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Abstract

Vector databases support machine learning tasks using Approximate Nearest Neigh-
bour (ANN) query functionality, making them highly valuable digital assets. How-
ever, they also face security threats like unauthorized replication. By embedding
stealth information, watermarking technology can be used for ownership authentica-
tion. This paper introduces a watermarking scheme specifically designed for vector
databases. The scheme consists of four steps: generating identifiers, grouping,
cryptographic mapping, and modification. Since watermark embedding requires
modification of certain vectors, it may negatively affect the ANN query results.
Further investigation reveals that in the widely used Hierarchical Navigable Small
World (HNSW) indexing structure for vector databases, heuristic edge selection
and pruning strategies result in some vectors having fewer edges or even none at
all. These vectors exhibit significantly lower query frequencies than others, which
means that modifying these vectors incurs less impact on query results. Based on
this observation, we propose the Transparent Vector Priority (TVP) watermarking
scheme, which prioritizes embedding the watermark in these low-query-frequency
“transparent” vectors to minimize the impact of watermark embedding on query
results. Experimental results show that compared to the current most effective
and relevant watermarking schemes, the TVP scheme can significantly reduce the
number of missed and false queries by approximately 75%.

1 Introduction

A vector database [25] is a data management system specifically designed to store and retrieve vector
data. These vectors are generated by machine learning models and represent raw unstructured data
such as text, images, and audio. By converting unstructured data into vectors, we can measure the
similarity between different data by calculating the distance between the vectors. Vector databases can
be applied to scenarios such as retrieval augmentation generation (RAG) [22} 16, 8], recommender
systems, and similar case retrieval.

The applications of vector databases rely on approximate nearest neighbor(ANN) search. Nearest
neighbor (NN) search refers to finding multiple vectors in a vector dataset that are closest to a given
query vector. When the size of the vector dataset is large, the time cost of completely traversing all
vectors for an exact search is too high, so the researchers proposed the approximate nearest neighbor
search 34,14, 31]. ANN algorithms can find multiple vectors that are close to the query vector in a
reasonable amount of time, and even though these vectors may not be the absolute nearest vectors,
they usually satisfy the practical requirements.

Criteria for evaluating ANN algorithms include recall, query response time, index construction
time, space occupation, etc. After a long period of development, a variety of ANN methods have
emerged, mainly including tree-based [3} 2, 37|, graph-based [23| |9, (7], hash-based [|32} 35, [21]], and
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quantization-based methods [[15}|11}|6]. Hierarchical Navigational Small World (HNSW) stands out
among many methods because of its high recall and fast query speed. Therefore, it is supported by
many commercial vector database systems such as Milvus [24] and Pinecone [27]], and is currently
one of the most important vector database Indexing structures.

Recently, vector databases have been widely used in various Al applications. For example, in medical
scenarios, medical institutions can share desensitised disease feature vectors, and patients can retrieve
similar cases and the doctors or institutions that have dealt with them through similarity searches,
so as to obtain medical reference suggestions without compromising the privacy of patients. This
shows that vector databases have high application value, and their copyright protection issues should
be given due attention. Watermarking technology [[19}[10} 20, [13]] is a common means of copyright
protection, and watermarks can be embedded into digital assets to prove their ownership. However,
existing vector data watermarking methods [33| 28] are primarily applied to coordinate vectors in
Geographic Information Systems (GIS), while current database watermarking methods [li2022secure,
S| [12] are mainly designed for relational databases. Neither of these approaches is suitable for vector
databases.

In this paper, we present for the first time a vector database watermarking scheme. The scheme is
divided into four steps: identifier generation, vector grouping, cryptographic mapping and modifying
partial vectors. The watermark information is embedded by modifying some vectors to change the
distribution of vector cryptographic mapping results within the group. We present two vector selection
strategies: random selection (RS) and transparent vector priority (TVP). RS is a basic strategy that
selects vectors randomly for modification. The defect of RS is that it will change the relative positions
and neighbor relationships between the vectors, and may have a negative impact on the ANN query,
which is called the “embedding impact”. In order to quantify this embedding impact, we define the
number of missed queries and the number of false queries of the vectors before and after embedding
the watermark as the evaluation metrics. In order to reduce the embedding impact of watermarking,
we conduct an in-depth study on the HNSW index structure. We conjecture and confirm that due
to the heuristic edge selection and pruning strategy of HNSW, some vectors have few or even no
edges, and these vectors are less frequently queried compared to other vectors, and thus modifying
these vectors results in few query errors. We call these vectors with low query frequency “transparent
vectors”.

Based on this finding, we propose a transparent vector priority vector database watermarking scheme.
When selecting vectors for modification, TVP prioritizes transparent vectors to minimize the embed-
ding effect according to the transparency threshold required by the algorithm. Experimental results
show that by prioritizing transparent vectors, TVP significantly reduces the impact of watermark
embedding on ANN queries while maintaining good robustness.

Contributions. The contributions of this paper are as follows:

* Quantifying embedding impact: Defining the number of missed queries and false queries
to quantify the impact of watermark embedding on ANN queries for the first time.

¢ Optimizing vector database watermarking schemes: Proposing the first vector database
watermarking scheme RS and minimizing embedding impact through the Transparent Vector
Priority (TVP) strategy.

» Experimental Validation: Experimental results demonstrate that TVP significantly reduces
the embedding impact and also has strong robustness.

2 Related Work

This section reviews existing watermarking schemes for relational databases and datasets, highlighting
their development, challenges, and differences from vector database watermarking.

Agrawal et al. proposed the first relational database watermarking scheme [[1]], which embeds the
watermark by modifying the least significant bit (LSB) of the data. Although it enables basic
embedding and extraction, it is less robust and susceptible to data tampering. Subsequently, Sion et
al. [30] and Cui et al. [4] improved it to enhance the robustness, but it still causes data distortion.

Reversible watermarking algorithms [5} |17, 26] have been developed to safeguard the availability
of databases. These algorithms can recover the original data, but the process of recovering the



original data is also the process of removing the watermark, so the recovery privileges need to be
carefully managed. Schemes based on distortion constraints limit the magnitude of data modification
during watermark embedding to maintain usability, but they often require compromises in embedding
capacity or extraction accuracy.

Ren et al. [29] propose a statistical property-preserving watermarking scheme for relational databases
that ensures that watermark embedding does not affect the statistical properties of the data. Tabular-
Mark [36]], proposed by Zheng et al. makes watermarking virtually stealth to dataset applications for
some machine learning tasks.

Vector database watermarking shares the same goals as these schemes, such as basic embed-
ding/extraction, robustness and usability. However, the metrics to measure the impact of water-
marking on usability are different due to different usage scenarios. Therefore, applying existing
schemes directly to vector databases may not be effective.

3 Preliminaries

3.1 Approximate Nearest Neighbor (ANN)

Unstructured data (e.g., text, images, audio) can be transformed into high-dimensional vectors via
feature extraction. The distance between vectors indicates the similarity of the original data. Nearest-
neighbor search of vectors enables quick location of similar data in large-scale datasets, supporting
intelligent applications.

LetD = {V!, V2 ... V"] represent a vector database with n vectors, where V? € R%. For any
two vectors V; and V; in D, the Euclidean distance can be denoted as x(V*, V7). Nearest neighbor
(NN) search aims to find k neighbor vectors N9 = {N{, N5,--- , N;} in the vector database D that
are closest to the query vector g, satisfying:

k
N?= argmin Y (g, Ny) 0
NeC D, N1 =k

When the dataset size is large, the time cost of NN search is high. Thus, ANN search is proposed. It
relaxes the accuracy requirement and aims to find k vectors Ny, N, - - - | Nj such that:

wg, Ni) <c x plg, Nf), 0<i<k 2

where ¢ > 1 is the error tolerance, meaning the distance between the found vector and the query
vector is at most c times the distance of the true nearest neighbor.

3.2 Hierarchical Navigable Small World

Hierarchical Navigable Small World (HNSW) [23]] is an important graph-structured algorithm for
ANN querying of high-dimensional data. It balances query efficiency and accuracy through four core
ideas: hierarchical, heuristic edge selection, pruning, and greedy search.

Hierarchical: HNSW constructs a multi-layered small world graph. The bottom layer contains all
vectors, and as the number of layers increases, the number of vectors and connected edges decreases,
creating a sparse structure.

Edge selection strategy: When adding a vector ¢, HNSW first finds the e fConstruct nearest
neighbours of q and checks whether ¢ should be connected to it. Given a set S of vectors that have
been connected to g, ¢ will be connected to its nearest neighbour e only if u(e, q) < u(e,o0) of all 0
in S.

Operation strategy: Each vector has an upper bound on the number of edges. If adding g causes a
vector e to exceed this upper limit (set to 2M in the bottom layer and M in the other layers), then e
must reselect its edges.

Greedy search: In HNSW for ANN search with query vector ¢ to find the K closest vectors, start
from the highest-level entry vector and move down layer-by-layer. At non-bottom layers, greedily
find the closest vector to ¢ as the next-layer entry. At the bottom layer, maintain sets W (nearest
neighbors) and C' (candidates). Continuously pick the closest vector from C' to g to update W until C



is empty or no C' vector is closer to ¢ than W vectors. When K = 1, this process is known as greedy
search. More detailed introductions and examples can be found in Appendix [A]

3.3 Watermarking Framework

The watermark W € {0, 1} is a binary string to be embedded into digital carriers for copyright
verification. A watermarking scheme for vector database D consists of the following two algorithms:

* Embedding Algorithm: Em(D, W, 6,) — D,
Input: the original database D, the watermark W, and the embedding parameters 6.
Output: the watermarked database D,,,.

* Extraction Algorithm: Ex(D’, 05) — W’
Input: a database D’ that may have been modified and extraction parameters 65.
Output: the extracted watermark W',

Before sharing a vector database, data owners can use embedding algorithm to embed watermarks into
the database. When copyright disputes arise, extraction algorithm can be used to extract watermarks
from suspected infringing copies of the data, serving as evidence of copyright ownership.

3.4 Threat Model

Assume that the vector database is stolen. Then the thief may try to remove the watermark through
various attacks before using the database, thus preventing us from claiming the copyright. In this
context, we define the threat model for watermarking as follows:

Full access privileges: the attacker has all the privileges of the vector database and can perform add,
delete, change, and query operations.

Knowledge of the algorithm but not the parameters: the attacker is familiar with the embedding
algorithm of the watermark, but does not know the specific parameters used for embedding.

The intensity of attacks is constrained: Since attackers themselves are also database users, they
must maintain retrieval functionality while attempting to remove watermarks. Therefore, they will
only apply attacks of limited intensity to avoid a significant decline in retrieval accuracy.

4 Basic Methodology: Random Selection

This section describes a basic watermarking scheme for vector databases, which generates a unique
identifier I D for each vector, divides the vectors into groups based on the identifier, maps each
vector as ‘1-vector’ or ‘O-vector’, and adjusts the ratio of different types of vectors in each group
by modifying the vectors to embed the watermark information. Since the vectors are randomly
selected for modification, the scheme is called a Random Selection Scheme (RS). In the following,
we describe the watermark embedding and extraction process in detail.

4.1 Watermark Embedding

The watermark embedding process consists of four steps: generating vector identifier, vector grouping,
cryptographic mapping and vector modification. The pseudo-code is shown in Algorithm [I] in

Appendix [B]

Generate vector identifier: To avoid relying on the original vector identifiers, we use the Most
Significant Bit (MSB) method [36] to generate identifiers directly from the vector data. Initialise the
random number generator using the seed parameter to generate a set of random dimension indices
T ={dy,ds,...,dn,}. Extract the highest bits from each selected dimension and concatenate these
bits to form an identifier 1D+, :

IDy = M(Va,)M(Vay) ... M(Va,) ®

where M (x) denotes the highest valid bit of 2. For example, given a vector V' = (42,23, 78, 14) and
a randomly chosen dimension Z = {2, 3}, the identifier is M (78)M (14) = 71.



Vectors grouping: Watermark W are binary sequences defined by the database owner. If the length
of the watermark is L, the vectors are partitioned into L non-overlapping groups. A vector V is
assigned to group g when the result of taking the modulo of the hash value of its identifier (I Dy )
with L is equal to g, thatis, H(IDy) mod L = g.

Cryptographic mapping: each vector V' is converted to a binary value (0 or 1). First, the target
embedding dimension d,, = H(IDy ) mod d is computed. To avoid changing the identifier /Dy
of the vector during the watermarking process, if d,, is in the dimensions set Z used to generate
IDy, it is iteratively updated as d,, = (d,, + 1) mod d until d,, is outside of that set. Next, the
value V,, is extracted from the target dimension, converted to a binary b of length /, and the index
i = H(IDy)mod (I x f)+1(0 < f < 1) is computed. The (! — )th bit of b is used as the
initial mapping result. The factor f (0 < f < 1) can modulate the size of the index ¢, indirectly
affecting the magnitude of potential modifications in subsequent processes. For example, for the
vector V = (42,23, 78,14), if d,, = 3 conflicts with the dimension that produces I Dy, it is updated
to (34 1) mod 4 = 0. With V; = 42 (in binary form b = 101010, [ = 6) and ¢ = 3, the initial
mapping bit is b[3] = 0.

However, this approach faces the "sparsity curse": sparse vectors in the database tend to map primarily
to 0, which skews the distribution and weakens the effectiveness of the watermark. To alleviate this
problem, we introduce an enhancement strategy: XOR the initial result w with the least significant bit
of (I — ), i.e., w=w® ((l — i) mod 2). The pseudo-code is shown in Algorithm[2)in Appendix B}

Vector modification: Vectors mapped to 1 or O are respectively referred to as "1-vector" or "O-vector".
To embed the g-th bit W/, of the watermark W into the g-th group of vectors, the proportion of
vectors that can be mapped to the value of W, needs to be increased to the preset watermark strength
s. For example, if W, = 1 and the g-th group contains 1,000 vectors, among which 500 are 1-vector,
when s = 0.7, it means that we expect the proportion of 1-vector to be 0.7, that is, there should be
700 1-vector. In this case, 200 0-vector need to be converted into 1-vector.

Calculate the number of vectors n,,, that need to be modified for each group, and then randomly
select n,, vectors from these vectors that cannot be cryptographically mapped to W, as the carrier
vector Cyy. Change their cryptographic mapping results by flipping the bit b[l — 4]. For instance,
given b = 101010 and ¢ = 3, flipping b[3] will change the mapping from b[l — ] & ((I — i)
mod 2) =1@®1=0to0&® 1 = 1. By traversing all groups and adjusting the distribution of vectors,
the watermark embedding can be completed.

4.2 Watermark Extraction

The extraction process uses the same seed seed as the embedding to ensure that the vector groupings
and cryptographic mappings are the same. For each group g, the watermark bit W is determined by
majority voting: if the number of 1-vectors exceeds the number of O-vectors, then W = 1; otherwise,
W, = 0. Iterate over all groups to reconstruct the extracted watermark W’. Pseudo-code is provided
in the Algorithm [3|in Appendix

S Embedding Impact

In this section, we define and model the impact of watermark embedding on the query process to
guide us in optimizing the watermarking approach.

To quantitatively measure the negative impact of watermarking on vector ANN queries, we give the
following definition:

Definition 1: (Nearest Neighbor Response Domain). The nearest neighbor response domain Ry of a
vector V' is defined as:
Ry £ {qlgeD,V € N}. )

For a vector V' € D, all the query vectors ¢ from D that consider V' as a nearest neighbor vector
make up the nearest neighbor response domain Ry of V.

Definition 2: (Number of Missed Queries). The number of missed queries My of vector V' is defined
as:

My 2 |Ry \ Ry, |, o)
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Figure 1: Two cases in which the vector ¢ cannot be queried.

where \ represents the relative complement operation and A \ B is the set of elements in A but

not in B. V and Vyy respectively denote the vector data before and after the watermark embedding.
Thus, the number of missed queries for V' refers to the number of vectors that originally belonged to
the nearest neighbor response domain Ry of V' but are absent from the nearest neighbor response
domain Ry, of Viy.

Definition 3: (Number of False Queries). The number of false queries Fy, of vector V' is defined as:
Fy £ |Ry;,, \ Ry/|. (6)

The Number of false queries of V' refers to the number of vectors that belong to the nearest neighbor
response domain Ry, of Vyy but are missing in the nearest neighbor response domain Ry of V.

The selection of carrier vectors Cy, should be considered from the following two aspects:

Low embedding impact: in order to minimize the impact of watermarking on query results, i.e., to
reduce My and Fy,, vectors that are rarely queried should be preferred as carrier vectors.

High robustness: in order to prevent the attacker from accurately locating and deleting the carrier
vectors by their features, the selection of vectors with too obvious features should be avoided.

6 Methodology: Transparent Vector Priority

This section introduces two key concepts, Stealth vectors and Transparent vectors, which are the
basis of our proposed scheme. Based on the study of these two types of vectors, a Transparent Vector
Priority scheme is proposed to reduce the impact of embedded watermarks on query results.

6.1 Stealth Vectors and Transparent Vectors

Stealth Vectors: We conjecture that the heuristic edge selection and pruning strategy of HNSW may
produce edgeless vectors. Take Fig. [[(a)]as an example, the vector g is connected with vector 1 and
2 such that the number of edges of vector 1 and 2 increases to three. If the maximum number of
edges is set to 2, the vector 1 and 2 need to be re-selected according to the pruning strategy. Since
they already have two neighbours closer than ¢, they will not be connected to ¢, and ¢ becomes an
edgeless vector. Experiments on the ANN_SIFT1M dataset verified the existence of such vectors,
and the detailed procedure is shown in Appendix [C} only the conclusions are presented here. With
parameters M = 8 and e fConstruct = 100, the constructed HNSW graph contains 12 connected
branches, 11 of which contain only one edgeless vector. In further experiments, all vectors are used
as query vectors to retrieve the 10 nearest neighbours, and the number of times each vector is queried
is recorded, which shows that the edgeless vector is never queried.

In addition, 40 vectors in the maximum connected branch are never queried, presumably due to the
search algorithm falling into a local optimum. As shown in Fig. [I(b)} vector 1 is disconnected from
the edge of ¢ due to the pruning strategy, and the greedy algorithm will mistakenly take vector 1 as
the result when querying ¢q. Experiments show that the average degree of the unqueriable vectors in
the maximal connected branch is 1.87, while the average degree of the random 1000 vectors is 8.92,
which verifies the property that such vectors have fewer edges.

Based on the above characteristics, we define these two types of unqueriable vectors as Stealth
vectors.



Transparent Vectors: Since stealth vectors are never queried, embedding watermarks in such vectors
has minimal impact on queries. However, stealth vectors are not optimal watermarking vectors, as
they are recognised by their distinctive features, and there is a risk of removing the watermark by
deleting all non-queryable vectors. To balance the transparency and robustness of watermarking, we
prefer to use vectors that are queried less frequently as carrier vectors, calling such vectors transparent
vectors.

Based on the feature that stealth vectors are "far away from other vectors and have fewer edges",
we propose the hypothesis that vectors with longer edges and fewer edges are more likely to be
transparent vectors. We test this hypothesis experimentally. The experiments found that the number
of times a vector is queried decreases when the average edge length of the vector increases, while a
decrease in the number of edges also leads to a decrease in the number of queries.

To quantitatively measure the number of times a vector is queried, we construct the transparency
parameter ts by combining the average edge length [ and the number of edges e of the vector:
l—m; e—me
ts £ -—= 7
3, 5 (N
where m; and d; denote the mean and standard deviation of the variable [. To reduce the computational
overhead, some of the vectors can be sampled for computation.

Table 1: Correlation coefficient between different parameters and the count of queries.
parameter ts l e
p -0.6998 -0.5565 0.5131

To compare the correlation e between the transparency parameter ts, the average edge length [ and
the number of edges with the number of queries, the correlation coefficients p between them and
the number of queries were calculated, and the results are shown in Table|1] It can be seen that the
absolute value of the correlation coefficient between the transparency parameter ts and the number of
queries is the largest, which indicates that ¢s has the strongest correlation with the number of queries,
and therefore s is more suitable to be used as a parameter to measure the transparency of the vector.
Furthermore, we calculated the Pearson correlation coefficient between the transparency parameter
ts and query frequency under various HNSW configurations (see Appendix [C| Table[3). The results
consistently fell below -0.66, indicating that ¢s exhibits a stable and consistent negative correlation
with the query frequency, thereby serving as a reliable transparency metric.

In summary, we confirm the existence of transparent vectors in HNSW and conclude that: due to
the edge pruning strategy, some vectors far away from other vectors have few edges or even no
edges, which makes them difficult to be retrieved; the transparency of vectors can be measured by the
transparency score ts, and the larger ¢s is, the more likely it is a highly transparent vector.

6.2 Transparent Vector Priority (TVP)

This section introduces the Transparent Vector Priority (TVP) vector database watermarking
scheme. TVP follows the same framework as the RS scheme, but prioritises highly transparent
vectors as carrier vectors to minimise query errors caused by watermark embedding.

Taking advantage of the edge correlation property of HNSW, we use transparent vectors with low
query frequency as the ideal carrier. Theoretically, in order to find these transparent vectors accurately,
it is necessary to count the number of queries for each vector through a large number of queries, from
which the vectors with low query frequency are filtered out. Based on the study of transparent vectors
in the previous section, we can quickly find transparent vectors by using the ts parameter.

Specifically, the TVP algorithm uses the threshold parameter 7 (0 - 1) to select the first 7 x 100%
of transparent vectors. It randomly samples the vectors, computes the mean and variance of their
edge length [ and number of edges e, computes the transparency score ¢s, and determines the filtering
threshold ts, based on the top 7 ranked vectors.

When the embedding algorithm needs to select vectors for modification, it no longer selects vectors
randomly, but prefers vectors with transparency score ts greater than the threshold ¢s., i.e., vectors
with higher transparency and lower query frequency. If 7 is set smaller, there may not be enough
eligible vectors, and the algorithm will only select vectors with slightly lower transparency scores.



7 Experiments

A watermarking algorithm can be evaluated from two aspects: embedding impact and watermark
robustness.

We use the average number of missed queries (AM Q) and the average number of false queries (AF'Q)
of watermarked vectors containing watermarks after adding watermarks to measure the embedding
impact. The specific calculation methods of these two indicators are as follows:

A ZVGCV My

F
AMQ :2 _AFQ 2 M (8)
Cv|

ICv|

Watermark robustness is the ability to accurately extract watermarks from watermark-containing
vectors under attack. Given the threat model in section [3.4] an attacker who knows about our
watermarking approach will use an adaptive attack strategy. All robustness experiments involve such
adaptive attacks. Among them, adaptive deletion and modification attacks are the most effective.
In the former attack, the attacker removes a certain percentage of transparent vectors to remove
the watermark. In the latter attack, the attacker modifies the values of some of the dimensions of
the partially transparent vector. We measure robustness using the bit error rate (BER) between the
extracted watermark and the embedded watermark, which is calculated as:

&)

where w; is the i-th watermark, and w; is the extracted ¢-th watermark.

The data and environment used for the experiments are consistent with Section[6.1} i.e., the commonly
used vector dataset ANN_SIFT1M]18]] was implemented and experimented with using Python and
Faiss libraries on PCs equipped with AMD Ryzen 5 5600G processors. Experimental results are
generally the average of multiple runs. The default parameters for the experiment are M = 8§,
efConstruct = 100, and k = 100 neighbors per query.

7.1 Comparison

In this section, we apply state-of-the-art relevant watermarking schemes to vector databases and
compare them with TVP. Specifically, they include SCPW, a watermarking scheme for relational
databases proposed in 2023; TabularMark, a watermarking scheme for tabular datasets proposed in
2024; and RS, a scheme proposed in Section [ of this paper. In the comparison experiments, the
public parameters of all the schemes are kept the same, while the private parameters of the schemes
are chosen to have the optimal configurations according to their characteristics.

Table 2: Embedded impacts of different schemes.
Scheme SCPWI[29] TabularMark[36| RS TVP
AMQ 14.26 12.76 13.52  3.15
AFQ 14.67 13.15 13.65 3.21

Table [2] demonstrates the AMQ and AFQ before and after embedding watermarks using different
schemes. The results show that the AMQ and AFQ of the TVP scheme are reduced by approximately
75% compared to the other schemes. This is because the other schemes do not fully consider
minimizing the impact of watermarking on queries, while TVP reduces the number of false and missed
queries by preferring transparent vectors that have been queried less often to embed watermarks.

Additionally, we evaluated the variance and maximum values of missed queries (MQ) and false
queries (FQ) across different schemes. The results indicate that TVP exhibits lower volatility. Detailed
findings are presented in Appendix [D] Table ] We further evaluated generalization capabilities of
TVP on other datasets, with results indicating it consistently achieves significant reductions in AMQ
and AFQ across all datasets. Detailed results are presented in Tables [5|and [6]in Appendix

Since TabularMark does not embed watermarked plaintext, its robustness cannot be directly measured
using BER. Therefore, following the method proposed by the authors of the scheme, we use the



0.8

0.7

Watermark Extraction Performance under Deletion Attack

—e— TVP (BER)
RS (BER)
—e— SCPW (BER)

..

Watermark Extraction Performance under Modification Attack

0.4

—e— TVP (BER)
RS (BER)
—e— SCPW (BER)

0.61 --=- TabularMark (MP) =~ TabularMark (MP) Lo

0.3

a 0.5

= s

=

04 5

€ 202

@ 0.3 @

.

©

N
o
—

°©
S

»
/’/
,’/’
,"/ .
'//
,—__—i%/ 0.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Deletion Proportion (p) Modification Proportion (p)

(a) Deletion Attack. (b) Modification Attack.
Figure 2: Watermark robustness of different schemes.

o
o

proportion of watermarks flipped due to vector modification, i.e., Mismatch Percentage (MP), as a
metric for robustness under modification attack. For deletion attack, the proportion of watermarked
vectors deleted is used as the robustness metric. Since deletion also leads to mismatches, we also
denote this metric by MP.

Figure 2(a)]illustrates the BER or MP of different schemes after being subjected to a deletion attack.
Different colored lines represent different schemes. It can be seen that the BE R of TVP is comparable
to other schemes, indicating that its robustness can be as strong as existing schemes. Figure 2(b)]
shows the BER or mismatch percentage of different schemes after a modification attack. Again, the
robustness of TVP is similar to the existing schemes.

In summary, the experimental results show that TVP not only significantly reduces query errors
but also maintains considerable robustness compared to the current optimal watermarking scheme.
Therefore, TVP is currently the most suitable watermarking scheme for vector databases.

7.2 Method Validation And Parameter Analysis Experiments

This section presents a more comprehensive set of experiments designed to: (1) test the effectiveness
of the proposed TVP strategy; (2) investigate the impact of key parameters on embedding impact and
watermark robustness, thereby providing guidance for parameter selection. Detailed experimental
procedures and most of the results are presented in the Appendix [E|

TVP Strategy Effectiveness: We evaluated the impact of TVP strategy on query performance under
different HNSW parameter configurations. Results indicate that both AMQ and AFQ remain at
low levels and are minimally affected by parameter variations. Detailed results are presented in
Appendix [E| Table[7] To evaluate the impact of TVP on recall rate, we compared the recall rate (R @k)
at different k values before and after watermark embedding. As shown in Appendix [E| Table ] the
recall rate remained virtually unchanged, indicating that TVP has a negligible effect on retrieval
accuracy. We evaluated the generalization capability of the TVP strategy across multiple ANN index
structures. By recording the query frequency of vectors, TVP prioritises embedding watermarks
in low-frequency vectors. This strategy was compared against the baseline method of randomly
selecting vectors (RS). Experimental results, as shown in Appendix [E] Table 0] demonstrate that TVP
reduces the impact on query performance caused by embedding across all indexes. Therefore, the
concept of transparent vector priority applies not only to HNSW but also to other ANN indexes.

Embedding Impact: The parameter 7 significantly influences both AMQ and AFQ. A smaller value
of 7 means that the algorithm prefers more transparent vectors as the carrier vectors, which drastically
reduces the number of false queries and missed queries. As shown in Fig. [7] of Appendix [E] the
smaller 7 is, the less impact it has on the query. The parameter s affects the number of vectors that
need to be modified. The larger the s, the more vectors need to be adjusted to match the watermark
bits, which has a greater impact on the query result.

Watermark Robustness: The larger value of s enables more carrier vectors in each group after
embedding to be mapped to the target watermarked bits and enhances the robustness of watermarking.
Fixing other parameters, experiments are conducted on different combinations of s and deletion
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Figure 3: The figure illustrates the impact of parameters on watermark robustness. The horizontal
axis represents the attack intensity p, while the vertical axis shows the BER (Bit Error Rate).

attack proportion p, and the results are shown in Fig. [3(a)] It can be seen that under the same attack
strength, the larger the value of s, the smaller the BER, i.e., the stronger the robustness. The results
of the modified attack experiments (Fig. [3(b)) also confirm this conclusion. The smaller the 7 value
is, the more prominent the carrier vector features are, and the watermark is easily damaged by the
adaptive attack. From Fig. and Fig. [3(d)] the smaller 7 is, the larger BER is, and the weaker the
robustness is.

8 Conclusion

This paper explores watermarking techniques in vector databases and proposes the first watermarking
scheme, RS. However, RS will modify some vectors, leading to false queries and missed queries
in ANN queries. To reduce these embedding impact, we conducted an in-depth study of the most
popular index structure, HNSW, and discovered its characteristic: certain vectors in the HNSW
graph have few or no edges, resulting in lower query frequencies for these vectors. Modifying these
"transparency vectors" will not result in too many false queries and missed queries. Building upon
this insight, we refine RS into TVP, prioritising transparent vectors as watermark carriers to minimise
embedding impact. Experimental results demonstrate that TVP significantly reduces false queries
and missed queries while exhibiting robust performance.

Limitations: This paper presents a transparency score ¢s construction formula specifically for HNSW.
For other index structures, no suitable ¢s currently exists to enable rapid selection of transparent
vectors. In future work, we shall explore concrete methods for extending the concept of transparent
vectors priority to other index structures.
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A Hierarchical Navigable Small World

Hierarchical Navigable Small World (HNSW)[23]] is an efficient graph-structured algorithm for ANN
querying, aiming at accelerating the querying process of high-dimensional data, and it is the most
dominant vector database index. The core ideas of HNSW include hierarchization, heuristic edge
selection strategy, pruning strategy and greedy search. The query efficiency and result accuracy are
balanced by quickly locating the query target in the high-level graph, and then searching in a refined
way through the low-level graph.

Hierarchization: HNSW constructs a small-world graph containing multiple layers. At the bottom
layer, the graph contains all vectors and constitutes the edges of the graph by connecting each point
to several vectors in its neighborhood. As the number of layers of the graph increases, the number of
vectors in each layer decreases, and the number of connected edges also decreases, creating a sparse
graph structure.

Heuristic edge selection strategy: At each layer, HNSW uses a heuristic edge selection strategy
to determine which vectors the newly added vector should be connected to. Let e fConstruct € N
be a parameter, that for a vector ¢ to be added to HNSW, the e fConstruct near-neighbors of ¢
are first found and then traversed in order of proximity to ¢q. Here it is important to distinguish
between the concepts of near-neighbor and neighbor; for a vector, a near-neighbor is a vector that
is close to it, and a neighbor is a vector that is connected to it and can be accessed by each other.
The set of vectors already connected to ¢ is denoted as .S. For a near-neighbor e of ¢, ¢ will only
connect to e if the distance from e to g is less than the distance from e to any vector in S (i.e.,
Yo € S, (e, q) < p(e,0)).

Pruning strategy: Let M € N be a parameter that controls the upper limit of the number of edges
for each vector. If the addition of ¢ causes the vector e to have more edges than the upper limit, e
must re-select its edges to conform to the edge limit. This upper limit is set to 2M in the bottom layer
of the graph, and M in the other layers.

For example, set e fConstruct = 3, M = 1. As shown in Figure[d(a)] there are already three vectors
1, 2, and 3 in the HNSW graph, with two edges E(1,2) and F(1,3). Now add a vector g, where
1(1,q) < p1(2,q) < u(3,q). Follow these steps to determine whether g connects to 1, 2, and 3: First,
connect to 1, since ¢ has no neighbors yet; do not connect to 2, because 1(2,q) > (2, 1); connect
to 3, because 1(3,q) < p(3,1). At this point, the heuristic edge selection for vector ¢ is complete,
as shown in Figure W_HFI; due to the addition of ¢, the number of edges for vector 1 increases to 3,
exceeding the upper limit 2M = 2, so vector 1 needs to prune some edges. The final HNSW graph is
shown in Figure (f)]

:/:ve 7»@ Ym 179@ » 00 [C
(a) Before (b) Connect (c) Do not(d) Connect (e) Vector (f) Final sit-
adding q and 1. connect ¢ q and 1 reselect uation after
vector q. and 2, since 3, since neighbors. adding q.
d(2,q) >d(3,q) <
d(2,1). d(3,1).
Figure 4: Add a new vector ¢ to HNSW using heuristic edge selection and pruning strategies.

Greedy search: The ANN search process in HNSW is described next. Suppose we have a query
vector ¢, and the goal is to find the K closest vectors to g. The search process starts at the highest
level of the entry vector of the HNSW and proceeds downward layer by layer. At each layer except
the bottom layer, a greedy search is performed to find the closest vector to the query vector ¢ at that
layer, which serves as the entry vector for the next layer. At the bottom layer, two sets W (the set of
nearest neighbor vectors) and C' (the set of candidate vectors) need to be maintained, and the closest
vector to ¢ from C' is continuously selected to update W until C' is empty or the vectors in C' are no
longer closer to ¢ than any vectors in W. At this point the vectors kept in W are the nearest neighbors
of g. When K = 1, this process is known as greedy search.
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B Pseudo-code

Algorithm 1: Watermark Embedding

Input: Vector database D, Watermark W, Strength s, Random seed seed, Limiting factor f

Qutput: Watermarked vector database Dy

d <+ dimension of a vector in D

L < length of the watermark W

Initialize L empty groups G

Initialize random number generator with seed
Randomly generate the set of positive integers Z
for V € D do

I Dy < the identifier of V

g+ H(IDy) mod L

Gy~ GaUV

w < Cryptographic Mapping(V,Z, f, d)

o NN R W N =

—
]

12 end

13forg«Ot0oL—1do

14 ifW, =1

// Wy is the g-th position of the
15 then

16 N, < max(0, s * |Gyl — ng1)

17
18 else
19
20

N, <— maz(0, s % |Gy — ngo)

21 end

22 for V € Cy do

23 | Vv < Vector Modification(V,Z, f, d)
24 end

25 end

Ngw < Ngw +1// Nng1 and ng represent the number of 1-vector and
O-vector in group g, respectively, with initial value O.

watermark.

// Calculate the number of vectors n,, that need to be modified .
Cy < randomly select n,,, 0-vector for modification

Cy < randomly select n,,, 1-vector for modification

Algorithm 2: Cryptographic Mapping

Input: Vector V, Set Z, Limiting factor f, Dimension d

Output: Mapping bit w
dy <+ H(IDy) mod d
while d,, € 7 do
| dw + (dy +1) mod d
4 end
5 b < the binary form of V;,
6 [ < the length of b
74+ H(IDy) mod (I x f)+1
8 w< b[l —i] ® ((l —¢) mod 2)

[ S
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Algorithm 3: Watermark Extraction

Input: Watermarked Database Dy, Watermark Length L, Random Seed seed
Output: Extracted Watermark W'

d < dimensions of a vector in Dy

Initialize random number generator with seed

Randomly generate the set of positive integers 7

for V € D do

1Dy, < the identifier of V'

g« H(IDy) mod L

w < Cryptographic Mapping(V,Z, f)

Ngw ¢ Ngw + 1

end
forg < 0t0o L —1do
if Ng1 > Ngo then
| Wy 1
else
| Wy 0
end

end
W'« W0||W1|| HWL,1

C Stealth Vectors and Transparent Vectors

C.1 Stealth Vectors

According to the heuristic edge selection and pruning strategy of HNSW, we believe that there are
vectors with no edges in the bottom layer, and such vectors are difficult to query. As shown in Figure
[5(a)] vector ¢ is chosen to be connected to vectors 1 and 2, resulting in these two vectors having three
edges both. If the upper limit of the number of edges is set to 2, according to the pruning strategy,
vectors 1 and 2 will reselect edges. If vector ¢ is far away from them, they will not connect to q as
they already have two neighbors that are closer than g. Since ¢ does not have any edges, it cannot be
queried from any other vector as an entry vector.

To test whether such vectors exist, we employ the widely-used vector dataset ANN_SIFT1M [18]],
as an example. The experiment was conducted on a PC equipped with an AMD Ryzen 5 5600G
processor and implemented using Python and the Faiss library. Specifically, we test whether the
graph at the bottom of the HNSW is divided into multiple connected components. When M = 8 and
e fConstruct = 100, there are 12 connected components in the graph constructed by HNSW, yet 11
of them contain only one vector without edges. All the other vectors are in the last biggest connected.
This confirms the existence of vectors without edges.

(o) ja o
ORI O S} & bo| |80
before  gisconnected 1, 2 disconnect . before  qisconnected 1 disconnect
adding g. to 1,2 fromg. . addingg.  to 1,2 { fromgq. |
(a) Vector ¢ has no edge. (b) The query is stuck in a local optimum.

Figure 5: Two cases in which the vector ¢ cannot be queried.

Next we test whether these vectors are unsearchable. We queried the 10 nearest neighbors using all
vectors as query vectors and recorded the number of times each vector was queried. The edgeless
vectors are never queried, which is as expected. However, we also find that 40 vectors in the biggest
connected component are never queried. A possible reason is that the greedy algorithm used in
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Figure 6: Experimental analysis of the effect of vector parameters on transparency. The vertical axis
represents the average number of times queried.

the search process falls into a local optimum, resulting in another class of unsearchable vectors
that are difficult to search for. As shown in Figure [5(b)] due to the pruning strategy of HNSW, ¢
would only have neighbor 2. When querying vector ¢, if the current vector is 1, the algorithm will
consider 1 to be the query result and fail to find the real search result ¢ since for any neighbor v of 1,
w(v,q) > (1, q). From the fact that ¢ cannot be queried starting from all black nodes in the graph.
This explains why there are vectors in the main connected component that are not queried. It can be
seen that the edge between ¢ and 1 is the key edge that determines whether ¢ can be queried or not,
and when the key edge is pruned, ¢ becomes difficult to be queried.

To summarize, the above properties of unsearchable vectors lead to a possible conclusion: vectors
with fewer edges are more likely to be unsearchable due to the prune of key edges. Indeed, in the
above test, the average degree of vectors that are never queried in the main connected component
is 1.87, while the average degree of 1000 randomly chosen vectors is 8.92, which confirms this
conclusion to some extent. We define stealth vectors as follows.

Definition 4: (Stealth Vector). A vector V' € D is a stealth vector if
Ry = 2. (10)

Stealth vectors are indeed vectors whose nearest neighbor response domain is empty. According to
the above analysis, there are two classes of stealth vectors: the first category is the no-edge vectors,
which are far away from other vectors, and the pruning strategy causes all neighboring vectors to be
disconnected from them; and the second category is the vectors that have a small number of edges, but
their key edges are disconnected due to the pruning strategy, which makes these vectors unsearchable
when searched using the greedy algorithm.

C.2 Transparent Vectors

Because stealth vectors are never queried, embedding watermarks in such vectors has the lowest
embedding impact. However, stealth vectors are not the most suitable candidates for watermarking
since their distinct characteristics make them easily identifiable, resulting in the risk of watermark
remove by deleting all vectors that cannot be queried. To better balance the watermark transparency
and robustness, we expand the range of carrier vectors available for selection with relatively low trans-
parency requirements. These vectors are named transparency vectors with the following definition:

Definition 5: (Transparency Vector). A vector V' € D is a t—transparency vector if
|Ry| <t. (11)

The transparency of a vector is measured using the size of the nearest neighbor response domain; the
smaller the nearest neighbor response domain is, the higher transparent the vector is. The Stealth
vector is an extreme case of the transparent vector when ¢ = 0.

Longer edges and fewer edges characterize stealth vectors, thus we have the following hypothesis:
Vectors with longer and fewer edges are likely to be transparent vectors. To validate this, a series of
validation experiments were conducted. We take the average edge length of the vector at the bottom
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layer of the graph as its average edge length. In order to examine the effect of the average edge length
on the number of queries, we divide the range of average edge lengths and group the vectors within
the same range into one class, and calculate the average number of queries for each class of vectors.
The experimental results are shown in Fig. [6(a)l where the horizontal axis represents the average edge
length and the vertical axis represents the average number of queries. It can be seen that the number
of queries decreases with the increase of the average edge length, especially when the average edge
length is extremely large, the number of queries is close to zero, indicating that the long edge vectors
are rarely queried. Similarly, we verified the effect of the number of edges of a vector on the number
of queries. We calculated the average number of queries for vectors with the same number of edges.
The experimental results are shown in Fig. [6(b)] which shows that as the number of edges decreases,
the average number of queries for the vector decreases.

The transparency parameter ts is constructed from the vector’s average edge length [ and the number
of edges e, serving to evaluate the frequency with which the vector is queried. The specific formula
for calculating ts is provided in Equation([7) of the main text. A larger ¢s indicates either a greater
average edge length or fewer edges in the vector, and such vectors are typically queried less frequently.
Based on this, it can be hypothesised that the transparency parameter ¢s exhibits a negative correlation
with the number of queries. To validate this hypothesis, we experimentally analysed the relationship
between ts and query frequency. Specifically, we divided the range of ¢s into several intervals,
grouped vectors within each interval into a category, and calculated the average query frequency for
each category. The experimental results are shown in Figure[6(c)l where the horizontal axis represents
ts and the vertical axis denotes the average query count. It can be observed that as ts increases, the
average query count decreases, confirming the hypothesis of a negative correlation between ¢s and
query frequency. Concurrently, Table[T]in the main text lists the correlation coefficients between the
average edge length [, the number of edges e, and ¢s with the number of queries. The results indicate
that ¢s exhibits the highest absolute correlation coefficient with the number of queries, signifying
the strongest relationship between the two. This demonstrates that employing ¢s as a metric for
measuring the number of vector queries yields optimal effectiveness.

Additionally, to verify the stability of the transparency parameter ts under different HNSW configura-
tions, we calculated the Pearson correlation coefficient between the ts value of each vector and its
actual query frequency for different parameter combinations. The results are shown in Table [3]

Table 3: Correlation coefficients (p) between the query count and ¢s under different values of M and
efConstruct.

M efConstruct = 50 efConstruct = 100 efConstruct = 150
M=4 -0.6969 -0.6886 -0.6885
M=38 -0.6978 -0.6732 -0.6603
M =12 -0.6911 -0.6696 -0.6572
M =16 -0.6860 -0.6731 -0.6600

These results indicate that, under all parameter settings, ¢s maintains a significant negative correlation
with vector query frequency (Pearson coefficients all below -0.66), suggesting that ¢s is a stable and
generalizable transparency metric that can reliably guide carrier vector selection.

In this section, we confirm the existence of transparent vectors in HNSW and draw the following
conclusions through analysis and experiments:

» Some vectors that are far away from other vectors may have fewer edges or even no edges
due to the edge pruning strategy, which ultimately makes them difficult to be searched.

* The transparency of a vector can be measured by its transparency score ts. The larger ¢s is,
the more likely it is a highly transparent vector.
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D Comparison experiment

To conduct a more comprehensive analysis of the impact of TVP on query behavior, we conducted
experiments and recorded the variance and maximum values of missed queries (MQ) and false queries
(FQ) under each scheme. The results are shown in Table ]

Table 4: Embedded impacts of different schemes.

Scheme SCPW(var/max)[29] TabularMark]|36| RS TVP
AMQ 161.79/91.3 179.18/87.3 184.36/89.2  13.75/28.08
AFQ 187.54/100.9 184.87/101.6 189.57/104.7 12.39/30.15

As can be seen from Table[d} the fluctuations in MQ and FQ caused by TVP are significantly smaller
than those caused by other methods, with both variance and maximum values being notably lower.
This indicates that TVP more effectively controls query errors, not only achieving a smaller average
value but also minimizing the impact in worst-case scenarios, thereby demonstrating greater stability.

Since “transparent” vectors (i.e., vectors with relatively low query frequencies) are common in any
dataset, we speculate that the TVP method has good cross-dataset generalization capabilities.

To validate this hypothesis, we conducted extended experiments on two widely used deep learning
embedding datasets: arxiv-nomic-768-normalized (derived from VIBE, representing text summaries)
and deeplb (a classic large-scale image vector dataset). The experimental parameters were consistent
with those in the paper. We evaluated the average missed queries (AMQ) and average false queries
(AFQ) caused by different watermark embedding schemes, with experimental results shown in
Tables [3land

Table 5: Embedded impacts of different schemes (Deeplb).

Scheme SCPW[29] TabularMark|[36] RS TVP
AMQ 13.96 13.38 1342 317
AFQ 14.21 13.73 13.59 3.29

Table 6: Embedded impacts of different schemes (arxiv-nomic-768-normalized).
Scheme SCPWI[29] TabularMark(36| RS TVP
AMQ 13.51 13.83 13.75 4.26
AFQ 14.17 14.02 14.11 4.74

It can be observed that, on both datasets, the TVP scheme achieves significantly lower average missed
query counts (AMQ) and average false positive query counts (AFQ) compared to other methods. This
indicates that the strategy of prioritizing “transparent” vectors for modification can also reduce query
errors on other datasets, thereby validating the cross-dataset generalization capability of our method.
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E Method Validation And Parameter Analysis Experiment

E.1 TVP Strategy Effectiveness

We evaluated the average number of missed queries (AMQ) and average number of false queries
(AFQ) introduced by TVP under various HNSW parameter settings (M € {4,8,12,16} and
efConstruct € {50,100,150}), with the number of retrieved neighbors fixed at & = 100. The
results are summarized in Table[7]

Table 7: Embedding effects of TVP under different parameter configurations
efConstruct 50 (AMQ/AFQ) 100 (AMQ/AFQ) 150 (AMQ/AFQ)

M=4 4.69/4.84 4.32/4.50 3.71/3.85
M=38 3.33/3.20 3.19/3.22 3.02/3.15
M=12 242/2.45 2.64/2.61 2.81/2.83
M=16 2.88/2.83 2.61/2.66 2.58/2.61

It can be seen that regardless of how the HNSW parameters change, the AMQ/AFQ values of TVP
remain at a low level, indicating minimal impact on queries. This demonstrates that TVP has good
adaptability to different parameter configurations.

We conducted a supplementary evaluation of TVP’s impact on standard approximate nearest neighbor
(ANN) retrieval performance, focusing on recall metrics for vector databases. Specifically, we
measured recall at k& (RQFk), which represents the proportion of true nearest neighbors successfully
retrieved within the top & results. A higher RQFk indicates greater retrieval accuracy. We compared
the recall of the original, unembedded watermark database with that of the database after embedding
watermarks using the TVP method, summarizing the results in Table[§]

Table 8: Changes in ANN recall rates before and after TVP watermark embedding
R@k 1 10 30 50 100

Original 0.9933 0.9647 0.8918 0.8253 0.6847
TVP 0.9914 0.9633 0.8898 0.8219 0.6843

As shown in the table, recall remains nearly unchanged at all k levels after watermark embedding. For
instance, at RQ1, recall decreased only from 0.9933 to 0.9914, a drop of less than 0.2%. Similarly, at
R@100, the change was negligible, from 0.6847 to 0.6843. These results indicate that TVP has a
minimal impact on retrieval quality.

Table 9: Comparison of TVP and RS across different ANN index types
Index Type TVP (AMQ/AFQ) RS (AMQ/AFQ)

NSG 0.12/0.09 0.38/0.27
LSH 0.75/0.95 2.27/2.49
IVFFlat 1.46/1.52 3.57/3.81
IVFPQ 6.46/9.34 17.38/19.21

We further validated the generalization capability of the Transparent Vector Priority (TVP) strategy
by applying it to multiple Approximate Nearest Neighbor (ANN) index structures. We conducted
experiments on four typical indexes: NSG, LSH, IVFFlat, and IVFPQ. By recording the query
frequency of each vector, we prioritized embedding watermarks in low-frequency vectors (TVP) and
compared this approach with a baseline method that randomly selects vectors for embedding (RS).
The experiments evaluated the performance of both schemes on average missed queries (AMQ) and
average false queries (AFQ), with results shown in Table E}
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As shown in the table, TVP achieves lower AMQ and AFQ than RS across all index structures. This
indicates that TVP is not only applicable to HNSW but also demonstrates excellent adaptability
across index structures.

E.2 Embedding impact

The most critical parameter affecting the embedding effect is the threshold 7, which determines the
transparency requirement of the algorithm for the watermark carrier vectors. A smaller value of 7
implies a higher transparency requirement and fewer queries for the selected carrier vectors, which
reduces the number of false queries and missed queries due to watermark embedding.

Under the premise of keeping other parameters unchanged, we adjust the parameter th to study
its effect on the watermark embedding effect. For each set value of th, the watermark embedding
algorithm is executed, and the changes in the near-neighbor response domains of the carrier vectors
before and after embedding are recorded, the number of false and missed queries are counted, and
their averages are finally calculated.
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Figure 7: The influence of 7 on embedding impact.

The experimental results are shown in Figure[7] where the horizontal axis represents the threshold 7
and the vertical axis represents the number of queries, and the two curves correspond to the average
number of false queries (AFQ) and the average number of missed queries (AMQ), respectively. It
can be seen that when 7 is small, the values of AFQ and AMQ are also small, which indicates that
the impact of watermark embedding on the query results can indeed be kept at a very low level when
the transparency requirement is high. As th increases, AFQ and AMQ also increase synchronously,
indicating that the th parameter can effectively regulate the impact of watermark embedding, which
is a key regulating factor. In addition, the figure presents an interesting phenomenon: the values of
AFQ and AMQ are close to equal. We hypothesize that this is because the number of times the carrier
vectors are queried does not change significantly before and after the watermark embedding, and thus
the number of false queries and missed queries are roughly equal. Through experiments, we verify
this speculation and explain the phenomenon in the figure.

The parameter s indicates the proportion of vectors in each group that can be correctly mapped to
the corresponding watermark bit after embedding the watermark. Before embedding the watermark,
the mapping results are usually more uniform across the groups, with equal proportions of 1 and
0 vectors. Therefore, if s is large, it is necessary to increase the proportion of vectors in a certain
category from 0.5 to a very high one, which will result in more vectors needing to be modified, thus
having a large impact on the query results.

E.3 Watermark robustness

This section explores the effect of algorithm parameters on the robustness of watermarking. Based
on the threat model in Section [3.4] the attacker is aware of our watermarking method and thus will
adopt an adaptive attack strategy of transparent vector prioritization, e.g., prioritizing the deletion of
transparent vectors when deleting vectors to remove the watermark more effectively. All the attacks
discussed in this section are such adaptive attacks.

Adaptive Deletion Attack: An adaptive modification attack is an attempt by the attacker to remove
the watermark by deleting a certain percentage of transparent vectors. The larger the parameter s
is, the more vectors are mapped to the corresponding watermark in each group after embedding
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Figure 8: Impact of Parameters on Watermark Robustness (Under Adaptive Deletion Attacks).

the watermark, and theoretically, the more robust it should be against the adaptive deletion attack.
To verify this hypothesis, we conducted experiments under the condition of 7 = 0.5 for different
combinations of adaptive deletion proportion p and watermark strengths s, embedded the watermark
using the parameter s, and then deleted the vectors of the most transparent p proportion, and then
extracted the watermarks and computed the BER.

The experimental results are shown in Figure The horizontal axis represents the deletion
proportion p, the larger p means the stronger the attack intensity; the vertical axis represents the
BER, the larger the BER means the more extraction errors and the worse the robustness. The lines of
different colors represent different s values.

The following points can be observed from the Figure [8(a)}

* Performance under no attack: for all curves, when the deletion proportion p = 0, the BER is
also 0. This indicates that the watermark can be extracted completely and accurately without
attack, which proves that the basic embedding and extracting functions of this scheme are
reliable.

* Relation between Attack Strength and BER: as the deletion proportion p increases, the BER
also rises, which indicates that adaptive deletion is indeed an effective means of attack.

* Effect of watermark strength s on robustness: for the same strength of deletion attack,
the larger the s, the lower the BER. This indicates that larger values of s can enhance the
robustness of watermarking, which is consistent with our speculation.

* High robustness: when s=1, the BER always remains 0, which means that the watermark
can be extracted accurately no matter how strong the attack is. This result shows that the
proposed scheme is very robust at s=1 and can meet the needs of application scenarios that
require high robustness.

Next, we discuss the impact of the transparency threshold 7 on the robustness. 7 determines the
requirement of the algorithm on the transparency of the carrier vectors. The smaller 7 is, the higher
the transparency of the selected vectors, and the more obvious their features are, which are easier to
be recognized and suffer from accurate attacks under adaptive attacks. Therefore, the smaller 7 is,
the less robust the watermark should be.

To verify this hypothesis, we conducted experiments under the condition of s = 0.7 for different
combinations of adaptive deletion proportion p and thresholds th, embedded the watermark using the
parameter 7, and then deleted the vectors of the most transparent p proportion, then extracted the
watermark and computed the BER.

The experimental results are shown in Figure [8(b)] The horizontal axis represents the deletion
proportion p, which indicates the strength of the attack; the vertical axis represents the BER. The lines
of different colors represent different 7 values. It can be seen that for the same deletion proportion,
the smaller 7 is, the larger the BER is, which is consistent with our hypothesis. In addition, the
curves of 7 = 0.2 and 7 = 0.4 almost overlap in the figure. This indicates that the setting of the
complementary vectors plays a role in the selection of the carrier vectors. When 7 is too small and s
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Figure 9: Impact of Attacks on Query Results.

is large, the number of vectors satisfying the transparency requirement may be insufficient. In this
case, the algorithm, after prioritizing the high transparency vectors, will supplement the selection of
some vectors with lower transparency. Therefore, although 7 is different, the selected vectors are
similar in this case, and the BE R are similar when facing adaptive deletion attacks.

According to the analysis of the threat model, an attacker needs to balance the effect of watermark
removal with its impact on their own use of the database. To this end, we test the specific impact
of adaptive deletion attacks on query results. The experiment sets the number of query neighbors
k = 100 and measures the average number of query errors of all vectors before and after deleting
varying proportions of vectors, and the experimental results are shown in Figure The figure
shows that the number of query errors rises significantly as the deletion proportion increases. When
the deletion rate reaches 0.5, the average number of query errors is close to 50, which means that
the proportion of query errors is close to half of the total number of queries. At this intensity, the
query result has been seriously distorted, and it is difficult to meet the actual application requirements.
Therefore, attackers usually do not choose such a high intensity attack, and it can be inferred that the
actual attack intensity is lower than the maximum value set by the experiment.

Adaptive Modification Attack: An adaptive modification attack is an attempt by the attacker
to remove the watermark by modifying a certain percentage of transparent vectors, where the
modifications are conducted on the partial dimension values of the vectors.

Under the condition of threshold 7 = 0.5, we conducted experiments for different combinations of
watermark strength s and modification proportion p. The specific steps include watermark embedding,
performing modification attacks, and then extracting the watermark and recording the BER. The
test results show that a significant bit error rate occurs only when the modification dimension reaches
30. Therefore, we set the number of modified dimensions for the modification attack to 30.

The experimental results are shown in Figure[T0(a)] The horizontal axis represents the modification
attack strength, and the vertical axis represents the BER. The lines of different colors represent
different s values. It can be seen that for the same modification proportion, the larger the s, the smaller
the BER, indicating the higher robustness. This verifies that a higher value of s can significantly
enhance the modification resistance of the watermark.

Next, we test the effect of the transparency threshold 7 on watermark robustness. Under the condition
of watermark strength s = 0.7, we conducted experiments for different combinations of transparency
threshold th and modification proportion p. The experimental steps also include watermark embed-
ding, performing a modification attack, and then extracting the watermark followed by recording the
BER.

The experimental results are shown in Figure[I0(b)] The horizontal axis represents the strength of the
modification attack (i.e., modification proportion p) and the vertical axis represents the BER. The
lines of different colors represent different 7 values. It can be seen that with the same modification
proportion, the larger the 7, the smaller the BER, indicating the higher robustness.
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Figure 10: Impact of Parameters on Watermark Robustness (Under Adaptive Modification Attacks).

Finally, we evaluated the impact of this attack on query results. We measured the average number
of query errors for all vectors before and after modifying different proportions of vectors. The
results are shown in Figure As the proportion of modified vectors increases, the number of
false queries increases rapidly. On the other hand, since the watermarking algorithm modifies only
one dimension for each vector, and the attack needs to modify multiple dimensions to significantly
impact watermark extraction, it indicates that the modification attack is more expensive to implement.
Therefore, to ensure database availability, attackers usually avoid high-intensity adaptive modification
attack strategies, which limits the actual threat of the attack.

Shuffle Attack: Shuffle Attack is to disturb the order between vectors and the correspondence
between vectors and IDs. The watermark extraction of TVP does not depend on the order of vectors
or their original IDs, so this attack is not effective for TVP.

Reconstructed Index Attack: Reconstruction indexing attack refers to reconstructing the indexes of
vectors. Since the index construction process has a certain degree of randomness, even if the same
vectors are used to construct the index multiple times, the results will be different. If the watermark
is embedded in the index structure, reconstructing the index will lead to wrong watermark extraction.
The TVP scheme does not depend on the index structure, so the reconstructed index attack is also
ineffective for TVP.

By analyzing the experiments in Section[E.Z]and Section|[E.3] we draw the following brief conclusions:

* Transparency Threshold 7: the smaller 7 is, the smaller the impact on query result is, but
the robustness will become worse.

* Watermark Strength s: the larger s is, the stronger the robustness is, but more vectors need
to be modified and the impact on query results increases.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction provide a precise overview of the motivation and
contributions of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work are discussed in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The hypothesis on the existence of edgeless vectors is verified by theoretical
analyses and experiments.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The dataset used for the experiments, and the key parameters have been
described.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: I will provide all the code and datasets for the experiment.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: This paper describes the details of the experiment.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: In papers in the field of watermarking, reporting the average of multiple
experiments is sufficient. I did not use error lines, confidence intervals, or statistical
significance tests because they are not standard practice in the validation of my work.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: These are mentioned in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We comply with the NeurIPS Code of Ethics in every respect.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As a technology for copyright protection and prevention of illegal distribution,
watermarking inherently brings about positive social impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to point out that an improvement in the quality of generative models could be used to
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators of datasets from http://corpus-texmex.irisa.fr/ waived copyright
rights, fulfilling proper crediting and license - respect requirements.
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* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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