Bimodality of Sparse Autoencoder Features is Still
There and Can Be Fixed

Michatl Brzozowski
Samsung Al Research Center, Warsaw, Poland
m.brzozowsk3@samsung.com

Abstract

Sparse autoencoders (SAE) are a widely used method for decomposing LLM acti-
vations into a dictionary of interpretable features. We observe that this dictionary
often exhibits a bimodal distribution, which can be leveraged to categorize features
into two groups: those that are monosemantic and those that are artifacts of SAE
training. The cluster of noninterpretable or polysemantic features undermines the
purpose of sparse autoencoders and represents a waste of potential, akin to dead
features. This phenomenon is prevalent across autoencoders utilizing both ReLLU
and alternative activation functions. We propose a novel training method to address
this issue and demonstrate that this approach achieves improved results on several
benchmarks from SAEBench.

1 Introduction

1.1 The Dawn of SAEs and the Forgotten Phenomenon

The superposition hypothesis [12] posits that deep learning models represent more features than they
have neurons through linear directions. In [33], the authors demonstrated that the simple architecture
of sparse autoencoders (SAE) can perfectly "disentangle" superposition in a synthetic dataset. In this
toy model scenario, we have access which features (directions in the activation space) are ground
truth. The key challenge when applying SAEs to real language data lies in measuring a quality of
features when there is no ground truth. The proposed method involves the following steps:

* Train a sparse autoencoder A on a dictionary of size V.
* Train another sparse autoencoder B on a dictionary of a larger size.

* Check what features are similar between the two by measuring maximal cosine similarity
(MCS) between feature ¢ from A and the entire dictionary from the larger dictionary B.

The rationale is that features identified independently by two dictionaries are, in a sense, "universal."
Following this procedure, for every feature i, a scalar score M C'S; is obtained, which serves as a
proxy for feature quality, monosemanticity, or universality. Surprisingly, it was soon observed that
these scores follow a clear bimodal distribution [10]. Moreover, the lower values cluster closely with
the distribution of randomly generated vectors [16]. Subsequent manual and automatic approaches to
interpretability [4] confirmed that the MCS value is positively correlated with feature monosemanticity.
In [30]], the authors manually inspected features by sorting them in descending order based on the MCS
score and discovered that the top-ranked features are monosemantic. Furthermore, [9]] demonstrated
that the top-150 MCS features exhibit higher interpretability scores compared to random ones.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability.



Pythia 70M RelLU SAE Llama 3 8B Gated SAE Gemma 2 2B TopK SAE
8000 - 6000 _ h

7000 H b 1000
5000 ,

6000

4000

o
=1
15}
S

3000

Number of Features
)
2
8

Number of Features
w s
8 I}
5] 151
5] S
Number of Features

2000
2000

1000 200
1000

° ;mﬂﬂﬂﬂﬂﬂﬁﬁﬂﬂﬂﬂh\ o I ° (ﬂﬂhﬁm,,,, -
00 02 04 06 08 10 12 0.0 02 04 06 08 10 12 -050 -0.25 000 025 050 075 100 125
Inner Products between wenc and Wee: Inner Products between wen and Wge Inner Products between wene and Woe:

Figure 1: We can observe the bimodality of SAE features across different models and SAE architec-
tures.

1.2 A Simpler Feature Quality Proxy

The observation that MCS scores can be used to assess the quality of SAE features and distinguish
between "true" directions and random artifacts appears to have been overlooked. This insight is
notably absent in the main culmination paper [17]] and is only briefly mentioned in a footnote in
the independent Anthropic work [6]. We speculate that the primary reason for its neglect is the
computational cost of the described method, as calculating MCS scores necessitates training an
additional larger dictionary.

In our work, we revisit this idea by:
* Proposing a simpler scalar proxy for feature quality that does not require any data or
additional training: the inner product between the encoder and decoder

* Demonstrating that this score remains bimodal even in modern SAE variants, such as TopK,
Gated, and JumpReLU.

* Establishing a positive correlation between the proposed score and the autointerpretability
score.

* Proposing a novel training method to eliminate bimodality by design.

* Demonstrating that the proposed method outperforms standard training across multiple
benchmarks, models, dictionary sizes, sparsities, and activation functions.

2 Background on Sparse Autoencoders

Let R™ represent the activation space of a deep learning model, such as the residual stream of a large
language model (LLM). The goal of a sparse autoencoder (SAE) is to decompose the activation of a
data point into a sparse linear combination of features from a dictionary of size m. It has been shown
[17, 6] that such features are more interpretable than neuron basis.

The encoder and decoder parts are defined as follows:
f(x) := ReLU(W*®"x + b®""¢),
X = Wt (x) + b,

where f(x) € R™ is the sparse latent vector and X € R™ is the reconstructed output, We™¢ € R™*",
Wdee ¢ R"*™ gre the encoder and decoder matrices, respectively, b¢"¢ € R™, b?ec ¢ R™ are the
encoder and decoder biases, respectively.

The loss is a weighted sum of the reconstruction L? loss and the L! penalty to enforce sparsity. That
is
L=Lr+ )\ACPa

where )
Lr =[x —x||



and
Lp=[fx),-

The scalar A is a tunable hyperparameter that controls the sparsity of the autoencoder. An important
property of these equations is their homogeneity: multiplying the encoder and dividing the decoder by
any scalar results in the same reconstruction. Without additional constraints, training could cheat by
making the sparsity loss £ p arbitrary small. This seemingly straightforward issue requires nontrivial
solutions. Two methods have been proposed by researchers:

Normalization of the columns of the decoder matrix T [6} [I7]. This approach requires careful
synchronization with gradient updates. In [6l [15]], authors project away gradient information parallel
to the decoder vectors to account for interactions between the Adam optimizer and normalization. In
the code [32], authors implement a constrained version of the Adam optimizer instead.

Reformulation was used instead in [§]]. More precisely, they change the L' norm to the weighted
norm with the weights being equal to the L? norms of the decoder columns:

L = LEIWE e

This reformulation solves the homogeneity problem. Indeed, the trick with multiplication and division
by the same scalar does not affect the proposed L p. In line with this best practice, we also use the
reformulation method and do not normalize the decoder columns.

We have detailed this homogeneity problem because a deep understanding of underlying symmetries
is crucial for identifying better inductive biases. Indeed, in the main section of our work @), we will
apply a novel reformulation method to eliminate sparse autoencoder feature bimodality.

In this paper, we primarily analyze and improve standard ReL.U sparse autoencoders. However, we
will also mention alternative architectures, such as TopK [15], Gated [28]], and JumpReLU [29],
which employ different activation functions and training procedures.

3 Measuring alignment between encoder and decoder

3.1 Alignment Score — Heuristic Motivation

According to the linear representation hypothesis (and the related superposition hypothesis), deep
learning models represent concepts as directions in the activation space. SAEs learn these directions
in an unsupervised manner. Indeed, each feature i € {1,...m} corresponds to the row vector W™

and the column vector WdeC It is not clear which of them is the true feature vector. In practice, the
encoder vector is used for the concept detection and the decoder vector is used for the model steering
(see details in [35]]). Observe that intuitively these two vectors (the encoder and decoder ones) should
be similar. Indeed, in [17], the authors use this rationale to tie the encoder and decoder weights, that
is: (see the footnote 2 there) Wem¢ = (W<¢¢)T In the tied weights scenario, both vectors coincide
(assuming normalization). However, this is not a common practice, and most modern SAEs do not
adopt this procedure.

Based on this intuition, we propose the following measure as a proxy for feature quality:

d
= Wene - wee, 1)
where ¢ € {1,...m} and - is the inner product in R™. Equivalently, these is i-th diagonal element
of the matrix product Wen¢Wdec, We suspect that values of a; which are negative or close to 0

correspond to not interpretable features which are the artifact of SAE training. We refer to these
scalars as alignment scores.

While the motivation for this section is based on heuristics, we also provide more precise arguments
for introducing this score, grounded in an analysis of toy models, in the next subsection. One of the
main reasons for using the inner product formulation is the homogeneity property described in the
previous subsection. Note that the alignment score (Equation [T)) remains invariant with respect to
multiplication of the encoder and division of the decoder by the same scalar. We emphasize that



preserving this structural algebraic property is crucial in constructing the alignment score. This
motivates the choice of the inner product over, perhaps more intuitive, cosine similarity, which
exhibits stronger scale invariance with respect to both variables.

3.2 Alignment Score Should be Close to 1 - Toy Model Argument

In this subsection we will show that the alignment score is not just an ad-hoc formula and show that
it should be cluster close to 1. This will be confirmed empirically in the experiments.

Let us consider one of the simplest toy model: the activation space is two dimensional, thatis n = 2
and there is only one feature in a sparse autoencoder m = 1. Moreover, we ignore biases and use the
training set of just a one single point x € R2. We also ignore the sparsity penalty, so the setting is:

f(x) = ReLU (w®"* - x),

% =[xy,

where w®™ and w?°° are vectors and - denotes an inner product in R2. The latent f(x) is just a scalar
because we set m = 1.

Naturally, this is a very artificial setting and the autoencoder can just learn the identity. However, as
we will see, the ReLU nonlinearity makes the training dynamics not that trivial. Now let us check,
when this toy model can perfectly reconstruct the input, that is when X = x. We have:

x = ReLU (w°" - x)w*

dec

Observe that x and w**“ must be parallel, so x = aw®e® for some scalar constant «v. Hence we obtain

awdec _ ReLU(awenc . wdec)wdec'

This leads to our desired equation:

In fact, this single training point example was the first "experiment" done in this research project and
the connection with the MCS and the bimodality phenomenon were discovered later.

The presented toy experiment is very crude and simplified, but as we will see, it scales effectively
to real sparse autoencoders. It mirrors the illustrative example from [2], which the authors used to
explain the feature suppression/shrinkage effect.

4 Preliminary Experiments

4.1 Experiment 1: Alignment Scores Are Bimodal

In the first experiment, we calculated the histograms of the alignment scores. The results are presented
in Figure|l| Across different models and SAE architectures, we observed that the score distribution is
consistently bimodal. We suspect that this bimodality is similar to the phenomenon discovered by
Huben [16]. Additionally, a footnote in the Anthropic work [6] speculates that this same bimodality
corresponds to feature frequency. It is important to emphasize that, unlike MCS, the alignment score
is calculated without training an additional larger SAE. Furthermore, unlike feature frequency, it is
derived directly from the weights without requiring additional language corpus data.

4.2 Experiment 2: Alignment Scores Are Highly Correlated with MCS

In the next experiment, we compared the MCS scores with the alignment scores for an autoencoder
trained on MLP activations from the second layer of Pythia [3]. We utilized the SAE from [30], where
SAE:s of different sizes are available. This approach avoided the need to train a larger autoencoder
from scratch, which would otherwise be required to calculate MCS. The resulting scatter plot is
shown in Figure 2] The Pearson correlation coefficient is high, with a value of 0.65. Additionally,
as observed, low alignment scores correspond to weaker features that were not discovered by a
larger interpreter model. The cluster of the best features concentrates at an alignment value of 1.0 as
predicted by the toy model argument from 3.2}



Data Points
== Threshold at x=1

MCS between SAE and a Larger SAE

o
Alignment Score

Figure 2: The scatter plot of MCS vs the alignment score. The Pearson correlation is high and equal
to 0.65. The red vertical line denotes the alignment score value equal to 1.

4.3 Experiment 3: Alignment Scores can be Used to Find Interpretable Features

In the previous experiment, we compared one proxy with another. Here, we directly assess whether
alignment scores can be used to evaluate feature interpretability. We apply the commonly used
autointerpretability protocol introduced in [4]]. In this method, LLM judge first generates a natural
language description of a given neuron or direction based on a sample of maximal activations. Then,
the judge model uses this generated description to score each token in another sample of texts. The
interpretability score is the Pearson correlation between the LLM judge scores per token and the
actual activation scores. In the case of SAEs, the activation score for feature ¢ is equal to the encoder
value f;(x). For more details on autointerpretability protocols, see [27].

The resulting scatter plot comparing the alignment scores with autointerpretability is presented
in figure 3] The dead features for which we did not have enough non-zero activation to run the
autointerpretability are presented as black dots.

Data Points
Dead Features.
~=+ Threshold at x=1

° °
S &
Y

°
=

Simulation Autointerpretability Score
°
g

Alignment Score

Figure 3: Autointerpretability scores vs the alignment score. The red vertical line denotes the
alignment score value equal to 1. The Pearson correlation is equal to 0.32.The Pearson correlation is
equal to 0.32.

S Fixing Bimodality

From a practical standpoint, having a measure of feature quality can aid in designing more effective
training algorithms for SAEs. This idea has been suggested in [[10] in the context of MCS: "Also,
the bimodal nature of the MCS scores suggests that we might be able to use unorthodox training
strategies where we identify the convergent features and then perhaps freeze them while aggressively
perturbing the remaining vectors.” While implementing this with the demanding MCS score was
challenging, the overall simplicity of the proposed alignment score makes it feasible. Additionally,
feature-aligned sparse autoencoders [25] employ a similar approach, requiring the training of two
sparse autoencoders in parallel and resampling. In contrast, we propose a straightforward algebraic
transformation. As discussed in[2] the encoder and decoder are defined as follows:



f(x) := ReLU(W*"*x + b"°),
X = Wt (x) + b,
Now, the key idea is to leave b™¢, b9 and W ¢ as arbitrary trainable parameters and modify ¥ €™,

In the proposed training method we instead of W "¢ use a trainable parameter matrix A € R™*"
and define an encoder row W' as:

WEne = Ay + aWe, @
where
1-A4,.- W.‘ffc
N EE
It is straightforward to check that:
wene . wiee = 1, 3)

foreveryt =1,...,m.
Now, we just use the standard gradient descent training for parameters b™¢, b, T/ ¢ and A.

In essence, we constrain the manifold of possible weights by enforcing the equation[3} Our conjecture
is that this inductive bias can enhance the training of the sparse autoencoder. This approach is similar
in spirit to convolutional networks. Indeed, every convolutional layer is essentially a linear layer
constrained by the local receptive field [[13] and weight sharing [23]]. In theory, a linear layer could
learn convolution during training, but incorporating this inductive bias makes the training of computer
vision models more effective.

We will refer to the proposed method as aligned training and demonstrate that it outperforms
standard ReLLU autoencoders on several benchmarks across different sparsities, dictionary sizes, and
underlying language models.

Moreover, because equation[3|constrains every encoder row to lie on an affine hyperplane of dimension
n — 1, we can set the last column of A to 0 (and not train it). The resulting model can still express
the same space of weights. In other words, we achieve compression for free; an autoencoder from
aligned training has slightly fewer parameters.

5.1 Experiment 4: Aligned Training Achieves Pareto Improvement on Reconstruction
Metrics

The most basic metric used to evaluate the quality of any autoencoder is its ability to reconstruct the
input. For comparing sparse autoencoders, it is essential to measure reconstruction across different
sparsities, as less sparse autoencoders can trivially achieve better reconstruction (and, in the limit,
even learn the identity function). The sparsity is measured by Ly "norm", which is the number of
nonzero values in the encoded vector f(x).

Following [[7, 122] we use two methods to check how good is the the autoencoder reconstruction: the
explained variance and the recovered cross entropy loss (consult the Appendix [B]for precise formulas
of these metrics).

We trained the ReLU autoencoders on the 50 million tokens from the Pile [[14] using both the standard
and the aligned methods and performed the test on OpenWebText. The results are presented in the
figure |4} The aligned method outperforms standard training across two models, four sparsities and
three dictionary sizes (see figures[12] [I4]in the Appendix [D]for 16K and 65K dictionary sizes).

5.2 Experiment 5: Aligned Training as a Parameter-Free Method to Avoid Dead Features

One of the notorious issues in training sparse autoencoders is the problem of dead features, where a
feature does not activate for any token [6, [15[18]]. This occurs because it is an easy way to minimize
the sparsity loss. Several advanced measures have been developed to reduce the number of dead
features:

* Resampling schemes with non-uniform probabilities [6].



Explained variance vs sparsity (Pythia) Loss recovered vs sparsity (Pythia)

0970 —-@- standard 0.96 4 —-@- standard le
N aligned o aligned T
o Lo 5 -
S 0.965 == £ PP
2 " Z 0.94 4 gor in
> 0.960 A e 8 -
= - = -
i xg s -
© 0.9554 —= E 092 4 P
H - m
& 0.950 A Faan v L
L7 0.90 i
0.945 1 LE T T T T T T T L T T T T T T T
50 75 100 125 150 175 200 50 75 100 125 150 175 200
LO (Sparsity) LO (Sparsity)
Explained variance vs sparsity (Gemma) Loss recovered vs sparsity (Gemma)
0.98 1
—®- standard _-® —&- standard e )
¥ 0,82 aligned __'_,,— = 0.97 aligned PSS S
g U E -
2 =T 2 0.96 4 ==
[ _-® 2 L-
> 0.80 A - 3 -
2 -t £ 095 4 ~
£ P @ A
= v 8 -
= 078 - = 094 e
> ,’ (9] ’
[ - e
e 0.93 4 ¢
0.76 g~ P
T T T T T T T T T T T T T T T T
50 75 100 125 150 175 200 225 50 75 100 125 150 175 200 225
LO (Sparsity) LO (Sparsity)

Figure 4: The proposed training methods improves the recovered cross entropy of sparse autoencoder
across different sparsities. The results for the dictionary size 4096 for the 8th layer of the Pythia
160M and the 12th layer of Gemma 2 2B [34]]

* Adding artificial gradients, known as ghost grads, which were introduced briefly by An-
thropic [[18] but later abandoned due to their role in causing loss spikes [[1]].

* Introducing an auxiliary loss term for dead features, as proposed in the TopK autoencoder
paper [15]].

We emphasize that all these methods require extensive hyperparameter tuning. In contrast, our
proposed aligned training completely eliminates dead features: see Figure[5] The aligned training
is parameter-free and does not require sampling or other non-differentiable operations that could
destabilize training. As shown, the standard ReLU sparse autoencoder has approximately 20% dead
neurons, while the aligned autoencoder has none. Furthermore, resampling and ghost grad methods
focus on resurrecting dead features, whereas aligned training constrains the parameter space to
prevent features from dying in the first place.

Fraction of alive features vs sparsity (Pythia) Fraction of alive features vs sparsity (Gemma)
1.0 4 1.0
—-®- standard —-®- standard
aligned aligned

» 08— gommmo==to $————==== S——————e==———t==——=—F e | n0B{ ®-—————— B e e EE e L .
g g
2 2
] ]
0.6 £ 06 1
H] H]
T T
s s
c 044 c 0.4
s s
5 5
] ]
£ £

0.2 0.2

0.0 T T T T T T T 0.0 ; T T T T T T T

50 75 100 125 150 175 200 50 75 100 125 150 175 200 225
LO (Sparsity) LO (Sparsity)

Figure 5: The proposed training method is a parameter-free approach significantly reducing the
number of dead features. The results for the dictionary size 4096 for the 8th layer of the Pythia 160M
and 12th layer of Gemma 2 2B.

5.3 Experiment 6: Aligned Training Outperforms Standard Autoencoder in Spurious
Correlation Removal

The metrics used in the two previous experiments are still theoretical proxies for evaluating the
usefulness of an autoencoder. We also tested our proposed method on a practical downstream task



and found that it achieves better results. The application of sparse autoencoders to remove spurious
correlations was introduced in the SHIFT method [26]] in the context of gender bias [[11] and extended
in [20]]. We used the implementation of this metric from the SAEBench suite [22].

As shown in Figure 6] aligned training outperforms the standard method on the Pythia model. For
Gemma, the two methods are comparable for smaller sparsity ranges, but our method shows a clear
advantage for larger L values.

SCR score vs sparsity (Pythia) SCR score vs sparsity (Gemma)
—®- standard —®- standard
0134 0.21
- aligned aligned
0.20
0.12
019 H——F—A—=—=======— -
[ [ "‘
g 4 -
o S 0.18 4 -
E 0.11 E "/,
0.17
e L R S o | 3 Pl
L A — L o= 0.16 -
- ’/
P
L” 0.15 7~
0.09 - ps
- 0144 %
-
T r T T T T T T T T T T
50 100 150 200 250 50 100 150 200 250 300 350
LO (Sparsity) LO (Sparsity)

Figure 6: Results for spurious correlation removal metric from SAEBench on the dictionary size =
65K for Pythia 160M and Gemma 2 2B.

5.4 Experiment 7: Exploratory Analysis of Feature Distributions Between Standard and
Aligned Training

In Figure[7} we compare the alignment scores between similar sparsity autoencoders trained using
both standard and aligned methods. For the standard autoencoder, we observe bimodality in the
distribution. Notably, the 800 features with alignment scores close to 0 correspond to approximately
20% of the dead features (for a dictionary size m = 4096 ). The attractor at 0, which causes features
to die, is similar to the histogram observed in Figure ] for the Gated autoencoder.

Standard training Aligned training

4000

8007 3500 4

)

o

=1
w
=]
=]
=3

2500 +

2000

=
[=3
(=}

Number of features

1500 4

Number of features

1000 4

I “ 500 -
o T T

o T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 12 09900 0.9925 09950 0.9975 1.0000 1.0025 10050 1.0075 1.0100
Alignment score Alignment score

N
=1
=1

Figure 7: Histograms of alignment scores of the standard and aligned trained sparse autoencoders.
The plot on the right serves as a sanity check: the proposed reformulation achieves its intended goal
by forcing all alignment scores to be equal to 1, effectively preventing the creation of bimodality.

5.5 Experiment 8: Scaling Training to 500M Tokens and Comparing to State-of-the-Art

In this section, we compare aligned training to state-of-the-art ReLU sparse autoencoders provided by
SAEBench. To ensure a fair comparison, we scale our training to half a billion tokens from The Pile
[14], matching the compute used in SAEBench (recall that our formula was derived from a 1-token
toy model). As shown in Figure[8] our training surpasses both the standard SAEs trained by us and
those provided by the benchmark authors. This demonstrates that the advantage is robust and not a
result of cherry-picking hyperparameters. Additionally, Figure[9] shows that our training achieves a
significantly lower number of dead features.



Explained variance vs sparsity (Gemma) Loss recovered vs sparsity (Gemma)

—®- SAEBench —-®- SAEBench
0.90 1 aligned aligned
—e- 0990 1 _g- e
®- standard /’_,. - standard <”‘___—

S oss = Pt
2 © 0.985 A -
5 A H &
3 o7 e
@ 0.86 o P Iy i
= Pl @ 0.980 4 7
5 7 5 e
o w )
] 8] L

0.84 o 0.975 4 ."

P h
’ /
s ’
[ ] I
0.82 09704 ¢ &
T T T T T T T T T T T T
50 100 150 200 250 300 50 100 150 200 250 300
LO (Sparsity) LO (Sparsity)

Figure 8: Reconstruction metrics comparing our method to standard (trained by us) and state-of-the-
art checkpoints provided by SAEBench. Training was conducted on half a billion tokens for layer 12
of Gemma 2 2B with a dictionary size of 65K features.

Fraction of alive features vs sparsity (Gemma)

e o
Y @

Fraction of alive features
o
kY

-+ -®- SAEBench
aligned
-e- standard

e
~

o
°

50 100 150 200 250 300
LO (Sparsity)

Figure 9: Fraction of alive features comparing our method to standard (trained by us) and state-of-
the-art checkpoints provided by SAEBench. Training was conducted on half a billion tokens for layer
12 of Gemma 2 2B with a dictionary size of 65K features.

6 Preliminary results for TopK sparse autoencoders

In this section we provide the results for applying the aligned training method for the newer architec-
ture of TopK sparse autoencoder [13]. In this approach, the sparsity is enforced not by the L' penalty,
but by the TopK activation applied on top of f(x) (as we described in the section . Notice, that our
training reformulation [5]can be directly applied also in this case. While the primary motivation and
toy model argument were based on the ReLLU model, it turns out that similar improvements can be
achieved even with the TopK approach.

Figure [10f presents the results of training TopK autoencoders on 50 million tokens from The Pile
using both the standard TopK and the aligned method. The proposed training method outperforms
the baseline in the low-sparsity regime, while for higher sparsities, there is no significant difference
between the two. Furthermore, the same pattern is observed in the number of dead neurons, as shown

in Figure[TT]
7 Limitations

Experiments were restricted to the ReLU setting. In this work, we focused on standard sparse
autoencoders (sometimes referred to as vanilla [29]). As shown in the first figure, bimodality
also appears for different activation functions.In future work, we plan to extend our method to
newer architectures. While we conducted preliminary experiments on TopK sparse autoencoders
in the previous section, further investigation is needed to explore the relationship between sparsity,
reconstruction, and dead neurons.

We compared aligned training only to the standard protocol. There are several non-standard
methods for training ReLU autoencoders, such as square root [24], tanh [19], and p-annealing [21]].
These methods were introduced to address the issue of feature shrinkage [2]. Our work was motivated



Explained variance vs sparsity (Pythia) Loss recovered vs sparsity (Pythia)

2 e
0.975 4 —®- topk e 0.075 | -®- topk Iy
N aligned_topk e : aligned_topk T
§ == @ 0.970 e
- 3 o
£ 0970 - g o
g P S 0.965 o
o e o 47
2 7 @ 0.960 552
'@ 0.965 s 8 -+
= -1 W 0.955 e
o] . -
o 0.950 v
0.960 g i
20 30 40 50 60 70 80 20 30 40 50 60 70 80
LO (Sparsity) LO (Sparsity)
Explained variance vs sparsity (Gemma) Loss recovered vs sparsity (Gemma)
-®- topk |9 0.9901 _g- topk e
0.86 - R _
Y aligned_topk IR = 0.985 1 aligned_topk o
5 - g e
5 0.84 - e o £ 0.980 e
3 = I+ .
b e £ 0975 L
% 0.82 1 ,” g Y
- ] o 0.970 e
o] o 3] S
. /
080 0.965 -/
20 30 40 50 60 70 80 20 30 40 50 60 70 80
LO (Sparsity) LO (Sparsity)

Figure 10: The proposed training methods improves the recovered cross entropy of the TopK sparse
autoencoder for low sparsity. However, for larger sparsities the difference is negligible. The results
for the dictionary size 16384 for the 8th layer of the Pythia 160M and the 12th layer of Gemma 2 2B.

Fraction of alive features vs sparsity (Pythia) Fraction of alive features vs sparsity (Gemma)
104 o eSS SIS 1.0 7 e
e ’,_-‘ -e- topk
- )_,,-‘ aligned_topk
., 0.8 , 081 F
g g
2 2
® ®
2 06 206
13 13
> >
d d
- -
5 5
c 047 c 0.4
=3 =3
5 5
@ @
i i
0.2 0.2
-®- topk
aligned_topk
0.0 -— ; . . y r - 0.0 -— y - T y - -
20 30 40 50 60 70 80 20 30 40 50 60 70 80
LO (Sparsity) LO (Sparsity)

Figure 11: The proposed training method applied to TopK sparse autoencoders reduces the number
of dead neurons for low sparsity. However, for larger sparsity, in both cases, there is almost none
dead neurons. The results for the dictionary size 16384 for the 8th layer of the Pythia 160M and 12th
layer of Gemma 2 2B.

by a different issue—bimodality and low-quality/dead features. It would be instructive to compare
these approaches and explore whether they overlap or achieve synergy when applied together.

References

[1] Jonathan Marcus Adly Templeton, Tom Conerly and Tom Henighan. Update on dic-
tionary learning improvements. Transformer Circuits Thread, 2024. URL https://
transformer-circuits.pub/2024/march-update/index.html#dl-update.

[2] Lee Sharkey Benjamin Wright. Addressing feature suppression in saes. Al Alignment
Forum, 2024. URL https://www.alignmentforum.org/posts/3JuS]jTZyMzaSeTxKk/
addressing-feature-suppression-in-saes|

[3] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In
International Conference on Machine Learning, pages 2397-2430. PMLR, 2023.

10


https://transformer-circuits.pub/2024/march-update/index.html#dl-update
https://transformer-circuits.pub/2024/march-update/index.html#dl-update
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya
Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain neu-
rons in language models, 2023. URL https://openaipublic.blob.core.windows.net/
neuron-explainer/paper/index.html.

Joseph Bloom, Curt Tigges, Anthony Duong, and David Chanin. Saelens. https://github|
com/jbloomAus/SAELens, 2024.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds,
Alex Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan
Carter, Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing
language models with dictionary learning. Transformer Circuits Thread, 2023. URL
https://transformer-circuits.pub/2023/monosemantic-features/index.htmll

Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. In NeurIPS
2024 Workshop on Scientific Methods for Understanding Deep Learning, 2024. URL https !
//openreview.net/forum?id=d4dp0CqybL.

Tom Conerly, Adly Templeton, Trenton Bricken, Jonathan Marcus, and Tom Henighan. Update
on dictionary learning improvements. Transformer Circuits Thread, 2024. URL https:
//transformer-circuits.pub/2024/april-update/index.html#training-saes,

Hoagy Cunningham. Autointerpretation finds sparse coding beats alternatives. Al Alignment
Forum, 2023. URL https://www.alignmentforum.org/posts/ursraZGcpfMjCXtnn/
autointerpretation-finds-sparse-coding-beats-alternatives|

Hoagy Cunningham and Logan Riggs. [replication] conjec-
ture’s sparse coding in small transformers. Less  Wrong, 2023.
URL https://www.lesswrong.com/posts/vBcsAwdrvLsri3JAj/

replication-conjecture-s-sparse-coding-in-small-transformers.

Maria De-Arteaga, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Christian Borgs, Alexan-
dra Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, and Adam Tauman Kalai. Bias in
bios: A case study of semantic representation bias in a high-stakes setting. In Proceedings of
the Conference on Fairness, Accountability, and Transparency, FAT* °19, page 120-128, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450361255. doi:
10.1145/3287560.3287572. URL https://doi.org/10.1145/3287560.3287572.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,
Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher
Olah. Toy models of superposition. Transformer Circuits Thread, 2022. URL https:
//transformer-circuits.pub/2022/toy_model/index.html.

Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable of visual pat-
tern recognition. Neural Networks, 1(2):119-130, 1988. ISSN 0893-6080. doi: https://doi.
org/10.1016/0893-6080(88)90014-7. URL https://www.sciencedirect.com/science/
article/pii/0893608088900147.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027,
2020.

Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In The
Thirteenth International Conference on Learning Representations, 2025. URL https://
openreview.net/forum?id=tcsZt9ZNKD.

Robert Huben. [research update] sparse autoencoder features are bimodal. From Al to ZI, 2023.
URL https://aizi.substack.com/p/research-update-sparse-autoencoder,

11


https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://github.com/jbloomAus/SAELens
https://github.com/jbloomAus/SAELens
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://openreview.net/forum?id=d4dpOCqybL
https://openreview.net/forum?id=d4dpOCqybL
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://www.alignmentforum.org/posts/ursraZGcpfMjCXtnn/autointerpretation-finds-sparse-coding-beats-alternatives
https://www.alignmentforum.org/posts/ursraZGcpfMjCXtnn/autointerpretation-finds-sparse-coding-beats-alternatives
https://www.lesswrong.com/posts/vBcsAw4rvLsri3JAj/replication-conjecture-s-sparse-coding-in-small-transformers
https://www.lesswrong.com/posts/vBcsAw4rvLsri3JAj/replication-conjecture-s-sparse-coding-in-small-transformers
https://doi.org/10.1145/3287560.3287572
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://www.sciencedirect.com/science/article/pii/0893608088900147
https://www.sciencedirect.com/science/article/pii/0893608088900147
https://openreview.net/forum?id=tcsZt9ZNKD
https://openreview.net/forum?id=tcsZt9ZNKD
https://aizi.substack.com/p/research-update-sparse-autoencoder

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
autoencoders find highly interpretable features in language models. In The Twelfth International
Conference on Learning Representations, 2023.

Adam Jermyn and Adly Templeton. Ghost grads: An improvement on resampling. Transformer
Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/jan-update/
index.html#dict-learning-resampling.

Adam Jermyn, Adly Templeton, Joshua Batson, and Trenton Bricken. Tanh penalty in dictionary
learning. Transformer Circuits Thread, 2024. URL https://transformer-circuits.pub/
2024/feb-update/index.html#dict-learning-tanh.

Adam Karvonen, Can Rager, Samuel Marks, and Neel Nanda. Evaluating sparse autoencoders
on targeted concept erasure tasks, 2024. URL https://arxiv.org/abs/2411.18895.

Adam Karvonen, Benjamin Wright, Can Rager, Rico Angell, Jannik Brinkmann, Logan Riggs
Smith, Claudio Mayrink Verdun, David Bau, and Samuel Marks. Measuring progress in
dictionary learning for language model interpretability with board game models. In ICML 2024
Workshop on Mechanistic Interpretability, 2024. URL https://openreview.net/forum?
1d=qzsDKwGJyB.

Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges, Joseph Bloom, David Chanin, Yeu-Tong
Lau, Eoin Farrell, Callum McDougall, Kola Ayonrinde, Demian Till, Matthew Wearden, Arthur
Conmy, Samuel Marks, and Neel Nanda. Saebench: A comprehensive benchmark for sparse
autoencoders in language model interpretability, 2025. URL https://arxiv.org/abs/2503!
09532.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998. doi: 10.1109/5.726791.

Jannik Brinkmann Logan Riggs Smith. Improving sae’s by sqrt()-ing
11 & removing lowest activating features. Al Alignment Forum, 2024.
URL https://www.alignmentforum.org/posts/YiGs8qJ8aNBgwt2YN/

improving-sae-s-by-sqrt-ing-11-and-removing-lowest,

Luke Marks, Alasdair Paren, David Krueger, and Fazl Barez. Enhancing neural network
interpretability with feature-aligned sparse autoencoders, 2024. URL https://arxiv.org/
abs/2411.01220.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=I4e82CIDxv,

Gongalo Santos Paulo, Alex Troy Mallen, Caden Juang, and Nora Belrose. Automatically inter-
preting millions of features in large language models. In Forty-second International Conference
on Machine Learning, 2025. URL https://openreview.net/forum?id=EemtbhJ0Xc!

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma,
Janos Kramadr, Rohin Shah, and Neel Nanda. Improving sparse decomposition of lan-
guage model activations with gated sparse autoencoders. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in
Neural Information Processing Systems, volume 37, pages 775-818. Curran Associates,
Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
01772a8b0420baec00c4d59fe2fbace6-Paper-Conference.pdfl

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant
Varma, Janos Kramar, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity
with jumpreLU sparse autoencoders, 2025. URL https://openreview.net/forum?id=
mMPaQzgzAN.

12


https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://transformer-circuits.pub/2024/feb-update/index.html#dict-learning-tanh
https://transformer-circuits.pub/2024/feb-update/index.html#dict-learning-tanh
https://arxiv.org/abs/2411.18895
https://openreview.net/forum?id=qzsDKwGJyB
https://openreview.net/forum?id=qzsDKwGJyB
https://arxiv.org/abs/2503.09532
https://arxiv.org/abs/2503.09532
https://www.alignmentforum.org/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.alignmentforum.org/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://arxiv.org/abs/2411.01220
https://arxiv.org/abs/2411.01220
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=EemtbhJOXc
https://proceedings.neurips.cc/paper_files/paper/2024/file/01772a8b0420baec00c4d59fe2fbace6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/01772a8b0420baec00c4d59fe2fbace6-Paper-Conference.pdf
https://openreview.net/forum?id=mMPaQzgzAN
https://openreview.net/forum?id=mMPaQzgzAN

[30] Logan Riggs. (tentatively) found 600+ monosemantic features in a
small Im using sparse autoencoders. Al  Alignment  Forum,  2023.
URL https://www.alignmentforum.org/posts/wqRqb7h6ZC48iDgfK/
tentatively-found-600-monosemantic-features-in-a-small-1m.

[31] Alex Rogozhnikov. Einops: Clear and reliable tensor manipulations with einstein-like notation.
In International Conference on Learning Representations, 2022. URL https://openreview!
net/forum?id=oapKSVM2bcj.

[32] Adam Karvonen Samuel Marks and Aaron Mueller. dictionary_learning, 2024. URL https !
//github.com/saprmarks/dictionary_learning,.

[33] Lee Sharkey, Dan Braun, and Beren Millidge. Taking features out
of superposition with sparse autoencoders. Alignment  Forum,  2023.
URL https://www.alignmentforum.org/posts/z6QQJbtpkEAX3A0] ]/

interim-research-report-taking-features-out-of-superposition.

[34] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan
Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,
Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-
son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge,
Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu
Kumar, Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David
Weinberger, Dimple Vijaykumar, Dominika Rogozifiska, Dustin Herbison, Elisa Bandy, Emma
Wang, Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel
Rasskin, Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucifiska,
Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff
Stanway, Jetha Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe
Fernandez, Joost van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji,
Kareem Mohamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin
Nguyen, Kiranbir Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena
Heuermann, Leticia Lago, Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas
Dixon, Luciano Martins, Machel Reid, Manvinder Singh, Mark Iverson, Martin Gorner, Mat
Velloso, Mateo Wirth, Matt Davidow, Matt Miller, Matthew Rahtz, Matthew Watson, Meg
Risdal, Mehran Kazemi, Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park,
Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad Bardoliwalla, Nesh Devanathan, Neta
Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul
Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu,
Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh
Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien M. R. Arnold, Sebastian Krause,
Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan, Ting
Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh
Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun Han,
Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe
Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral,
Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol
Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya,
Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi, and
Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL
https://arxiv.org/abs/2408.00118|

[35] Zhengxuan Wu, Aryaman Arora, Atticus Geiger, Zheng Wang, Jing Huang, Dan Jurafsky,
Christopher D Manning, and Christopher Potts. Axbench: Steering LLMs? even simple base-
lines outperform sparse autoencoders. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=K2CckZjNyO.

13


https://www.alignmentforum.org/posts/wqRqb7h6ZC48iDgfK/tentatively-found-600-monosemantic-features-in-a-small-lm
https://www.alignmentforum.org/posts/wqRqb7h6ZC48iDgfK/tentatively-found-600-monosemantic-features-in-a-small-lm
https://openreview.net/forum?id=oapKSVM2bcj
https://openreview.net/forum?id=oapKSVM2bcj
https://github.com/saprmarks/dictionary_learning
https://github.com/saprmarks/dictionary_learning
https://www.alignmentforum.org/posts/ z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/ z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://arxiv.org/abs/2408.00118
https://openreview.net/forum?id=K2CckZjNy0

A Technical details

In this appendix, we provide all the technical details necessary to replicate the conducted experiments.
For loading pretrained SAEs, we used the sae-lens framework [3]]. In histograms m we utilized the
following SAEs:

* For Pythia: Model 70M, residual stream at layer 3. Sae-lens release: pythia-70m-deduped-
res-sm, id: blocks.3.hook_resid_post.

* For LLaMA: Model 3 8B IT, residual stream at layer 25. Sae-lens release: llama-3-8b-it-
res-jh, id: blocks.25.hook_resid _post.

» For Gemma: Model 2 2B, residual stream at layer 12. Sae-lens release: sae_bench_gemma-
2-2b_topk_width-2pow12_date-1109, id: blocks.12.hook_resid_post__trainer_0.

For scatter plots @] and E] we used the ReLU autoencoders from [30]:
https://huggingface.co/Elriggs/autoencoder_layer_2_pythia70M_5_epochs.

For autointerpretability we used the code https://github.com/HoagyC/sparse_coding which we modi-
fied to use the open source model Gemma 3 27B IT as a judge instead of the close source GPT.

For the remaining experiments, we used the same settings as in SAEBench, specifically layer 8 of
Pythia 160M and layer 12 of Gemma 2 2B.

B Formulas for the reconstruction metrics

Explained variance is defined as
K .
% Do | Ixk — X

K
% ke 1%k — pll?

K

H = Zxk.

k=1

)

where p is the mean activation vector:

Cross entropy loss recovered is equal to
H* — Hy
H orig — H 0 '
where H,,;, refers to the cross-entropy loss calculated for the model’s next-token prediction task.
H* represents the cross-entropy loss obtained by replacing the model’s activation x with its SAE-

reconstructed version & during the forward pass. Additionally, H denotes the cross-entrop loss that
results from zeroing out the activation x.

C Code implementation

For training our autoencoders, we utilized the code [32] and implemented the key transform 2] using
the Python function described below. For the calculating the inner products per feature, we employed
the einops [31] library, which provides flexible Einstein notation operations on tensors.

def get_the_encoder_matrix(dict_size: int, encoder_weights_orthogonal_part:

— Float[Tensor, "activation_dim-1 dict_size"], decoder_weights:

— Float[Tensor, "dict_size activation_dim"]) -> Float[Tensor,

— "activation_dim dict_size"]:
zeros = torch.zeros(l, dict_size).to(encoder_weights_orthogonal_part)
appended = torch.concat([encoder_weights_orthogonal_part, zeros])
inner_products = einops.einsum(decoder_weights, appended, "dict_size
< activation_dim, activation_dim dict_size -> dict_size")
decoder_norms_squared = decoder_weights.pow(2) .sum(dim=1)
reparametrized = appended + decoder_weights.T * (1 - inner_products) /
— decoder_norms_squared
return reparametrized

14



D Additional experimental results

Explained variance vs sparsity (Pythia)

Loss recovered vs sparsity (Pythia)

0.975 4 —®- standard 09771 -@- standard o

o aligned e - aligned ke
< 070 B g 0967 T
.= - [ P
@ - o ==
> - 0.95 =
Z 0.965 - - 1] e~
£ - 4 0944 b
] =2 P
5 0.960 —= o -

x - v} -,
w PPte 0.93 il

0.955 - —= -
| € T T T T T T T 0.92 g T T T T T T T
50 75 100 125 150 175 200 225 50 75 100 125 150 175 200 225
LO (Sparsity) LO (Sparsity)
Explained variance vs sparsity (Gemma) Loss recovered vs sparsity (Gemma)
0.88 1 -@- standard 09901 _g- standard

© aligned o 0.9851 aligned —===

g il o -

& 086 gPP o 0.980 B

° - 3 P

> o S -

g 0.84 4 - @ 09754 l,r

- wn

= oed 4 0970 i

=3 v 4

x5 0821 —~ 8 ooes{ (¢ 7

.
// 4 II
080 & 0960 g
50 100 150 200 250 300 50 100 150 200 250 300
LO (Sparsity) LO (Sparsity)

Figure 12: Reconstruction metrics for Pythia 160M layer 8 and Gemma 2 2B layer 12 and the

dictionary size of 16384 features.

Fraction of alive features vs sparsity (Pythia)

Fraction of alive features vs sparsity (Gemma)

1.0 4 1.0
-®- standard -®@- standard
aligned aligned

, 0.8 o———i=====F== === o——————————o o | 0B @®———momm - Smmmrmma -.
g g
2 2
] ]
“ 0.6 £ 06
2 2
© ©
5 5
c 044 c 0.4
=] =]
F=] F=]
o o
£ £

0.2 4 0.2

0.0 T T T T T T T T 0.0 — T T T T T

50 75 100 125 150 175 200 225 50 100 150 200 250 300
LO (Sparsity) LO (Sparsity)

Figure 13: Fraction of alive neurons for Pythia 160M layer 8 and Gemma 2 2B layer 12 and the

dictionary size of 16384 features.

15



Explained variance vs sparsity (Pythia)

Loss recovered vs sparsity (Pythia)

e
0.975 4 —®- standard —@- standard e
g aligned P SO . 5 097 aligned P
c - o -~
S 0.970 1 e g e
£ e 2 0.961 T
3 et o 0 v
£ 0965 1 ’/( g o
o e w Pl
X + 0.95 4 =
W 0,960 A = N et
P
e ‘/
. ¢
] ' | ' ! ] | ] | !
50 100 150 200 250 50 100 150 200 250
LO (Sparsity) LO (Sparsity)
Explained variance vs sparsity (Gemma) Loss recovered vs sparsity (Gemma)
0.90
—®- standard 0.990 1 —@- standard
M aligned aligned | __--Zio- -
2 0.88 1 o=@ T o8-
© = © 0.985 4 —
] - H T
> _ .- g ~
0861 - = 0.980 v
< - a v
= = 2 L,
% 084 A > & 0.9754 s
r” /'l
T L T T T T T T 0.970 1 T ¢ T T T T T T
50 100 150 200 250 300 350 50 100 150 200 250 300 350
LO (Sparsity) LO (Sparsity)

Figure 14: Reconstruction metrics for Pythia 160M layer 8 and Gemma 2 2B layer 12 and the

dictionary size of 65K features.

Fraction of alive features vs sparsity (Pythia)

Fraction of alive features vs sparsity (Gemma)

1.0 4 1.0
-@- standard -@- standard
aligned aligned

g 0.8 g 084 goooooie= §=———F====== o -
E PRESRSEEE @---——————=-r - -- E
© ©
= 06 - = 06 -
o o
2 2
© ©
w“ w“
o o
c 044 c 0.4
o o
F=] F=]
G G
@ @
I I

0.2 0.2

0.0 T T T T T 0.0 T T T T T T

50 100 150 200 250 50 100 150 200 250 300 350
LO (Sparsity) LO (Sparsity)

Figure 15: Fraction of alive neurons for Pythia 160M layer 8 and Gemma 2 2B layer 12 and the

dictionary size of 65K features.

step_0 step_146 step_1464 step_14648 step_46322 step_final
12000 4 1 1 1 1 4
10000 4 4 1 4 1 4
8000 - 4 1 4 1 4
6000 - 4 1 4 1 4
4000 1 1 1 1 4
2000 A 4 1 4 m] 1 II] 4 ﬂm
05 10 05 10 ) 0.5 10 ) 0.5 10 ) 05 10 ) 0.5 10

Figure 16: Creation of the bimodality during training of a TopK SAE trained on the layer 12 of
Gemma 2 2B. We used checkpoints provided in SAEBench[22]. We hypotesize that this is caused by
two competing forces: useful features are pushed to the cluster with the alignment close to 1. On the
other hand, useless features are pushed to the left, where they rarely activate. The second effect is
caused by the sparsity goal.

16



	Introduction
	The Dawn of SAEs and the Forgotten Phenomenon
	A Simpler Feature Quality Proxy

	Background on Sparse Autoencoders
	Measuring alignment between encoder and decoder
	Alignment Score — Heuristic Motivation
	Alignment Score Should be Close to 1 - Toy Model Argument

	Preliminary Experiments
	Experiment 1: Alignment Scores Are Bimodal
	Experiment 2: Alignment Scores Are Highly Correlated with MCS
	Experiment 3: Alignment Scores can be Used to Find Interpretable Features

	Fixing Bimodality
	Experiment 4: Aligned Training Achieves Pareto Improvement on Reconstruction Metrics
	Experiment 5: Aligned Training as a Parameter-Free Method to Avoid Dead Features
	Experiment 6: Aligned Training Outperforms Standard Autoencoder in Spurious Correlation Removal
	Experiment 7: Exploratory Analysis of Feature Distributions Between Standard and Aligned Training
	Experiment 8: Scaling Training to 500M Tokens and Comparing to State-of-the-Art

	Preliminary results for TopK sparse autoencoders
	Limitations
	Technical details
	Formulas for the reconstruction metrics
	Code implementation
	Additional experimental results

