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ABSTRACT

Personalized diffusion models (PDMs) have become prominent for adapting pre-
trained text-to-image models to generate images of specific subjects using minimal
training data. However, PDMs are susceptible to minor adversarial perturbations,
leading to significant degradation when fine-tuned on corrupted datasets. These
vulnerabilities are exploited to create protective perturbations that prevent unau-
thorized image generation. Existing purification methods attempt to red-team
the protective perturbation to break the protection but often over-purify images,
resulting in information loss. In this work, we conduct an in-depth analysis of the
fine-tuning process of PDMs through the lens of shortcut learning. We hypothesize
and empirically demonstrate that adversarial perturbations induce a latent-space
misalignment between images and their text prompts in the CLIP embedding space.
This misalignment causes the model to erroneously associate noisy patterns with
unique identifiers during fine-tuning, resulting in poor generalization. Based on
these insights, we propose a systematic red-teaming framework that includes data
purification and contrastive decoupling learning. We first employ off-the-shelf
image restoration techniques to realign images with their original semantic mean-
ings in latent space. Then, we introduce contrastive decoupling learning with
noise tokens to decouple the learning of personalized concepts from spurious noise
patterns. Our study not only uncovers fundamental shortcut learning vulnerabilities
in PDMs but also provides a comprehensive evaluation framework for developing
stronger protection. Our extensive evaluation demonstrates its superiority over
existing purification methods and stronger robustness against adaptive perturbation.

1 INTRODUCTION

The rapid advancements in text-to-image diffusion models, such as DALL-E 2 (Ramesh et al., 2022),
Stable Diffusion (Rombach et al., 2022), and MidJourney (mid), have revolutionized the field of
image generation. These models can generate highly realistic and diverse images based on textual
descriptions, enabling a wide range of applications in creative industries, entertainment, and beyond.
However, the capability to fine-tune these models for personalized generation using a small set of
reference images has raised concerns about their potential misuse, such as generating misleading or
harmful content targeting individuals (Van Le et al., 2023; Salman et al., 2023) or threatening the
livelihood of artists by mimicking unique artistic styles without compensation (Shan et al., 2023).

To address these issues, several protective perturbation methods have been proposed to protect user
images from unauthorized personalized synthesis (Šarčević et al., 2024; Deng et al., 2024a; Wang
et al., 2024a). These methods aim to proactively make images resistant to AI-based manipulation
by crafting adversarial perturbations (Salman et al., 2023; Liang et al., 2023), applying subtle style-
transfer cloaks (Shan et al., 2023), or crafting misleading perturbation that causes model’s overfitting
(Liu et al., 2024b). The model trained on perturbed data will generate images that are poor in quality,
and thus, the unauthorized fine-tuning fails. Despite the protection effectiveness, different from the
protective perturbation crafted for fixed and off-the-shelf diffusion models, where the protection
against unauthorized editing (Liang et al., 2023) can be well explained by the adversarial vulnerability
of neural networks (Ilyas et al., 2019), and the sharpness of the latent space of VAE (Kingma &
Welling, 2013; Guo et al., 2023; Xue et al., 2023), the underlying mechanism for how protective
perturbation disturbs the fine-tuning of the personalized diffusion model has not been explored yet.
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Figure 1: We observe that protective perturbation for personalized diffusion models creates a latent
mismatch in the image-prompt pair. Fine-tuning on such perturbed data tricks the models, learning
the wrong concept mapping. Thus, model generations suffer from severe degradation in quality.

Moreover, to systematically examine the practical performance of existing protection methods
in the wild, purification studies (Cao et al., 2024; Zhao et al., 2024a) have been proposed with
more advanced data purification process to further re-evaluate and red-teaming these protection
methods. As demonstrated in Van Le et al. (2023), most of the protection methods lack resilience
against simple purification like Gaussian smoothing. However, these traditional transformations
also come with severe data quality degradation after purifying. Compared to these deterministic
purifications, diffusion-based purification shows a stronger capacity to denoise the images and yield
high-quality output by leveraging the distribution modeling ability of diffusion models. Based on the
observation that clean images have better consistency upon reconstruction, IMPRESS (Cao et al.,
2024) proposes optimization on the protected images to impose reconstruction consistency with visual
LPIPS similarity constraints (Zhang et al., 2018). Despite effectiveness, IMPRESS is inefficient and
requires a tremendous amount of time due to the iterative nature of the proposed optimization. On
the other line, GrIDPure (Zheng et al., 2023) leverage pixel-space diffusion models to denoise the
images by conducting an SDEdit process (Meng et al., 2021; Nie et al., 2022) that first converts the
perturbed images into a slightly noisy state with a diffusion forward process and then denoise them
back with a reverse process. To further improve visual consistency, GrIDPure divides the images
into smaller grids with a small-step diffusion process. However, GrIDPure still yields unfaithful
content that causes great change in identity due to the generative nature of the diffusion model. How
to design an effective, efficient, and faithful purification approach is still an open question.

To gain better understanding, we first take a closer look at the fine-tuning process of PDMs through
the lens of causal analysis and shortcut learning (Geirhos et al., 2020). We first build the underlying
causal graph of learning on protected images, where we found protective perturbation manipulates
the learning process by reinforcing the shortcut path from personalized identifier to injected noise.
Furthermore, we found that existing effective protective perturbation introduces a latent-space
misalignment between images and the textual prompts, where the perturbed images largely deviate
from their original semantic concepts. This misalignment triggers the model to learn a shortcut
connection between the identifier and more high-frequency and easy-to-learn noise patterns.

Based on these insights, we propose a systematic red-teaming framework motivated by causal
intervention to empower robust PDMs against protective perturbations. Our approach conducts
comprehensive purification from three perspectives, including input purification, contrastive decou-
pling learning and sampling. Compared to existing purification methods that are only limited to
image purification, the advantages of our framework are three folds: i) efficiency and faithfulness:
we conduct efficient one-shot image purification by using super-resolution and image restoration
models that convert low-quality, noisy images into high-quality, purified ones; ii) robustness and
once-for-all: we demonstrate that contrastive decoupling learning itself works alone and contributes
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in robustness against adaptive perturbations crafted against our pipeline; iii) system-level red-teaming:
not only limited to the input image, we propose systematic red-teaming strategies covering three
stages including data purification, model training, and sampling strategy, offering a comprehensive
evaluation on the effectiveness of future protection. We summarize our contributions as below:

• We uncover and empirically validate that protective perturbations work by exploiting the shortcut
learning in PDMs with latent-space image-prompt misalignment from causal analysis.

• We propose a systematic red-teaming framework based on causal analysis that effectively mitigates
these vulnerabilities through data purification and contrastive decoupled learning and sampling.

• We demonstrate the effectiveness, efficiency, and faithfulness of our approach through extensive ex-
periments across 7 protections, showing significant improvements over existing methods. Our study
provides a more systematic evaluation framework for future research on protective perturbations.

2 RELATED WORKS

Data Poisoning as Protection against Unauthorized Training with LDMs. Latent Diffusion
Models (LDMs) (Rombach et al., 2022) have become dominant in various generative tasks, including
text-to-image synthesis. To meet the demand for personalized generation, methods like Dream-
Booth (Ruiz et al., 2023) have been proposed, which fine-tune LDMs using a small set of reference
images to learn specific concepts. However, these advancements have raised concerns about potential
misuse, such as generating misleading content targeting individuals (Van Le et al., 2023; Salman
et al., 2023) and threatening the livelihood of professional artists through style mimicking (Shan et al.,
2023). To address these issues, several data-poisoning-based methods have been proposed to protect
user images from unauthorized personalized synthesis by injecting adversarial perturbations through
minimizing adversarial target loss in image encoder or UNet denoiser (Salman et al., 2023), or
denoising-loss maximization (Liang et al., 2023; Van Le et al., 2023; Liu et al., 2024b) or in opposite
direction, denoising-loss minimization (Xue et al., 2023), or cross-attention loss maximization (Xu
et al., 2024). Despite its effectiveness, the underlying mechanism of protection against diffusion
model fine-tuning has not yet been explored well. To the best of our knowledge, Zhao et al. (2024a)
is the only work that attempts to investigate the underlying mechanism. However, it is only limited
to the vulnerability of the text encoder. In this work, we provide a more comprehensive explanation
from the view of latent mismatch and shortcut learning.

Data Purification that Further Breaks Protection. Despite promising protection performance,
studies (Van Le et al., 2023; An et al., 2024; Liu et al., 2024b) suggest that these perturbations without
advanced transformation loss (Athalye et al., 2018) are brittle and can be easily removed under
simple rule-based transformations. Among all types of transformation, state-of-the-art adversarial
purification leverages diffusion models as purifiers to perturb images back to their clean distributions.
In the classification scenario, DiffPure (Nie et al., 2022) is a mainstream approach for adversarial
purification by applying SDEdit (Meng et al., 2021) on the poison with an off-the-shelf diffusion
model. For purification against protective perturbation, GrIDPure (Lee & Chang, 2022) further adapts
iterative DiffPure with small steps on multi-grid spitted image to preserve the original resolution and
structure. However, due to their generative nature, these SDEdit-based purifications have limitations in
yielding unfaithful content, where the purified images fail to preserve the original identity. Observing
the perceptible inconsistency between the perturbed images and the diffusion-reconstructed ones,
IMPRESS (Cao et al., 2024) conducts the purification via minimizing the consistency loss with
constraints on the maximum LPIPS-based (Zhang et al., 2018) similarity change on pixel space.
While it manages to preserve similarity, IMPRESS suffers from the inefficiency issue due to its
iterative process and is ineffective under stronger protections like Liu et al. (2024b); Mi et al. (2024).

Shortcut Learning and Causal Analysis. Shortcut learning occurs when models exploit spurious
correlations in training data, leading to poor generalization (Geirhos et al., 2020). The causal
analysis provides a framework for addressing this by modeling cause-effect relationships (Pearl,
2009; Schölkopf et al., 2021). It helps identify true causal factors, distinguishing them from spurious
correlations. In computer vision, models may incorrectly focus on background textures instead of
object features (Brendel & Bethge, 2019). Techniques like Invariant Risk Minimization (Arjovsky
et al., 2019) and Counterfactual Data Augmentation (Teney et al., 2021) leverage causal principles to
improve robustness. In PDMs, protective perturbations can introduce spurious correlations between
noise patterns and identifiers during fine-tuning. Our work explores how to restore correct causal
relationships when learning PDMs on perturbed data, which is under-explored in existing works.
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3 PRELIMINARY

Personalized Latent Diffusion Models (LDMs) via DreamBooth Fine-tuning. LDMs (Rombach
et al., 2022) are generative models that perform diffusion processes in a lower-dimensional latent
space, enhancing training and inference efficiency compared to pixel-space diffusion models (Ho
et al., 2020). By conditioning on additional embeddings such as text prompts, LDMs can generate
or edit images guided by these prompts. Specifically, an image encoder E maps an image x0 to a
latent representation z0 = E(x0). A text encoder τθ produces a text embedding c = τθ(c) for a given
prompt c. The model trains a conditional noise estimator ϵθ, typically a UNet (Ronneberger et al.,
2015), to predict the Gaussian noise added at each timestep t, using the loss:

Ldenoise(x0, c; θ) = Ez0∼E(x0),ϵ,t

[
∥ϵ− ϵθ(z0, t, c)∥22

]
. (1)

During inference, the model starts from random noise zT ∼ N (0, I) and iteratively denoises it to
obtain a latent z̃0, which is then decoded to generate the image x̃0 = D(z̃0). DreamBooth (Ruiz et al.,
2023) fine-tunes a pre-trained LDM to generate images of specific concepts by introducing a unique
identifier that links subject concepts and employing a class-specific prior-preserving loss to mitigate
overfitting and language drift. The fine-tuning utilizes an instance dataset Dx0

=
{(

xi
0, c

V∗)}
i
,

and a class dataset Dx̄0 =
{(

x̄i
0, c̄

)}
i
, where x0 are subject images and x̄0 are class images. The

class-specific prompt c̄ is set as “a photo of a [class noun]”, and the instance prompt cV
∗

is “a photo
of V∗ [class noun]”, where V∗ specifies the subject and “[class noun]” denotes the object category
(e.g., “person”). The instance dataset contains the subject-specific images we want the model to learn,
while the class dataset contains diverse images from the same category to prevent language drift. The
fine-tuning process on these two datasets optimizes a weighted sum of the instance denoising loss
and the prior-preservation loss:

Ldb(x0, c
V∗
, x̄0, c̄;θ) = Ldenoise

(
x0, c

V∗
)
+ λLdenoise (x̄0, c̄) , (2)

where λ balances the two terms. With approximately 1k training steps and around four subject
images, DreamBooth can generate vivid, personalized subject images (von Platen et al., 2022).
Protective Perturbation against Personalized LDMs. Recent studies suggest that minor adversarial
perturbation to clean images can significantly disturb the learning of customized diffusion and also
prevent image editing with an off-the-shelf diffusion model by greatly degrading the quality of the
generated image. Existing protective perturbation can be classified into two categories: perturbation
crafted with fixed diffusion models and perturbation crafted with noise-model alternative updating.
In this paper, we focus on the second category since they are more effective in the fine-tuning setting.
The general framework of these protective perturbation methods is to craft noise that maximizes an
adversarial loss Ladv that is typically designed as the denoising loss Ldenoise and also alternatively
update the noise generator surrogates θ′ can be a single model (Van Le et al., 2023) or an ensemble of
models (Liu et al., 2024b)) or the attention modules (Xu et al., 2024). Formally, at the j-th alternative
step, the noise surrogate θ′

j and perturbation δ(j) are updated via solving,

θ′
j ← argmin

θ′
j−1

∑
x

Ldb

(
x+ δ(j−1), cV

∗
, x̄, c̄;θ′

j−1

)
; δ(j) ← argmax

∥δ(j−1)∥∞≤r

Ladv

(
x+ δ(j−1), c̄;θ′

j

)
.

(3)
To solve this, standard Gradient Descent is performed on the model parameter while the images are
updated via Project Gradient Descent (PGD) (Madry et al., 2018) to satisfy the ℓ∞-ball perturbation
budget constrain with radius r,

θi ← θi−1 − β∇θi−1
Ldb; xk+1 ← ΠB∞(x0,r)

[
xk + η·sign∇xkLadv

(
xk

)]
, (4)

where ΠB∞(x0,r)(·) is a projection operator on the ℓ∞ ball that ensures xk ∈ Bp(x
0, r) ={

x′ : ∥x′ − x0∥∞ ≤ r
}

, η denotes the PGD step size and the total PGD step is K.

Causal Analysis and Structural Causal Model. Causal analysis models cause-and-effect relation-
ships between variables (Pearl, 2009), helping identify spurious correlations and mitigate shortcut
learning Geirhos et al. (2020). A Structural Causal Model (SCM) uses structural equations and a
directed acyclic graph to represent causal relationships. It comprises endogenous variables V, exoge-
nous variables U, and structural equations fi, where each Vi ∈ V is defined as Vi = fi(Pa(Vi), Ui).
By intervening on spurious correlations, causal analysis helps models focus on true causal relation-
ships rather than superficial patterns. For more details, see Pearl (2009); Geirhos et al. (2020).
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Figure 2: (a) The original causal graph representing the variable relationships in personalized diffusion
model learning. Red arrows indicate the shortcut path introduced by protective perturbation. (b)
Intervened causal graph with our proposed CDL. Orange arrows indicate our imposed path for
decoupling noise after the intervention. With concept extraction, we examine that CDL alone helps
the model learn the right correlations for linking identifier V∗ and personalized concept X0.

4 METHODOLOGY

4.1 PROTECTIVE PERTURBATION CAUSES LATENT-SPACE IMAGE-PROMPT MISMATCH

We first derive the formulation of learning personalized diffusion models on perturbed data. For
the case of data poisoning, the instance data is perturbed by some adversarial noise δ, and the
personalized diffusion models optimize the following loss,

Ladv
db (x0, c

V∗
, x̄0, c̄;θ) = Ldenoise

(
x0 + δ, cV

∗
)
+ λLdenoise (x̄0, c̄) . (5)

Based on the adversarial loss in Eq. 5, with annotation of cV
∗
= c̄ ⊕ V∗ where V∗ denotes the

embedding of the unique identifier, we build the underlying causal graph (Pearl, 2009) in (a) of Fig.
2 (See App. C.1 on the construction details) to represent the learning process of the personalized
diffusion model for linking personalized identifier to instance concept. We use the upper letter to
represent random variables and the lower letter to represent the value instance. From this graph, we
found that there is an unintended association (colored in red) derived from the instance condition
V∗ to the injected noise variable ∆. In an ideal scenario, the protective perturbation represents a
completely relevant concept and should be independent of both the class-prior prompt c̄ and the
unique identifier V∗. However, during training, the model observes pairs of perturbed images x0 + δ
and instance prompts cV

∗
, leading to unintended associations between ∆ and V∗ in the causal graph.

To validate this, we prompt the model trained on perturbed data to generate images on two different
prompts, “a photo of V∗” and “a photo of V∗ Person”. As we can see from Fig. 2, the model
erroneously attributes the noise patterns to V∗ and thus generates noisy portraits for “V∗ Person”.

We defined the path V∗ → ∆ as identifier-noise shortcut for the following analysis. To establish and
reinforce this shortcut path, we found that one important property that effective perturbation methods
should have is the ability to cause latent-space image-prompt mismatch. That is, the images and
their corresponding prompts are not semantically aligned in the latent space after the perturbation.
Then thus, when learning on such pairs, it will create contradiction and force the models to dump
that chaotic perturbation pattern into the rarely-appeared identifier token V∗ instead of learning the
clean identity behind x0. We infer it based on two empirical observations: i) random perturbation
with the same strength does not affect the learning performance of the personalized diffusion model;
ii) the generated portraits using the perturbed diffusion model usually have lower quality and larger
image distortion than the slightly perturbed input images. The first observation justifies that if the
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perturbation does not cause a significant latent shift, then the learning of the personalized diffusion
model will not be affected, while the second observation suggests that the perturbed model learns more
abstract noise concepts instead of just the noise pattern in the input pixel space. We further validate
this through the following experiments of latent-mismatch visualization and concept interpretation.

Figure 3: Latent 2D visualization and concept clas-
sification of images using CLIP encoders.

Specifically, using the paired CLIP encoders,
we first embed the latent of clean and perturbed
images and also embed the textual concept of a
person with a list of prompts describing the per-
son concept, such as “a photo of person’s face”.
Then, we leverage three distinct 2D visualization
techniques, including TSNE (Maaten & Hinton,
2008), Truncated-SVD (Halko et al., 2011), and
UMAP (McInnes et al., 2018) on image-prompt
embedding pairs. The results in Fig. 3 suggest
that protective perturbation indeed significantly
shifts the portrait latent from its original region
of the “person” concept. Moreover, we precisely
split the latent space into two regions with a zero-
shot CLIP-based classifier, where we find that the perturbed images have a higher probability of
being classified into the “noise” region instead of the “person” region in latent space. Please refer to
Fig. 7 and Fig. 9 in the App. B.2 for more interpretation and visualization experiments.

These findings indicate protective perturbation indeed leads to latent mismatch. This latent mismatch
creates an opportunity for shortcut learning (Geirhos et al., 2020; Hermann et al., 2023), where
models optimize for easily accessible features rather than robust predictive patterns. In our case,
PDMs face a binary choice: linking the unique identifier V∗ either to the noise ∆ or to the person
identity concept X0. From the perspective of loss minimization efficiency, PDMs naturally gravitate
toward learning the high-frequency noise patterns rather than the more complex and desired person
identity concept X0, as this provides a computationally easier path to reduce training loss.

4.2 TRAINING CLEAN PDMS ON PERTURBED DATA WITH SYSTEMATIC RED-TEAMING

To address this shortcut learning issue, we propose a systematic red-teaming framework inspired
by causal intervention (Geirhos et al., 2020), which is a widely used technique to mitigate shortcut
learning in traditional machine learning tasks. Causal intervention (Kaddour et al., 2022) usually
involves data argumentation or modifying the training process to disrupt spurious correlations. To
mitigate shortcut learning in PDMs, we propose two key strategies: (i) Removing Noise Variables
through image restoration techniques to eliminate adversarial noise and realign images with their
true semantic representations; and (ii) Weakening Spurious Paths and Strengthening Causal Paths via
Contrastive Decoupling Learning, which disentangles personalized concepts from noise patterns by
incorporating noise tokens into prompts and leveraging clean prior data. We detail these approaches
below and summarize our framework in Algorithm 1. Please refer to the App. C.2 for more details.

Image Purification via Image Restoration. An intuitive and effective approach to removing the
direct influence of adversarial noise is to purify the input images using image restoration techniques.
We view the perturbed images as degraded images in the image restoration domain (Wang et al.,
2021) and leverage off-the-shelf image restoration models to convert low-quality, noisy images into
high-quality, purified ones. Specifically, we use a face-oriented model named CodeFormer (Liu
et al., 2023), which is trained on facial data to restore images based on latent code discretization.
To further enhance the purification of non-face regions, we employ an additional diffusion-based
super-resolution (SR) model. Compared to previous state-of-the-art optimization-based purification
methods (Cao et al., 2024) and diffusion-based purification methods (Zhao et al., 2024a), this simple
yet effective pipeline yields faithful purified images with better efficiency since it only requires a
single inference pass. We term this module CodeSR as it combines CodeFormer and SR in sequence.

Contrastive Decoupling Learning (CDL). To further mitigate shortcut learning, we introduce
Contrastive Decoupling Learning, which aims to disentangle the learning of desired personalized
concepts from undesired noise patterns. We achieve this by augmenting the prompts with additional
tokens related to the noise pattern, denoted as V∗

N , such as “XX noisy pattern”. Ideally, these newly

6
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Algorithm 1 Training Clean Personalized LDMs on Perturbed Data with Systematic Red-Teaming

Input: Corrupted training setX ′
0, pre-trained LDM θ0, CodeFormer ϕ = {Eϕ,Dϕ, Tϕ, C}, SR model

ψ, prior data X̄0, noise token V∗
N , personalized identifier V∗, instance prompt cV

∗
, class prompt

c, number of generations Ngen
Output: Personalized diffusion model with clean-level generation performance θT

1: Step 1: Input Purification with CodeFormer and Super-resolution Model
2: CodeFormer: Predict code Z̃c = Tϕ(Eϕ(X ′

0), C); obtain high-quality restoration X̃0 = Dϕ(Z̃c)

3: Super-resolution: Resize X̃0 to 128× 128; apply SR model ψ to obtain X̃purified
0 at 512× 512

4: Step 2: Contrastive Decoupling Learning
5: for i = 1 to T training steps do
6: Sample instance data xi from X̃purified

0 , and class-prior data x̄0 from X̄0

7: Craft decoupled instance prompt cV
∗

dec = concat(cV
∗
,V∗

N ) and class-prior prompt cdec =
concat(c, “without”,V∗

N )
8: Optimize the LDM θi with standard DreamBooth loss Ldb ▷ Following Eq. 2
9: Ldb(xi, c

V∗

dec, x̄0, cdec; θi) = Ldenoise

(
xi, c

V∗

dec

)
+ λLdenoise (x̄0, cdec)

10: Update LDM θi with ∇θiLdb using AdamW optimizer on UNet Denoiser and Text Encoder
11: end for
12: Inference: Perform decoupled sampling {Xj

gen}
Ngen
j=1 with the trained PDM ▷ Following Eq. 6

added tokens absorb all the noise components in the image, leaving the clean, personalized concept
associated with the personalized identifier V∗. During training, we insert V∗

N into the prompt of
instance data with the suffix “with XX noisy pattern”, and include the “inverse” of V∗

N in the prompt
of class-prior data with the suffix “without XX noisy pattern”. This contrastive prompt design
encourages the model to distinguish between the instance concept and noise patterns, thus weakening
spurious correlations. During inference, we add the suffix “without XX noisy pattern” to the prompt
input to guide the model in disregarding the learned patterns associated with V∗

N , thereby generating
images that focus on the personalized concept. Furthermore, by using classifier-free guidance (Ho &
Salimans, 2022) with a negative prompt cneg =“noisy, abstract, pattern, low quality”, we can further
guide the trained model to generate high-quality images related to the learned concept. Specifically,
given timestamp t, we perform sampling using the linear combination of the good-quality and
bad-quality conditional noise estimates with guidance weight wneg = 7.5:

ϵ̃θ (zt, c) = (1 + wneg)ϵθ

(
zt, c

[V∗,V̄∗
N ]
)
− wnegϵθ (zt, τθ(cneg)) (6)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Metrics. Our experiments are mainly performed on the VGGFace2 (Cao et al., 2018)
face dataset following (Van Le et al., 2023; Liu et al., 2024b). Four identities are selected from each
dataset, and we randomly pick eight images from each individual and split those images into two
subsets for image protection and reference. Moreover, we also visually demonstrate the purification
ability of our approach on samples from an artwork painting dataset, WikiArt (Saleh & Elgammal,
2015), and the CelebA (Liu et al., 2015). For the metric, we evaluate the generated images in
terms of their semantic-related quality and graphical aesthetic quality. For the semantic-related
score, we compute the cosine similarity between the embedding of generated images and reference
images, which we term the Identity Matching Similarity (IMS) score. We reported the weighted
averaged IMS score by employing two face embedding extractors, including antelopev2 model from
InsightFace library (Deng et al., 2020) following IP-adapter (Ye et al., 2023) and VGG-Net (Simonyan
& Zisserman, 2014) from Deepface library (Taigman et al., 2014) following (Van Le et al., 2023).
The IMS score is computed via a weighted sum: IMS= λIMSIP + (1− λ)IMSVGG, where λ is set as
0.7. For the graphical quality Q, we report the average of two metrics: i) LIQE (Zhang et al., 2023a)
(with re-normalization to [−1,+1]); ii) CLIP-IQAC following (Liu et al., 2024b), which is based on
CLIP-IQA (Wang et al., 2023a) with class label. See App. A.1 for details.

Purification Baselines and Perturbation Methods. For purification baselines, we consider both
model-free and diffusion-based approaches. The model-free methods include ❶ Gaussian Filtering,
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Table 1: Results of different purification methods under different protective perturbations. The best
performances are in bold, and second runners are shaded in gray. ∗ denotes significant improvement
that passes the Wilcoxon signed-rank significance test with p ≤ 0.01.

Methods Clean FSMG ASPL EASPL MetaCloak AdvDM PhotoGuard Glaze
IMS ↑ Q ↑ IMS ↑ Q ↑ IMS ↑ Q ↑ IMS ↑ Q ↑ IMS ↑ Q ↑ IMS ↑ Q ↑ IMS ↑ Q ↑ IMS↑ Q ↑

Clean -0.13 0.15 -0.13 0.15 -0.13 0.15 -0.13 0.15 -0.13 0.15 -0.13 0.15 -0.13 0.15 -0.13 0.15
Perturbed - - -0.43 -0.54 -0.67 -0.52 -0.62 -0.50 -0.35 -0.53 -0.27 -0.36 -0.18 -0.24 -0.28 -0.28

Gaussian F. -0.23 -0.52 -0.19 -0.55 -0.20 -0.57 -0.17 -0.58 -0.07 -0.63 -0.11 -0.57 -0.23 -0.53 -0.18 -0.54
JPEG -0.27 -0.13 -0.15 -0.41 -0.21 -0.52 -0.27 -0.50 -0.34 -0.38 -0.15 -0.02 -0.13 0.07 -0.19 -0.03
TVM -0.15 -0.64 -0.12 -0.65 -0.16 -0.66 -0.10 -0.67 -0.11 -0.69 -0.12 -0.65 -0.15 -0.64 -0.11 -0.66

PixelDiffPure -0.34 -0.60 -0.41 -0.57 -0.43 -0.54 -0.57 -0.61 -0.28 -0.58 -0.40 -0.55 -0.25 -0.55 -0.41 -0.59
L.DiffPure-∅ -0.24 0.16 -0.07 -0.47 -0.36 -0.59 -0.22 -0.49 -0.52 -0.43 -0.55 -0.24 -0.12 -0.40 -0.38 -0.42
L.DiffPure -0.28 0.21 -0.25 -0.45 -0.31 -0.61 -0.30 -0.46 -0.31 -0.51 -0.57 -0.30 -0.25 -0.47 -0.41 -0.47
DDSPure -0.25 -0.38 -0.15 -0.34 -0.05 -0.38 -0.08 -0.39 -0.16 -0.49 -0.19 -0.43 -0.12 -0.37 -0.22 -0.41
GrIDPure -0.46 -0.17 -0.10 -0.20 -0.21 -0.16 -0.13 -0.25 -0.23 -0.25 -0.09 -0.18 -0.03 -0.22 -0.24 -0.13
IMPRESS -0.02 -0.18 -0.15 -0.53 -0.16 -0.49 -0.29 -0.64 -0.34 -0.29 -0.34 -0.34 -0.16 -0.21 -0.10 -0.43

Ours 0.14∗ 0.54∗ 0.23∗ 0.65∗ 0.09 0.62∗ 0.09∗ 0.63∗ 0.38∗ 0.58∗ 0.29∗ 0.67∗ 0.24∗ 0.63∗ 0.31∗ 0.66∗

which reduces noise and detail using a Gaussian kernel; ❷ Total Variation Minimization (TVM),
which reconstructs images by minimizing the difference between original and reconstructed images
while enforcing smoothness; and ❸ JPEG Compression, which reduces image file size by transforming
images into a compressed format. The diffusion-based methods include ❹ (Pixel)DiffPure (Nie
et al., 2022), which leverages pretrained pixel-space diffusion models to smooth adversarial noise
with small-step SDEdit process (Meng et al., 2021); ❺ LatentDiffPure, which is developed in
the paper similar as DiffPure but with LDM as a purifier (two variants w/ and w/o prompting);
❻ DDSPure (Carlini et al., 2022), which finds an optimal timestamp for adversarial purification
with SDEdit process; ❼ GrIDPure (Zheng et al., 2023), which further conducts iterative DiffPure
with small steps with grid-based splitting to improve structure similarity; and ❽ IMPRESS (Cao
et al., 2024), which purifies by optimizing latent consistency with visual similarity constraints. For
protective perturbation, we consider six of existing SoTA approaches, including perturbation crafted
with bi-level optimization, such as FSMG, ASPL, EASPL (Van Le et al., 2023), MetaCloak (Liu et al.,
2024b), and perturbations crafted with adversarial perturbation with fixed models, such as AdvDM
(Liang et al., 2023), PhotoGuard (Salman et al., 2023), and Glaze (Shan et al., 2023). For each
setting, we set the perturbation to be ASPL by default. We set the ℓ∞ radius to 11/255 with a six-step
PGD step size of 1/255 by default following (Van Le et al., 2023). See App. A.2 for more details.

5.2 EFFECTIVENESS, EFFICIENCY, AND FAITHFULNESS

Effectiveness Comparison. We present the effectiveness of different purification across seven
perturbation methods in Tab. 1. From the table, we can see that compared to the clean case,
training on perturbing data causes serve model degradation from both identity similarity and image
quality. Across all perturbations, ASPL causes the most severe degradation under the setting without
purification, while MetaCloak performs more robustly under rule-based purification. Compared to
rule-based purification, diffusion-based approaches achieve better performance in improving both
identity similarity and image quality in most settings. Among them, GrIDPure yields relatively
better purification performance since it considers the structure consistency, which suppresses the
generative nature during the purification. However, there are still gaps in the IMS score compared
to the clean case, and most of the quality scores after conducting GrIDPure purification are still
negative. Compared to these baselines, our method closes the gap by further improving the IMS and
quality scores, which are even higher than the clean training case in all the settings. The reasons are
twofold: first, we use image-restoration-based approaches, which preserve the image structure well;
furthermore, our CDL module contributes significantly to quality improvement. Please refer to the
App. B for the full comparison results with standard deviations.

Efficiency and Faithfulness of Purification. We present the evaluation of time cost and purification
faithfulness compared to all other diffusion-based purification approaches in Tab. 2. The time cost is
measured in seconds per sample with consideration of model loading. Compared to other methods,
our purification has the lowest time cost and is 10× faster than the previous SoTA method, IMPRESS.
The reason behind this is that we leverage the super-resolution module, which empowers the usage
of skip-step sampling to boost the generation time. Moreover, we test the purification faithfulness
of each method in terms of LPIPS loss (Zhang et al., 2018), a common metric measuring the visual
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Perturbed LatentDiffPure-∅ LatentDiffPure DDSPure GrIDPure IMPRESS Ours

Figure 4: Visualization of purified images that were originally protected by MetaCloak. Our method
shows high faithfulness and high quality, while others fail to effectively purify the perturbation.

perception distance of two images. From Tab. 2, we can see that our method achieves the lowest
LPIPS loss. To visually validate this, we additionally present the purified images in Fig. 4. From the
figure, we can see that other diffusion-based approaches have limitations in hallucinating the content,
introducing severe artifacts, or not having enough purification strength. In particular, we observed that
LatentDiffPure causes a great change in identity during the purification, which might be attributed to
the semantic distortion during the purification process in latent space. On the other hand, GrIDPure
(Zhao et al., 2024a) brings some artifacts to the purified image, which indicates that the underlying
unconditional diffusion model pre-trained on ImageNet might not be suitable for general domain
purification. In comparison, our purification method significantly enhances faithfulness by leveraging
off-the-shelf image restoration models. These models are designed to preserve the structural integrity
of the input, resulting in output images that closely maintain the original composition while effectively
removing perturbations. This approach ensures that the purified images retain the essential features
and identity of the original subjects, while successfully mitigating unwanted artifacts or noise.

Table 2: Faithfulness and efficiency of
different diffusion-based purifications.

Methods LPIPS ↓ Time Cost↓(s)

IMPRESS 0.451 675
PixelDiffPure 0.495 102
DDSPure 0.384 122.5
GrIDPure 0.429 92.75
LatentDiffPure 0.453 63.75
LatentDiffPure-∅ 0.450 63.25

Ours 0.271 51

Table 3: Effectiveness of different model variants against
Adaptive Attacks (AA).

Modules CDL Before AA After AA E[Avg.]
IMS Q Avg. IMS Q Avg.

CodeSR ✓ 0.256 0.514 0.385 0.116 -0.070 0.023 0.204
✗ -0.215 0.028 -0.094 -0.313 -0.533 -0.423 -0.259

Code ✓ 0.294 0.385 0.339 0.138 -0.104 0.017 0.178
✗ -0.336 0.020 -0.158 -0.382 -0.474 -0.428 -0.293

SR ✓ 0.190 0.260 0.225 0.249 -0.182 0.034 0.130
✗ -0.059 -0.439 -0.249 -0.114 -0.616 -0.365 -0.307

5.3 RESILIENCE AGAINST ADAPTIVE PERTURBATIONS

DNN-based purification is prone to further adaptive attacks due to the non-smoothness in terms of
latent representation space (Guo et al., 2023) and also the vulnerability by exploiting adversarial
examples (Ilyas et al., 2019). To validate whether our framework can still work upon adaptive
adversarial perturbation with new knowledge of our pipeline, we additionally conduct experiments
on evaluations of different variants of our approach before and after the adaptive perturbation crafted
against the image purification part. The adversarial perturbation is crafted following AdvDM with
consideration of the CFG (Ho & Salimans, 2022) sampling trajectory with a large perturbation budget
of r = 16/255. For the model variants, we consider the full variant with both modules turned on,
as well as the ablated versions with one of them turned off. From Tab. 3, we can see that the full
variant with CDL is robust to the adaptive attack across other variants in terms of performance drop.
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Furthermore, we notice that the variant with both SR and CDL yields a slightly better average score
than the CodeSR configuration after the attack. This indicates that the CodeFormer module might be
more susceptible to the adaptive attack while the SR module is more robust. However, using SR with
CDL solely in case cases gives sub-optimal purification results. Our CodeSR configuration with CDL
gives a better expected overall performance under mixed perturbation scenarios with P (AA)=50%.

5.4 ABLATION STUDY AND SENSITIVITY ANALYSIS

Contribution of Individual Modules. We present ablations on the three modules in our method in
Tab. 4. From the table, our method works best under the full setting. When turning off any of the
modules, the average performance degrades, with turning off CDL suffers the most. On the other
hand, if we only turn on one of the modules, we find that CDL is still the most important one that
retains higher generation performance. Furthermore, if we only do input purification without CDL,
the generation quality is not as good as the full setting with CDL. This indicates that CDL is crucial
for the performance of our method. Surprisingly, when only enabling the SR module, the IMS score
is relatively good but with bad quality. While turning on the CodeFormer module alone, the boost is
more on the quality score side. The settings that enable these two modules together yield a higher
average score. These indicate that SR and CodeFormer modules are complementary to each other.
Furthermore, for the settings that only allow two modules enabled, we found that the combination
of CodeFormer and CDL yields the best performance compared to the other two combinations.
Furthermore, we visualize the quality-score curve of identifier V∗ that shows consistent improvement
during training in the App. B.1. In conclusion, the results suggest that all modules contribute to the
learning performance gain in both IMS and quality scores.

Figure 5: Generations from models trained on: (left) clean data, (middle) perturbed data without
defense, and (right) purified data using our defense approach. The results demonstrate that our
defense method significantly enhances generation quality, bringing it closer to clean data levels.

Table 4: Ablation study on individual modules.

Settings Metrics
CodeF. SR CDL IMS↑ Q↑ Avg. ↑

✓ ✓ ✓ 0.256 0.514 0.385
✓ ✓ ✗ -0.215 0.028 -0.094
✓ ✗ ✓ 0.294 0.385 0.339
✗ ✓ ✓ 0.190 0.260 0.225
✓ ✗ ✗ -0.336 0.020 -0.158
✗ ✓ ✗ -0.059 -0.439 -0.249
✗ ✗ ✓ 0.160 0.038 0.099
✗ ✗ ✗ -0.271 -0.425 -0.348

Generation Visualization and Sensitivity Test.
We further visualize the generation of models
trained in three cases, including clean, perturbed,
and purified in Fig. 5. The visualization demon-
strates that our defense greatly helps retain clean-
level generation quality. Additionally, we find
that the concept learned associated with V∗ un-
der perturbed case matches the noise concept
learned using CDL alone, indicating the CDL
successfully decouples the learning of noise pat-
terns (refer to the App. B.2). The sensitivity
analysis of noise tokens is provided in App. B.3.

6 CONCLUSION

In this paper, we dive into the underlying mechanism behind the effectiveness of existing protec-
tive perturbation approaches against the unauthorized fine-tuning of personalized diffusion models.
Motivated by the latent mismatch observation, we propose to use super-resolution and image restora-
tion models for latent realignment. Furthermore, we propose contrastive decoupling learning with
quality-enhanced sampling based on the analysis from the shortcut learning perspective. Extensive
experiments demonstrate the effectiveness, efficiency, and faithfulness of our method. Despite being
mainly tested on facial data, our framework can generalize to other domains beyond the facial domain.
Future work could optimize module combinations for balanced utility and robustness (in Sec. 5.3),
and develop stronger protection methods based on our framework’s robustness-effectiveness trade-off.
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7 REPRODUCIBILITY STATEMENT

To facilitate replication and further exploration of our work, we have made concerted efforts to
provide comprehensive details about our methodologies. All code used for data preprocessing, model
training, and evaluation is provided in the supplementary materials. The code is organized and
documented to allow researchers to reproduce our results seamlessly. Instructions for setting up the
computational environment, including software versions and dependencies, are included to ensure
that others can replicate our setup accurately.

We utilized publicly available datasets such as VGGFace2, WikiArt, and CelebA. Detailed information
on how to access these datasets and any preprocessing steps are provided in supplementary files.
By using standard datasets, we aim to facilitate comparisons and validations by other researchers.
Hyperparameters, model architectures, and training protocols are thoroughly described in Sec. 3 and
5, and further elaborated in App. A.2. We specify the number of training epochs, batch sizes, learning
rates, and optimization algorithms used. Such detailed descriptions are intended to ensure that others
can replicate our training process and verify our findings.

The metrics used for evaluation, including Identity Matching Similarity (IMS) and graphical quality
(Q), are clearly defined in Section 5.1 and detailed in App. A.1. Implementation details for computing
these metrics, along with any external libraries utilized, are provided to ensure transparency in our
evaluation procedures. Extended experimental results, including standard deviations and additional
visualizations, are included in App. B. Ablation studies and sensitivity analyses are presented to
demonstrate the robustness of our methods. These additional results provide deeper insights into our
findings and allow for a more thorough understanding of our approach.
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A IMPLEMENTATION DETAILS

A.1 METRICS

In this section, we describe the evaluation metrics used in our experiments in more detail. Follow-
ing (Liu et al., 2024b), we use CLIP-IQAC, which calculates the CLIP score difference between “a
good photo of [class]” and “a bad photo of [class]”. For calculating IMS-VGGNet, we leverage the
VGGNet in the DeepFace library for face recognition and face embedding extraction (Serengil &
Ozpinar, 2021). For IMS-IP, we leverage antelopev2 model from InsightFace library (Deng et al.,
2020) following IP-adapter (Ye et al., 2023). We report the weighted average of them with a weighting
factor on IMS-IP as 70% since we find it yields a more stable evaluation with IMS-VGG as 30%. We
compute all the mean scores for all generated images and instances. For the instance i and its j-th
metric, its k-th observation value is defined as mi,j,k. For the j-th metric, the mean value is obtained
with

∑
i,kmi,j,k/(NiNk), where Ni is the instance number for that particular dataset, and Nk is the

image generation number.

A.2 HARDWARE AND TRAINING DETAILS

Hardware Details. All the experiments are conducted on an Ubuntu 20.04.6 LTS (focal) environment
with 503GB RAM, 10 GPUs (NVIDIA® RTX® A5000 24GB), and 64 CPU cores (Intel® Xeon®

Silver 4314 CPU @ 2.40GHz). Python 3.9.18 and Pytorch 1.13.1 are used for all the implementations.
Please refer to the supplementary material for the code and environment setup.

Training and Inference Settings. The Stable Diffusion (SD) v2-1-base (Rombach et al., 2022) is
used as the model backbone. For Dreambooth training, we conduct full fine-tuning, which includes
both the text-encoder and U-Net model with a constant learning rate of 5× 10−7 and batch size of 2
for 1000 iterations in mixed-precision training mode. We use the 8-bit Adam optimizer with β1 = 0.9
and β2 = 0.999 under bfloat16-mixed precision and enable the xformers for memory-efficient
training. For calculating prior loss, we use 200 images generated from Stable Diffusion v2-1-base
with the class prompt “a photo of a [class norn]”. The weight for prior loss is set to
1. For the evaluation phase, we set the inferring steps as 100 with prompts “a photo of sks person”
and “a smiling photo of sks person” during inference to generate 16 images per prompt. For all the
settings, the classifier-free guidance Ho & Salimans (2022) is turned on by default with a guidance
scale of 7.5. For the implementation of baseline methods, please refer to App. D.

B MORE EXPERIMENTAL RESULTS

B.1 QUALITY SCORE CURVE DURING TRAINING

Figure 6: LIQE quality score of V∗.

We present the LIQE (Zhang et al., 2023a) quality score
curve during fine-tuning under different settings, including
clean training, vanilla training on perturbed data, train-
ing with CDL, and training with CodeSR+CDL in Figure
6. This curve illustrates the evolution of image quality
throughout the training process. As evident from the figure,
our proposed decoupled learning (CDL) approach signifi-
cantly enhances the quality compared to the case with per-
turbations. Moreover, when we combine CDL with input
purification (CodeSR + CDL), the model achieves quality
performance comparable to clean-level training. These
results further validate the effectiveness of our proposed
method in defending against adversarial perturbations and
maintaining high-quality outputs in PDMs.

B.2 LEARNED CONCEPTS VISUALIZATION

To visually demonstrate our method’s effectiveness, Fig. 7 compares the concept extraction results
from trained models with vanilla training, CDL, and CodeSR+CDL. We extract three concepts from
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the trained models, including the instance concept, instance+class concept, and decoupled noise
concept. The third one aims to visualize the noise pattern from the perturbed data that we seek to
decouple. From the figure, we can see that CDL helps the model learn the correct concept-image
correlations while adding CodeSR, which further improves the generation quality. Interestingly, we
find that the learned noise concept in CDL-based training matches the pattern of the one falsely
linked by the personalized concept in vanilla training. We present more results supporting this in Fig.
9. This validates the effectiveness of our method in learning the correct concept-image correlations
and decoupling the noise concept. Furthermore, from Fig. 7, we find that adding input purification
(CodeSR) greatly boosts generation quality. Under the purification case, the contribution of CDL is
more about decoupling the left-over background artifacts from the personalized concept.

✗ Vanilla Training (No defense) ✓ CDL ✓ CodeSR + CDL

Inference the learned Instance Concept⇒ Prompt: “a photo of V∗”

Inference the learned Instance+Class Concept⇒ Prompt: “a photo of V∗ Person”

Inference the Decoupled Noise Concept⇒ Prompt: “a photo of VN∗ noisy perturbation”

Figure 7: Concept extraction with three different prompts from the trained model with vanilla training,
CDL, and CodeSR+CDL. Results show that CDL alone helps models learn the right correlations, and
adding input purification further boosts the generation quality.

B.3 CONTRASTIVE DECOUPLING LEARNING WITH DIFFERENT NOISE TOKENS.

To investigate the effect of using our CDL with different noise tokens, we additionally present results
in Tab. 5. As we can see, setting the right noise tokens is crucial for the performance. Among the
15 noise tokens we tested, we found that “t@j noisy pattern” yielded the best overall performance
under our setting. Future works can be conducted using automatic noise prompt searching. Another
direction is to study visualization of the learned pattern for each noise prompt setting for a deeper
understanding of the underlying concept learning process.

B.4 MORE RESULTS ON PURIFICATION FAITHFULNESS

In addition to the LPIPS used in the paper, we provide purification results using other similarity
metrics, including Structural Similarity (SSIM), Multi-Scale Structural Similarity (MS-SSIM), and
Peak Signal-to-Noise Ratio (PSNR). The results are presented in Tab. 7, which demonstrate that our
purification variants are consistently superior to previous state-of-the-art purification approaches.

B.5 LIMITATIONS DISCUSSION

Limitations. While our proposed defense framework demonstrates significant improvements over
existing methods in enhancing the robustness of PDMs, there are certain areas that could be further
explored. Our experiments are primarily conducted on the facial dataset VGGFace2. Although we
have preliminary purification results indicating the applicability of our approach to other domains
like artwork images from WikiArt, we have not extensively tested our method across a wide variety
of protection techniques. Future work could investigate the generalizability of our method to different
types of images and subjects to further validate its effectiveness. Additionally, the integration of
data purification and contrastive decoupling learning introduces some additional computational steps
during the training process. This may slightly increase the training time compared to standard training
procedures. However, we believe that this is a reasonable trade-off given the substantial benefits in
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Table 5: Performance comparison of models trained with our Contrastive Decoupling Learning (CDL)
using various noise tokens. Results are shown for seven evaluation metrics across different noise
token choices. Higher scores indicate better performance. The experiment uses a single random
instance from the VGGFace2 dataset, protected by MetaCloak. IMS and Q are our main metrics,
while IMSVGG, IMSIP, LIQE, and CLIP-IQAC provide additional insights into model performance.

Noise Tokens VN∗ IMS ↑ Q ↑ Avg. ↑ IMSVGG ↑ IMSIP ↑ LIQE ↑ CLIP-IQAC ↑
t@j noisy pattern -0.226 0.156 -0.035 -0.265 -0.209 3.313 0.460

xjy image imperfection -0.331 -0.130 -0.230 -0.511 -0.253 2.740 0.324
xjy visual interference -0.539 0.014 -0.263 -0.513 -0.550 3.028 0.130
xjy visual distortion -0.336 -0.204 -0.270 -0.284 -0.357 2.591 0.149
xjy image artifact -0.159 -0.445 -0.302 -0.423 -0.045 2.110 0.277
xjy digital glitch -0.294 -0.378 -0.336 -0.448 -0.227 2.243 0.328

UNKNOWN face degradation -0.197 -0.476 -0.337 -0.296 -0.155 2.047 0.520
xjy image disturbance -0.328 -0.366 -0.347 -0.424 -0.287 2.268 0.225
xjy image corruption -0.449 -0.248 -0.349 -0.477 -0.437 2.504 0.104

xjy image degradation -0.345 -0.410 -0.377 -0.286 -0.370 2.181 0.110
UNKNOWN noisy pattern -0.431 -0.419 -0.425 -0.244 -0.512 2.161 -0.020

xjy visual anomaly -0.389 -0.534 -0.461 -0.453 -0.361 1.932 0.126
XX noisy artifact -0.324 -0.626 -0.475 -0.143 -0.401 1.749 -0.096
xjy visual noise -0.578 -0.475 -0.526 -0.288 -0.702 2.050 -0.060

bhi noisy perturbation -0.494 -0.727 -0.610 -0.369 -0.547 1.546 -0.242

Table 6: The full results with standard deviations of different purification methods under different
protective perturbations. The best performances are in bold, and second runners are shaded in gray.
∗ denotes improvement that passes the Wilcoxon signed-rank significance test with p ≤ 0.01.

Methods FSMG ASPL EASPL MetaCloak AdvDM PhotoGuard Glaze
IMS ↑ Q ↑ IMS Q IMS Q IMS Q IMS Q IMS Q IMS Q

Clean -0.13 ± 0.04 0.15 ± 0.08 -0.13 ± 0.04 0.15 ± 0.08 -0.13 ± 0.04 0.15 ± 0.08 -0.13 ± 0.04 0.15 ± 0.08 -0.13 ± 0.04 0.15 ± 0.08 -0.13 ± 0.04 0.15 ± 0.08 -0.13 ± 0.04 0.15 ± 0.08

Perturbed -0.43 ± 0.54 -0.54 ± 0.25 -0.67 ± 0.46 -0.52 ± 0.41 -0.62 ± 0.46 -0.50 ± 0.40 -0.35 ± 0.58 -0.53 ± 0.28 -0.27 ± 0.54 -0.36 ± 0.30 -0.18 ± 0.54 -0.24 ± 0.27 -0.28 ± 0.59 -0.28 ± 0.33

Gaussian F. -0.19 ± 0.57 -0.55 ± 0.29 -0.20 ± 0.56 -0.57 ± 0.20 -0.17 ± 0.56 -0.58 ± 0.23 -0.07± 0.54 -0.63 ± 0.15 -0.11 ± 0.54 -0.57 ± 0.24 -0.23 ± 0.56 -0.53 ± 0.26 -0.18 ± 0.53 -0.54 ± 0.25

JPEG -0.15 ± 0.60 -0.41 ± 0.33 -0.21 ± 0.62 -0.52 ± 0.25 -0.27 ± 0.62 -0.50 ± 0.24 -0.34 ± 0.63 -0.38 ± 0.41 -0.15 ± 0.62 -0.02± 0.39 -0.13 ± 0.62 0.07± 0.36 -0.19 ± 0.57 -0.03± 0.48

TVM -0.12 ± 0.48 -0.65 ± 0.21 -0.16 ± 0.53 -0.66 ± 0.23 -0.10 ± 0.49 -0.67 ± 0.20 -0.11 ± 0.49 -0.69 ± 0.12 -0.12 ± 0.50 -0.65 ± 0.22 -0.15 ± 0.54 -0.64 ± 0.20 -0.11 ± 0.48 -0.66 ± 0.20

PixelDiffPure -0.41 ± 0.45 -0.57 ± 0.17 -0.43 ± 0.47 -0.54 ± 0.21 -0.57 ± 0.49 -0.61 ± 0.16 -0.28 ± 0.44 -0.58 ± 0.22 -0.40 ± 0.51 -0.55 ± 0.21 -0.25 ± 0.51 -0.55 ± 0.15 -0.41 ± 0.44 -0.59 ± 0.17

L.DiffPure-∅ -0.07± 0.50 -0.47 ± 0.29 -0.36 ± 0.49 -0.59 ± 0.21 -0.22 ± 0.58 -0.49 ± 0.26 -0.52 ± 0.46 -0.43 ± 0.29 -0.55 ± 0.45 -0.24 ± 0.38 -0.12 ± 0.48 -0.40 ± 0.28 -0.38 ± 0.45 -0.42 ± 0.27

L.DiffPure -0.25 ± 0.48 -0.45 ± 0.30 -0.31 ± 0.51 -0.61 ± 0.20 -0.30 ± 0.54 -0.46 ± 0.32 -0.31 ± 0.46 -0.51 ± 0.22 -0.57 ± 0.43 -0.30 ± 0.34 -0.25 ± 0.48 -0.47 ± 0.21 -0.41 ± 0.46 -0.47 ± 0.27

DDSPure -0.15 ± 0.61 -0.34 ± 0.23 -0.05± 0.59 -0.38 ± 0.19 -0.08± 0.54 -0.39 ± 0.20 -0.16 ± 0.59 -0.49 ± 0.23 -0.19 ± 0.59 -0.43 ± 0.23 -0.12 ± 0.59 -0.37 ± 0.21 -0.22 ± 0.55 -0.41 ± 0.24

GrIDPure -0.10 ± 0.59 -0.20± 0.23 -0.21 ± 0.58 -0.16± 0.23 -0.13 ± 0.55 -0.25± 0.25 -0.23 ± 0.52 -0.25± 0.25 -0.09± 0.54 -0.18 ± 0.26 -0.03± 0.59 -0.22 ± 0.26 -0.24 ± 0.56 -0.13 ± 0.28

IMPRESS -0.15 ± 0.58 -0.53 ± 0.24 -0.16 ± 0.60 -0.49 ± 0.31 -0.29 ± 0.60 -0.64 ± 0.13 -0.34 ± 0.58 -0.29 ± 0.30 -0.34 ± 0.56 -0.34 ± 0.31 -0.16 ± 0.58 -0.21 ± 0.28 -0.10± 0.59 -0.43 ± 0.25

Ours 0.23∗ ± 0.47 0.65∗ ± 0.21 0.09 ± 0.48 0.62∗ ± 0.15 0.09∗ ± 0.49 0.63∗ ± 0.19 0.38∗ ± 0.38 0.58∗ ± 0.27 0.29∗ ± 0.44 0.67∗ ± 0.20 0.24∗ ± 0.49 0.63∗ ± 0.19 0.31∗ ± 0.43 0.66∗ ± 0.25
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Table 7: Purification faithfulness under various similarity metrics.

Settings LPIPS ↓ SSIM ↑ MS_SSIM ↑ PSNR ↑ Avg(IMS,Q) ↑
IMPRESS 0.451 0.761 0.903 49.294 -0.63
DDSPure 0.384 0.805 0.873 46.948 -0.65
GrIDPure 0.429 0.754 0.794 41.976 -0.48

L.DiffPure-∅ 0.450 0.676 0.732 43.551 -0.82

Code ✓ + SR ✓ 0.271 0.824 0.925 49.937 0.385
Code ✓ + SR ✗ 0.231 0.891 0.952 52.49 0.339
Code ✗ + SR ✓ 0.270 0.790 0.923 49.591 0.225

Noisy Generation LatentDiffPure-∅ LatentDiffPure DDSPure GrIDPure IMPRESS CodeSR

Figure 8: Visualization of post-hoc purification on noisy outputs of PDMs trained without input
cleaning on protected images.

terms of robustness and generation quality that our method provides. While our framework demon-
strates robustness against various adaptive perturbations, we acknowledge that more sophisticated
protection techniques may emerge. For instance, our red-teaming setup currently focuses on noise-
based protective perturbations, but object-embedded perturbations (Zhu et al., 2024) could potentially
resist our noise-concept-based CDL prompt design. Additionally, to counter our purification pipeline,
future protection techniques could explore more advanced ensemble methods (Chen et al., 2022).

Discussion on Broader Impact. Our work on red-teaming existing protective perturbations raises
ethical considerations, particularly regarding privacy and intellectual property rights. While our
methods could potentially compromise images protected by existing protective perturbations, we
believe that the benefits of this research outweigh the potential risks. First, our research helps prevent
a false sense of security by revealing limitations in existing protective measures. This transparency
enables portrait owners and artists to make more informed decisions about protecting their content.
Furthermore, the insights gained from our analysis can inform the development of next-generation
protection techniques that are more resilient against sophisticated red-teaming, thereby strengthening
privacy and copyright safeguards in the long term.

B.6 PURIFICATION ON NOISY OUTPUTS

We additionally investigate whether post-hoc purification can effectively clean up the noisy outputs
generated by PDMs trained without any defense. In the pixel domain, we observe that these generated
images contain significant distortions manifesting as mosaic-like patterns and irregular fragmentation
overlaid on the person’s identity. As shown in Fig. 8, applying various state-of-the-art purification
methods as denoisers fails to effectively remove these semantic distortions, indicating that once the
model learns to generate distorted outputs, simple post-processing cannot restore clean image quality.

C CAUSAL ANALYSIS OF LEARNING PERSONALIZED DIFFUSION MODELS ON
PERTURBED DATA

C.1 CONSTRUCTION OF THE CAUSAL GRAPH WHEN LEARNING PDMS ON PERTURBED DATA

To understand how protective perturbations lead to shortcut learning in PDMs, we construct a
Structural Causal Model (SCM) that captures the learned causal relationships between the variables
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Figure 9: More visualization on the learned personalized and noise concepts from trained models
with and without CDL. With concept extraction, we examine that using CDL successfully decouples
the original noise pattern spuriously linked to personalized tokens V∗ to the noise tokens V∗

N .

involved in the fine-tuning process. The variables in our SCM are defined as follows: X0 represents
the original clean images representing the true concept; ∆ denotes the protective perturbations
added to the images; X ′

0 = X0 +∆ are the perturbed images used for fine-tuning; c represents class-
specific textual prompts without the unique identifier (e.g., “a photo of a person”); V∗ is the unique
identifier token used in personalized prompts (e.g., “sks”); cV

∗
= c⊕ V∗ denotes the personalized

textual prompts combining c and V∗; θT represents the model parameters after being fine-tuned. The
structural equations governing the relationships in our SCM are as follows: (1) Perturbed Images:
X ′

0 = X0 +∆, where X ′
0 represents the perturbed images, X0 the original clean images, and ∆ the

protective perturbations. (2) Model Fine-tuning: θT = fθ(θ0, X
′
0, c

V∗
, X̄0, c̄), where θT represents

the fine-tuned model parameters, θ0 the initial model parameters, cV
∗

the personalized text prompts,
X̄0 and c̄ the image and prompt of class-specific dataset to help model maintain class prior. For our
case of fine-tuning on human portrait, the X̄0 is the person images from different identities, and c̄ is
set as “a photo of a person”. After θT has been fine-tuned, it learns the latent causal relationship V∗

→ X ′
0 with conditioning mechanism through prompt-image association.

Based on these equations, we construct a causal graph shown in Fig. 2 (a) and Fig. 9 (a) following the
conventions in causal inference. In the graph, we define each node to represent one of the elements
for the learned causation: independent variables (i.e., text prompts, and unique identifier), dependent
variables (i.e., perturbed identity images, general face images), or intermediate variables like prompt
composited. We define each edge to represent the causal unidirectional dependency between the
variables. For those prompt composition edges, the relationship is simply the concatenation operation
in the textual space. For those prompt-image association edges, the relationship is defined as the
causation learned by the model θT . For the edges between ∆ and X ′

0, it is defined as the direct effect
of the perturbations on the original clean images, X ′

0 = X0 +∆. Similar to the confounder in causal
inference, we can see from the graph that the perturbation ∆ induces a shortcut connection from the
unique identifier V∗ to the noisy concept ∆. Note that in the context of backdoor learning through
causal inference, such confounder is termed trigger or backdoor variable (Zhang et al., 2023c; Liu
et al., 2024a). Different from the backdoor scenario, our case of protective perturbation introduces
confounding variables on the learning target side instead of on the input side in backdoor attacks.

C.2 CONNECTION OF OUR DESIGN TO CAUSAL INTERVENTION

Our red-teaming strategies can be interpreted as interventions that modify the causal graph to weaken
or eliminate the undesired shortcut connection between V∗ and the noisy concept ∆.
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Input Purification aims to mitigate the effect of adversarial perturbations, but it’s important to note
that this process is not perfect. In the context of our causal model, we can represent this imperfect
purification as:

X ′
0 = X0 +∆→ X ′

0 = X0 +∆r, (7)
where ∆r represents the residual perturbations after purification, with ∥∆r∥ ≪ ∥∆∥. This interven-
tion partially weakens the path from ∆ to X ′

0, and consequently to θT and X0. The distribution of
the model outputs given this imperfect purification can be expressed as:

P (X0 | do(∆ = ∆r), x0, c
V∗

). (8)
While input purification reduces the influence of adversarial perturbations on the fine-tuning process
and subsequent image generation, it does not completely eliminate the shortcut learning problem.
This limitation motivates the need for additional strategies to mitigate shortcut learning further.

Contrastive Decoupling Learning (CDL) intervenes on the potential shortcut V∗ → ∆ by introduc-
ing a noise identifier V∗

N . By augmenting the instance prompts to include a noise identifier (e.g., “a
photo of V∗ with V∗

N noisy pattern”) and augmenting the class prompts to exclude it (e.g., “a photo
of a person without V∗

N noisy pattern”), CDL encourages the model to disentangle the learning of the
personalized concept from the noise patterns. Specifically, inherently, the model learns two clearer
associations, V∗

N → ∆, and V∗ → X0. By defining the variable that represents "without V∗
N " as

V̄∗
N , we can further compose a intervened causal graph as shown in Fig. 2 (b) and Fig. 9 (b). We use

orange color to highlight the main intervened node and edges in the graph. From the results in Fig. 9,
we see that the decoupling process enables the model to learn two concepts separately, including
the personalized concept and the noisy pattern. Furthermore, during the sampling stage, we apply
classifier-free guidance (CFG) to further improve the quality of the generated images. It modifies
the generation process by incorporating negative prompts during inference, thereby adjusting the
output equation to g′(θT , c[V

∗,V̄∗
N ], cneg), where g′ is the modified generation function and cneg are

negative prompts (e.g., “noisy, abstract, pattern, low quality”). We guide the model to generate
images that don’t contain any noisy pattern associated with V∗

N in the prompt input. This step acts
as an intervention on the generation mechanism, reducing the influence of any residual associations
between ∆ and the outputs. Although it is more of a practical adjustment than a formal causal
intervention, it helps steer the model toward generating high-quality images that reflect the clean
personalized concept.

In summary, by combining these strategies, we provide a comprehensive approach to mitigate shortcut
learning in PDMs. Input purification directly removes the influence of adversarial perturbations,
and our CDL further reduces potential left-over spurious associations during training. In the final
sampling phase, we use CFG to guide the model generation process by discouraging undesired
artifacts and encouraging the generation of high-quality images that reflect the personalized concept.

D IMPLEMENTATION OF BASELINES

D.1 PURIFICATION METHODS

We implement two classes of purification approaches; the first ones are model-free and operate
with certain image processing algorithms, such as Gaussian Filtering, total variation minimization
(TVM), and JPEG compression. Despite the simplicity, researchers found that these approaches can
achieve non-trivial defense performance against adversarial attacks (Liang et al., 2023), availability
attacks (Liu et al., 2024b; Van Le et al., 2023), and more general data poisoning attacks (Huang
et al., 2020). Another line of approach is based on powerful diffusion probabilistic models, which
have a strong ability to model real-world data distribution and also show potential in being leveraged
for zero-shot purifiers Shi et al. (2024); Zhao et al. (2024a); Carlini et al. (2022); Cao et al. (2024).
We include a wide range of SoTA diffusion-based purification approaches that are designed for the
protective perturbation specifically, including GrIDPure (Zheng et al., 2023), IMPRESS (Cao et al.,
2024), or those are proposed for more general adversarial perturbation (Nie et al., 2022; Carlini
et al., 2022), including DiffPure (Nie et al., 2022) (with pixel-space diffusion models or latent-space
diffusion models), DDS-based purification (DDSPure) (Carlini et al., 2022; Hu et al., a).

1. Gaussian Filtering. Gaussian Filtering is a well-known image-processing technique used to
reduce image noise and detail by applying a Gaussian kernel. The high-frequent part in adversarial
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perturbation can be smoothed after filtering. The kernel size is set as 5 following (Van Le et al.,
2023).

2. Total Variation Minimization (TVM) (Wang et al., 2020) The main idea of TVM is to conduct
image reconstruction based on the observation that the benign images should have low total variation.
We implemented the TVM defense in the following steps: we first resized the instance image to 642

pixels, applied a random dropout mask with a 2% pixel dropout rate, and solved a TVM optimization
problem. The optimization aims to reconstruct the image by minimizing the difference between
the original and reconstructed images while enforcing smoothness through the total variation term:
minZ ||(1−X)⊙ (Z−x)||2+λTV TV2(Z). After optimization, the reconstructed image is reshaped
back to 642 and then upsampled to 5122 through two SR steps with a middle resizing process.

3. JPEG Compression. It involves transforming an image into a format that uses less storage space
and reduces the image file’s size. We set the JPEG quality to 75 following (Liu et al., 2024b).

4. DiffPure (Nie et al., 2022). Diffusion Purification (DiffPure) first diffuses the adversarial
example with a small amount of noise given a pre-defined timestep t following a forward diffusion
process, where the adversarial noise is smoothed and then recovers the clean image through the
reverse generative process. Depending on the type of diffusion model used, this simple yet effective
approach can be adapted into two versions: PDM-based DiffPure and LDM-based DiffPure. In
our implementation, we term the PDM-based DiffPure as PixelDiffPure for short and leverage
256x256_diffusion_uncond pre-trained on ImageNet released in the guided-diffusion
following common practice. For the LDM-based DiffPure, we term it as LatentDiffPure since the
diffusion process is conducted in latent space and leverage Stable Diffusion v1-4 (Rombach et al.,
2022) for its superior performance. Since the SD model has the ability to input additional text prompts
during the purification process, we investigate two variants with and without the usage of purified
text prompting. For LatentDiffPure-∅, we set the text to null, while for LatentDiffPure, we set it as
“a photo of [class_name], high quality, highres”.

5. DDSPure (Carlini et al., 2022). Similar to DiffPure (Nie et al., 2022), the main idea behind
Diffusion Denoised Smoothing (DDS) is to find an optimal timestamp that can maximally remove the
adversarial perturbation via the SDEdit process (Meng et al., 2021). Given smoothing noise level δ,
the optimal timestamp t∗ is computed via, t∗ = 1−ᾱt

ᾱt
= σ2. Following common practice, we leverage

the pretrained diffusion model on ImageNet released in the guided-diffusion. Specifically, the
256x256_diffusion_uncond is used as a denoiser. To resolve the size mismatch, we resize
the images to fit the model input and resize the image size back after purification. And we clip t∗
when it falls outside the sampling step range of [0, 1000].

4. GrIDPure (Zheng et al., 2023). GrIDPure notices that for purification in defending protective
perturbation, conducting iterative DiffPure with small steps can outperform one-shot DiffPure
with larger steps. Furthermore, it suppresses the generative nature during diffusion purification by
additionally splitting the image into multiple small grids that are separately processed with a final
merging process. This allows the model to focus more on purifying those perturbed textures and
curves in the image without mistakenly affecting the overall structure, thus preserving the faithfulness
of purification.

Algorithm 2 GrIDPure

Input: Input image x0, number of iterations N , time-stamp t, grid size g, stride s, merging weight γ
Output: Purified image xN

1: for i = 0 to N − 1 do
2: Split xi into grids of size g × g with stride s
3: for each grid xi,j do
4: Apply DiffPure with time-stamp t to obtain x̃i,j

5: end for
6: Merge all x̃i,j to obtain x̃i, averaging pixel values in overlapping regions
7: xi+1 = (1− γ) · x̃i + γ · xi

8: end for
9: return xN
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Given an input image size of 512× 512, we implement the GrIDPure algorithm as follows with the
hyper-parameter recommended in the original paper. We first obtain multiple grids using a sliding
window approach. The window size is 256× 256, and the stride is 128. For each 256× 256 grid, we
apply DiffPure with a time-stamp of t = 10. After all the grids are denoised, they are merged back
into a single image. In the overlapping regions, the pixel values are averaged. Given γ as 0.1, the
purified image is then obtained via a moving average with the original image,

xi+1 = (1− γ) · x̃i + γ · xi. (9)

These steps constitute one iteration, and the algorithm is repeated for a total of 10 iterations. We
implement the GrIDPure algorithm following their official implementation.

6. IMPRESS (Cao et al., 2024) The key idea of IMPRESS is to conduct purification that ensures
latent consistency with visual similarity constraints: (1) the purified image should be visually
similar to the perturbed image, and (2) the purified image should be consistent upon an LDM-based
reconstruction. To quantify the similarity condition, IMPRESS uses the LPIPS metric (Zhang et al.,
2018), which measures the human-perceived image distortion between the purified image xpur and
the perturbed image xptb. The loss is defined as max(LPIPS(xpur,xptb)−∆L, 0), where ∆L is the
perceptual perturbation budget. For the consistency condition, IMPRESS simplifies the loss by
removing the diffusion process and defines it as ||xpur −D(E(xpur))||22, where E and D are the image
encoder and decoder in the LDM, respectively. The final optimization problem combines the two
losses:

min
xpur
||xpur −D(E(xpur))||22 + α ·max(LPIPS(xpur,xptb)−∆L, 0), (10)

where α is a hyperparameter to balance the two losses, which is set as 0.1. The optimization is solved
with PGD (Madry et al., 2018) with Adam optimizer with lr of 0.001, and the total iteration is set as
3000.

D.2 PROTECTIVE PERTURBATION METHODS

We test a wide range of protective perturbation approaches, including those that craft noise against
fixed LDMs by exploiting the out-of-distribution adversarial vulnerability of DNNs (Liang et al.,
2023; Liang & Wu, 2023; Xue et al., 2023; Salman et al., 2023; Shan et al., 2023), and those that
jointly and alternatively learn the noise generator and perturbation (Van Le et al., 2023; Liu et al.,
2024b; Xu et al., 2024), which show better protection capacity for the LDM fine-tuning settings
(Kumari et al., 2023; Ruiz et al., 2023).

Fully-trained Surrogate Model Guidance (FSMG). Following (Shan et al., 2020; Yeh et al., 2020),
FSMG employs a surrogate DreamBooth model with original parameters θclean fully finetuned on a
small subset of clean samples XA ⊂ X . We implement the subset with the same identity to maximize
the protection capability. Using θclean as guidance, we find the optimal noise for each target image:
δ∗(i) = argmaxδ(i) Lcond(θclean, x

(i) + δ(i)), where Lcond is the conditional denoising loss. This
encourages any DreamBooth model finetuned on the perturbed samples to deviate from θclean and
generate low-quality images.

Alternating Surrogate and Perturbation Learning (ASPL). Since FSMG fails to effectively solve
the underlying bi-level optimization, inspired by Huang et al. (2021), ASPL further alternates the
training of the surrogate DreamBooth model with perturbation learning. The surrogate model ϵθ is
initialized with pre-trained weights. In each iteration, a clone ϵ′θ′ is finetuned on clean reference data
to simulate the learning trajectory on potential leaked clean data. This model is then used to expedite
learning adversarial noises δ(i) with denoising-error-maximization in the current loop. Finally, ASPL
updates the actual surrogate model ϵθ on the updated adversarial samples with gradient descent and
proceeds to the next iteration. This procedure allows the surrogate model to mimic better the models
trained by malicious DreamBooth users, as it is only trained on perturbed data.

Ensemble-based ASPL (EASPL). Since the model trainer’s pre-trained text-to-image generator is
often unknown, an improved approach is to use an ensemble (Cherepanova et al., 2021; Yang et al.,
2021) of surrogate models finetuned from different pre-trained generators, which can lead to better
transferability. We implement this approach with three surrogates. Besides, we follow the practice of
a single model at a time in an interleaving manner to produce optimal perturbed data due to GPU
memory constraints.
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MetaCloak. Despite the effectiveness of perturbation crafted from noise-surrogate joint learning,
studies find that these approaches lack robustness against simple data transformations such as minor
Gaussian filtering. To address this issue, MetaCloak (Liu et al., 2024b) solves the underlying bi-level
poisoning problem using a meta-learning framework with an additional transformation sampling pro-
cess to craft transferable and robust perturbations. Incorporating an additional transformation process
and a denoising-error maximization loss brings severe performance degradation in a generation.

PhotoGuard. PhotoGuard (Salman et al., 2023) mainly focuses on the setting of malicious editing
where the diffusion models are fixed. It introduces two target-adversarial-perturbation-based (TAP-
based) approaches: encoder attack and diffusion attack. The encoder attack adds a perturbation δenc
to an image x such that the image encoder E produces a closer latent representation for x+ δenc and
a target image xtarget. The diffusion attack crafts a perturbation δdiff such that the LDM-reconstructed
images based on the input are closer to some xtarget. The diffusion attack considers the whole LDM
model with prompts, achieving better empirical performance but being less efficient compared to the
encoder attack.

GLAZE. GLAZE (Shan et al., 2023) mainly focuses on artwork protection and aims to add per-
turbations to an artist’s artworks such that LDMs cannot learn the correct style from the perturbed
artworks. Similar to the TAP-based encoder attack in PhotoGuard, it first chooses a target style T
sufficiently different from the style of the original image x. Then, it transfers x to the target style
using a pre-trained style transfer model Ω. Given the style-transferred image Ω(x, T ), GLAZE crafts
the perturbation δGLAZE by minimizing the distance between the encodings of Ω(x, T ) and x + δ
while regularizing the perceptual distortion using LPIPS. This encourages LDMs to generate samples
with the target style instead of the original style when learning from the perturbed images.

AdvDM. Different from the above targeting attack, AdvDM (Liang et al., 2023) is proposed to
optimize the adversarial perturbation in an untargeted and denoising-error-maximizing way. In detail,
instead of learning a perturbation over one single reserve process, AdvDM learns the Monte-Carlo
estimation of adversarial perturbation by sampling across all t to maximize the denoising loss.

E MORE RELATED WORK AND DISCUSSIONS

E.1 BACKDOOR ATTACKS AND DEFENSES.

Backdoor Attacks and Defenses in Diffusion Models. Backdoor attacks have emerged as a critical
security threat to deep learning models, where malicious actors inject hidden functionalities during
training that can be triggered during inference to manipulate model outputs. In the context of diffusion
models, recent works have demonstrated their vulnerability to backdoor attacks through various
approaches. Chou et al. (2022) first showed how to engineer compromised diffusion processes during
training for backdoor implantation. Following studies explored more sophisticated attack approaches:
Chou et al. (2023) presented a unified framework for attacking both conditional and unconditional
diffusion models, while Li et al. (2024b) developed invisible triggers to enhance attack stealthiness.
For text-to-image models specifically, Zhai et al. (2023) demonstrated backdoor attacks through
multimodal data poisoning, and Huang et al. (2023) exploited model personalization as an attack
approach. Several defense mechanisms have been proposed, including textual perturbations (Chew
et al., 2024), distribution shift-based detection (An et al., 2023), and unified defense frameworks like
T2IShield (Wang et al., 2024b) and TERD (Mo et al., 2024). The rapid development of both attacks
and defenses highlights the ongoing arms race in securing diffusion models against backdoor threats.

Difference between Protective Perturbations and Backdoor Attacks. While protective perturba-
tions in our problem share many similarities with backdoor attacks, they are fundamentally different.
First, while they are both targeting implant some hidden and spurious correlation during the model
learning process, particle backdoor attacks in diffusion models mainly focus on injecting backdoor
triggers into the textual prompt part, while protective perturbations only alter the target image side
without any explicit textual trigger added. Second, the backdoor attacks usually seek to maintain the
model performance on normal queries, while the goal of protective perturbations is to degrade the
model’s overall performance in generating the target identity. Thirdly, backdoor attacks in diffusion
models usually focus on the optimization of the model itself θ instead of crafting the perturbation
δ in the input side as protective perturbations do. The backdoored model is learned to balance the
maintenance of utility on normal queries and attack successful rate on the trigger queries, while the
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protective perturbation usually operates on the input side, seeking to find transferable and robust
perturbation that can fool a wide range of surrogate models.

Causality-based Backdoor Defense and Detection. Recent works have started exploring causality-
based approaches to defend against and detect backdoor attacks. From a causal perspective, backdoor
attacks can be viewed as confounders that introduce spurious correlations between input features
and model predictions. Early works focused on using causal inference to analyze the robustness and
effectiveness of existing backdoor defenses (Qiu et al., 2022). More recent approaches leverage causal
reasoning to develop new defense mechanisms. For example, Min et al. (2024) reveals that current
safety purification methods are vulnerable to rapid re-learning of backdoor behavior and proposes
Path-Aware Minimization to improve post-purification robustness. Khaddaj et al. (2023) shows that
without structural information about training data distribution, backdoor attacks are indistinguishable
from naturally occurring features and develop a new detection primitive based on the assumption
that these attacks correspond to the strongest feature in training data. A recent black-box detection
approach termed Causality-based Black-Box Backdoor Detection (CaBBD) (Hu et al., b) models
backdoor attacks as confounders and uses counterfactual samples as interventions to distinguish
backdoor samples from clean ones. By progressively adding noise to generate these counterfactuals,
the method achieves strong detection performance while maintaining inference efficiency.

A notable recent work in this direction is the Causality-inspired Backdoor Defense (CBD) (Zhang
et al., 2023c). CBD approaches the problem by modeling the backdoor attack as a confounder in
a causal graph, where the attack creates spurious paths between input images and predicted labels.
The key insight is that while humans can distinguish causal relations from statistical associations,
deep learning models tend to learn both without discrimination. CBD proposes a novel defense
framework that learns de-confounded representations through (1) intentionally training a model to
capture backdoor correlations, (2) training a clean model that minimizes mutual information with
the backdoored model’s representations, and (3) employing information bottleneck and sample re-
weighting strategies to help the clean model focus on causal effects. Another significant advancement
in causality-based defense is the Front-door Adjustment for Backdoor Elimination (FABE) (Liu et al.,
2024a). Unlike CBD which focuses on backdoor confounders, FABE introduces a novel front-door
adjustment approach specifically designed for language models. The key innovation is using a
defense language model to generate semantically equivalent texts that serve as front-door variables,
effectively breaking the spurious correlations introduced by backdoor attacks. FABE operates without
requiring knowledge of trigger types by leveraging three key components: (1) a module for sampling
front-door variables through instruction-tuned language models, (2) a causal effect estimation module
for front-door adjustment formula, and (3) a gradient-based optimization for the front-door variables.

Comparison with Zhang et al. (2023c) and Liu et al. (2024a). Our work and these works both
leverage causality-based perspectives to defend or red-teaming the perturbation. However, the
problem and techniques in our work are fundamentally different from these two works. First, in terms
of the problem, CBD and FABE both focus on the classification task, either image classification or text
classification, where the backdoor spurious path is established between the model input X and class
label prediction Y . For our task, we are tackling the personalized generation task, where the LDMs
are fine-tuned to link a unique identifier V∗ to a new subject concept X0. In the backdoor attack
case, the attacker aims to introduce a confounder A variable at the input side to trigger certain label
prediction Y ′, while in our case, the image protector only modifies the learning target X ′

0 = X0 +∆
but do not explicitly add any trigger at the input side, which serves as the confounder in backdoor
attack case. Thus, considering the difference in the threat model, the defense techniques in backdoor
case, such as CBD and FABE, focus more on removing the confounder in the input side, while the
defense in our case focuses on the prediction side, by reinforcing the causal path between the unique
identifier V∗ and the clean target concept X0.

Second, in terms of techniques, both CBD and FABE only focus on one perspective on causal
intervention, while our work proposes a unified framework that conducts both do-calculus (i.e.,
removing the injected variable or purification) and decoupling learning. Specifically, CBD assumes
that the correlations A→ Y can be well captured by an early-stop model fB , and CBD learns the
clean model fC : X → Y by minimizing the mutual information between the embedding from
fB and fC . Compared to this feature space decoupling learning, our work operates the prompt
augmentation side, which can be more efficient and end-to-end. Specifically, we observe the fact that
the class-specific image doesn’t contain any perturbation, while the instance image might contain the
perturbation. Thus, we introduce a new noise identifier V∗

N and append it to two different datasets
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with different prefixes “with” and “without” to achieve contrastive decoupling learning without any
need to access the model weights and tuning any early stopping hyper-parameters as in CBD.

Similar to the purification part in our work, FABE mainly focuses on conducting semantic denoising
on the original textual input to approximately achieve the do-calculus from the causal intervention
perspective. Specifically, FABE denoise the X to semantically equivalent text Z, with a fine-
tuned language model. The fine-tuned language model learns to rank that effective Z that removes
confounder A, i.e., the backdoor trigger. Then, the prediction is conducted via voting over a pool
of sampled Z to achieve a clean prediction of Y . Compared to FABE, our purification pipeline
for protective perturbation is more direct and flexible, without the need to fine-tune an additional
model. Meanwhile, FABE requires unrolling B semantic candidates using beam search, which can
be computationally expensive especially when context length L is large. In contrast, we leverage
off-the-shelf image restoration and super-resolution models to conduct one-shot efficient purification.

E.2 OTHER DIRECTIONS TOWARD DATA COPYRIGHT PROTECTION

Digital Watermarking. Digital watermarking is one of the most widely adopted approaches for
protecting the intellectual property rights of digital content. It involves embedding identifying
information (watermarks) into the target data in a way that is difficult to remove while maintaining
the utility of the data (Saini & Shrivastava, 2014). Recent advances in deep learning have led to more
sophisticated watermarking techniques. For instance, Zhang et al. (2023b) proposed EditGuard, a
versatile framework that enables both tamper localization and copyright protection through spatial
watermark embedding. Saberi et al. (2024) introduced DREW, which leverages error-controlled
watermarking for robust data provenance. The key challenges in watermarking include achieving
robustness against various attacks while maintaining imperceptibility and data utility.

Source Attribution. Data attribution enables the data owners to trace and verify the influence of
their data on model outputs, providing a crucial mechanism for intellectual property protection
in the era of generative AI. Traditional approaches often relied on watermarking techniques (Cui
et al., 2023; Peng et al., 2023), which can be fragile against model modifications. More recent work
has focused on developing robust attribution methods that can withstand various transformations
while maintaining high detection accuracy. For instance, Singla et al. (2023) proposed an efficient
baseline using self-supervised learning features that achieves strong attribution performance with
significantly reduced computational overhead compared to previous ensemble-based methods. Wang
et al. (2023b) introduced a comprehensive framework for evaluating attribution methods in text-
to-image models, considering the inherent uncertainty in the attribution process. To address the
challenges of scalability and personalization, Li et al. (2024a) developed an integrated approach
combining proactive watermarking with passive detection for tracing generated content back to its
source. These advances in attribution technology not only protect intellectual property rights but also
create incentives for content owners to share their data (Ren et al., 2024). The emergence of libraries
like dattri (Deng et al., 2024b) has further standardized and simplified the implementation of
attribution methods, making them more accessible to practitioners.

Model Unlearning. With increasing privacy concerns and regulations like GDPR’s "right to be forgot-
ten", model unlearning has emerged as a crucial technique for removing specific data points’ influence
from trained models (Liu et al., 2024c). Unlike traditional retraining approaches, efficient unlearning
methods aim to selectively eliminate the impact of certain training samples while preserving model
performance on remaining data. Recent works like Panda et al. (2024) proposed partially blinded
unlearning from a Bayesian perspective, while Zhao et al. (2024b) developed pseudo-probability
unlearning for efficient and privacy-preserving removal of training data influence.

Membership Inference Attacks. Membership inference attacks attempt to determine whether
specific data points were used in training a model, posing privacy risks to training data (Shokri et al.,
2016). To protect against such attacks, various defense mechanisms have been proposed. Bernau
et al. (2019) investigated the effectiveness of differential privacy in preventing membership inference,
while Shateri et al. (2023) focused on preserving privacy in GANs against these attacks. Recent work
by Laszkiewicz et al. (2023) explored the connection between data watermarking and set-membership
inference, highlighting the interplay between different protection mechanisms.
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