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ABSTRACT

The contextual bandit is a classic problem in sequential decision making under
uncertainty that finds broad application to tasks in precision medicine, personal-
ized education, and drug discovery. Here, a decision maker repeatedly receives a
context, takes an action, and then observes an associated outcome, with the goal
of choosing actions that achieve a minimal regret. However, in many settings, the
context is not given, and the decision maker must instead collect some informa-
tion to infer a context before proceeding. For example, when a doctor does not
have prior information about a patient, they might ask a sequence of questions
before recommending a medical treatment. In this paper, we aim to develop meth-
ods for this setting—which we refer to as the survey bandit—where the decision
maker is not given access to the context but can ask a finite sequence of ques-
tions to gain information about the context before taking an action and observing
an outcome. Using insights from Bayesian optimal experimental design (BOED)
and decision-theoretic information theory, we view the interaction with each user
as a BOED task, where the goal is to ask a sequence of questions that elicit the
most information about the optimal action for this user. Our procedure is agnos-
tic to the choice of probabilistic model, and we demonstrate its usefulness in a
few common classes of distributions. Our algorithm achieves significantly better
performance on both synthetic and real data relative to existing baseline methods
while remaining statistically efficient, interpretable, and computationally friendly.

1 INTRODUCTION

In many sequential decision making applications, a decision maker faces a sequence of users, for
which they need to choose an action and then observe an outcome. Each user has a context vector
(i.e. a set of features), which, in many cases, is not known a priori to the decision maker1. The
context is needed to choose an action that yields a good outcome, but acquiring this context can
be expensive or time-consuming. We refer to this setting as the survey bandit, which has been
previously studied by Krishnamurthy & Athey (2020). One example of this setting is in personalized
medicine: a physician faces a sequence of patients, and to each they can ask a few questions before
recommending a final treatment (Yao et al., 2021; Tomkins et al., 2021). Another example can
be found in education: during office hours, a professor faces a sequence of students, and they can
ask each a few questions before recommending an exercise or a reading. Last but not least, the
survey bandit setting also finds application in drug and material discovery: during virtual screening,
a chemist faces a large set of molecular structures, and they can perform a finite set of tests on each
candidate (e.g. DFT calculation or molecular docking) before deciding whether or not it should go
on to the next phase of the study (Kitchen et al., 2004; Bengio et al., 2021; Svensson et al., 2022).
Users’ context features are usually not independent, and thus good decision making can be achieved
even when a small part of the context is observed. For example, in a series of questions related to
political leaning, if the decision maker observes that a user prefers to watch Fox News, they may not
need to ask whether or not they identify as a conservative.

Suppose the decision maker can sequentially ask a few questions before recommending a
treatment—what questions should they ask? One way to tackle this problem is to view querying

1This setting also includes cases where the decision maker has partial information, such as a prior belief
about the users’ contexts, before asking questions.
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answers from the user as a feature selection problem, where only a small subset of features is use-
ful to predict the outcome (Bastani & Bayati, 2020). Taking this view, Krishnamurthy & Athey
(2020) treat querying answers as feature selection using ridge regression. Using the linear payoff
assumption, RidgeUCB further assumes the knowledge of a threshold βmin such that features with
a ridge regression coefficient below this threshold have no impact on the outcome, and hence can
be ignored. Although this assumption is intuitive, RidgeUCB can be brittle when the assumption is
violated. In practice, it is unclear how to set βmin without knowing the strength of the relationship
between contexts and outcomes. Taking a similar perspective, Bouneffouf et al. (2017) views the
question phase in the survey bandit setting as a feature selection problem and proposes the Contex-
tual Bandit with Restricted Context algorithm as a solution. The feature selection view of the survey
bandit can additionally introduce a challenging combinatorial search problem (i.e. in choosing an
optimal subset of the features).

This paper takes an alternative point of view. We exploit the ability to sequentially query fea-
tures and receive a signal from the user in the survey phase to adaptively ask the most informa-
tive question, following insights from Bayesian optimal experimental design (BOED) (Chaloner &
Verdinelli, 1995; Ryan et al., 2016) and decision-theoretic information theory (DeGroot, 1962; Rao,
1984; Neiswanger et al., 2022). This alternative approach treats the question phase for each user
as a BOED problem, where the goal is to ask the most informative question, while the treatment
phase can be formulated as a contextual bandit problem. Instead of eliminating the feature that is
believed to be unimportant, our approach tries to model the dependencies between features by lever-
aging probabilistic modeling and approximate inference, in order to carry out a sequence of decision
making tasks. To the best of our knowledge, this hybrid approach between BOED and contextual
bandits has not yet been explored for the survey bandit setting.

In full, our method takes advantage of a recently-developed decision-theoretic BOED approach,
which allows us to identify the question that elicits the most information about the best action for
a given user in expectation. We conduct experiments on synthetic and real datasets in the survey
bandit setting and show strong performance relative to a number of baselines. Our method has
intimate connections with a variety of algorithms for decision-making under uncertainty, such as
Bayesian optimization, active learning, and contextual bandits. All implementations will be made
publicly available.

2 DECISION-THEORETIC ENTROPY SEARCH FOR SURVEY BANDIT
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Figure 1: Each row of the
above matrix is a user. The
shaded and unshaded cells are
observed and unobserved an-
swers/outcomes, respectively.
Here, Qallow = 4 is shown.

We start by establishing some notation for the survey bandit set-
ting. Facing a sequence of U total users, a decision maker can ask
each user a fixed number of questions, observe their answers, rec-
ommend a treatment, and observe a corresponding outcome. We
assume there are a total of Q questions and T treatments that a deci-
sion maker can choose from. For each user, the number of questions
that the decision maker can ask, denoted Qallow, is assumed to be
given. Associated with each user is a vector y ∼ p(y), y ∈ RQ+T ,
which can be partitioned into an answer vector ya = [ya,1, ..., ya,Q]
and an outcome vector yo = [yo,1, ..., yo,T ]. We can also partition
y into an observed vector yobs and an unobserved vector yunobs. The
decision maker’s goal is to ask, for each user, informative questions
that reveal the treatment with the highest outcome, in expectation.
A graphical illustration of the problem setting is given in Figure 1.

2.1 DECISION-THEORETIC ENTROPY SEARCH

In this subsection, we assume that the joint distribution p(ya, yo) is given, and in the following sec-
tion we will discuss how to estimate this distribution from observed data. Given this joint density, the
decision maker should ask the question that elicits the most information—i.e. the greatest reduction
in posterior uncertainty—about the best treatment, on average. One notion of mutual information be-
tween an answer and the best outcome can be captured by Hr,A-entropy, a decision-theoretic notion
of uncertainty (DeGroot, 1962; Rao, 1984; Neiswanger et al., 2022). Suppose we have a Bayesian
model for a parameter ϕ ∈ Φ. Then the Hr,A-entropy is parameterized by a prior distribution p(ϕ),
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Algorithm 1 Hr,A-Entropy Search (HES) for the Survey Bandit Setting
D ← ∅
for u← 1 to U do ▷ Iterate through each user u ∈ [U ]

θu ← Estimate model parameters using D
Du ← ∅
for q ← 1 to Qallow do

for q′ ← 1 to Q do ▷ Iterate through each question q′ ∈ [Q]

{yia,q′}Ii=1
iid∼ p(ya,q′ |Du; θu) ▷ Draw samples for the MC estimate

for i← 1 to I do
Compute µ(yo|yia,q′ ,Du; θu) ▷ Compute conditional distribution

end for
end for
q∗ ← argmaxq′∈[Q] EHIG(q′) ▷ Optimize EHIG acquisition function
Du ← Du ∪ {ya,q∗} ▷ Update user dataset with observed answer

end for
if ϵ > z ∼ U(0, 1) then ▷ Follow a decaying ϵ-greedy strategy

t∗ ← Select treatment that maximizes µ(yo,t|D)
else

t∗ ← Select treatment as draw from Unif([T ])
end if
Du ← Du ∪ {yo,t∗} ▷ Update user dataset with observed outcome
D ← D ∪ {Du}, ϵ← ϵ× α ▷ Update full dataset and ϵ

end for

and reward function r : Φ × A → R. Given a dataset D, the posterior Hr,A-entropy is defined as
Hr,A[p(ϕ|D)] = − supa∈A Ep(ϕ|D)[r(ϕ, a)].

For the survey bandit setting, the unknown vector of interest is the outcome vector ϕ = yo and
we will be interested in the uncertainty (entropy) of the posterior distribution over this outcome
vector, Hr,A [p(yo|D)]. Here, the action set is the set of treatment indices, i.e. A = {1, ..., T} =
[T ], and the dataset D contains the answers to a sequence of questions asked to a given user. In
this setting, the reward function evaluated at a treatment t and outcome vector yo is defined to be
r(yo, t) = yo,t, i.e. the reward function indexes into the vector yo at position t. For a given user,
the myopic Bayesian optimal question, which has the greatest expected increase in information
about the optimal treatment, is the one returned by maximizing the expected Hr,A-information gain
(EHIG) (Neiswanger et al., 2022):

argmax
q∈[Q]

EHIG(q; r,A) = argmax
q∈[Q]

(
Hr,A[p(yo|D)]− Ep(ya,q|D) [Hr,A[p(yo|ya,q,D)]]

)
= argmax

q∈[Q]

Ep(ya,q|D)

[
max
t∈[T ]

Ep(yo|ya,q,D)[r(yo, t)]

]

≈ argmax
q∈[Q]

1

I

I∑
i

[
max
t∈[T ]

µ(yo,t|yia,q,D)
]
,

(1)

where the final expression is a Monte Carlo estimate given by I samples {yia,q}Ii−1
iid∼ p(ya,q|D)

drawn from the posterior distribution over answers to question q. Note that, to compute the ex-
pectation over p(yo|ya,q,D) in the final expression, the EHIG only needs the mean µ(yo|ya,q,D).
The two discrete optimizations are carried out by enumerating over sets [Q] and [T ]. Both Monte
Carlo approximation and optimization over questions and treatments can be efficiently parallelized
on modern computers with vectorization.

Choosing questions according to Equation (1) is an example of the Hr,A-entropy search (HES) al-
gorithm. The full HES procedure for the survey bandit setting is given in Algorithm 1. After the
question phrase, HES recommends a treatment that maximizes the conditional expected outcome.
This treatment recommendation can be viewed as a greedy (pure exploitation) action from a con-
textual bandit perspective, and following the estimated optimal action only will lead to suboptimal
exploration. To encourage exploration, a decaying ϵ-greedy strategy (Auer et al., 2002) is employed,
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which is a simple yet often effective strategy. Other strategies, such as UCB, could be used as well
to balance exploration and exploitation. Note that, in Algorithm 1, computing the conditional distri-
bution and estimating parameters are repeated many times, which imposes additional computational
constraints on the choice of the probabilistic model over answers and outcomes.

2.2 THE JOINT DISTRIBUTION OF USERS’ ANSWERS AND OUTCOMES

In this section, we discuss models for the joint distribution p(ya, yo; θ) that capture dependencies
between answer and outcome vectors. As stated previously, the family p(ya, yo; θ) needs to allow
conditioning efficiently and parameter estimation with missing data. Both need to be done in a
computationally efficient manner since the HES procedure iteratively performs these steps as each
new user arrives. A good class of parametric distributions that satisfies these criteria is the Gaus-
sian mixture model (GMM) (Murphy, 2012). A GMM can capture the complex geometry of many
real-world distributions while allowing closed-form conditioning and efficient parameter estima-
tion. While we focus on GMMs as demonstrations in this paper, extensions to other probabilistic
models are straightforward. Below, we briefly review GMMs and the procedures to estimate their
parameters under missing data, which we will require for our method.

A GMM generates data by the following hierarchical process:

c ∼ Mutinomial(c; 1, π), ya, yo ∼ N (ya, yo;µ
c,Σc) (2)

where c is a one-hot vector that denotes the cluster to which the generated sample y be-
longs. c is drawn from a single trial multinomial distribution with cluster proportion π =

[π1, ..., πC ],
∑C

c=1 πc = 1. In Figure 2, we show a graphical model in plate notation for the above
generative process, which we extend to include U users and potentially noisy observations of an-
swers and outcomes, yobs. In contrast with a typical GMM, our model for the survey bandit setting
involves an additional set of observed variables, whose elements might vary from user to user.

π cu

µc

yu

yo
obs

Σc

U

C

O

Figure 2: GMM graphical model
in the survey bandit setting.
Shaded and unshaded nodes de-
note observed (potentially with
noise) and latent variables, respec-
tively. The observed component
of y is different for each user. C,
U , and O denote the total number
of clusters, the total number of
users, and the total number of
observed questions and outcomes,
respectively.

The conditional mean, covariance, and proportion of each mix-
ture model component can be updated with Bayes’ rule or in
closed form. We note that the EHIG optimization procedure
(in Algorithm 1) only requires the following three quantities:

1. The distribution of a user’s cluster assignment, condi-
tioned on their observed answers, p(c|ya,obs).

2. The distribution of a user’s unobserved answers, condi-
tioned on their observed answers, p(ya,unobs|ya,obs).

3. The mean of a user’s outcome distribution, conditioned
on their observed answers, µ(yo|ya,obs).

All three of these quantities can be estimated (see Appendix A
for detailed formula), via the following quantities:

1. The empirical mean of outcome and answer vectors from
a sample of users, µ(yo) and µ(ya).

2. The empirical covariance between answers from a sam-
ple of users, Σaa.

3. The empirical covariance between answers and out-
comes from a sample of users, Σao.

The covariance between outcomes, Σoo, is impossible to estimate without further assumptions due
to the Fundamental Problem of Causal Inference (Holland, 1986), where no two outcomes can be
observed simultaneously. Fortunately, the EHIG optimization expression in Equation (1) does not
require this quantity.

GMM parameters are estimated in the presence of missing data with the expectation-conditional
maximization (ECM) algorithm (Meng & Rubin, 1993; Ghahramani & Jordan, 1993; McCaw et al.,
2022). ECM is a generalization of the expectation-maximization (EM) algorithm (Dempster et al.,
1977), a popular algorithm for maximum likelihood estimation (MLE) in GMMs. ECM replaces the
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maximization step over all parameters of interest in EM with a sequence of conditional maximization
steps, where each parameter of interest is optimized individually conditioned on other parameters.
ECM requires missingness in the input to satisfy the missing at random (MAR) assumption for
unbiased estimation, meaning whether an element in the input vector is missing can depend on the
observed elements, but not on the unobserved elements. This requirement is satisfied in our setting,
because whether or not HES chooses to observe a context does not depend on the unobserved data.
For a detailed treatment of ECM, we refer the reader to Meng & Rubin (1993); Dempster et al.
(1977); Ghahramani & Jordan (1993), and (McCaw et al., 2022). MLE is used in this study because
it is computationally efficient, but other inference methods, such as Markov chain Monte Carlo or
variational inference, can be used as well.

The dataset in the survey bandit setting has a large amount of missing data for two reasons: (1) the
context for each user is only observed partially and at a low rate, and (2) only one treatment per
user is observed. This large amount of missing data can affect the stability and convergence rate of
the iterative optimization procedure in ECM (McCaw et al., 2022). In Appendix A, we describe our
initialization procedure to stabilize ECM in the presence of missing data.

3 EXPERIMENTS

We first verify that HES works as advertised on six artificial data generating processes, where details
about the set of informative questions and treatments are known. We then conduct experiments on a
real dataset from the charitable giving experiment (Athey et al., 2022). Each algorithm is evaluated
with four metrics: (1) cumulative regret, (2) per-period regret, (3) per-period accuracy of estimating
the optimal set of questions/treatments for the population, and (4) per-period accuracy (measured by
MAE) of the outcome model. Regret is defined as the difference between the outcome of treatment
chosen by the algorithm and the optimal outcome. Per-period regret and per-period accuracy (of
question, treatment, and outcome estimation) are computed every 100 users. For the per-period
accuracy of estimating the optimal set of questions/treatments for the population, we compute the
fraction of the set of optimal questions/treatments that the algorithm correctly identifies2. Additional
details on the experimental setup are given in Appendix B. HES is compared against the following
six baseline algorithms.

1. LinUCB (Li et al., 2010) with full access to answers: a standard contextual bandit algorithm
with access to the ground truth context, which represents what can be achieved when there is
no budget constraint on question selection.

2. RidgeUCB (Krishnamurthy & Athey, 2020): as discussed previously in Section 1, RidgeUCB
treats question selection as feature selection, where features with sufficiently high coefficients
in a ridge regression are selected, and then uses LinUCB to recommend treatment.

3. Uncertainty Sampling (US) (Lewis & Gale, 1994), a popular strategy in active learning: this
uses a probabilistic model of answers and outcomes to query questions with the highest pre-
dictive uncertainty, and then selects treatments with the highest expected conditional outcome.

4. Uniform Non-contextual Randomization (UNR) (Hariton & Locascio, 2018), a popular
method for conducting non-contextual experiments: this recommends treatments uniformly
at random without considering the answers to questions. UNR is expected to have constant
per-period regret over time, but is useful as a benchmark for how data collection influences the
quality of learned models of the answer distribution and the outcomes conditional on answers.

5. UniformBOED (Fang & Lin, 2003): this method selects questions to query uniformly at ran-
dom, and then selects the treatments with the highest expected conditional outcome according
to a probabilistic model.

6. BayesLinUCB: this method queries questions uniformly at random, infers the full context by
a probabilistic model, and then uses LinUCB to recommend treatments (Levine, 2018).

2This is not necessarily the per-user optimal questions/treatment. For example, if a population has infor-
mative questions as 1, 2, and 3 and Qallow = 3, and the algorithm asks 2, 3, 4, its accuracy of identifying the
set of optimal questions is 2

3
. If the set of optimal treatments for the population is {1, 2, 3}, and the algorithm

chooses treatment 2 for a user, its accuracy of selecting the optimal set of treatments is 1, even if the true
optimal treatment for this user might not be 2.
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Figure 3: A Simple Homogeneous Population (top) and A Homogeneous Population with Answer
Dependency (bottom). Summary statistics of all metrics are given in Table 1 and 2 in Appendix B.

Each simulated experiment is run for a sequence of 100,000 users. In the beginning, each algorithm
has a warm-up period where it can interact with 30 users per treatment. During this period, the
decision maker can ask users all possible questions and recommend one treatment per user. There
are a total of 16 questions and 6 treatments in all experiments. The parameters of the GMM are
updated every 500 users. Parameters of LinUCB and ridge regression are updated with every user.
RidgeUCB is modified slightly to enable it to handle budget constraints in the number of questions:
the algorithm is allowed to observe up to a size Qallow questions, which are randomly drawn from the
set of questions that it requests to ask3. Empirically, this modification does not change RidgeUCB
behavior significantly because the algorithm rarely exceeds the budget constraint with the default
βmin = 0.5. Both answers and outcomes data are scaled to the range (0, 1).

3.1 A SYNTHETIC DOMAIN

Task 1: A Simple Homogeneous Population. In this task, each answer is independently drawn
from a standard normal distribution and the outcome vector is constructed as follows: yo,1 =
ya,1, yo,2 = ya,2, yo,3 = 2µ1 − ya,1

4, and yo,i = 0,∀i > 3. Hence, only questions {1, 2} are
informative and only treatments {1, 2, 3} should be considered. Prior to the survey phase, the deci-
sion maker does not know which treatment in {0, 1, 2} is the optimal one since they have the same
statistic. An optimal decision maker should only need to ask at most two questions (i.e. 0 and 1) to
find the best treatment. Hence, we choose Qallow = 2 here.

The result of this task is shown in Figure 3 (top row). Only LinUCB, HES, and RidgeUCB con-
verge to zero per-period regret, and RidgeUCB takes the most number of users (nearly 60,000) to
converge. HES can quickly find informative questions and well-targeted treatment as shown by the
fact that its fraction of informative questions and treatment approaches 1 over time. RidgeUCB
takes much longer to do so. When there are many uninformative questions, the uniform query strat-
egy is not effective, as illustrated by the fact that UniformBOED, US, and BayesLinUCB do not
converge. Since the answers are independent in this setting, inferring full context after uniformly
querying questions is also not effective. In addition to HES, some of the other baselines such as US
can achieve high accuracy in outcome prediction when conditioning on the observed answer. This
high accuracy in outcome prediction does not necessarily imply high quality in decision making,

3For example, with the budget of Qallow = 3, if RidgeUCB requests to observe question {1, 2, 4}, it is
allowed to observe all three answers. Meanwhile, if it requests to observe {1, 2, 4, 6}, it will only observe one
subset size 3 of its request, which could be {1, 2, 6} or {1, 4, 6}

42µ − x has the effect of geometrically reflecting a sample through the mean. For example, if the normal
distribution is centered at 5, and x = 4, then 2µ−x is 7. If x = 8, 2µ−x = 2. Only 50% of the time x would
be higher 2µ− x and is the better treatment.
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Figure 4: A Homogeneous Population with Many Potential Treatments (top) and a Heterogeneous
Population (bottom). Summary statistics of all metrics are given in Table 3 and 4 in Appendix B.

illustrated by the fact that the per-period regret of UniformBOED does not converge to zero while
LinUCB achieves sublinear regret even with relatively high MAE. In the domain where explainabil-
ity is important, the action taken by HES can also be explained by its learned covariance matrix
(Figure 7 in Appendix B). The fact that the learned covariance matrix from HES is very close to the
one induced from the data generating process further confirms that the algorithm works as expected.

Task 2: A Simple Homogeneous Population with Answer Dependency. This experiment illus-
trates an intuitive concept that was introduced in Section 1: when there are Qi informative questions
but they are dependent, an optimal algorithm may need to ask less than Qi questions. Task 1 is mod-
ified by letting ya,1 = ya,2. Similar to the previous experiment, questions {1, 2} are informative
about the optimal treatment, but an optimal decision maker who knows one will immediately know
the other. Hence, for this experiment we choose Qallow = 1. Here, treatments {1, 2, 3} should be
considered, but two of them are equally good. Similar to the previous experiment, HES converges
quickly in all metrics after a few thousand users (Figure 3, bottom row). Unlike the previous task,
RidgeUCB can no longer converge to zero per-period regret, which can be explained by the bias
from correlated omitted variables in ridge regression. The ability to handle dependencies between
answers is crucial in the survey bandit setting, and hence this condition is included in all subse-
quent experiments. Even though the data generating process has introduced dependencies between
outcomes (Figure 7 in Appendix B), HES still performs well here in practice.

Task 3: A Simple Homogeneous Population with Many Potential Treatments. The previous
experiments show that HES works well when there are three treatments to consider. In practice, there
can be potentially many treatments to consider. Here we show that our model is still effective when
there are many potentially good choices for treatment. The outcome model of Task 2 is modified
as follows: yo,1 = ya,1, yo,2 = ya,2, yo,3 = ya,3, yo,4 = 2µ1 − ya,1, yo,5 = 2µ2 − ya,2, yo,6 =
2µ3 − ya,3. The set of informative questions is {1, 2, 3} but, for the same reason as Task 2, only
two of them should be asked. Hence, we use Qallow = 2. HES converges quickly in all metrics,
demonstrating its ability to handle a large number of good treatments (Figure 4, top row).

Task 4: A Heterogeneous Population. Real-world populations of users may not be homoge-
neous. In other words, their distribution might not have simple geometry, such as being unimodal.
This experiment demonstrates that HES is capable of handling this situation. The data is generated
according to the following hierarchical process, where users may come from one of two groups:

• For users in the first group, the answer is drawn from an isotropic multivariate normal distribu-
tion with a mean vector of [1, 2, ..., Q] and variance of 1. The outcomes are yo,1 = ya,1, yo,2 =
ya,6, yo,3 = 2µ1 − ya,1, and yo,i = 0,∀i > 3.
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Figure 5: A Skewed Population (top) and A Noisy Population (bottom). Summary statistics of all
metrics are given in Table 5 and 6 in Appendix B.

• For users in the second group, the answer is drawn from an isotropic multivariate normal
distribution with a mean vector of [Q, ..., 2, 1] and a variance of 1. The outcomes are yo,1 =
ya,2, yo,2 = ya,7, yo,3 = ya,12, yo,4 = 2µ2 − ya,2, yo,5 = 2µ7 − ya,7, yo,6 = 2µ12 − ya,12.

An optimal algorithm in this setting would need to ask four questions from the set {1, 6, 2, 7, 12}.
Observing any first answer, the algorithm should know which cluster the user comes from5, and
asks at most 3 more questions to find the best treatments. Hence Qallow = 4. HES converges
quickly on all metrics, demonstrating its ability to handle the hierarchical data generating process
(Figure 4, bottom row). Since there is no longer a simple linear relationship between the answer and
outcome, even with context oracle, LinUCB does not converge to sublinear regret. This experiment
highlights a strength of HES, that is with a flexible underlying probability model, it can handle
several hierarchical, nonlinear data generating processes commonly found in practice.

Task 5: A Skewed Population As mentioned previously, the HES procedure for the survey ban-
dit setting can be paired with different models. For demonstration purposes, in this paper, we use
GMM, which strikes a good balance between expressiveness and statistical as well as computational
efficiency. No matter the model, it is rarely a perfect fit for real-world data. In some modeling tasks,
when the data distribution deviates from the assumed one, and if the underlying algorithm is not ro-
bust enough, the performance of the decision maker might degrade severely. This experiment shows
that HES performance is robust to model misspecification. We modify Task 2 by generating answers
from a skewed multivariate normal distribution, with skewness of 5, which we plot in Figure 8 (Ap-
pendix B); we note that this geometry is significantly different from the normal distribution. We
choose the skewed multivariate normal family for this purpose because it allows us to control the
dependency between variables while deviating from the typical Gaussian distribution. HES works
well even in this case, showing that HES can achieve a certain level of robustness with distributional
misspecification (Figure 5, top row).

Task 6: A Noisy Population It is common in practice to observe noisy measurements from each
user. To examine the algorithm’s robustness under noise, we add 10% normal noise to each ob-
servation (i.e. normally distributed noise with a standard deviation of 0.1 in our setting). Similar
to the previous task, all metrics quickly converge for HES, demonstrating its robustness to noisy
observations (Figure 5, bottom row).

5For example, when observing an answer to question 1, the algorithm should know the user belongs to
group 1 if ya,1 ≈ 1. Otherwise, ya,1 ≈ Q indicates that the user belongs to group 2

8



Under review as a conference paper at ICLR 2023

Figure 6: Results on the Charitable Giving experiment. Summary statistics for all of the metrics are
given in Table 7 in Appendix B.

3.2 A REAL DOMAIN BASED ON CHARITABLE GIVING EXPERIMENT

In this section, a real dataset from a charitable giving experiment (Athey et al., 2022) is used to
examine the algorithm in a practical setting. This dataset includes 3065 users and their answers to 16
general demographic characteristics, political affiliation, and media consumption. It also contains
the response from each user to the following question: “How would people like you feel if we
donated one thousand dollars to the following charity?” The user is then shown randomly 1 of 6
charities. Charitable giving is an especially suitable use case for adaptive experiments since the
optimal policy is difficult to obtain beforehand. Behaviors that determine charitable giving are
highly individual and depend on background and interest (Athey et al., 2022).

A semi-synthetic dataset that emulates the behavior of users from the above charitable experiment
is generated using the following procedure. First, we learn a mapping from answers to outcomes.
We train a number of models with 10-fold cross-validation on a 80:20 train:test split using MAE as
the goodness of fit criteria. The following models are chosen: random forest (Athey et al., 2016),
local linear forest (Friedberg et al., 2018), decision tree, a neural network with 1 layer of 17 hidden
node and sigmoid activation, linear regression, Gaussian process regression, ridge regression, elastic
net regression, Bayesian ridge regression, and a one-layer neural network with sigmoid activation.
Hyperparameters of each model are tuned with a random grid search. The summary, given in Table 8
(Appendix B), indicates that the one-layer neural network works well for this dataset. This model is
used to generate data for further experiments, where we draw context from a kernel density estimator
(with parameters fit via 10-fold cross-validation) of the data, and map it to the outcome. We set
Qallow = 2 to emulate the time constraint when interacting with real users. The results of this
experiment are shown in Figure 6. Here, HES achieves the same level of regret as LinUCB even
with access to only 2 out of 16 questions. Compared to other algorithms, HES achieves a similar or
better accuracy and regret level, demonstrating its usefulness in a real-world setting.

4 DISCUSSION & FUTURE WORK

In this paper, we introduce a decision-theoretic entropy search procedure for the survey bandit set-
ting, which treats the question phrase as a sequence of BOED tasks with the goal of asking infor-
mative questions to recommend treatments with minimal regret. The procedure may be paired with
different models for answers and outcomes, and we demonstrate its usefulness on various synthetic
and real datasets.

There are multiple future directions for this study. For example, some questions and treatments
in practice are continuous (e.g. recommend 1mg dose or 5mg dose of some drug), which allows
the EHIG optimization procedure to be done with gradient-based optimization. In addition, our
Hr,A-entropy search procedure is done myopically, which is computationally friendly but can be
suboptimal. A non-myopic EHIG optimization procedure could achieve better performance. Third,
we have considered the joint distribution of answer and outcome, but sometimes analyzing the se-
mantic meaning of questions using tools from natural language processing can reveal information
about the dependency of answers, even prior to observation of any answer. Last but not least, if
computational speed is desirable, we want to explore the feasibility of a foundation decision maker
that is pretrained using the EHIG objective, which might allow asking good questions in real time.
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Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed ban-
dit problem. Machine Learning, 47(2):235–256, 2002. doi: 10.1023/A:1013689704352. URL
https://doi.org/10.1023/A:1013689704352.

Hamsa Bastani and Mohsen Bayati. Online Decision Making with High-Dimensional Covari-
ates. Operations Research, 68(1):276–294, January 2020. doi: 10.1287/opre.2019.1902. URL
https://ideas.repec.org/a/inm/oropre/v68y2020i1p276-294.html.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation, 2021. URL
https://arxiv.org/abs/2106.04399.

Djallel Bouneffouf, Irina Rish, Guillermo A. Cecchi, and Raphael Feraud. Context attentive bandits:
Contextual bandit with restricted context, 2017. URL https://arxiv.org/abs/1705.
03821.

Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: A review. Statistical
Science, 10(3):273–304, 1995. ISSN 08834237. URL http://www.jstor.org/stable/
2246015.

M. H. DeGroot. Uncertainty, Information, and Sequential Experiments. The Annals of Mathematical
Statistics, 33(2):404 – 419, 1962. doi: 10.1214/aoms/1177704567. URL https://doi.org/
10.1214/aoms/1177704567.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38,
1977. ISSN 00359246. URL http://www.jstor.org/stable/2984875.

Kai-Tai Fang and Dennis K.J. Lin. Ch. 4. uniform experimental designs and their applications in
industry. In Statistics in Industry, volume 22 of Handbook of Statistics, pp. 131–170. Elsevier,
2003.

Rina Friedberg, Julie Tibshirani, Susan Athey, and Stefan Wager. Local linear forests, 2018. URL
https://arxiv.org/abs/1807.11408.

Zoubin Ghahramani and Michael Jordan. Supervised learning from incomplete data via an em
approach. Advances in neural information processing systems, 6, 1993.

Eduardo Hariton and Joseph J Locascio. Randomised controlled trials – the gold standard for ef-
fectiveness research. BJOG: An International Journal of Obstetrics & Gynaecology, 125(13):
1716–1716, 2018.

Paul W. Holland. Statistics and causal inference. Journal of the American Statistical Associa-
tion, 81(396):945–960, 1986. ISSN 01621459. URL http://www.jstor.org/stable/
2289064.

Douglas B. Kitchen, Hélène Decornez, John R. Furr, and Jürgen Bajorath. Docking and scoring
in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Dis-
covery, 3(11):935–949, 2004. doi: 10.1038/nrd1549. URL https://doi.org/10.1038/
nrd1549.

Sanath Kumar Krishnamurthy and Susan Athey. Survey bandits with regret guarantees, 2020. URL
https://arxiv.org/abs/2002.09814.

10

https://arxiv.org/abs/1610.01271
https://arxiv.org/abs/1610.01271
https://doi.org/10.1023/A:1013689704352
https://ideas.repec.org/a/inm/oropre/v68y2020i1p276-294.html
https://arxiv.org/abs/2106.04399
https://arxiv.org/abs/1705.03821
https://arxiv.org/abs/1705.03821
http://www.jstor.org/stable/2246015
http://www.jstor.org/stable/2246015
https://doi.org/10.1214/aoms/1177704567
https://doi.org/10.1214/aoms/1177704567
http://www.jstor.org/stable/2984875
https://arxiv.org/abs/1807.11408
http://www.jstor.org/stable/2289064
http://www.jstor.org/stable/2289064
https://doi.org/10.1038/nrd1549
https://doi.org/10.1038/nrd1549
https://arxiv.org/abs/2002.09814


Under review as a conference paper at ICLR 2023

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review,
2018. URL https://arxiv.org/abs/1805.00909.

David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers, 1994.
URL https://arxiv.org/abs/cmp-lg/9407020.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international confer-
ence on World wide web - WWW '10. ACM Press, 2010. doi: 10.1145/1772690.1772758. URL
https://doi.org/10.1145%2F1772690.1772758.

Zachary R. McCaw, Hugues Aschard, and Hanna Julienne. Fitting gaussian mixture models on
incomplete data. BMC Bioinformatics, 23(1):208, 2022. doi: 10.1186/s12859-022-04740-9.
URL https://doi.org/10.1186/s12859-022-04740-9.

Xiao-Li Meng and Donald B. Rubin. Maximum likelihood estimation via the ecm algorithm: A
general framework. Biometrika, 80(2):267–278, 1993. ISSN 00063444. URL http://www.
jstor.org/stable/2337198.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Willie Neiswanger, Lantao Yu, Shengjia Zhao, Chenlin Meng, and Stefano Ermon. Generalizing
bayesian optimization with decision-theoretic entropies. Advances in Neural Information Pro-
cessing Systems, 35, 2022.

C. Radhakrishna Rao. Convexity properties of entropy functions and analysis of diversity. In In-
equalities in Statistics and Probability, 1984.

Elizabeth G. Ryan, Christopher C. Drovandi, James M. McGree, and Anthony N. Pettitt. A review of
modern computational algorithms for bayesian optimal design. International Statistical Review,
84(1):128–154, 2016.

Hampus Gummesson Svensson, Esben Bjerrum, Christian Tyrchan, Ola Engkvist, and
Morteza Haghir Chehreghani. Autonomous drug design with multi-armed bandits, 2022. URL
https://arxiv.org/abs/2207.01393.

Sabina Tomkins, Peng Liao, Predrag Klasnja, and Susan Murphy. Intelligentpooling: practical
thompson sampling for mhealth. Machine Learning, 110(9):2685–2727, 2021. doi: 10.1007/
s10994-021-05995-8. URL https://doi.org/10.1007/s10994-021-05995-8.

Jiayu Yao, Emma Brunskill, Weiwei Pan, Susan Murphy, and Finale Doshi-Velez. Power con-
strained bandits. In Ken Jung, Serena Yeung, Mark Sendak, Michael Sjoding, and Rajesh Ran-
ganath (eds.), Proceedings of the 6th Machine Learning for Healthcare Conference, volume 149
of Proceedings of Machine Learning Research, pp. 209–259. PMLR, 06–07 Aug 2021. URL
https://proceedings.mlr.press/v149/yao21a.html.

A GAUSSIAN MIXTURE MODEL DENSITY AND INITIALIZATION

This section includes details about the Gaussian mixture model (GMM), as well as the procedure
for initializing the ECM algorithm under severe cases of missing data.

Pr(c|yobs) =
p(yobs|c) Pr(c)∑
c′ p(yobs|c′) Pr(c′)

=
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c
obs,Σ

c
obs,obs) Pr(c)∑

c′ N (yobs;µc′
obs,Σ
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obs,obs) Pr(c

′)
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unobs +Σc
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)−1
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)−1
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(3)

When C = 1, GMM is a multivariate normal distribution:
yo, ya ∼ N (yo, ya;µ,Σ); ya ∼ N (ya;µa,Σaa); yo ∼ N (yo;µo,Σoo)

µ = [µa, µo],Σ =

[
Σaa Σoa

Σao Σoo

]
(4)
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In the general case,

p(y) =

C∑
c=1

Pr(c)N (y;µc,Σc); µc = [µc
unobs, µ

c
obs]; Σ =

[
Σunobs,unobs Σunobs,obs
Σobs,unobs Σobs,obs

]
(5)

We propose the following initialization procedure to stabilize ECM optimization. This initialization
is only done once for the entire interaction with all users. After the warm-up period, K-mean clus-
tering is employed to assign the cluster membership to each data point. Next, within a cluster, for
each outcome, a model that map answers to the outcome is learned, then used to infer unobserved
outcomes. Note that this is only done for the purpose of initialization, and we do not alternate the
data. Finally, the initial means and covariance matrices are initialized with the EM algorithm. From
the second iteration, the initial mean and covariance matrix for each cluster is set to the ECM result
of the previous iteration.

B EXPERIMENT DETAILS

This section contains further details on the empirical results.

Period C. Regret P. Regret Questions Treatments MAE partial MAE full
RidgeUCB 50k 10978.36± 107.43 0.12± 0.09 0.46± 0.38 0.88± 0.10 0.41± 0.05 0.32± 0.03

100k 11419.10± 473.58 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.37± 0.01 0.37± 0.01
UniformBOED 50k 4922.05± 160.79 0.08± 0.00 0.13± 0.02 1.00± 0.00 0.04± 0.00 0.03± 0.00

100k 9501.13± 350.89 0.10± 0.01 0.13± 0.01 1.00± 0.00 0.05± 0.00 0.03± 0.00
US 50k 3895.19± 1965.96 0.07± 0.04 0.17± 0.24 1.00± 0.00 0.05± 0.00 0.04± 0.01

100k 7457.91± 3962.57 0.07± 0.03 0.17± 0.24 1.00± 0.00 0.05± 0.00 0.04± 0.01
LinUCB 50k 1187.45± 45.94 0.00± 0.00 1.00± 0.00 0.99± 0.00 0.36± 0.01 0.36± 0.01

100k 1328.58± 49.24 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.37± 0.01 0.37± 0.01
BayesLinUCB 50k 5061.14± 184.07 0.08± 0.01 0.15± 0.04 1.00± 0.00 0.31± 0.01 0.32± 0.01

100k 9666.61± 425.59 0.08± 0.01 0.16± 0.02 1.00± 0.00 0.32± 0.01 0.32± 0.01
UNR 50k 11277.78± 306.51 0.19± 0.01 N/A 0.49± 0.02 N/A N/A

100k 22514.54± 580.06 0.23± 0.02 N/A 0.55± 0.05 N/A N/A
HES 50k 420.84± 14.90 0.00± 0.00 0.96± 0.01 1.00± 0.00 0.06± 0.00 0.06± 0.00

100k 443.46± 14.48 0.00± 0.00 0.94± 0.00 1.00± 0.00 0.06± 0.00 0.06± 0.00

Table 1: Performance of the seven comparison methods on Task 1, at time step 50,000 and at time
step 100,000.

Period C. Regret P. Regret Questions Treatments MAE partial MAE full
RidgeUCB 50k 9193.79± 26.68 0.10± 0.01 0.12± 0.04 0.98± 0.02 0.48± 0.01 0.31± 0.00

100k 14138.40± 121.28 0.13± 0.02 0.14± 0.04 0.99± 0.01 0.46± 0.01 0.31± 0.00
UniformBOED 50k 4359.72± 85.50 0.08± 0.02 0.16± 0.04 1.00± 0.00 0.04± 0.00 0.03± 0.00

100k 8394.27± 187.30 0.08± 0.02 0.11± 0.01 1.00± 0.00 0.05± 0.01 0.03± 0.00
US 50k 4800.55± 160.81 0.08± 0.01 0.00± 0.00 1.00± 0.00 0.05± 0.00 0.04± 0.00

100k 9324.77± 345.62 0.08± 0.00 0.00± 0.00 1.00± 0.00 0.05± 0.00 0.04± 0.00
LinUCB 50k 1156.81± 6.77 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.34± 0.00 0.34± 0.00

100k 1288.91± 8.98 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.35± 0.01 0.35± 0.01
BayesLinUCB 50k 4404.91± 126.64 0.07± 0.02 0.16± 0.03 1.00± 0.00 0.31± 0.01 0.30± 0.01

100k 8510.54± 269.46 0.08± 0.00 0.16± 0.02 1.00± 0.00 0.31± 0.01 0.30± 0.00
UNR 50k 10652.95± 168.83 0.19± 0.01 N/A 0.51± 0.03 N/A N/A

100k 21265.43± 273.16 0.22± 0.01 N/A 0.48± 0.02 N/A N/A
HES 50k 381.46± 5.58 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.05± 0.00 0.06± 0.01

100k 381.52± 5.60 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.05± 0.00 0.06± 0.00

Table 2: Performance of the seven comparison methods on Task 2, at time step 50,000 and at time
step 100,000.
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Period C. Regret P. Regret Questions Treatments MAE partial MAE full
RidgeUCB 50k 6503.22± 36.24 0.13± 0.02 0.18± 0.01 1.00± 0.00 0.44± 0.00 0.11± 0.00

100k 12969.74± 110.00 0.14± 0.01 0.18± 0.01 1.00± 0.00 0.44± 0.00 0.12± 0.00
UniformBOED 50k 4881.15± 116.11 0.09± 0.01 0.20± 0.00 1.00± 0.00 0.09± 0.00 0.07± 0.01

100k 9722.36± 224.76 0.10± 0.01 0.19± 0.01 1.00± 0.00 0.10± 0.01 1.86± 2.52
US 50k 4815.47± 1955.06 0.09± 0.03 0.17± 0.24 1.00± 0.00 0.09± 0.00 0.08± 0.02

100k 9537.75± 3937.19 0.10± 0.05 0.17± 0.24 1.00± 0.00 0.10± 0.01 0.08± 0.02
LinUCB 50k 161.43± 11.18 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.13± 0.00 0.13± 0.00

100k 188.25± 11.40 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.14± 0.00 0.14± 0.00
BayesLinUCB 50k 4845.81± 108.51 0.09± 0.00 0.22± 0.03 1.00± 0.00 0.10± 0.01 0.11± 0.01

100k 9585.75± 203.49 0.09± 0.01 0.21± 0.01 1.00± 0.00 0.10± 0.01 0.12± 0.01
UNR 50k 7283.02± 147.13 0.15± 0.01 N/A 1.00± 0.00 N/A N/A

100k 14501.58± 288.05 0.15± 0.01 N/A 1.00± 0.00 N/A N/A
HES 50k 522.76± 11.26 0.00± 0.00 0.85± 0.03 1.00± 0.00 0.13± 0.00 0.13± 0.00

100k 647.54± 39.10 0.00± 0.00 0.94± 0.02 1.00± 0.00 0.13± 0.00 0.13± 0.00

Table 3: Performance of the seven comparison methods on Task 3, at time step 50,000 and at time
step 100,000.

Period C. Regret P. Regret Questions Treatments MAE partial MAE full
RidgeUCB 50k 4512.49± 56.48 0.09± 0.00 0.44± 0.03 1.00± 0.00 0.28± 0.01 0.07± 0.00

100k 8970.97± 123.73 0.09± 0.01 0.55± 0.03 1.00± 0.00 0.29± 0.01 0.07± 0.00
UniformBOED 50k 699.78± 28.54 0.01± 0.00 0.32± 0.02 1.00± 0.00 0.02± 0.00 0.37± 0.00

100k 1313.25± 55.84 0.02± 0.00 0.32± 0.01 1.00± 0.00 0.02± 0.00 0.37± 0.00
US 50k 354.61± 14.06 0.01± 0.00 1.00± 0.00 1.00± 0.00 0.02± 0.00 0.37± 0.00

100k 616.99± 23.70 0.01± 0.00 1.00± 0.00 1.00± 0.00 0.02± 0.00 0.37± 0.00
LinUCB 50k 683.51± 10.13 0.01± 0.00 1.00± 0.00 1.00± 0.00 0.10± 0.00 0.10± 0.00

100k 1071.22± 27.24 0.01± 0.00 1.00± 0.00 1.00± 0.00 0.11± 0.00 0.11± 0.00
BayesLinUCB 50k 1426.23± 13.73 0.02± 0.00 0.36± 0.05 1.00± 0.00 0.10± 0.00 0.10± 0.00

100k 2523.30± 13.31 0.02± 0.00 0.38± 0.01 1.00± 0.00 0.10± 0.00 0.10± 0.00
UNR 50k 17757.66± 61.97 0.34± 0.01 N/A 1.00± 0.00 N/A N/A

100k 35368.73± 175.97 0.35± 0.02 N/A 1.00± 0.00 N/A N/A
HES 50k 103.03± 2.06 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.01± 0.00 0.37± 0.00

100k 108.65± 3.09 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.01± 0.00 0.37± 0.00

Table 4: Performance of the seven comparison methods on Task 4, at time step 50,000 and at time
step 100,000.

Period C. Regret P. Regret Questions Treatments MAE partial MAE full
RidgeUCB 50k 3353.60± 115.59 0.01± 0.01 0.13± 0.04 1.00± 0.00 0.63± 0.01 0.51± 0.02

100k 4055.85± 281.11 0.02± 0.01 0.11± 0.01 1.00± 0.00 0.63± 0.01 0.50± 0.02
UniformBOED 50k 1036.73± 151.11 0.01± 0.00 0.13± 0.02 1.00± 0.00 0.07± 0.00 0.06± 0.00

100k 1555.66± 302.87 0.01± 0.00 0.13± 0.02 1.00± 0.00 0.08± 0.01 0.06± 0.01
US 50k 666.12± 135.91 0.00± 0.00 0.67± 0.47 1.00± 0.00 0.08± 0.02 0.07± 0.03

100k 787.97± 279.39 0.00± 0.00 0.67± 0.47 1.00± 0.00 0.08± 0.02 0.07± 0.03
LinUCB 50k 1767.77± 44.04 0.01± 0.00 1.00± 0.00 0.99± 0.00 0.51± 0.02 0.51± 0.02

100k 1951.94± 55.99 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.50± 0.02 0.50± 0.02
BayesLinUCB 50k 1052.06± 194.28 0.01± 0.01 0.13± 0.02 1.00± 0.00 0.51± 0.02 0.50± 0.02

100k 1674.66± 347.80 0.01± 0.00 0.11± 0.03 1.00± 0.00 0.51± 0.02 0.50± 0.02
UNR 50k 22788.37± 686.00 0.47± 0.03 N/A 0.51± 0.04 N/A N/A

100k 45515.89± 1403.41 0.46± 0.03 N/A 0.47± 0.01 N/A N/A
HES 50k 572.48± 12.05 0.00± 0.00 0.96± 0.06 1.00± 0.00 0.08± 0.02 0.08± 0.02

100k 622.55± 39.06 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.09± 0.00 0.09± 0.01

Table 5: Performance of the seven comparison methods on Task 5, at time step 50,000 and at time
step 100,000.

Period C. Regret P. Regret Questions Treatments MAE partial MAE full
RidgeUCB 50k 9189.22± 97.94 0.10± 0.01 0.12± 0.02 0.98± 0.01 0.49± 0.00 0.32± 0.00

100k 14261.52± 256.18 0.12± 0.01 0.11± 0.01 1.00± 0.00 0.47± 0.01 0.30± 0.00
UniformBOED 50k 4412.02± 131.56 0.09± 0.01 0.13± 0.02 1.00± 0.00 0.04± 0.00 0.03± 0.00

100k 8550.20± 242.70 0.09± 0.00 0.12± 0.01 1.00± 0.00 0.04± 0.00 0.03± 0.00
US 50k 3437.06± 1961.55 0.07± 0.05 0.33± 0.47 1.00± 0.00 0.05± 0.00 0.04± 0.01

100k 6612.09± 4158.32 0.06± 0.04 0.33± 0.47 1.00± 0.00 0.05± 0.00 0.04± 0.01
LinUCB 50k 1176.87± 13.78 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.35± 0.00 0.35± 0.00

100k 1325.94± 16.11 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.34± 0.00 0.34± 0.00
BayesLinUCB 50k 4433.89± 120.93 0.09± 0.02 0.14± 0.01 1.00± 0.00 0.31± 0.01 0.30± 0.01

100k 8569.10± 197.38 0.07± 0.01 0.12± 0.00 0.99± 0.01 0.31± 0.00 0.30± 0.00
UNR 50k 10649.84± 206.16 0.22± 0.01 N/A 0.47± 0.07 N/A N/A

100k 21280.99± 443.96 0.22± 0.03 N/A 0.49± 0.02 N/A N/A
HES 50k 459.53± 12.97 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.05± 0.00 0.08± 0.03

100k 530.65± 12.94 0.00± 0.00 1.00± 0.00 1.00± 0.00 0.05± 0.00 0.06± 0.00

Table 6: Performance of the seven comparison methods on Task 6, at time step 50,000 and at time
step 100,000.
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Period C. Regret P. Regret Questions Treatments MAE partial MAE full

RidgeUCB 50k 6513.33± 256.42 0.10± 0.01 N/A N/A 0.14± 0.01 0.11± 0.00
100k 11857.16± 759.71 0.11± 0.01 N/A N/A 0.13± 0.02 0.11± 0.00

UniformBOED 50k 4868.65± 119.91 0.09± 0.00 N/A N/A 0.09± 0.00 0.09± 0.00
100k 9512.92± 299.32 0.10± 0.01 N/A N/A 0.10± 0.00 0.09± 0.00

US 50k 4546.51± 268.68 0.09± 0.01 N/A N/A 0.09± 0.00 0.11± 0.01
100k 8960.10± 508.46 0.09± 0.01 N/A N/A 0.09± 0.00 0.11± 0.00

LinUCB 50k 4557.71± 291.95 0.10± 0.02 N/A N/A 0.10± 0.01 0.10± 0.01
100k 9346.26± 845.33 0.09± 0.01 N/A N/A 0.10± 0.01 0.10± 0.01

BayesLinUCB 50k 5152.81± 108.11 0.10± 0.02 N/A N/A 0.10± 0.00 0.10± 0.00
100k 9975.07± 112.65 0.10± 0.00 N/A N/A 0.10± 0.01 0.10± 0.01

UNR 50k 9752.67± 438.24 0.20± 0.02 N/A N/A N/A N/A
100k 19432.71± 842.94 0.21± 0.03 N/A N/A N/A N/A

HES 50k 4635.96± 302.34 0.09± 0.01 N/A N/A 0.09± 0.01 0.11± 0.01
100k 9220.06± 557.25 0.09± 0.01 N/A N/A 0.09± 0.00 0.18± 0.11

Table 7: Performance of the seven comparison methods on Task 7, at time step 50,000 and at time
step 100,000.

Figure 7: First line: Ground truth covariance matrix (estimated from the full population) in Tasks 1,
2, and 3 (from left to right). Second line: Recovered covariance matrix by HES in Tasks 1, 2, and 3
(from left to right).

Figure 8: Skewed normal density

Local linear
forest

Random
forest

Linear
regression

Ridge
regression

Elastic Net
regression

Decision
Tree MLP GP

MSE 0.23± 0.01 0.23±0.01 0.24±0.01 0.24±0.01 0.25±0.01 0.26± 0.01 0.23±0.01 0.27±0.01

Table 8: Performance of various learning algorithms on the Charitable Giving experiment.
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