, · · · , ω5K ]⊤. Additionally, for ∀j ∈ [L− 1], k ∈ [7K+K ′] as well as any

vector y,u,v ∈ Rd, the coefficients πj , ωk, ιuky ,j , and operator Πv
u⊥ are defined as

πj := softmax((WKSel)
T (WQSeL)) =

exp(e⊤LS
⊤W⊤

QWKSej)∑
i∈[L−1] exp(e

⊤
LS

⊤W⊤
QWKSei)

,

ωk :=
exp(u⊤

k (x) + u⊤
k LN(

∑M
j=1 πjWV Sej))∑

k∈[7K+K′] exp(u
⊤
k (x) + u⊤

k LN(
∑M

j=1 πjWV Sej))
,

ιuky ,j :=
{(uky −

∑
k∈[7K+K′] ωkuk)

⊤(WV Sπjej)} · {(WV Sπ)
⊤(WV S(π − πjej))}

∥WV Sπ∥3
,

Πv
u⊥ := v − v⊤(

u

∥u∥
) · u

∥u∥
.

(30)

Proof. For W ∈ {WK ,WQ,WV }, we have

∂WLB(θ) = −∂WEP tr
QA
[u⊤

ky
hθ − log(

∑
k∈[7K+K′]

exp(u⊤
k hθ))]

= −∂WEP tr
QA
[u⊤

ky
((x) + LN(

M∑
j=1

πjWV Sej))

− log(
∑

k∈[7K+K′]

exp(u⊤
k ((x) + LN(

M∑
j=1

πjWV Sej))))]

= −EP tr
QA
[∂Wu⊤

ky
LN(

M∑
j=1

πjWV Sej)

− ∂W log(
∑

k∈[7K+K′]

exp(u⊤
k ((x) + LN(

M∑
j=1

πjWV Sej))))],

(31)

where

πj := softmax((WKSel)
T (WQSeL)) =

exp(e⊤LS
⊤W⊤

QWKSej)∑
i∈[L−1] exp(e

⊤
LS

⊤W⊤
QWKSei)

. (32)

We compute ∂Wu⊤
ky

LN(
∑M

j=1 πjWV Sej) as follows. By the fact that the trace of a scalar is the scalar itself, we directly
have

d(u⊤
ky

LN(

M∑
j=1

πjWV Sej)) = tr(d(u⊤
ky

LN(

M∑
j=1

πjWV Sej))).
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Then we see

d(u⊤
ky

LN(

M∑
j=1

πjWV Sej)) = tr(∂WK
⊤(u⊤

ky
LN(

M∑
j=1

πjWV Sej))dWK)

+ tr(∂WQ
⊤(u⊤

ky
LN(

M∑
j=1

πjWV Sej))dWQ)

+ tr((∂WV
⊤(u⊤

ky
LN(

M∑
j=1

πjWV Sej)))dWV )

= tr((∂WK
(u⊤

ky
LN(

M∑
j=1

πjWV Sej)))
⊤dWK)

+ tr(∂WQ
(u⊤

ky
LN(

M∑
j=1

πjWV Sej))dW
⊤
Q)

+ tr((∂WV
(u⊤

ky
LN(

M∑
j=1

πjWV Sej)))
⊤dWV )

(33)

As such, we can compute

tr(d(u⊤
ky

LN(

M∑
j=1

πjWV Sej))) = tr(u⊤
ky
d(LN(

M∑
j=1

πjWV Sej)))

= tr(u⊤
ky
d(

∑M
j=1 πjWV Sej

∥
∑M

j=1 πjWV Sej∥
)) =

M∑
j=1

tr(u⊤
ky
d(

πjWV Sej

∥
∑M

j=1 πjWV Sej∥
))

(34)
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Then we have

M∑
j=1

tr(u⊤
ky
d(

πjWV Sej

∥
∑L−1

i=1 πiWV Sei∥
)) =

M∑
j=1

tr(u⊤
ky
d(

πjWV Sej
∥πjWV Sej +

∑
i ̸=j πiWV Sei∥

))

=

M∑
j=1

tr(u⊤
ky
(
d(πjWV )Sej∥

∑L−1
i=1 πiWV Sei∥

∥
∑L−1

i=1 πiWV Sei∥2
))

−
M∑
j=1

tr(u⊤
ky
(
πjWV Sejd(∥

∑L−1
i=1 πiWV Sei∥)

∥
∑L−1

i=1 πiWV Sei∥2
))

=

M∑
j=1

tr(
(u⊤

ky
WV Sejd(πj) + πju

⊤
ky
d(WV )Sej)

∥
∑L−1

i=1 πiWV Sei∥
)

−
M∑
j=1

tr(
πju

⊤
ky
WV Sej

∑
i,l∈[L−1](e

⊤
i S

⊤d(W⊤
V πiπlWV )Sel)

2∥
∑L−1

i=1 πiWV Sei∥3
)

=

M∑
j=1

tr(
(u⊤

ky
WV Sejd(πj) + πju

⊤
ky
d(WV )Sej)

∥
∑L−1

i=1 πiWV Sei∥
)

−
M∑
j=1

tr(

2J∑
l=1

πju
⊤
ky
WV Sej

∑
i∈[L−1] πi(e

⊤
i S

⊤W⊤
V WV Sel)

∥
∑L−1

i=1 πiWV Sei∥3
d(πl))

−
M∑
j=1

tr(
πj

∑
i,l∈[L−1] Selu

⊤
ky
WV Sejπiπl(e

⊤
i S

⊤(d(W⊤
V )WV +W⊤

V d(WV )))

2∥
∑M

j=1 πjWV Sej∥3
)

=

M∑
j=1

(tr(ζjuky
(dπj)) + tr(Υj

uky
dWV ))

(35)

where

ζjuky
:= (u⊤

ky
WV Sej)(

1

∥
∑L−1

i=1 πiWV Sei∥
−
∑

i∈[L−1] πi(e
⊤
i S

⊤W⊤
V WV Sπjej)

∥
∑L−1

i=1 πiWV Sei∥3
)

= (u⊤
ky
WV Sej)(

∑
i ̸=j(WV Sπiei)

⊤WV Sπjej

∥
∑L−1

i=1 πiWV Sei∥3
)

Υj
uky

:=

πjSeju
⊤
ky

−
πj

∑
i,l∈[L−1] Selu

⊤
ky
WV Sejπiπle

⊤
i S

⊤W⊤
V

2∥
∑L−1

i=1 πiWV Sei∥2

∥
∑L−1

i=1 πiWV Sei∥

−

(πj

∑
i,l∈[L−1] WV Selu

⊤
ky
WV Sejπiπle

⊤
i S

⊤)⊤

2∥
∑L−1

i=1 πiWV Sei∥2

∥
∑L−1

i=1 πiWV Sei∥

=

πj(ye
⊤
j S

⊤)⊤ −
πj

∑
i,l∈[L−1] πiπl(WV Seie

⊤
j S

⊤W⊤
V ye

⊤
l S

⊤)⊤

2∥
∑L−1

i=1 πiWV Sei∥2

∥
∑L−1

i=1 πiWV Sei∥

−

πj

∑
i,l∈[L−1] πiπl(WV Selu

⊤
ky
WV Seje

⊤
i S

⊤)⊤

2∥
∑L−1

i=1 πiWV Sei∥2

∥
∑L−1

i=1 πiWV Sei∥

(36)
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Then for ∀j ∈ [L− 1], we investigate d(πj):

d(πj) = d
exp(e⊤LS

⊤W⊤
QWKSej)∑

i∈[L−1] exp(e
⊤
LS

⊤W⊤
QWKSei)

= πje
⊤
LS

⊤d(W⊤
QWK)Sej−

πj

∑
i∈[L−1](exp(e

⊤
LS

⊤W⊤
QWKSei))e

⊤
LS

⊤d(W⊤
QWK)Sei

(
∑

i∈[L−1] exp(e
⊤
LS

⊤W⊤
QWKSei))

= πje
⊤
LS

⊤(d(W⊤
QWK)Sej −

∑
i∈[L−1]

πid(W
⊤
QWK)Sei)

(37)

By Eq.(34), (35),(37) we have

d(u⊤
ky

LN(

M∑
j=1

πjWV Sej)) = tr(

M∑
j=1

ζjuky
πje

⊤
LS

⊤(d(W⊤
QWK)Sej −

∑
i∈[L−1]

πid(W
⊤
QWK)Sei))

+ tr(

M∑
j=1

Υj
uky

dWV )

= tr(

M∑
j=1

ζjuky
πjS(ej −

L−1∑
i=1

πiei)e
⊤
LS

⊤(d(W⊤
QWK)))

+ tr(

M∑
j=1

Υj
uky

dWV )

(38)

As we see that
d(W⊤

QWK) = d(W⊤
Q)WK +W⊤

Qd(WK).

Therefore, by the Cyclic Invariance Property of operator trace and Eq.(38),(31), we have

(∂WK
(u⊤

ky
LN(

M∑
j=1

πjWV Sej)))
⊤ =

M∑
j=1

ζjuky
πjS(ej −

L−1∑
i=1

πiei)e
⊤
LS

⊤W⊤
Q.

That is,

∂WK
(u⊤

ky
LN(

M∑
j=1

πjWV Sej)) =

M∑
j=1

ζjuky
πjWQSeL(ej −

L−1∑
i=1

πiei)
⊤S⊤. (39)

Similarly, we have

∂WQ
(u⊤

ky
LN(

M∑
j=1

πjWV Sej)) =

M∑
j=1

ζjuky
πjWKS(ej −

L−1∑
i=1

πiei)e
⊤
LS

⊤. (40)

By Eq.(33, 35), we can also obtain

∂WV
(u⊤

ky
LN(

M∑
j=1

πjWV Sej)) =

M∑
j=1

(Υj
uky

)⊤ (41)

Similarly, to compure ∂W log(
∑

k∈[7K+K′] exp(u
⊤
k ((x) + LN(

∑M
j=1 πjWV Sej)))), we investigate

d log(
∑

k∈[7K+K′]

exp(u⊤
k (x) + u⊤

k LN(

M∑
j=1

πjWV Sej))),
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which can be calculated as

∑
k∈[7K+K′]

exp(u⊤
k (x) + u⊤

k LN(
∑M

j=1 πjWV Sej))(d(u
⊤
k LN(

∑M
j=1 πjWV Sej)))∑

k∈[7K+K′] exp(u
⊤
k (x) + u⊤

k LN(
∑M

j=1 πjWV Sej))

=
∑

k∈[7K+K′]

ωkd(u
⊤
k LN(

M∑
j=1

πjWV Sej)),

(42)

where

ωk :=
exp(u⊤

k (x) + u⊤
k LN(

∑M
j=1 πjWV Sej))∑

k∈[7K+K′] exp(u
⊤
k (x) + u⊤

k LN(
∑M

j=1 πjWV Sej))
,

∑
k∈[7K+K′]

ωk = 1. (43)

On the other hand, by the derivative results we got from d(u⊤
ky

LN(
∑M

j=1 πjWV Sej)), we directly have similar outcome
for uk, k ∈ [7K +K ′]:

∂WK
(u⊤

k LN(

M∑
j=1

πjWV Sej)) =

M∑
j=1

ζjuk
πjWQSeL(ej −

L−1∑
i=1

πiei)
⊤S⊤

∂WQ
(u⊤

k LN(

M∑
j=1

πjWV Sej)) =

M∑
j=1

ζjuk
πjWKS(ej −

L−1∑
i=1

πiei)e
⊤
LS

⊤

∂WV
(u⊤

k LN(

M∑
j=1

πjWV Sej)) =

M∑
j=1

(Υj
uk
)⊤

=

M∑
j=1

πjuke
⊤
j S

⊤ −
πj

∑
i,l∈[L−1] πiπlWV Seie

⊤
j S

⊤W⊤
V uke

⊤
l S

⊤

2∥
∑L−1

i=1 πiWV Sei∥2

∥
∑L−1

i=1 πiWV Sei∥

−

πj

∑
i,l∈[L−1] πiπlWV Selu

⊤
k WV Seje

⊤
i S

⊤

2∥
∑L−1

i=1 πiWV Sei∥2

∥
∑L−1

i=1 πiWV Sei∥

(44)

As such, by Eq.(31, 43) we have

EP tr
QA
[∂WK

LB(θ)] = −EP tr
QA
[(1− ωky)

M∑
j=1

ζjuky
πjWQSeL(ej −

L−1∑
i=1

πiei)
⊤S⊤

−
∑
k ̸=ky

ωk

M∑
j=1

ζjuk
πjWQSeL(ej −

L−1∑
i=1

πiei)
⊤S⊤]

EP tr
QA
[∂WQ

LB(θ)] = −EP tr
QA
[(1− ωky)

M∑
j=1

ζjuky
πjWKS(ej −

L−1∑
i=1

πiei)e
⊤
LS

⊤

−
∑
k ̸=ky

ωk

M∑
j=1

ζjuk
πjWKS(ej −

L−1∑
i=1

πiei)e
⊤
LS

⊤]

= −EP tr
QA
[

M∑
j=1

∑
k ̸=ky

πjωk(ζ
j
uky

− ζjuk
)WKS(ej −

L−1∑
i=1

πiei)e
⊤
LS

⊤].

(45)
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Define π = [π1, · · · , πL−1, 0]
⊤ ∈ RL and ω = [ω1, · · · , ω5K ]⊤. By the definitions in Eq.(36), we have

EP tr
QA
[∂WK

LB(θ)] = EP tr
QA
[(WQSeL)·

M∑
j=1

(((1− ωky)uky −
∑

k ̸=ky
ωkuk)

⊤(WV Sπjej))

(
(WV Sπ)

⊤(WV S(π − πjej))

∥WV Sπ∥3
)−1

(S(π − ej))
⊤]

= EP tr
QA
[

M∑
j=1

ιuky ,j · (WQSeL) · (S(π − ej))
⊤]

EP tr
QA
[∂WQ

LB(θ)] = EP tr
QA
[

M∑
j=1

WKS(π − ej)·

M∑
j=1

(((1− ωky)uky −
∑

k ̸=ky
ωkuk)

⊤(WV Sπjej))

(
(WV Sπ)

⊤(WV S(π − ej))

∥WV Sπ∥3
)−1

(SeL)
⊤]

= EP tr
QA
[

M∑
j=1

ιuky ,j ·WKS(π − ej) · (SeL)⊤]

(46)

where the ιuky ,j is defined as

ιuky ,j :=
{((1− ωky)uky −

∑
k ̸=ky

ωkuk)
⊤(WV Sπjej)} · {(WV Sπ)

⊤(WV S(π − πjej))}
∥WV Sπ∥3

(47)

Similarly,

EP tr
QA
[∂WV

LB(θ)] = −EP tr
QA
[(1− ωky)

M∑
j=1

(Υj
uky

)⊤ −
∑
k ̸=ky

ωk

M∑
j=1

(Υj
uk
)⊤] =

− (EP tr
QA
[

∑
j∈[L−1]
k ̸=ky

{ωkπj(y − uk)e
⊤
j S

⊤ − ωkπj
∑

i,l∈[L−1] πiπlWV Seie
⊤
j S⊤W⊤

V (y−uk)e
⊤
l S⊤

2∥WV Sπ∥2

∥WV Sπ∥

−ωkπj
∑

i,l∈[L−1] πiπlWV Sel(y−uk)
⊤WV Seje

⊤
i S⊤

2∥WV Sπ∥2 }
∥WV Sπ∥

]) = −

EP tr
QA
[
((1− ωky)uky −

∑
k ̸=ky

ωkuk)(Sπ)
⊤ −

(((1−ωky )uky−
∑

k ̸=ky
ωkuk)

⊤(WV Sπ))(WV Sπ)(Sπ)⊤

∥WV Sπ∥2

∥WV Sπ∥
]

= −EP tr
QA
[
((1− ωky)uky −

∑
k ̸=ky

ωkuk)−
(((1−ωky )uky−

∑
k ̸=ky

ωkuk)
⊤(WV Sπ))(WV Sπ)

∥WV Sπ∥2

∥WV Sπ∥
(Sπ)⊤]

= −EP tr
QA
[
Π

(1−ωky )uky−
∑

k ̸=ky
ωkuk

(WV Sπ)⊥
(Sπ)⊤

∥WV Sπ∥
]

(48)

where the projection operator Πv
u⊥ is defined as

Πv
u⊥ := v − v⊤(

u

∥u∥
) · u

∥u∥
.
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F. Training Dynamics: QA data
In the following sections, we consider training is on QA data, and assume the results in Appendix D.2 all hold with high
probability. Following Definition C.3, we denote:

• Sn ∈ P tr
QA as the n-th QA sentence sample in P tr

QA,

• yn as the label vector (last column) of Sn,

• kSn
∈ [K] as the co-task concept of Sn,

• ykSn
= yn as the task-specific low-level semantic real value label,

• kyn
= 2kSn

+ yn+1
2 as the dictionary index of yn,

• mSn
as the position index of akSn

in sentence Sn,

• π
(t)
n,m as the attention score over the m-th position in Sn at the iteration t,

• ω
(t)
n,k as the weight of dictionary vector uk in Sn, defined in Eq. (30) at iteration t,

• ι
(t)
uky ,m as the coefficients defined in Eq. (30) at iteration t,

• N y
k ⊂ P tr

QA as the index set of QA samples with their high-level task concept kS = k ∈ [K] and task-specific
low-level semantic real value label ykS

= y ∈ [±1],

• VNk,k′ as the number of common token νk′ appearing in sample set Nk ⊂ P tr
QA.

F.1. Phase 1: Linear Growth of MLP and Accelerating Growth of Attention

In this phase, the MLP is upper and lower bounded by linear continuous counterparts. Meanwhile, the evolution of attention
is upper and lower bounded by exponential and quadratic counterparts, respectively.
Lemma F.1. Under Condition 3.1, during t ≤ T1 = Θ((ηqV )

−1σ2
1dK), we have

a⊤
k W

(t)
V ak = o(σ1d

1/2),

|ak
⊤W

(t)
V u|, |v⊤W

(t)
V v|, |v⊤W

(t)
V v′| = O(

√
2 log(

8(2K +K ′)2

δ
)σ1),

|(W(t)
Q akSn

)⊤W
(t)
K (akSn

)| = O(σ2
0de

q−1
V σ2

1d),

|(W(t)
Q xn)

⊤W
(t)
K (νn,¬mSn

+ ξn,¬mSn
)| = O(

√
log(

16(2K +K ′)2

δ
)σ2

0d
1/2),

(49)

for ∀k ∈ [K], n ∈ [N ], s ∈ [7],¬mSn ̸= mSn ∈ [M ],u ∈ {as}s̸=k∈[K]∪{bs}s∈[K]∪{νk′}k′∈[K′]∪{ξn,m}n∈[N ],m∈[M ]

and v ̸= v′ ∈ {bs}s∈[K] ∪ {ξn,m}n∈[N ],m∈[M ]. At the end of this stage, we have

a⊤
k W

(T1)
V ak ≥ C̄1σ1d

1/2

M
−
√
2 log(

8(2K +K ′)2

δ
)σ1,

(W
(T1)
Q ak̂)

⊤(W
(T1)
K ak̂) ≥C̄2

σ2
0σ

2
1d

2

M2qV
− C̄3(

η2qV σ
2
0

σ2
1M

2K2
+ 4
√
log(16(2K +K ′)2/δ)σ2

0d
1/2).

(50)

for some positive constants C̄1−3.

We first examine the initialization. At t = 0, the results in Eq.(49) can be directly derived based on the orders of the
initialized products and the norms presented in Lemma D.8, Lemma D.9, as well as the small initialization σ0 = O(d−1/2),
low noise σp = O(∥u∥d−1/2) and overparameterization condition d = Ω(M2 log(K

′2N2M2

δ )) in Condition 3.1:

|(W(0)
Q xn)

⊤W
(0)
K (akSn

+ ξn,mSn
)|, |(W(0)

Q xn)
⊤W

(0)
K (νn,¬mSn

+ ξn,¬mSn
)| ≤ 12

√
log(16(2K +K ′)2/δ)σ2

0d
1/2,

|a⊤
k W

(0)
V ak| ≤

√
2 log(

8(2K +K ′)2

δ
)σ1 < o(σ1d

1/2), |u⊤W
(0)
V u|, |ak

⊤W
(0)
V u| ≤

√
2 log(

8(2K +K ′)2

δ
)σ1,
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for ∀k ∈ [K], n ∈ [N ], s ∈ [7],¬mSn
̸= mSn

∈ [M ],u ∈ {as}s ̸=k∈[K]∪{bs}s∈[K]∪{νk′}k′∈[K′]∪{ξn,m}n∈[N ],m∈[M ].
By direct calculations, it holds that

π(0)
n,mSn

= Θ(
1

M
), π(0)

n,¬mSn
= Θ(

1

M
),

0.98σ1d
1/2 ≤ ∥W(0)

V Snπ
(0)
n ∥ ≤ 1.02σ1d

1/2,

|
u⊤
kyn

W
(0)
V Snπ

(0)
n

∥W(0)
V Snπ

(0)
n ∥

|, |
u⊤
¬kyn

W
(0)
V Snπ

(0)
n

∥W(0)
V Snπ

(0)
n ∥

|, |
ξ⊤n,mW

(0)
V Snπ

(0)
n

∥W(0)
V Snπ

(0)
n ∥

| ≤ 8

√
2 log(

8(2K +K ′)2

δ
)/
√
d = o(0.01),

|
(ukyn

−
∑

k∈[7K+K′] ωn,kuk)
⊤(W

(0)
V Snπ

(0)
n )

∥W(0)
V Snπ

(0)
n ∥

| ≤ 16

√
2 log(

8(2K +K ′)2

δ
)/
√
d = o(0.01),

(W
(0)
V Snπ

(0)
n )⊤

∥W(0)
V Snπ

(0)
n ∥

W
(0)
V Snπ

(0)
n,mem

∥W(0)
V Snπ

(0)
n ∥

≤ 1.05

0.95M2
+

(M − 1)(4
√

log(16(2K +K ′)2/δ)d−1/2)

0.95M2
≤ 1.11

M2
.

Since these scales are crucial to our analyses of gradients, we first introduce the following results based on Eq. (49) and
Eq.(50) at iteration t ≤ T1.

Lemma F.2. Under Condition 3.1, suppose Eq. (49) and Eq.(50) hold at any iteration t ≤ T1, then

π(T1)
n,mSn

≤ Θ(
1

1 + (M − 1)e−σ2
0de

q
−1
V

σ2
1d
) < 0.95, π(T1)

n,¬mSn
≥ Θ(

e−σ2
0de

q
−1
V

σ2
1d

1 + (M − 1)e−σ2
0de

q
−1
V

σ2
1d
),

∥W(t)
V Snπ

(t)
n ∥ = Θ(σ1d

1/2),

|
u⊤
7k+sW

(t)
V Snπ

(t)
n

∥W(t)
V Snπ

(t)
n ∥

| ≤ O(
1

1 + (M − 1)e−σ2
0de

q
−1
V

σ2
1d
),

|
u⊤
7¬k+sW

(t)
V Snπ

(t)
n

∥W(t)
V Snπ

(t)
n ∥

|, |
ξ⊤n,mW

(t)
V Snπ

(t)
n

∥W(t)
V Snπ

(t)
n ∥

| ≤ Θ(8

√
2 log(

8(2K +K ′)2

δ
)d−1/2),

|
(ukyn

−
∑

k∈[7K+K′] ωn,kuk)
⊤(W

(t)
V Snπ

(t)
n )

∥W(t)
V Snπ

(t)
n ∥

| ≤ O(
1

1 + (M − 1)e−σ2
0de

q
−1
V

σ2
1d
),

(W
(t)
V Snπ

(t)
n )⊤

∥W(t)
V Snπ

(t)
n ∥

W
(t)
V Snπ

(t)
n,mem

∥W(t)
V Snπ

(t)
n ∥

= o(1) < 0.993 < 1,

(51)

for ∀k ∈ [K],¬k ̸= k ∈ [K], n ∈ Nk ⊂ [N ], s ∈ [7],mSn
̸= mSn

∈ [M ].

Proof. Suggest Eq.(49) and Eq.(50) holds at t, then π
(T1)
n,mSn

≤ Θ( 1

1+(M−1)e−σ2
0de

q
−1
V

σ2
1d
), Θ( e−σ2

0de
q
−1
V

σ2
1d

1+(M−1)e−σ2
0de

q
−1
V

σ2
1d
) ≤

π
(T1)
n,¬mSn

by qV = Ω(
σ2
1d

log(σ−2
0 d−1 log(M−1

0.06 ))
). Furthermore, as we see that |u⊤W

(t)
V u|, |ak

⊤W
(t)
V u| is feeble compared

to the growths of a⊤
k W

(t)
V ak suggested in Eq.(49) and Eq.(50), thus the a⊤

k W
(t)
V Snπ

(t)
n,mSn

emSn
would be primarily

responsible to the changes of ∥W(t)
V Snπ

(t)
n ∥, which is the change of the term

(π(t)
n,mSn

)2 · (ak · cos ⟨W(t)
V ak,ak⟩∥W(t)

V ak∥)⊤(W(t)
V ak) = (π(t)

n,mSn
)2 · (a⊤

k W
(t)
V ak)

2,

where cos ⟨W(t)
V ak,ak⟩ =

a⊤
k W

(t)
V ak

∥W(t)
V ak∥

. Note that if a⊤
k W

(t)
V ak < 0 at t = 0, a⊤

k W
(t)
V ak will increase and thus

(a⊤
k W

(t)
V ak)

2 would decrease, which might lead to the decrease of ∥W(t)
V Snπ

(t)
n ∥. The scale of ∥W(t)

V Snπ
(t)
n ∥2 would

remain at Θ(σ2
1d) during (π

(t)
n,mSn

)2 · (a⊤
k W

(t)
V ak)

2 ≤ O(∥W(t)
V Snπ

(t)
n ∥2) ⇒ (π

(t)
n,mSn

) · (a⊤
k W

(t)
V ak) ≤ O(σ1d

1/2).
This apparently holds during t ≤ T1 by Eq.(49). Therefore, we can safely conclude that 0.95σ1d

1/2 ≤ ∥W(t)
V Snπ

(t)
n ∥ =

Θ(σ1d
1/2).
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Then, based on the scales in Eq.49 as well as Condition 3.1,similarly we can directly compute the last three inequality by
the definition of uk (ukyn̂

= LN(akSn
+ ykSn

bkSn
)):

|
u⊤
7k+sW

(t)
V Snπ

(t)
n

∥W(t)
V Snπ

(t)
n ∥

| ≤ Θ(
1

1 + (M − 1)e−σ2
0de

q
−1
V

σ2
1d

o(σ1d
1/2)

Θ(σ1d1/2)
)

= O(
1

1 + (M − 1)e−σ2
0de

q
−1
V

σ2
1d
),

|
u⊤
7¬k+sW

(t)
V Snπ

(t)
n

∥W(t)
V Snπ

(t)
n ∥

|, |
ξ⊤n,mW

(t)
V Snπ

(t)
n

∥W(t)
V Snπ

(t)
n ∥

| ≤ 8

√
2 log(

8(2K +K ′)2

δ
)d−1/2,

|
(ukyn

−
∑

k∈[7K+K′] ωn,kuk)
⊤(W

(t)
V Snπ

(t)
n )

∥W(t)
V Snπ

(t)
n ∥

| ≤ Θ(o(1)
o(σ1d

1/2)

Θ(σ1d1/2)

1

1 + (M − 1)e−σ2
0de

q
−1
V

σ2
1d
)

= O(
1

1 + (M − 1)e−σ2
0de

q
−1
V

σ2
1d
),

(W
(t)
V Snπ

(t)
n )⊤

∥W(t)
V Snπ

(t)
n ∥

W
(t)
V Snπ

(t)
n,mem

∥W(t)
V Snπ

(t)
n ∥

≤ Θ(
Θ(1)

(1 + (M − 1)e−σ2
0de

q
−1
V

σ2
1d

)2
)

+ Θ(
(M − 1)(4

√
log(16(2K +K ′)2/δ)d−1/2)

0.95M(1 + (M − 1)e−σ2
0de

q
−1
V

σ2
1d

)
)

≤ Θ(
1

(1 + (M − 1)e−σ2
0de

q
−1
V

σ2
1d

)2
) < 1.

The remaining is to prove Eq.(49) during t ≤ T1. To facilitate the proofs, we introduce the following auxiliary lemmas.

Lemma F.3. Under Condition 3.1, for the whole iteration t ≤ T ⋆ = Ω(η−1q−1
V σ2

1KMd2 log( 1ϵ )), we have

ω
(t)
n,k = Θ(

1

K ′ ) = o(1), (52)

for ∀n ∈ [N ], k ∈ [K].

Proof. By the definition of ω(t)
n,k, we see that for the whole iteration t ≤ T ⋆, there exists some constants C ′

1 > C ′
2 > 0,

ω
(t)
n,k =

exp(u⊤
k (xn) + u⊤

k LN(
∑M

m=1 πn,mW
(t)
V Sem))∑

k∈[7K+K′] exp(u
⊤
k (xn) + u⊤

k LN(
∑M

j=1 πn,mW
(t)
V Sem))

≤ Θ(
exp (1.5)

(7K +K ′) exp (−1)
) ≤ Θ(

13

7K +K ′ ) = Θ(
C ′

1

K ′ ) = o(1),

ω
(t)
n,k ≥ exp(−1)

(7K +K ′) exp(1.5)
≥ Θ(

0.08

7K +K ′ ) = Θ(
C ′

2

K ′ ) = o(1).

(53)

Here, the inequality is by the definitions of uk and LN as well as the large number of common token condition K ′ = Ω(K)

in Condition 3.1. This would suggest that ω(t)
n,k = Θ( 1

K′ ) always hold during the whole iteration t ≤ T ⋆.

Based on this results, now we examine the evolving formulas of u⊤W
(t)
V v,∀u,v ∈ {as}s∈[K] ∪ {bs}s∈[K] ∪

{νk′}k′∈[K′], ξl, ξ
′
l ∈ {ξn,m}n∈[N ],m∈[M ] in the period t ≤ T1 based on Eq. (49).

35



Provable In-Context Vector Arithmetic via Retrieving Task Concepts

Lemma F.4. Under Condition 3.1, suppose Eq. (49) holds at iteration t ≤ T1, then a⊤
k W

(t)
V ak is increasing such that

a⊤
k̂
W

(t+1)
V ak̂ − a⊤

k̂
W

(t)
V ak̂ = Θ([

∑
n̂∈Nk̂

ηqV (Mπ
(t)
n̂,mSn̂

)

2NM∥W(t)
V Sn̂π

(t)
n̂ ∥

]),

|a⊤
k̂
W

(t+1)
V u− a⊤

k̂
W

(t)
V u|, |v⊤W

(t+1)
V v − v⊤W

(t)
V v|,

|v⊤W
(t+1)
V v′ − v⊤W

(t)
V v′| < 0.01(a⊤

k̂
W

(t+1)
V ak̂ − a⊤

k̂
W

(t)
V ak̂),

(54)

for ∀k̂ ∈ [K], k′ ∈ [K ′],u ∈ {as}s̸=k̂∈[K] ∪ {bs}s∈[K] ∪ {ξn,m}n∈[N ],m∈[M ] and v ̸= v′ ∈ {bs}s∈[K] ∪
{ξn,m}n∈[N ],m∈[M ].

Proof. To examine the last inequality, we first examine the update of W(t)
V . By Lemma E.1, denote N y

k ⊂ P tr
QA as the index

set of QA samples with their high-level task concept kS = k ∈ [K] and task-specific label real value ykS
= y ∈ [±1], for

∀k̂ ∈ [K], k′ ̸= k̂, n′ ∈ Nk′ , we have the following near-orthogonal relationship

(Sn′π
(t)
n′ )

⊤ak̂ ≤ Θ(
a⊤
k̂
(
∑

m̸=mS
n′∈[M ](ξn′,m + νn′,m) + ξn′,mS
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+ ak′)

M
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√
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δ
))

= o(0.001)
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⊤(W
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V Sn′π
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)
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V Sn′π
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)| ≤ |o(
a⊤
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W

(t)
V Sn′π

(t)
n′

∥W(t)
V Sn′π

(t)
n′ ∥

)|

= o(−0.01)

(55)
Here, the first result is by ak̂ ⊥ ak′ (Eq.(49)): Θ( 1

M ) ≤ π
(t)
n,mSn

≤

Θ( 1

1+(M−1)e−σ2
0de

q
−1
V

σ2
1d
), Θ( e−σ2

0de
q
−1
V

σ2
1d

1+(M−1)e−σ2
0de

q
−1
V

σ2
1d
) ≤ π

(t)
n,¬mSn

≤ Θ( 1
M ) as well as the low noise condition

σp ≤ d−1/2/C in Condition 3.1; the second result is due to Eq.(51). The first (0.001) can actually be smaller if we require
a larger C in Condition 3.1, but for the simplicity of presentation, we here choose a feasible one. We latter would show
that (Sπ(t)

n′ )⊤ak̂ would maintain the scale during the whole iteration.
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Then we have
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∥W(t)
V Snπ

(t)
n ∥
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(t)
n̂ ∥
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(56)
Here, the first and second equalities are by definition; the third equality is by Eq.(55); the forth equality is by definition
of Πv

u⊥ in Eq.(30); the fifth equality is by the definition of uk (ukyn̂
= LN(akSn

+ ykSn
bkSn

)), Lemma D.8 as well as

Eq.(51); the last equality is by the low noise condition in Condition 3.1. Note that η ≤ o(q−1
V σ2

1d
1
2K
√
log(K

′2

δ ))

Similarly, we have
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]|

=
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N

∑
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≤ Θ(
∑
n̂∈Nk̂

[
ηqV ((1 + (0.001 + 0.01))/2− (1− (0.001 + 0.01))/2)(Mπ
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V Sn̂π

(t)
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])

= Θ([
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n̂∈Nk̂

ηqV (0.01)π
(t)
n̂,mSn̂

2NM∥W(t)
V Sn̂π
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]) << a⊤
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W

(t+1)
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W

(t)
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(57)
Here, the deduction of the first-to-forth equality follows Eq.(56); the fifth inequality is by Lemma D.10, the definition of
uk (ukyn̂

= LN(akSn
+ ykSn

bkSn
)), Eq.(51) as well as overparameterization condition d = Ω(M2 log(K ′2N2M2/δ)).
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The value 0.001 can be further reduced by increasing C in Condition 3.1. However, for simplicity, we opt for a
illustrative choice here. Similarly, for ∀k̂ ∈ [K], k′ ∈ [K ′],u ∈ {as}s ̸=k̂∈[K] ∪ {bs}s∈[K] ∪ {ξn,m}n∈[N ],m∈[M ] and
v ̸= v′ ∈ {bs}s∈[K] ∪ {ξn,m}n∈[N ],m∈[M ], we would have the following

|a⊤
k̂
W

(t+1)
V u− a⊤

k̂
W

(t)
V u| ≤ Θ(
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[
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|v⊤W
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[
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(58)

Here, (0.001) is by the term (Sπ
(t)
n̂ )⊤u = Θ((π

(t)
n̂,mSn̂

ak̂ +
∑

m(π
(t)
n̂,mξn̂,m))⊤u) that would appear if u is on the right

side, Lemma D.8 and the low noise condition σp = O(d−1/2) in Condition 3.1; (0.01) is by the third and forth inner
products in our Eq.(51) as well as overparameterization condition d = Ω(M2 log(K ′2N2M2/δ)), Lemma D.8 and the
low noise condition σp = O(d−1/2) in Condition 3.1, as well as the balanced property of the QA data deduced in Lemma
D.10.

Besides, it holds that for ∀k ∈ [K], k′ ∈ [K ′], we have
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(59)
where the left (0.01) is by (Eq.(51)) as well as the overparameterization condition d = Ω(M2 log(K ′2N2M2/δ))

in Condition 3.1. The right term, (Mπ
(t)
n̂,mSn̂

+ 0.001) or (0.001), follows from the calculations of (Sπ
(t)
n̂ )⊤u =

Θ((π
(t)
n̂,mSn̂

ak̂ +
∑

m(π
(t)
n̂,mξn̂,m))⊤u),u ∈ {ak, bk}k∈[K], based on Θ( 1

M ) ≤ π
(t)
n,mSn

≤ Θ( 1

1+(M−1)e−σ2
0de

q
−1
V

σ2
1d
),

Θ( e−σ2
0de

q
−1
V

σ2
1d

1+(M−1)e−σ2
0de

q
−1
V

σ2
1d
) ≤ π

(t)
n,¬mSn

≤ Θ( 1
M ) in Eq.(49), as well as the low noise condition σp = O(d−1/2) in Con-

dition 3.1. In addition, denotes ak̂ = νn,m, by Lemma D.11 and K ′ = Ω(M) in Condition 3.1, as well as the strategy
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above, the following holds
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(60)
where Nνk′ ⊂ P tr

QA denote the index set of QA samples with νk′ in the sentence, and mn,νk′ denotes the position index of
νk′ when n ∈ Nνk′ .

By Eq.(56), (57), (58), (59), (60), Θ( 1
M ) ≤ π

(t)
n,mSn

≤ Θ( 1
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M ) that for v⊤W
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V u,v,u ∈ {as}s∈[K] ∪ {bs}s∈[K] ∪ {νk′}k′∈[K′] ∪ {ξn,m}n∈[N ],m∈[M ], only when

v = u = ak,∀k ∈ [K] the products would grow in a non-negligible manner. Therefore, by definition of mSn
and low

noise condition σp = O(d−1/2), the primary contributor to the change of ∥W(t)
V Snπ

(t)
n ∥2 is the increase in π

(t)
n,mSn

and
a⊤
k W

(t)
V ak

The following lemma examines two scenarios for the upper and lower bounds of the growth evolution of a⊤
k W

(t)
V ak.

Lemma F.5. Under Condition 3.1, suppose Eq. (49) holds at iteration t ≤ T1 ≤ t⋆2, where t⋆2 :=

(ηqV )
−1C−1

2 σ1d
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(61)

Proof. By Lemma D.8 and Condition 3.1.

At t = 0, by Lemma D.10 and Eq.(51) we have

a⊤
k W

(t+1)
V ak − a⊤

k W
(t)
V ak ≥ Θ(

ηqV
2MK(σ1d1/2)

), (62)

Therefore, by Lemma D.1 and Lemma D.8, for some C1 > 0 we have

a⊤
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ηqV t
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√
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for 0 ≤ t ≤ T1. Define the positive estimate of the time point when the lower bound evolution of a⊤
k W

(t)
V ak has

potential to reach O(σ1d
1/2) as t⋆1 := (ηqV )

−1C−1
1 σ2
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√
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δ )). Note that t⋆2 ≤ t⋆1 thus we
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have T1 ≤ t⋆1. Collaborating with the non-decreasing nature of a⊤
k W

(t)
V ak, the non-increasing nature of g(x) = 1/x,
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directly have
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In terms of the upper bound, by similar approaches, for some C2, C
′
2, Ĉ2 > 0 we have
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Ĉ2

√
2 log( 8(2K+K′)2

δ )

σ1d1/2
,

for 0 ≤ t ≤ t⋆2 := (ηqV )
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2 σ2
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δ )) by
Condition 3.1, we have t⋆2 >> 0. We can thus appropriately choose T1 ≤ t⋆2.

We also have
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Lemma F.6. Under Condition 3.1, suppose Eq. (49) holds at iteration t ≤ T1, then for ∀k ∈ [K] and n ∈ Nk, it holds
that that
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for 0 ≤ t ≤ T1.

Proof. In terms of the lower bounds, in the scenario (1) and (2), for the numerator it holds that
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Now consider the upper bound. Observe that
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and also it holds that
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Similarly,

(W
(t+1)
K ak̂ −W

(t)
K ak̂)

⊤(W
(t)
Q ak̂) =

η

N

∑
y∈[±1]
n∈Ny

k̂

Θ([
(ukyn

−
∑

k∈[7K+K′] ωn,kuk)
⊤(W

(t)
V Snπ

(t)
n,mSn

emSn
)

∥W(t)
V Snπ

(t)
n ∥

(1−

(W
(t)
V Snπ

(t)
n )⊤

∥W(t)
V Snπ

(t)
n ∥

W
(t)
V Snπ

(t)
n,mSn

en,mSn

∥W(t)
V Snπ

(t)
n ∥

) · (W(t)
Q ak̂)

⊤W
(t)
Q SneM+1

(Sn(emSn
− π(t)

n ))⊤ak̂)]

(71)

By definition of ukyn
, small scale of

(ukyn
−
∑

k∈[7K+K′] ωn,kuk)
⊤(W

(t)
V Snπ

(t)
n,mSn

emSn
)

∥W(t)
V Sn∥

, Θ( 1
M ) ≤ π

(t)
n,mSn

≤

Θ( 1

1+(M−1)e−σ2
0de

q
−1
V

σ2
1d
), Θ( e−σ2

0de
q
−1
V

σ2
1d

1+(M−1)e−σ2
0de

q
−1
V

σ2
1d
) ≤ π

(t)
n,¬mSn

≤ Θ( 1
M ), Lemma D.11 and K ′ = Ω(M), through

similar derivation techniques in Eq.(57), we have

(W
(t+1)
Q ak̂)

⊤(W
(t+1)
K ak̂)− (W

(t)
Q ak̂)

⊤(W
(t)
K ak̂) =Θ((W

(t)
Q ak̂)

⊤(W
(t+1)
K ak̂ −W

(t)
K ak̂)

+ (W
(t)
K ak̂)

⊤(W
(t+1)
Q ak̂ −W

(t)
Q ak̂))

=
η

N

∑
y∈[±1]
n∈Ny

k̂

Θ([
(ukyn

−
∑

k∈[7K+K′] ωn,kuk)
⊤(W

(t)
V Snπ

(t)
n,mSn

emSn
)

∥W(t)
V Snπ

(t)
n ∥

(1−
(W

(t)
V Snπ

(t)
n )⊤

∥W(t)
V Snπ

(t)
n ∥

W
(t)
V Snπ

(t)
n,mSn

en,mSn

∥W(t)
V Snπ

(t)
n ∥

)·

((W
(t)
K ak̂)

⊤W
(t)
K Sn(emSn

− π(t)
n )(SneM+1)

⊤ak̂

+ (W
(t)
Q ak̂)

⊤W
(t)
Q SneM+1(Sn(emSn

− π(t)
n ))⊤ak̂)])

=Θ(
η
∑

n̂∈Nk̂

N

a⊤
k̂
W

(t)
V Snπ

(t)
n,mSn

emSn

∥W(t)
V Snπ

(t)
n ∥

(1−
(W

(t)
V Snπ

(t)
n )⊤

∥W(t)
V Snπ

(t)
n ∥

W
(t)
V Snπ

(t)
n,mSn

en,mSn

∥W(t)
V Snπ

(t)
n ∥

) · (1− π(t)
n,mSn

)a⊤
k̂
((W

(t)
Q )⊤W

(t)
Q

+ (W
(t)
K )⊤W

(t)
K )ak̂).

(72)
Therefore, we found a⊤

k̂
(W

(t)
Q )⊤W

(t)
Q ak̂,a

⊤
k̂
(W

(t)
K )⊤W

(t)
K ak̂ terms in the gradients, which is nonnegative. Hence,

(W
(t)
Q ak̂)

⊤(W
(t)
K ak̂) is non-decreasing after a⊤

k̂
W

(t)
V ak̂ got strictly positive. Similarly, we have

(W
(t+1)
Q ak̂)

⊤(W
(t+1)
Q ak̂)− (W

(t)
Q ak̂)

⊤(W
(t)
Q ak̂) =Θ(

η
∑

n̂∈Nk̂

N

a⊤
k̂
W

(t)
V Snπ

(t)
n,mSn

emSn

∥W(t)
V Snπ

(t)
n ∥

(1−
(W

(t)
V Snπ

(t)
n )⊤

∥W(t)
V Snπ

(t)
n ∥

W
(t)
V Snπ

(t)
n,mSn

en,mSn

∥W(t)
V Snπ

(t)
n ∥

) · (1− π(t)
n,mSn

)a⊤
k̂
(2(W

(t)
K )⊤W

(t)
K )ak̂),

(W
(t+1)
K ak̂)

⊤(W
(t+1)
K ak̂)− (W

(t)
K ak̂)

⊤(W
(t)
K ak̂) =Θ(

η
∑

n̂∈Nk̂

N

a⊤
k̂
W

(t)
V Snπ

(t)
n,mSn

emSn

∥W(t)
V Snπ

(t)
n ∥

(1−
(W

(t)
V Snπ

(t)
n )⊤

∥W(t)
V Snπ

(t)
n ∥

W
(t)
V Snπ

(t)
n,mSn

en,mSn

∥W(t)
V Snπ

(t)
n ∥

) · (1− π(t)
n,mSn

)a⊤
k̂
(2(W

(t)
Q )⊤W

(t)
Q )ak̂).

(73)

43



Provable In-Context Vector Arithmetic via Retrieving Task Concepts

Then we can control (W(t)
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q
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)2)(1 − 1

1+(M−1)e−σ2
0de

q
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) ≥ (0.0975)(0.05) = 0.0048, by Eq. (61), (63),

(74), and Lemma D.5, it holds that
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for some C3 > 0.

Similarly, we drag the T1 to the lower bound via the following system:

a+ bt2,
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b =
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2qV σ
2
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2K2
,

t = T1 − 1.

It holds that
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for some C6 > 0.

Proof. Proof of Lemma F.1. From Lemma F.5 and the condition T1 ≤ t⋆2, we derive the first result in Eq. (49) as well as
the first lower bound in Eq. (50).

The second result follows from Lemma F.4, where the updates of |ak
⊤W

(t)
V u|, |v⊤W

(t)
V v|, and |v⊤W

(t)
V v′| are effectively

constrained by the low-noise condition, the symmetry of the low-level real-value label distribution, and the large dictionary
assumption detailed in Condition 3.1.

Finally, the third and fourth results in Eq. (49), as well as the second lower bound in Eq. (50) are established using Lemma
F.7, together with the choice of T1.

F.2. Phase 2: Decelerating Growth of MLP and Attention

In this section, we would witness the decelerating growth of MLP and Attention.

Recall that the main gains in the first section is the growth separations denoted in Eq.(49) and (50) in Lemma F.1:

a⊤
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V ak ≥ Ĉσ1d
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√
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δ
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√
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δ
)σ1),

for ∀k ∈ [K],u ∈ {as}s ̸=k∈[K] ∪ {bs}s∈[K] ∪ {νk′}k′∈[K′] ∪ {ξn,m}n∈[N ],m∈[M ] and v ̸= v′ ∈ {bs}s∈[K] ∪
{ξn,m}n∈[N ],m∈[M ]. By d = Ω(M2 log(K

′2N2M2

δ )) in Condition 3.1, the scale of a⊤
k W

(T1)
V ak greatly surpass others.

However, as we see in Lemma F.2 that the role of a⊤
k W

(t)
V ak in the growth of ∥W(t)

V Snπ
(t)
n ∥ mainly come from

(π(t)
n,mSn
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2.
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Since a⊤
k W

(t)
V ak = O(σ1d

1/2) during t ≤ T1, it follows from the above formula that a⊤
k W

(t)
V ak has only a mild influence

on the initial scale of ∥W(t)
V Snπ

(t)
n ∥ = Θ(σ1d

−1/2), as shown in Lemma F.2. Consequently, the small cosine similarity
in Eq.(51) holds:
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),

for ∀k ∈ [K],¬k ̸= k ∈ [K], n ∈ Nk ⊂ [N ], s ∈ [7],mSn
̸= mSn

∈ [M ]. In this section we would witness the increasing
role of W(t)

V ak in the volume ∥W(t)
V ak∥. To achieve this, based on the scale separations of gradients shown in Lemma

F.4, we define
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where i
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V ak orthogonal to ak. That is,
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(t)
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. (75)

Similar to Lemma F.1, for all k ∈ [K], the following lemma reveals that during the second phase (T1 ≤ t ≤ T ⋆),
the term a⊤

k W
(t)
V ak exhibits substantially faster growth compared to other cross-terms of the form u⊤W

(t)
V v, where

{u,v} ≠ {as,as}s∈[K]. This growth pattern establishes a⊤
k W

(t)
V ak as the dominant component in determining the

order of ∥W(t)
V ak∥. Furthermore, i(t)
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ak = 0, and the contributions from ∥i(t)
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∥ and i
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k

⊤
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asymptotically negligible, being bounded by the order of ∥W(0)
V ak∥.

Lemma F.8. Under Condition 3.1, during t1 ≤ t ≤ T ⋆ = Ω(η−1q−1
V σ2

1KMd2 log( 1ϵ )) where t1 ≤ T1, we have

|ak
⊤W

(t)
V u|, |v⊤W

(t)
V v|, |v⊤W

(t)
V v′| = O(

√
2 log(

8(2K +K ′)2

δ
)σ1),

∥i(t)
V,a⊥

k

∥, i(t)
V,a⊥

k

⊤
W

(0)
V ak = o(∥W(0)

V ak∥),

a⊤
k W

(t)
V ak ≥

√
C7

ηqV (t− t1)

MK
+ (a⊤

k W
(t1)
V ak)2,

a⊤
k W

(t)
V ak ≤

√
C8

ηqV (t− t1)

K
+ (a⊤

k W
(t1)
V ak)2 +

C8ηqV

K(a⊤
k W

(t1)
V ak)

,

(76)

for ∀k ∈ [K], n ∈ [N ], s ∈ [7],¬mSn
̸= mSn

∈ [M ],u ∈ {as}s̸=k∈[K]∪{bs}s∈[K]∪{νk′}k′∈[K′]∪{ξn,m}n∈[N ],m∈[M ]

and v ̸= v′ ∈ {bs}s∈[K] ∪ {ξn,m}n∈[N ],m∈[M ].

Furthermore, after t ≥ T ⋆ = Ω(η−1q−1
V σ2

1KMd2 log( 1ϵ )), it holds that
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for ∀k ∈ [K].

Proof. The first two results can be derived through analogous reasoning as in Phase 1. Specifically, the updates of
ak

⊤W
(t)
V u, v⊤W

(t)
V v, and v⊤W

(t)
V v′ become progressively weaker. This weakening is attributed to the diminishing mag-

nitude of u⊤W
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n ∥ for n ∈ Nk, which results from the increasing dominance of ak
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Additionally, the already weak updates of ak
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V v′ in Phase 1 further contribute to this

effect. Consequently, the component norms and products ∥i(t)
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V ak are comparatively feeble with initial-
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After t ≥ T1, the terms in Eq.(55) maintain negligible due to the increasing of π(t)
n′,mS

n′,
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Besides, as W(t)
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for all the iterations t ≤ T ⋆. Similar to Eq.(56), we then have
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(78)

In this phase t ≥ T1, the a⊤
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(t)
V ak is comparable to the potential maximum norm of the initialized ∥W(0)

V Snπ
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n ∥, and

its order is larger than those ξ⊤n,mW
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Then by π
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n,mSn

≥ Θ( 1
M ), it holds that
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for ∀k ∈ [K]. By the positiveness and monotonicity of a⊤
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for ∀k ∈ [K]. Similarly, we define T3 = C−1
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for t1 ≤ T1 ≤ t ≤ T ⋆.
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(80)

for ∀k ∈ [K], n ∈ [N ], s ∈ [7],¬mSn
̸= mSn

∈ [M ],u ∈ {as}s̸=k∈[K]∪{bs}s∈[K]∪{νk′}k′∈[K′]∪{ξn,m}n∈[N ],m∈[M ]

and v ̸= v′ ∈ {bs}s∈[K] ∪ {ξn,m}n∈[N ],m∈[M ].
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for ∀k ∈ [K].

Proof. First, observing that
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for ∀n ∈ Nk. Here, the first equality is by definition; the second equality is by Eq.(79); the third equality is by the feeble
growths of task-irrelevant components denoted in Lemma F.8 and ∥W(0)

V ak∥2 = Θ(σ2
1d). Therefore, similar to Eq.(72),
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for ∀k̂ ∈ [K] we have
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(83)
where the first equality is by Eq.(72); the second inequality is by Eq.(82) and Eq.(82); the last equality is by Eq.(74). Note
that g(x) = x2(1− x)2, x ∈ (0, 1) has a pole at x = 1/2, y = 1/16, and is symmetry around the axis x = 1/2. Therefore,
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for k̂ ∈ [K]. Here C9 > 0 is some constant. Extend T ⋆ = Ω(η−1q−1
V σ2

1KMd2 log( 1ϵ )) in the formula, we obtain
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As such, it holds that
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To examine the lower bound, we first denote △ = mint π
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Therefore, by Lemma D.6, Eq.(65), (73), (74), (83), the lower bound of the evolution of (W(t)
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⊤(W
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is the following system:
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Here, a < 2c is by △2(1 −△)2 ≤ (M−1)2

M4 and the minor gradient step η = o(σ1d
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(M−1)2 ) by Condition 3.1. Therefore, it
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for some positive constant C10.

G. Training Dynamics: ICL-type Data
This section also assumes the results in Appendix D.2 all hold with high probability. This section examines scenarios
involving training on ICL data, using notations for Tn consistent with Section F. The proof strategies for QA-ICL data are
identical to those in this section. Therefore, we focus solely on the training dynamics for Tn, n ∈ [N ].

The projection evolution dynamics remain largely the same as described in Section F, with the key distinction being the
evolution of b⊤k W

(t)
V bk. This difference arises inherently from the gradient forms, where the unavoidable imbalance

between positive and negative data for some concept k ∈ [K] can drive the growth of either b⊤k W
(t)
V bk or −b⊤k W

(t)
V bk, as

suggested by Lemma D.10.

Lemma G.1. Under Condition 3.1, during t ≤ T1 = Θ((ηqV )
−1σ2

1dK), for ∀y ∈ {±1}, there exists ky ∈ [K], it holds
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that
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(85)

for ∀k ∈ [K], n ∈ [N ], s ∈ [7],¬mTn
̸= mTn

∈ [M ],u ∈ {as}s ̸=k∈[K] ∪ {bs}s ̸=k±∈[K] ∪ {νk′}k′∈[K′] ∪
{ξn,m}n∈[N ],m∈[M ] and v ̸= v′ ∈ {bs}s̸=k±∈[K] ∪ {ξn,m}n∈[N ],m∈[M ]. At the end of this stage, we have
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for some positive constants C1−5.

Proof. The proof strategies follows Lemma F.1, despite differences in the growing of |b⊤k+
W
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V bk| and |b⊤k−

W
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as follows.
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Therefore, similar to Eq.(57), we have
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The inequality is inherently due to the existence of bky
in Tn̂, while QA data did not possess bky

in its sentence. Since
we see that N y

ky
is guaranteed to not balanced with probability 1 − δ, the growing of |b⊤ky
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− b⊤ky
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inevitable. The remaining proofs follow Lemma F.2.

Lemma G.2. Under Condition 3.1, suppose Eq. (49) holds at iteration t ≤ T1, then for ∀k̂ ∈ [K],u ∈ {as}s̸=k̂∈[K] ∪
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• During 0 ≤ a⊤
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• Furthermore, it holds that

(W
(T1)
Q ak̂)

⊤(W
(T1)
K ak̂) ≥C6

σ2
0σ

2
1d

2

M2qV
− C3η

2qV σ
2
0

σ2
1M

2K2
− 4C3

√
log(16(2K +K ′)2/δ)σ2

0d
1/2,

(W
(T1)
Q ak̂)

⊤(W
(T1)
K ak̂) ≤ C5σ

2
0de

q−1
V σ2

1d.

(90)

Proof. The proof strategies follows Lemma F.7.

Lemma G.3. Under Condition 3.1, during t1 ≤ t ≤ T ⋆ = Ω(η−1q−1
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for ∀k ∈ [K], n ∈ [N ], s ∈ [7],¬mTn
̸= mTn

∈ [M ],u ∈ {as}s ̸=k∈[K] ∪ {bs}s̸=k±∈[K] ∪ {νk′}k′∈[K′] ∪
{ξn,m}n∈[N ],m∈[M ] and v ̸= v′ ∈ {bs}s∈[K] ∪ {ξn,m}n∈[N ],m∈[M ].

Furthermore, after t ≥ T ⋆ = Ω(η−1q−1
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for ∀k ∈ [K].

Proof. Based on Lemma G.1, the proof strategy follows Lemma G.3.

Lemma G.4. Under Condition 3.1, during t1 ≤ t ≤ T ⋆ = Ω(η−1q−1
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1KMd2 log( 1ϵ )) where t1 ≤ T1, we denote
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△ = mint π
(t)
n,mTn

= min{ 1
M , 1

1+(M−1)e−σ2
0de

q
−1
V

σ2
1d

(d log( 1
ε
))

M
16qV

}). Then it holds that

(W
(t)
Q ak̂)

⊤(W
(t)
K u), (W

(t)
Q v)⊤(W

(t)
K v), (W

(t)
Q v)⊤(W

(t)
K v′) = O(

√
log(16(2K +K ′)2/δ)σ2

0d
1/2)

(W
(t)
Q ak̂)

⊤(W
(t)
K ak̂) ≤C9σ

2
0de

q−1
V σ2

1d[
ηqV t

σ2
1dKM

]
M

16qV ,

(W
(t)
Q ak̂)

⊤(W
(t)
K ak̂) ≥C10

σ2
0σ

2
1d

2

M2qV
e

2q−1
V K△2(1−△)2( −1

ηqV t

2σ2
1dK

+1
+1)

− C3η
2qV σ

2
0

σ2
1M

2K2
− 4C3

√
log(16(2K +K ′)2/δ)σ2

0d
1/2,

(93)

for ∀k ∈ [K], n ∈ [N ], s ∈ [7],¬mTn
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for ∀k ∈ [K].

Proof. The proof strategies follow Lemma F.9.

H. Test Loss Convergence
This section also assumes the results in Appendix D.2 all hold with high probability.

Proof. Proof of Theorem 3.2 and Theorem 3.3. For the ICL task, given the prompt T := [xT
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where the equalities are by definition.

By the isotropic probability property in Eq.(14) and the definition of U in Eq.(16), we have
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2j−1,Tx

T
j + π

(t)
2j,Ty

T
j )∥

)]

= EP⋆ [1(0.42 + ξ⊤J+1,T(−0.585akT
+ 0.415yT,J+1bkT

)

> [0.86akT
− 0.41yT,J+1bkT

]⊤
∑

j∈[J] W
(t)
V (π

(t)
2j−1,Tx

T
j + π

(t)
2j,Ty

T
j )

∥
∑

j∈[J] W
(t)
V (π

(t)
2j−1,Tx

T
j + π

(t)
2j,Ty

T
j )∥

)],

≤ EP⋆ [1(0.5 + ξ⊤J+1,T(−0.7akT
+ 0.5yT,J+1bkT

)

> [akT
− 0.5yT,J+1bkT

]⊤
∑

j∈[J] W
(t)
V (π

(t)
2j−1,Tx

T
j + π

(t)
2j,Ty

T
j )

∥
∑

j∈[J] W
(t)
V (π

(t)
2j−1,Tx

T
j + π

(t)
2j,Ty

T
j )∥

)],

(96)
where the first equality is by the definition of dictionary U as well as the mutual-orthogonality of {as}s̸=k∈[K] ∪
{bs}s∈[K] ∪ {νk′}k′∈[K′], which implies that the main competitor of the label-related dictionary token, namely
akT

+yT,J+1bkT

∥akT
+yT,J+1bkT

∥ =
akT

+yT,J+1bkT√
2

, is the word-related dictionary token, namely xaakT
+yT,J+1bkT

∥xaakT
+yT,J+1bkT

∥ =
xaakT

+yT,J+1bkT√
2

; the second inequality is by
√
2 ≤ 1.415,

√
2(1.01) ≤ 1.43,

√
2/(1.01) ≤ 1.41,

√
1.01 >

1, 1.1
√
1.01,

√
1.01 < 1; the last inequality and equality are by direct calculations.

Then denotes π
(t)
akT

:=
∑

j∈[J](0.1π
(t)
2j−1,T + π

(t)
2j,T) as the accumulated softmax weights assigned on akT

in T, XT =⋃
j∈[J] XT,j , π(t)

akl
as the accumulated softmax weights assigned on those current prompts’ co-task-irrelevant task vectors

akl
in T, and iT :=

∑
j∈[J]((

∑
kj∈XT,j

ykj · bkj ) + ykT,j · bkT
), we have

∑
j∈[J]

(π
(t)
2j−1,Tx

T
j + π

(t)
2j,Ty

T
j ) = π(t)

akT
akT

+ (
∑

kl∈XT\{kT}

π(t)
akl

akl
) + iT + ξT . (97)

Here, ξT :=
∑

j∈[J](π
(t)
2j−1,Tξj,x + π

(t)
2j,Tξj,y) ∼ N (0, σ⋆

p
2∑

j∈[J]

(
(π

(t)
2j−1,T)

2 + (π
(t)
2j,T)

2
)
I). Let σ2

T :=

σ⋆
p
2∑

j∈[J]

(
(π

(t)
2j−1,T)

2 + (π
(t)
2j,T)

2
)

. It is straightforward to observe that the upper and lower bounds of σ2
T are 1 and

1
2J , respectively, corresponding to the cases of extreme and uniform weights.
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Consider the training distribution is PQA, then we have

LP⋆ ≤ EP⋆ [1(ξ⊤J+1,T(−0.7akT
+ 0.5yT,J+1bkT

)

> [akT
− 0.5yT,J+1bkT

]⊤
W

(t)
V (π

(t)
akT

akT
+ (
∑

kl∈XT\{kT} π
(t)
akl

akl
) + iT + ξT )

∥W(t)
V (π

(t)
akT

akT
+ (
∑

kl∈XT\{kT} π
(t)
akl

akl
) + iT + ξT )∥

)− 0.5],

≤ EP⋆ [1(ξ⊤J+1,T(−0.7akT
+ 0.5yT,J+1bkT

)

>
π
(t)
akT

a⊤
kT

W
(t)
V akT

− |a⊤
kT

W
(t)
V ξT |

Θ(π
(t)
akT

∥W(t)
V akT

∥+
∑

kl∈XT\{kT} π
(t)
akl

∥W(t)
V akl

∥) + ∥W(t)
V ξT ∥

− 0.5]

≤ EP⋆ [1(ξ⊤J+1,T(−0.7akT
+ 0.5yT,J+1bkT

)

> Θ(
π
(t)
akT

a⊤
kT

W
(t)
V akT

− |a⊤
kT

W
(t)
V ξT |

(π
(t)
akT

+
∑

kl∈XT\{kT} π
(t)
akl

)Θ(∥W(t)
V akT

∥) + ∥W(t)
V ξT ∥

)− 0.5]

≤ EP⋆ [1(ξ⊤J+1,T(−0.7akT
+ 0.5yT,J+1bkT

)

>
π
(t)
akT

a⊤
kT

W
(t)
V akT

− |a⊤
kT

W
(t)
V ξT |

(π
(t)
akT

+
∑

kl∈XT\{kT} π
(t)
akl

)(Θ(∥W(0)
V akT

∥) + a⊤
kT

W
(t)
V akT

) + ∥W(t)
V ξT ∥

− 0.5]

≤ EP⋆ [1(ξ⊤J+1,T(−0.7akT
+ 0.5yT,J+1bkT

)

>

1− |a⊤
kT

W
(t)
V ξT |

π
(t)
akT

a⊤
kT

W
(t)
V akT

(1 +

∑
kl∈XT\{kT} π

(t)
akl

π
(t)
akT

)(Θ(
∥W(0)

V akT
∥

a⊤
kT

W
(t)
V akT

) + 1) +
∥W(t)

V ξT ∥
π
(t)
akT

a⊤
kT

W
(t)
V akT

− 0.5]

(98)

Here, the first inequality is by Eq.(96) and (97); the second inequality is by triangle inequality of norm as well as Lemma
F.8 denoting the dominant growing of a⊤

kT
W

(t)
V akT

compared to other projections; the third inequality is by the balanced

growing of all ∥W(t)
V ak∥ denoted in Lemma F.8; the forth inequality is also by traingle inequality as well as Lemma F.8

showing the main contributors of norm. Subsequently, by Gaussian tail bounds as well as σ⋆
p = O((K log( 2J+1

ε ))
− 1

2 ) we
see that

PP⋆(ξ⊤J+1,T(−0.7akT
+ 0.5yT,J+1bkT

) ≥ 1.5σ⋆
p

√
log(

4

ε
)) ≤ ε/4. (99)

Additionally, recall that π(t)
akT

=
∑

j∈[J](0.1π
(t)
2j−1,T + π

(t)
2j,T), and Bi ∼ Ber(K−1). We first analyze the worst-case

scenario, where the number of task concepts outside the prompt’s co-task concept may exceed 1.1J (the number of akT

in the prompt). Given J = Ω
(
log
(
1
ε

)
/(2 log(K))

)
, the probability of this event is bounded by ε/8. By Lemma F.7 and

Lemma F.9, which characterize the progressive learning of task vectors and the limited learning of non-task vectors, we

have σ⋆
p = O

((
K log

(
2J+1

ε

))− 1
2

)
. This implies that the probability of noise vectors exhibiting significant components

along the axes of any akl
or −akT

is constrained to less than ε/8. It follows that:

PP⋆

(∑
kl∈XT\{kT} π

(t)
akl

π
(t)
akT

= o(0.1)

)
≥ 1− ε/4. (100)

Besides, by Eq. (99), a sufficient condition for the event in the last inequality of Eq. (98) is that the right-hand side

1− |a⊤
kT

W
(t)
V ξT |

π
(t)
akT

a⊤
kT

W
(t)
V akT

1.1 + 1.1Θ

(
∥W(0)

V akT
∥

a⊤
kT

W
(t)
V akT

)
+

∥W(t)
V ξT ∥

π
(t)
akT

a⊤
kT

W
(t)
V akT

< 0.5 + 1.5σ⋆
p

√
log

(
4

ε

)
. (101)
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This requires the denominator to be no less than 1− |a⊤
kT

W
(t)
V ξT |

π
(t)
akT

a⊤
kT

W
(t)
V akT

/
(
0.5 + 1.5σ⋆

p

√
log
(
4
ε

))
. By Lemma F.8, as well

as σ2
T ≤ σ⋆

p we have
|a⊤

kT
W

(t)
V ξT |

π
(t)
akT

a⊤
kT

W
(t)
V akT

≤ ∥W(t)
V ξT ∥

a⊤
kT

W
(t)
V akT

≤ ∥W(t)
V ∥F ∥ξT ∥

a⊤
kT

W
(t)
V akT

∼ N (0,Θ(σ⋆
p
2KId×d)). Again, by Gaussian tail

bounds as well as σ⋆
p
⋆ = O((K log( 2J+1

ε ))
− 1

2 ) we have

PP⋆(
∥W(t)

V ξT ∥
a⊤
kT

W
(t)
V akT

≤ 2σ⋆
p

√
K log(

4

ε
) <

1

2

0.9− 7.3σ⋆
p

√
K log( 4ε )

1 + 3σ⋆
p

√
K log( 4ε )

) ≤ ε/4. (102)

Note that
1−2σ⋆

p

√
K log( 4

ε ))(
0.5+1.5σ⋆

p

√
log( 4

ε )
) − 1.1 =

0.9−3.3σ⋆
p

√
log( 4

ε )−4σ⋆
p

√
K log( 4

ε )

1+3σ⋆
p

√
log( 4

ε )
≥ 0.9−7.3σ⋆

p

√
K log( 4

ε )

1+3σ⋆
p

√
K log( 4

ε )
. Therefore, by Eq.(102)

we bound the
|a⊤

kT
W

(t)
V ξT |

π
(t)
akT

a⊤
kT

W
(t)
V akT

in the numerator to be less than 2σ⋆
p

√
K log( 4ε )) and the ∥W(t)

V ξT ∥
a⊤

kT
W

(t)
V akT

in the domina-

tor to be less than 1
2 (

1−2σ⋆
p

√
K log( 4

ε ))(
0.5+1.5σ⋆

p

√
log( 4

ε )
) − 1.1). Therefore, our last job could be showing 1.1Θ

(
∥W(0)

V akT
∥

a⊤
kT

W
(t)
V akT

)
≤

1
2 (

1−2σ⋆
p

√
K log( 4

ε ))(
0.5+1.5σ⋆

p

√
log( 4

ε )
) − 1.1), which can then ensure Eq.(101) holds with probability less than ε.

By Lemma F.8, σ⋆
p = O((K log( 2J+1

ε ))
− 1

2 ) and the Taylor expansion of g(x) = 1+3x
0.9−7.3x = 10

9 + 1000
81 x+ O(x) at zero,

we conclude that

a⊤
kT

W
(t)
V akT

= Ω(3(1 + 15σ⋆
p
2

√
log(

4

ε
))∥W(0)

V akT
∥)

≥ 2.2(
10

9
+

1000

81
(1.5σ⋆

p

√
log(

4

ε
)))∥W(0)

V akT
∥

⇒ (1.1)
∥W(0)

V akT
∥

a⊤
kT

W
(t)
V akT

≤ 1

2
(

1− 2σ⋆
p

√
K log( 4ε ))(

0.5 + 1.5σ⋆
p

√
log
(
4
ε

)) − 1.1).

(103)

By Eq.(98), (99), (100), (102), (103), by union bound we have

LP⋆ ≤ ε.

Similarly, for QA Sentence distribution S ∼ PQA as well as QA Sentence based Prompt Dsitribution TQA ∼ PT
QA, the

population loss convergence could be shown with the same strategy

LPQA , LPT
QA

≤ ε.

Separately, when the training distribution is on PT or PT
QA, for prompts whose task concepts are ky , with probability

1/2 >> δ, T has more words with bky
than b−ky

. This would lead b⊤kT
W

(t)
V iT ignorable by Lemma G.3. In addition,

∥iT∥’s contribution to ∥
∑

j∈[J] W
(t)
V (π

(t)
2j−1,Tx

T
j + π

(t)
2j,Ty

T
j )∥ is also ignorable by Lemma G.3. Therefore, it’s safe to

draw the conclusion that with probability at least 1− δ,

LPT
(θ(t)) = Θ(1).

Through similar approaches we have LPT
QA
(θ(t)) = Θ(1).

Proof. Proof of Proposition 3.4. The proof follows proof of Theorem 3.2 and Theorem 3.3, grounded on the learned
knowledge on task vector ak,∀k ∈ [K]. We here omit the proofs for brevity.
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