
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ARCHITECTURAL INDUCTIVE BIASES CAN BE ENOUGH
FOR STATE ABSTRACTION IN DEEP REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The ability to ignore task irrelevant environment variables is central to intelligent
behavior. In reinforcement learning (RL), existing methods typically rely on
auxiliary objectives to learn similar forms of abstraction. Such objectives tend to
add significant complexity to the base RL algorithm. In this work, we take a step
back and ask: can selective abstraction emerge naturally from reward optimization
alone, without any additional objectives? Following prior work, we show that
standard deep RL learns slowly or not at all in the presence of distracting, task-
irrelevant state variables, failing to learn meaningful state abstractions. We then
introduce a surprisingly simple neural network architecture change: a learnable,
observation-independent attention mask applied to the inputs of the policy and
value networks and trained end-to-end using only the RL objective. Despite its
simplicity, this architectural modification consistently improves sample efficiency
and learns to mask out distracting input variables across 12 continuous control
tasks. We analyze the dynamics of gradient descent using this method on a linear
regression task and demonstrate improved feature credit assignment. Finally, we
conduct experiments on toy MDPs and show that the attention mask leads to
accurate Q-value estimation and induces soft abstractions over a factored state
space. Our findings challenge the need for complex auxiliary objectives to learn
state abstractions in deep RL and suggest a simple baseline for future research.

1 INTRODUCTION

In complex environments, reinforcement learning (RL) agents observe a wide range of environment
variables of which only a subset are relevant for decision-making. For example, a household robot may
simultaneously perceive furniture, humans, ambient sound levels, lighting conditions, temperature,
and floor texture, yet only certain features contribute meaningfully to its task at hand. This abundance
of candidate features is a challenge for RL algorithms without prior knowledge of which variables
are relevant. RL algorithms without such prior knowledge can learn policies and value functions that
incorrectly depend upon task irrelevant variables and consequently fail to learn efficiently (Wang
et al., 2024).

In order to identify and discard task-irrelevant state variables, prior work has introduced various
auxiliary objectives to provide learning signals beyond the reward alone. These include metrics
that quantify state similarity based on reward and transition dynamics (Zhang et al., 2020; Castro
et al., 2021) and learning through causal reward modeling (Wang et al., 2024). However, the role
of architectural choices in enabling or shaping state abstraction has received comparatively little
attention. Motivated by this gap, we aim to answer the following question:

Are architectural choices and the RL objective alone sufficient to learn abstract state representations?

In this work, we show that the answer can be yes. Building on the framework of Wang et al. (2024),
we investigate the capacity of neural networks to suppress distracting input variables. We first reaffirm
that standard architectures used for continuous control benchmarks, such as multi-layered perceptrons
(MLPs), learn slower in the presence of such distractors, as prior work has also shown (Wang et al.,
2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We then introduce a learnable attention mask applied to the inputs of the neural network. Our
approach draws inspiration from prior work on masking mechanisms, which have been integrated into
various architectures and shaped using diverse optimization objectives (Wang et al., 2024; Wu et al.,
2021; Grooten et al., 2023; Salter et al., 2021). However, a key distinction lies in the nature of the
masking: existing methods are typically context-dependent, suppressing features only locally when it
negatively affects performance, whereas we use a simpler observation-independent mask. Moreover,
there has been limited empirical or theoretical inquiry into why distractors are so detrimental or
how such seemingly minor architectural modifications can produce substantial gains in performance.
Saxe et al. (2019) show that MLPs experience a loss in mutual information between distracting
inputs and hidden layers of an MLP, but not enough to consistently recover optimal performance
in MuJoCo control tasks, as we demonstrate. We provide insight into this phenomenon from two
complementary perspectives. First, we perform a gradient dynamics analysis of stochastic gradient
descent updates in-expectation for linear models with and without attention-based masking. We show
that the detrimental effects of distractors and the benefits of bounded masking extend beyond RL to
general function approximation. Second, using a Deep Q-Network (DQN) (Mnih et al., 2015) trained
on randomly generated toy MDPs adapted from Yang et al. (2022), we show that even in non-linear
regimes, our method yields statistically significantly better estimates of the optimal Q-value function
compared to vanilla MLPs.

Together, our findings show that an architecture inductive bias, driven solely by the reward signal, is
sufficient to give rise to an abstract state representation. These findings question the need for auxiliary
losses to induce appropriate state abstraction.

2 RELATED WORK

In this section, we review the significant literature on learning state abstractions, abstract state
representations, and handling distracting inputs in deep RL.

2.1 LEARNING APPROXIMATE STATE ABSTRACTIONS

Bisimulation (Givan et al., 2003) formalizes exact abstraction by grouping states that have behaviorally
indistinguishable dynamics. In contrast, MDP homomorphisms (Ravindran, 2004) define a more
flexible surjective mapping from ground to abstract states that preserves rewards and transition
structure in expectation, allowing dissimilar states to be merged as long as abstract behavior remains
approximately faithful. In subsequent work, Dean et al. (2013) relaxed the exact equivalence of
bisimulations to aggregate states that behave approximately the same in a factored representation of a
bounded parameter MDP. Taylor et al. (2008) relate MDP homomorphisms with lax bisimulation and
devise a metric on states to provide approximation guarantees. Abel et al. (2016) show that the error
in behavior due to approximate abstractions is polynomially bounded, while approximation does not
require solving the exact MDP and allows for a greater degree of compression and tunable strictness
of abstraction. Li et al. (2006) provide a unifying framework for different types of abstractions and
show that under certain conditions, approximate abstractions can still lead to near-optimal policies,
motivating the study of lossy but useful state representations. We extend this line of work by showing
that graded abstractions can be induced implicitly through end-to-end learning in RL. Auxiliary losses
based on bisimulation metrics (Ferns et al., 2004) have been introduced to shape the feature space such
that the distance between two states’ representations reflects their behavioral similarity in the MDP
(Zhang et al., 2020; Castro et al., 2021). Other approaches such as DeepMDP (Gelada et al., 2019),
learn a latent MDP model by predicting both rewards and next-state distributions in latent space.
These objectives ensure that states with dissimilar transitions or rewards are embedded distinctly,
thereby preserving bisimulation-based structure. In contrast, we show that an appropriately biased
architecture can eliminate the need for such auxiliary supervision, learning task-aligned abstractions
solely through interaction and reward feedback.

2.2 HANDLING DISTRACTIONS IN DEEP RL

A common approach to studying distractors in RL involves appending irrelevant variables to state
observations. Our work builds on the setup of Wang et al. (2024), who learn a binary mask via causal
and reward models to identify variables that influence dynamics or reward, yielding bisimulation-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

consistent abstractions. Much of the prior work on distractors focuses on visual domains. The DMC
Distracting Control Suite (Stone et al., 2021) adds noise through camera variation and background
motion. In this setting, Zhou et al. (2023) use sequential reward prediction to shape representations,
while Liu et al. (2023) use bisimulation distances and prototype clustering for robustness. Our work is
related to approaches that leverage architectural attention: Bramlage and Cortese (2022) incorporate
self-attention into policy and value networks; Mott et al. (2019) introduce a recurrent attention model
using key-query-value attention (Vaswani et al., 2017); and Salter et al. (2021) show its benefits in
noisy visual tasks. Some methods fully decouple distractor suppression from policy learning: Wang
et al. (2021) extract invariant foreground features via keypoint detection, while Wu et al. (2021)
learn input-dependent attention masks through reconstruction, though these are task-agnostic. Most
recently, Grooten et al. (2023) train an observation-conditioned mask using only critic loss. In contrast
to these methods, our approach is solely reward-guided and observation-independent, enabling it
to identify globally relevant features across the entire observation space, those most predictive of
returns.

3 PROBLEM SETTING: FACTORED MDPS WITH TASK-IRRELEVANT
DISTRACTORS

We consider the setup introduced in Wang et al. (2024), where observations are state-based and
contain both task-relevant and task-irrelevant components. We model these environments as factored
MDPs, defined by the tupleM = (S,A, P, r, γ), where s ∈ S denotes the state, a ∈ A the action,
P : S×A× S→ [0, 1] is the transition probability function with P (s′ | s,a) = P(st+1 = s′ | st =
s,at = a), r : S× A→ R is the reward function, and γ ∈ [0, 1) is the discount factor. A stochastic
policy π : S×A→ [0, 1] defines a distribution over actions, such that π(s,a) = P(at = a | st = s).

The state space factorizes as S = Xrel × Xirr. A full state s ∈ S is represented as s = (xrel,xirr),
where xrel ∈ Xrel comprises task-relevant variables that influence both the transition dynamics and
the reward, and xirr ∈ Xirr comprises task-irrelevant distractors that evolve independently and have
no causal influence on either reward or dynamics. Specifically, the transition and reward functions
factor as:

P (s′ | s,a) = P (x′
rel | xrel,a) · P (x′

irr | xirr,a), r(s,a) = r(xrel,a). (1)

In practice, the exact factorization may only hold approximately. In our experiments, we include
a mixture of distractor types: some evolve independently of the agent’s actions (e.g., randomly
sampled or following their own stochastic processes), while others evolve conditionally on the agent’s
actions via P (x′

irr | xirr,a). Crucially, these variables remain irrelevant to both the reward and the
transitions of xrel, thereby they are unnecessary inputs for the optimal policy. This relaxation from
strict independence allows us to simulate more realistic distractor dynamics.

4 STATE ABSTRACTION THROUGH OBSERVATION-INDEPENDENT INPUT
MASKING

Given a standard model-free deep reinforcement learning (RL) algorithm (e.g., SAC Haarnoja
et al. (2018)), we introduce a lightweight architectural module designed to identify and discard
task-irrelevant variables induce task-specific abstraction throughout end-to-end training. Let the
observation space be factored as s = (x1, x2, . . . , xn) ∈ Rn, where each xi represents an individual
state variable. We associate with each variable xi a corresponding learnable parameter ϕi ∈ R,
and collectively define the masking parameter vector ϕ = (ϕ1, . . . , ϕn) ∈ Rn. We initialize these
parameters to zero and share the same mask across all function approximators involved (e.g., the
policy and value networks).

At each training step, we compute a gating vector α = σ(ϕ) ∈ (0, 1)n, where σ(·) is the element-
wise sigmoid activation, and apply it to the input via a Hadamard product: s̃ = α⊙ s. This masked
observation is used as input to both the actor and critic networks.

For actor-critic methods, we found it beneficial to update ϕ using either the actor or critic loss—but
not both. To enforce this, we stop gradients from flowing through the loss not being used. For
instance, if updating via the actor loss only, the critic receives s̃critic = detach(α)⊙ s, while the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

actor receives s̃actor = α⊙ s. The gating parameters are then updated via backpropagation through
the actor loss:

ϕ← ϕ− ηϕ∇ϕLactor(θ,ϕ), (2)

where Lactor(θ,ϕ) denotes the actor loss (e.g., from PPO or SAC), computed with respect to the
policy network parameters θ and the shared masking parameters ϕ. The learning rate ηϕ controls
the step size for updating ϕ. Note that while θ governs the weights of the policy network, ϕ is a
separate parameter vector whose gradients are computed solely through its influence on the masked
input s̃actor.

This setup ensures that ϕ is learned solely from the RL task objective, yielding a soft abstraction
rather than a hard partition over the state space. Since the masking vector α = σ(ϕ) lies in (0, 1)n,
each variable is only partially suppressed, allowing a graded notion of relevance. This continuous
relaxation enables differentiable credit assignment and supports gradient-based optimization. In the
ideal case, the masking vector associates a weight of almost zero with all task-irrelevant inputs and a
weight of almost one with task-relevant variables. In practice, this hard abstraction is not necessarily
recovered but, as we will show, the weights still correctly suppress task-irrelevant variables more and
doing this leads to faster learning in the presence of such variables.

5 DM CONTROL SUITE EXPERIMENTS

To evaluate the effectiveness of our proposed abstraction mechanism, we conduct extensive experi-
ments across a range of continuous control benchmarks. We show that the presence of distractors
in the state space leads to significant performance degradation of SAC, TD3, and PPO in standard
MuJoCo tasks compared to learning without the distractors. We then show that the simple architecture
modification we introduced in the previous section is sufficient to significantly decrease the gap
between the methods. These results show that the RL objective and a simple architecture can be
sufficient for learning in the presence of such distractors.

5.1 EMPIRICAL SETUP

Tasks. Our experiments span 12 continuous control tasks from the DeepMind Con-
trol Suite (MuJoCo): walker-walk, walker-run, cheetah-run, hopper-hop,
hopper-stand, finger-spin, finger-turn easy, finger-turn hard,
fish-swim, fish-upright, reacher-hard, and swimmer-swimmer6. These tasks
cover a broad spectrum of locomotion and manipulation challenges, with varying levels of complexity
in dynamics, control frequency, and reward structure. The diversity of tasks ensures that our findings
are not tied to a narrow class of dynamics or reward functions. Each environment features continuous
state and action spaces.

Distractor Augmentation. The distractor augmented MDP is instantiated using two types of
distractor variables: uncontrollable and controllable (Wang et al., 2024). Let at ∈ Rd denote the
action taken at time step t. Uncontrollable distractors are modeled as noise vectors x(unc)

t ∈ Rdunc ,
sampled independently at each time step:

x(unc)
t ∼ U(µunc − δ,µunc + δ), (3)

where µunc ∈ Rdunc is a fixed bias sampled once at the beginning of each experiment, and δ ∈ Rdunc
+

defines the range of variation. These variables evolve independently of the agent’s behavior and serve
as purely exogenous noise.

Controllable distractors, by contrast, evolve deterministically as a function of the agent’s actions. At
each time step, they are generated by an affine transformation of the current action:

x(con)
t = Wat + b, (4)

where W ∈ Rdcon×d is a weight matrix and b ∈ Rdcon is a bias vector. Both W and b are sampled
uniformly at random once per experiment and held fixed throughout. This ensures that controllable
distractors are correlated with the agent’s behavior but remain irrelevant to task performance, as they
are not part of the reward or transition-generating processes for xrel.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To simulate high-dimensional, distractor-laden observations, we augment the native task-relevant
state vector xrel with 40 task-irrelevant variables, comprising 20 controllable and 20 uncontrollable
distractor dimensions, resulting in a factored observation of the form s = (xrel,xcon,xunc). This
allows us to test the agent’s ability to filter out noise across both deterministic and stochastic distractor
sources in a variety of control settings.

Implementation Details. We evaluate our learned masking mechanism across three deep reinforce-
ment learning algorithms: Soft Actor-Critic (SAC) (Haarnoja et al., 2018), Twin Delayed Deep
Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018), and Proximal Policy Optimization
(PPO)(Schulman et al., 2017). In all cases, the actor and critic networks are implemented as mul-
tilayer perceptrons (MLPs), with ReLU activations used for SAC and TD3, and Tanh activations
for PPO. The temperature of the sigmoid is kept at 1 for these experiments. SAC and TD3 are
trained off-policy using a replay buffer of size 1 million and run for 1 million environment steps per
seed. For SAC, the entropy regularization coefficient is automatically tuned using a dedicated Adam
optimizer. PPO, being an on-policy algorithm, is trained longer for 3 million steps. The full set of
hyperparameters for each algorithm will be provided in the Appendix C. The results are compared
against two baselines. First, oracle receives only task relevant variables as input (the ground truth
abstraction) and thus serves as a strong upper bound on performance in that task and, second, full
observes the full state augmented with distractors, which we show performs poorly compared to
oracle performance.

All experiments were conducted on a high-throughput computing cluster. The compute pool consists
of heterogeneous CPU-only worker nodes with Intel Xeon processors, ranging from 8 to 64 cores and
16–256 GB of RAM per node.

Evaluation Protocol. SAC and TD3 use a fixed protocol: after every training episode, the agent is
evaluated on 50 episodic rollouts using a separate environment with independently sampled distractor
biases and projection matrices. This ensures that the evaluation distractors are in-distribution but
different from those seen during training. The average episodic return across the 50 test episodes
is logged. For PPO, evaluation is conducted online by recording episodic returns directly during
training rollouts.

5.2 RESULTS

Figure 1 reports the average performance of each algorithm across all 12 tasks. The baseline setting
using vanilla MLP function approximators performs consistently worse than the oracle, particularly in
the presence of distractors. In contrast, our method closes this gap, recovering performance towards
the oracle despite having access only to reward-based supervision. Individual plots for each task are
provided in the Appendix A and show, in many cases, the ability to match the oracle upper bound.

0 200 400 600 800 1000
Episode

0.2

0.4

0.6

0.8

No
rm

al
ize

d
Re

tu
rn

s

Average Normalized Returns over All 12 Tasks

SAC-O
SAC-D
SAC-A

SAC-C
SAC-M
SAC-AC

0 200 400 600 800 1000
Episode

0.2

0.4

0.6

No
rm

al
ize

d
Re

tu
rn

s

Average Normalized Returns over All 12 Tasks

TD3-O
TD3-D
TD3-A

TD3-C
TD3-M

0 200 400 600 800 1000
Episode

0.1

0.2

0.3

0.4

No
rm

al
ize

d
Re

tu
rn

s

Average Normalized Returns over All 12 Tasks

PPO-O
PPO-D

PPO-AC

Figure 1: Performance of SAC, TD3, and PPO averaged across 12 MuJoCo tasks. For each of the
algorithms—Oracle (–O), distractors without attention (–D), attention trained with the actor (–A),
attention trained with the critic (–C), separate attention trained with both (–AC) and MaDi (–M)—the
performance curves are computed as the mean across all tasks. These per-seed curves are then
averaged across the 10 random seeds with 95% confidence intervals to obtain the final aggregated
results as shown.

Actor vs. Critic. When using the learned attention mask, using either the actor or critic signal in
isolation yields stable training, suggesting that each loss alone is sufficient to drive task-aligned
abstraction. For SAC, we also evaluate a variant where separate masks are trained for the actor
and critic using their respective gradients. All these approaches achieve comparable performance.
This similarity may stem from an implicit overlap in relevant features: in many continuous control
tasks, variables useful for value estimation also aid policy learning. In contrast, training a single

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

shared mask using both losses simultaneously results in degenerate attention weights and near-zero
returns. This indicates that the actor and critic provide conflicting gradient signals when applied
jointly, consistent with findings from Garcin et al. (2025), which show that actor and critic networks
tend to learn representations that are optimized for different purposes.

Interestingly, we find that in PPO updating the masking parameters using both actor and critic losses
yields performance indistinguishable from using either loss alone. This may be due to the shared
backbone architecture of PPO and the synchronized updates of the actor and critic, which reduce the
representational divergence between the two losses, minimizing the gradient conflict we observe in
off-policy methods.

Comparison with MaDi. Our observation-independent masking performs comparably (for TD3)
or better (for SAC) than the observation-conditioned mask proposed in Grooten et al. (2023). In
contrast to our approach, such methods may overfit to idiosyncrasies in the input and learn contextual
abstractions, rather than identifying a globally relevant set of features for RL.

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Critic Attention Across Seeds

Relevant Irrelevant

reacher-hard with SAC

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Actor Attention Across Seeds

Relevant Irrelevant

swimmer-swimmer6 with SAC

(a)

0 50 100 150 200 250 300
Time Step

0.35

0.40

0.45

0.50

0.55

0.60

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for PPO with Actor Attention Across Seeds

Relevant Irrelevant

hopper-stand with PPO

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Actor Attention Across Seeds

Relevant Irrelevant

hopper-stand with SAC

(b)

Figure 2: Trajectory of average attention weights across training. (a) SAC on reacher-hard and
swimmer-swimmer6: confident masks emerge in easier tasks like reacher-hard, while swimmer shows
more ambiguous gating. (b) PPO vs. SAC on hopper-stand: SAC shows sharper convergence; PPO remains
diffuse. Task-relevant features are highlighted in blue, task-irrelevant in red. Results aggregated over 10 seeds.

Correctness of Learned Abstraction. We track the evolution of attention weights during training
and plot the weights for each observation variable for two distinct environments using the SAC
agent in Figure 2a. While the attention weights do not strictly go to either 0 or 1 (producing a
hard abstraction), they generally correspond to task-relevant variables receiving higher weights and
task-irrelevant variables receiving lower weights. Notably, we observe that the sharpness of the
learned gating values and the overall task performance are correlated. In environments where the
agent performs well, such as reacher-hard, the attention mechanism tends to converge to a
confident binary-like mask. As shown in Figure 2a, most attention weights (all but two) converge
to either 0 or 1, indicating that the model has learned to clearly distinguish between relevant and
irrelevant input variables. For more challenging tasks such as swimmer-swimmer6, where the
agent’s performance is relatively lower, the learned attention masks are less confident. The attention
weights remain diffuse and fail to clearly separate important features from distractors. However,
while the mask is less sharp, it still preserves the correct relative ranking of feature relevance. Similar
plots are provided for all environments in Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

As shown in Figure 2b, attention masks learned by on-policy methods like PPO fail to strongly
suppress distractors, while off-policy methods such as SAC and TD3 learn sharper, more selective
patterns that effectively mask out all task-irrelevant variables. A plausible explanation lies in
differences in sample efficiency and data reuse (Queeney et al., 2021). On-policy methods discard
trajectories after each update, limiting the diversity of experiences and restricting the refinement
of internal representations like attention masks. In contrast, off-policy methods continually reuse
past interactions, enabling more stable gradient estimates and better credit assignment, which in turn
supports stronger attention patterns.

Takeaway #1

The attention mask we introduce and train solely with RL objectives is able to (1) down-weight
the influence of distractors and (2) learn nearly as well as when the distractors are known.

6 CONTROLLED ANALYSIS

In this section, we show mathematically and through controlled toy experiments that an input-
independent attention mask can lead to meaningful abstractions that discards task-irrelevant variables.
Of particular note, we show mathematically that the presence of distractors can slow learning even
when using expected updates (i.e., using infinite data to compute each gradient step). We then show
that the input-independent attention mask serves to suppress the effect of the distracting variable.

6.1 GRADIENT DYNAMICS IN LINEAR MODELS

As critic training in RL amounts to repeatedly solving a regression task, in this section, we analyze
the expected gradient updates for linear regression in the presence of distracting inputs. This setting
is equivalent to learning a critic in a contextual bandit setting where value prediction reduces to
supervised regression from state to reward. We analyze expected gradient descent updates for three
settings: (i) in the absence of distractor variables (oracle case), (ii) in the presence of distractors
without any form of masking or attention (full case), and (iii) in the presence of distractors with our
proposed soft attention mechanism. We use expected updates (i.e., the infinite data regime) to focus
on optimization rather than statistical challenges.

Consider a regression setting in which data is generated according to Y = mX + c where X ∼
N (0, 1). There is also a distracting variable D ∼ U(0, 1). We consider training linear functions of
the form fw(x, d) = w⊤[1, x, d] using gradient descent. The gradient descent update is

wt+1 ← wt − η EX∼N (0,1)ED∼U(0,1)

[
∇wt(fwt(X,D)− Y)2

]
(5)

Proposition 1 (Gradient Updates with Known Distractors (Oracle)). The linear model is given as:

fw(x) = w0 + w1x (6)

and the expected update for w is given by:

⟨wt+1
0 , wt+1

1 ⟩ ← ⟨(1− η)wt
0 + ηc, (1− η)wt

1 + ηm⟩ (7)

Proposition 2 (Gradient Updates with Unknown Distractors (Full)). The linear model with distractors
and no attention mechanism is given by:

fw(x, d) = w0 + w1x+ w2d (8)

and the expected updates for each component of w are given by:

wt+1
0 ← (1− η)wt

0 −
η
2w

t
2 + ηc

wt+1
1 ← (1− η)wt

1 + ηm

wt+1
2 ←

(
1− η

3

)
wt

2 −
η
2w

t
0 +

η
2 c (9)

Observation 1 (Distracting inputs mislead bias learning in the full model). With oracle knowledge
of the distractor variable, the expected update results in w0 → c and w1 → m and the true data
generating function is recovered. Without this oracle knowledge, the update for w1 is unchanged but

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

w0 and w2 now depend upon one another and change to try and explain the bias term, c, in the data
generation function. Consequently, for any non-zero values of w0 and w2, w0 moves toward c− w2

2

and w2 moves toward 3c
2 −

3w0

2 , albeit the latter moves at the slower rate of η
3 . As the target for w2

is only 0 when w0 = 1, we do not, in general, expect w2 to reach zero and d to be ignored.

Proposition 3 (Gradient Update: Attention-Based Model). The linear model with input-independent
attention mask is given as:

fw(x, d) = w0 + w1(xσ(ϕ1)) + w2(d σ(ϕ2)), (10)

where ϕ1 and ϕ2 are learnable parameters and σ is the sigmoid function. The expected update
equations for w, ϕ1, and ϕ2 are given as:

wt+1
0 ← wt

0 − η
(
w0 +

w2 σ(ϕ2)
2 − c

)
wt+1

1 ← wt
1 − η

(
w1 σ(ϕ1)

2 −mσ(ϕ1)
)

wt+1
2 ← wt

2 − η σ(ϕ2)
(

w0

2 + w2 σ(ϕ2)
3 − c

2

)
ϕt+1
1 ← ϕt

1 − η w1 σ(ϕ1)(1− σ(ϕ1))(w1 σ(ϕ1)−m)

ϕt+1
2 ← ϕt

2 − η w2 σ(ϕ2)(1− σ(ϕ2))
(

w0

2 + w2 σ(ϕ2)
3 − c

2

)
(11)

Observation 2 (Attention mask updates suppress distractors.). The direction of the update for ϕ2 is
determined by the expression:

w2

(
w0

2
+

w2 σ(ϕ2)

3
− c

2

)
as the factor σ(ϕ2)(1− σ(ϕ2)) in Equation 11 is always non-negative and thus only serves to scale
the update. When the distractor’s contribution is large, i.e., when |w2| is large or σ(ϕ2) closer to one,
this term is typically positive, leading to a downward update that drives σ(ϕ2)→ 0 and effectively
suppressing the distractor. Notably, suppression emerges without explicit knowledge of distracting
variables; the model learns to attenuate irrelevant inputs purely from the error signal.

Empirical Validation We also validate these conclusions empirically in a synthetic regression
setting using the derived gradient update equations for both the full and attention-based model. All
weights are initialized using a uniform distribution U(−1/

√
2, 1/
√
2), and updates are performed

using fixed-step gradient descent with a step size of 0.01. For the attention-based model, the attention
weights are initialized to zero and updated jointly with the main weights via backpropagation through
the sigmoid gating functions. At each training step, we compute the loss over a sampled batch of
5,000 data points drawn from the true data-generating process. This process is repeated across 50
random seeds to account for variance due to initialization. As shown in Figure 3, even in the infinite
data regime, the attention-based updates consistently converge faster and more stably to the optimal
solution compared to updates without the attention interactions.

Takeaway #2

Distractors can lead to conflicting gradient updates even with infinite data; the attention mask is
updated in a way that suppresses the distractors’ influence.

6.2 POLICY EVALUATION IN TOY MDPS

Finally, we run a policy evaluation experiment in a controlled, low-dimensional MDP to understand if
the attention mask is improving the accuracy of policy evaluation. The base environment is a custom
MDP with continuous one-dimensional state space and two discrete actions adapted from Yang et al.
(2022). The transition dynamics for each action are defined via randomly sampled piecewise linear
functions, making the environment deterministic but non-trivial. We discretize the continuous state
space into 20 evenly spaced states and compute the ground-truth Q-values via value iteration. For
the full setting, the agent is trained with 20 additional task-irrelevant dimensions—10 controllable
and 10 uncontrollable—appended to the 1D input. Each DQN variant is trained for 2,000 episodes
using a small MLP. The distractors are generated similar to the main experiments. To evaluate

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000 6000 7000
Steps

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Average Loss Curves Across Seeds
Average Oracle Loss
Average Full Loss
Average Attention Loss

Figure 3: Loss with respect to the
true data generating function. Results
aggregated over 50 seeds.

0.0 0.2 0.4 0.6 0.8 1.0
States

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Er
ro

r

dqn oracle error Q(s, a=0)
dqn full error Q(s, a=0)
dqn attn error Q(s, a=0)

0.0 0.2 0.4 0.6 0.8 1.0
States

0

2

4

6

8

Er
ro

r

dqn oracle error Q(s, a=1)
dqn full error Q(s, a=1)
dqn attn error Q(s, a=1)

Figure 4: Mean squared error of Q-value estimation for ac-
tion 0 and 1 across oracle, full, and attention-based agents.

learned Q-values, we run all trained models on a fixed evaluation set of states with the same distractor
statistics and compare the predicted Q-values against the ground-truth values for both actions using
per-state mean squared error.

We repeat all experiments over 20 random seeds and report the mean Q-value estimation errors along
with 95% confidence intervals. Additionally, we perform paired t-tests across seeds to assess the
statistical significance of the differences in estimation error between the attention-based and vanilla
models. Each black star denotes a statistically significant difference in Q-value estimation error for
that state, as determined by a paired t-test. The results are presented in Figure 4 for 20 discretized
states in a randomly generated MDP. The sigmoid temperature used for the attention masks in this
setting is the default value of 1 as used in the main experiments. Plots for other temperature settings
are provided in Appendix A. Temperature is a sensitive hyperparameter: higher values yield sharper,
more confident masks, but excessively high temperatures can lead to vanishing gradients and unstable
training, resulting in overly confident but incorrect masking. As shown, the attention-based model
yields significantly lower errors than the baseline in most of the 20 discretized states, indicating more
accurate approximation of the true Q-values.

Takeaway #3

The attention mechanism achieves statistically significant improvements in value estimation
across the majority of states and all actions, even within the deep RL setting.

7 CONCLUSION

In this paper, we considered the problem of learning state abstractions in RL and asked the question
of whether this was possible without relying on auxiliary objectives as done in prior work. We
introduced a simple neural network architecture modification – an observation-independent attention
mask applied to the inputs of the actor and critic networks – that is trained along with other network
parameters using only RL objectives. Across 12 continuous control DMControl tasks augmented
with task-irrelevant observation variables, we found that this small change enables agents to suppress
task-irrelevant inputs and close the gap with agents with access to the ideal state abstraction. Through
a combination of empirical evaluation and theoretical insights from linear settings, we demonstrate
that this lightweight inductive bias supports selective credit assignment and facilitates the emergence
of soft abstractions aligned with task dynamics and reward structure. Our findings suggest that, when
combined with appropriate architectural constraints, the reward signal alone can suffice to induce
abstraction, challenging the prevailing reliance on auxiliary losses in prior work. These findings (1)
suggest that future work in abstraction learning should consider this simple architecture as a baseline
before introducing more complex methods based on auxiliary losses and (2) open up a promising new
research direction into designing architectures that promote abstraction through RL objectives alone.

REPRODUCIBILITY STATEMENT

Full derivations for the results presented in Section 6 are provided in Appendix B. Plots for additional
experiments can be found in Appendix A, and the complete code to reproduce all results in this paper

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

is available via an anonymous link in Appendix D. A detailed list of hyperparameters used for all
experiments is included in Appendix C.

REFERENCES

David Abel, David Hershkowitz, and Michael Littman. Near optimal behavior via approximate state
abstraction. In International Conference on Machine Learning, pages 2915–2923. PMLR, 2016.

Lennart Bramlage and Aurelio Cortese. Generalized attention-weighted reinforcement learning.
Neural Networks, 145:10–21, 2022.

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. Mico: Improved
representations via sampling-based state similarity for markov decision processes. Advances in
Neural Information Processing Systems, 34:30113–30126, 2021.

Thomas L Dean, Robert Givan, and Sonia Leach. Model reduction techniques for computing
approximately optimal solutions for markov decision processes. arXiv preprint arXiv:1302.1533,
2013.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In UAI, volume 4, pages 162–169, 2004.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pages 1587–1596. PMLR,
2018.

Samuel Garcin, Trevor McInroe, Pablo Samuel Castro, Prakash Panangaden, Christopher G Lu-
cas, David Abel, and Stefano V Albrecht. Studying the interplay between the actor and critic
representations in reinforcement learning. arXiv preprint arXiv:2503.06343, 2025.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. In International conference
on machine learning, pages 2170–2179. PMLR, 2019.

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in
markov decision processes. Artificial intelligence, 147(1-2):163–223, 2003.

Bram Grooten, Tristan Tomilin, Gautham Vasan, Matthew E Taylor, A Rupam Mahmood, Meng
Fang, Mykola Pechenizkiy, and Decebal Constantin Mocanu. Madi: Learning to mask distractions
for generalization in visual deep reinforcement learning. arXiv preprint arXiv:2312.15339, 2023.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction for
mdps. AI&M, 1(2):3, 2006.

Qiyuan Liu, Qi Zhou, Rui Yang, and Jie Wang. Robust representation learning by clustering with
bisimulation metrics for visual reinforcement learning with distractions. In Proceedings of the
AAAI conference on artificial intelligence, volume 37, pages 8843–8851, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo Jimenez Rezende.
Towards interpretable reinforcement learning using attention augmented agents. Advances in
neural information processing systems, 32, 2019.

James Queeney, Yannis Paschalidis, and Christos G Cassandras. Generalized proximal policy
optimization with sample reuse. Advances in Neural Information Processing Systems, 34:11909–
11919, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Balaraman Ravindran. An algebraic approach to abstraction in reinforcement learning. University
of Massachusetts Amherst, 2004.

Sasha Salter, Dushyant Rao, Markus Wulfmeier, Raia Hadsell, and Ingmar Posner. Attention-
privileged reinforcement learning. In Conference on Robot Learning, pages 394–408. PMLR,
2021.

Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D
Tracey, and David D Cox. On the information bottleneck theory of deep learning. Journal of
Statistical Mechanics: Theory and Experiment, 2019(12):124020, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting control suite–a
challenging benchmark for reinforcement learning from pixels. arXiv preprint arXiv:2101.02722,
2021.

Jonathan Taylor, Doina Precup, and Prakash Panagaden. Bounding performance loss in approximate
mdp homomorphisms. Advances in Neural Information Processing Systems, 21, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Xudong Wang, Long Lian, and Stella X Yu. Unsupervised visual attention and invariance for
reinforcement learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 6677–6687, 2021.

Zizhao Wang, Caroline Wang, Xuesu Xiao, Yuke Zhu, and Peter Stone. Building minimal and reusable
causal state abstractions for reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 15778–15786, 2024.

Haiping Wu, Khimya Khetarpal, and Doina Precup. Self-supervised attention-aware reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
10311–10319, 2021.

Ge Yang, Anurag Ajay, and Pulkit Agrawal. Overcoming the spectral bias of neural value approxima-
tion. arXiv preprint arXiv:2206.04672, 2022.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742, 2020.

Qi Zhou, Jie Wang, Qiyuan Liu, Yufei Kuang, Wengang Zhou, and Houqiang Li. Learning robust
representation for reinforcement learning with distractions by reward sequence prediction. In
Uncertainty in Artificial Intelligence, pages 2551–2562. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A ADDITIONAL RESULTS

0 200 400 600 800 1000
Episode

0

200

400

600

800

Re
tu

rn
s

Returns over Episodes: cheetah-run

SAC Oracle
SAC with 20+20 Distractors
SAC with Actor Attention
SAC with Critic Attention
SAC with MaDi
SAC with both Actor and Critic Attention

(a) cheetah-run

0 200 400 600 800 1000
Episode

0

200

400

600

800

1000

Re
tu

rn
s

Returns over Episodes: finger-spin

SAC Oracle
SAC with 20+20 Distractors
SAC with Actor Attention
SAC with Critic Attention
SAC with MaDi
SAC with both Actor and Critic Attention

(b) finger-spin

0 200 400 600 800 1000
Episode

200

400

600

800

1000

Re
tu

rn
s

Returns over Episodes: finger-turn_easy

SAC Oracle
SAC with 20+20 Distractors
SAC with Actor Attention
SAC with Critic Attention
SAC with MaDi
SAC with both Actor and Critic Attention

(c) finger-turneasy

0 200 400 600 800 1000
Episode

0

200

400

600

800

Re
tu

rn
s

Returns over Episodes: finger-turn_hard
SAC Oracle
SAC with 20+20 Distractors
SAC with Actor Attention
SAC with Critic Attention
SAC with MaDi
SAC with both Actor and Critic Attention

(d) finger-turnhard

0 200 400 600 800 1000
Episode

50

100

150

200

250

300

350

Re
tu

rn
s

Returns over Episodes: fish-swim
SAC Oracle
SAC with 20+20 Distractors
SAC with Actor Attention
SAC with Critic Attention
SAC with MaDi
SAC with both Actor and Critic Attention

(e) fish-swim

0 200 400 600 800 1000
Episode

200

300

400

500

600

700

800

900

Re
tu

rn
s

Returns over Episodes: fish-upright

SAC Oracle
SAC with 20+20 Distractors
SAC with Actor Attention
SAC with Critic Attention
SAC with MaDi
SAC with both Actor and Critic Attention

(f) fish-upright

0 200 400 600 800 1000
Episode

20

0

20

40

60

80

100

120

140

Re
tu

rn
s

Returns over Episodes: hopper-hop
SAC Oracle
SAC with 20+20 Distractors
SAC with Actor Attention
SAC with Critic Attention
SAC with MaDi
SAC with both Actor and Critic Attention

(g) hopper-hop

0 200 400 600 800 1000
Episode

0

200

400

600

800

Re
tu

rn
s

Returns over Episodes: hopper-stand
SAC Oracle
SAC with 20+20 Distractors
SAC with Actor Attention
SAC with Critic Attention
SAC with MaDi
SAC with both Actor and Critic Attention

(h) hopper-stand

0 200 400 600 800 1000
Episode

0

200

400

600

800

1000

Re
tu

rn
s

Returns over Episodes: reacher-hard

SAC Oracle
SAC with 20+20 Distractors
SAC with Actor Attention
SAC with Critic Attention
SAC with MaDi
SAC with both Actor and Critic Attention

(i) reacher-hard

0 200 400 600 800 1000
Episode

150

200

250

300

350

Re
tu

rn
s

Returns over Episodes: swimmer-swimmer6

SAC Oracle
SAC with 20+20 Distractors
SAC with Actor Attention
SAC with Critic Attention
SAC with MaDi
SAC with both Actor and Critic Attention

(j) swimmer-swimmer6

0 200 400 600 800 1000
Episode

0
100
200
300
400
500
600
700
800

Re
tu

rn
s

Returns over Episodes: walker-run

SAC Oracle
SAC with 20+20 Distractors
SAC with Actor Attention
SAC with Critic Attention
SAC with MaDi
SAC with both Actor and Critic Attention

(k) walker-run

0 200 400 600 800 1000
Episode

0

200

400

600

800

1000

Re
tu

rn
s

Returns over Episodes: walker-walk

SAC Oracle
SAC with 20+20 Distractors
SAC with Actor Attention
SAC with Critic Attention
SAC with MaDi
SAC with both Actor and Critic Attention

(l) walker-walk

Figure 5: Performance of SAC agents with and without the proposed observation-conditioned gating
mechanism across various DM Control Suite tasks. The presence of distractors significantly impairs
performance when no attention is applied. Incorporating our learned gating improves robustness and
sample efficiency.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000
Episode

0

100

200

300

400

500

Re
tu

rn
s

Returns over Episodes: cheetah-run

PPO Oracle
PPO with 20+20 Distractors
PPO with Combined Attention
PPO with Actor Attention

(a) cheetah-run

0 500 1000 1500 2000 2500 3000
Episode

5

0

5

10

15

20

25

Re
tu

rn
s

Returns over Episodes: hopper-hop
PPO Oracle
PPO with 20+20 Distractors
PPO with Combined Attention
PPO with Actor Attention

(b) hopper-hop

0 500 1000 1500 2000 2500 3000
Episode

50

100

150

200

250

Re
tu

rn
s

Returns over Episodes: walker-run
PPO Oracle
PPO with 20+20 Distractors
PPO with Combined Attention
PPO with Actor Attention

(c) walker-run

0 500 1000 1500 2000 2500 3000
Episode

100

200

300

400

500

Re
tu

rn
s

Returns over Episodes: walker-walk

PPO Oracle
PPO with 20+20 Distractors
PPO with Combined Attention
PPO with Actor Attention

(d) walker-walk

0 500 1000 1500 2000 2500 3000
Episode

50

0

50

100

150

200

Re
tu

rn
s

Returns over Episodes: hopper-stand
PPO Oracle
PPO with 20+20 Distractors
PPO with Combined Attention
PPO with Actor Attention

(e) hopper-stand

0 500 1000 1500 2000 2500 3000
Episode

0

200

400

600

800

Re
tu

rn
s

Returns over Episodes: reacher-hard
PPO Oracle
PPO with 20+20 Distractors
PPO with Combined Attention
PPO with Actor Attention

(f) reacher-hard

0 500 1000 1500 2000 2500 3000
Episode

50

100

150

200

250

Re
tu

rn
s

Returns over Episodes: fish-swim
PPO Oracle
PPO with 20+20 Distractors
PPO with Combined Attention
PPO with Actor Attention

(g) fish-swim

0 500 1000 1500 2000 2500 3000
Episode

100
200
300
400
500
600
700
800

Re
tu

rn
s

Returns over Episodes: fish-upright

PPO Oracle
PPO with 20+20 Distractors
PPO with Combined Attention
PPO with Actor Attention

(h) fish-upright

0 500 1000 1500 2000 2500 3000
Episode

0

100

200

300

400

500

600

700

800

Re
tu

rn
s

Returns over Episodes: finger-spin
PPO Oracle
PPO with 20+20 Distractors
PPO with Combined Attention
PPO with Actor Attention

(i) finger-spin

0 500 1000 1500 2000 2500 3000
Episode

0

200

400

600

800

Re
tu

rn
s

Returns over Episodes: finger-turn_easy
PPO Oracle
PPO with 20+20 Distractors
PPO with Combined Attention
PPO with Actor Attention

(j) finger-turn easy

0 500 1000 1500 2000 2500 3000
Episode

100

0

100

200

300

400

500

Re
tu

rn
s

Returns over Episodes: finger-turn_hard
PPO Oracle
PPO with 20+20 Distractors
PPO with Combined Attention
PPO with Actor Attention

(k) finger-turn hard

0 500 1000 1500 2000 2500 3000
Episode

0

100

200

300

400

500

600

Re
tu

rn
s

Returns over Episodes: swimmer-swimmer6
PPO Oracle
PPO with 20+20 Distractors
PPO with Combined Attention
PPO with Actor Attention

(l) swimmer-swimmer6

Figure 6: Performance of PPO with and without the proposed observation-conditioned gating
mechanism across various DM Control Suite tasks. Plots are averaged over 10 random seeds

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Episode

0

200

400

600

800

1000

Re
tu

rn
s

Returns over Episodes: walker-walk

TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(a) walker-walk

0 200 400 600 800 1000
Episode

0

100

200

300

400

500

600

700

Re
tu

rn
s

Returns over Episodes: walker-run

TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(b) walker-run

0 200 400 600 800 1000
Episode

100

150

200

250

300

350

Re
tu

rn
s

Returns over Episodes: swimmer-swimmer6
TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(c) swimmer-swimmer6

0 200 400 600 800 1000
Episode

0

200

400

600

800

1000

Re
tu

rn
s

Returns over Episodes: reacher-hard

TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(d) reacher-hard

0 200 400 600 800 1000
Episode

0

100

200

300

400

500

600

700

Re
tu

rn
s

Returns over Episodes: hopper-stand
TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(e) hopper-stand

0 200 400 600 800 1000
Episode

0

20

40

60

80

100

Re
tu

rn
s

Returns over Episodes: hopper-hop
TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(f) hopper-hop

0 200 400 600 800 1000
Episode

200

300

400

500

600

700

800

900

Re
tu

rn
s

Returns over Episodes: fish-upright

TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(g) fish-upright

0 200 400 600 800 1000
Episode

50

100

150

200

250

300

350

400

Re
tu

rn
s

Returns over Episodes: fish-swim
TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(h) fish-swim

0 200 400 600 800 1000
Episode

0

200

400

600

800

1000

Re
tu

rn
s

Returns over Episodes: finger-spin

TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(i) finger-spin

0 200 400 600 800 1000
Episode

100

200

300

400

500

600

700

800

900

Re
tu

rn
s

Returns over Episodes: finger-turn_easy
TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(j) finger-turn easy

0 200 400 600 800 1000
Episode

100

200

300

400

500

600

700

Re
tu

rn
s

Returns over Episodes: finger-turn_hard
TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(k) finger-turn hard

0 200 400 600 800 1000
Episode

0

200

400

600

800

Re
tu

rn
s

Returns over Episodes: cheetah-run
TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(l) cheetah-run

Figure 7: Performance of TD3 on the DM Control Suite tasks. Plots are averaged over 10 random
seeds

0 50 100 150 200 250 300
Time Step

0.4

0.5

0.6

0.7

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for PPO with Actor Attention Across Seeds

Relevant Irrelevant

(a) finger-spin

0 50 100 150 200 250 300
Time Step

0.4

0.5

0.6

0.7

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for PPO with Actor Attention Across Seeds

Relevant Irrelevant

(b) finger-turn easy

0 50 100 150 200 250 300
Time Step

0.4

0.5

0.6

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for PPO with Actor Attention Across Seeds

Relevant Irrelevant

(c) finger-turn hard

0 50 100 150 200 250 300
Time Step

0.4

0.5

0.6

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for PPO with Actor Attention Across Seeds

Relevant Irrelevant

(d) fish-swim

0 50 100 150 200 250 300
Time Step

0.4

0.5

0.6

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for PPO with Actor Attention Across Seeds

Relevant Irrelevant

(e) fish-upright

0 50 100 150 200 250 300
Time Step

0.35

0.40

0.45

0.50

0.55

0.60

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for PPO with Actor Attention Across Seeds

Relevant Irrelevant

(f) hopper-stand

0 50 100 150 200 250 300
Time Step

0.4

0.5

0.6

0.7

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for PPO with Actor Attention Across Seeds

Relevant Irrelevant

(g) reacher-hard

0 50 100 150 200 250 300
Time Step

0.4

0.5

0.6

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for PPO with Actor Attention Across Seeds

Relevant Irrelevant

(h) swimmer-swimmer6

Figure 8: Masks for PPO. The task-relevant variables are plotted in blue while the task-irrelevant
variables are plotted in red

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Actor Attention Across Seeds

Relevant Irrelevant

(a) finger-spin with actor
loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Critic Attention Across Seeds

Relevant Irrelevant

(b) finger-spin with critic
loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Actor Attention Across Seeds

Relevant Irrelevant

(c) finger-turn easy with
actor loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Critic Attention Across Seeds

Relevant Irrelevant

(d) finger-turn easy with
critic loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Actor Attention Across Seeds

Relevant Irrelevant

(e) finger-turn hard with
actor loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Critic Attention Across Seeds

Relevant Irrelevant

(f) finger-turn hard with
critic loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Actor Attention Across Seeds

Relevant Irrelevant

(g) fish-swim with actor
loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Critic Attention Across Seeds

Relevant Irrelevant

(h) fish-swim with critic
loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Actor Attention Across Seeds

Relevant Irrelevant

(i) fish-upright with actor
loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Critic Attention Across Seeds

Relevant Irrelevant

(j) fish-upright with critic
loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Actor Attention Across Seeds

Relevant Irrelevant

(k) hopper-stand with actor
loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Critic Attention Across Seeds

Relevant Irrelevant

(l) hopper-stand with critic
loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Actor Attention Across Seeds

Relevant Irrelevant

(m) reacher-hard with actor
loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Critic Attention Across Seeds

Relevant Irrelevant

(n) reacher-hard with critic
loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Actor Attention Across Seeds

Relevant Irrelevant

(o) swimmer-swimmer6
with actor loss

0 50 100 150 200
Time Step

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for SAC with Critic Attention Across Seeds

Relevant Irrelevant

(p) swimmer-swimmer6
with critic loss

Figure 9: Masks for SAC

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Time Step

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Actor Attention Across Seeds

Relevant Irrelevant

(a) finger-spin with actor
loss

0 50 100 150 200
Time Step

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Critic Attention Across Seeds

Relevant Irrelevant

(b) finger-spin with critic
loss

0 50 100 150 200
Time Step

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Actor Attention Across Seeds

Relevant Irrelevant

(c) finger-turn easy with
actor loss

0 50 100 150 200
Time Step

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Critic Attention Across Seeds

Relevant Irrelevant

(d) finger-turn easy with
critic loss

0 50 100 150 200
Time Step

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Actor Attention Across Seeds

Relevant Irrelevant

(e) finger-turn hard with
actor loss

0 50 100 150 200
Time Step

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Critic Attention Across Seeds

Relevant Irrelevant

(f) finger-turn hard with
critic loss

0 50 100 150 200
Time Step

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Actor Attention Across Seeds

Relevant Irrelevant

(g) fish-swim with actor
loss

0 50 100 150 200
Time Step

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Critic Attention Across Seeds

Relevant Irrelevant

(h) fish-swim with critic
loss

0 50 100 150 200
Time Step

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Actor Attention Across Seeds

Relevant Irrelevant

(i) fish-upright with actor
loss

0 50 100 150 200
Time Step

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Critic Attention Across Seeds

Relevant Irrelevant

(j) fish-upright with critic
loss

0 50 100 150 200
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Actor Attention Across Seeds

Relevant Irrelevant

(k) hopper-stand with actor
loss

0 50 100 150 200
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Critic Attention Across Seeds

Relevant Irrelevant

(l) hopper-stand with critic
loss

0 50 100 150 200
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Actor Attention Across Seeds

Relevant Irrelevant

(m) reacher-hard with actor
loss

0 50 100 150 200
Time Step

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Critic Attention Across Seeds

Relevant Irrelevant

(n) reacher-hard with critic
loss

0 50 100 150 200
Time Step

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Actor Attention Across Seeds

Relevant Irrelevant

(o) swimmer-swimmer6
with actor loss

0 50 100 150 200
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Critic Attention Across Seeds

Relevant Irrelevant

(p) swimmer-swimmer6
with critic loss

0 50 100 150 200
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Actor Attention Across Seeds

Relevant Irrelevant

(q) walker-run with actor
loss

0 50 100 150 200
Time Step

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Actor Attention Across Seeds

Relevant Irrelevant

(r) walker-walk with actor
loss

0 50 100 150 200
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Actor Attention Across Seeds

Relevant Irrelevant

(s) cheetah-run with actor
loss

0 50 100 150 200
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

W
ei

gh
t V

al
ue

Average Weights for TD3 with Actor Attention Across Seeds

Relevant Irrelevant

(t) hopper-hop with actor
loss

Figure 10: Masks for TD3

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
States

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Er
ro

r

dqn oracle error Q(s, a=0)
dqn full error Q(s, a=0)
dqn attn error Q(s, a=0)

action 0

0.0 0.2 0.4 0.6 0.8 1.0
States

0

2

4

6

8

Er
ro

r

dqn oracle error Q(s, a=1)
dqn full error Q(s, a=1)
dqn attn error Q(s, a=1)

action 1

Figure 11: Mean squared error of Q-value estimation for action 0 and 1 across oracle, full, and
attention-based agents with sigmoid temperature 10.

0.0 0.2 0.4 0.6 0.8 1.0
States

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Er
ro

r

dqn oracle error Q(s, a=0)
dqn full error Q(s, a=0)
dqn attn error Q(s, a=0)

action 0

0.0 0.2 0.4 0.6 0.8 1.0
States

0

2

4

6

8
Er

ro
r

dqn oracle error Q(s, a=1)
dqn full error Q(s, a=1)
dqn attn error Q(s, a=1)

action 1

Figure 12: Mean squared error of Q-value estimation for action 0 and 1 across oracle, full, and
attention-based agents with sigmoid temperature 50.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B GRADIENT UPDATES DERIVATION

Let the true data generating function be given by

y(X) = mX + c,

and the oracle function with learnable weights w0 and w1 be

f(x) = w0 + w1x.

The gradient descent update rule for the weight vector w = ⟨w0, w1⟩ is

wt+1 = wt − ηEX∼P (X)

[
∇wt(f(X)− Y)2

]
.

wt+1 =wt − ηEX

[
∇w(f(X)− Y)2

]
(12)

=wt − 2ηEX [(fw(X)− Y)∇wf(X)] (13)

B.1 ORACLE UPDATES

Assuming the input X follows a standard normal distribution, X ∼ N (0, 1), we have

E[X] = 0

and
Var(X) = E[X2]− (E[X])2 =⇒ E[X2] = 1.

We denote the expectation over X ∼ N (0, 1) as E[(·)]. The gradient descent update for the weights
⟨w0, w1⟩ is derived as follows:

⟨wt+1
0 , wt+1

1 ⟩ = ⟨wt
0, w

t
1⟩ − ηE

[
∇w

(
(wt

0 + wt
1X)− (mX + c)

)2]
= ⟨wt

0, w
t
1⟩ − ηE

[(
(wt

0 + wt
1X)− (mX + c)

)
∇w(wt

0 + wt
1X)

]
= ⟨wt

0, w
t
1⟩ − ηE

[(
(wt

0 + wt
1X)− (mX + c)

)〈∂(wt
0 + wt

1X)

∂wt
0

,
∂(wt

0 + wt
1X)

∂wt
1

〉]
= ⟨wt

0, w
t
1⟩ − ηE

[(
(wt

0 + wt
1X)− (mX + c)

)
⟨1, X⟩

]
= ⟨wt

0, w
t
1⟩ − ηE

[
⟨wt

0 + wt
1X −mX − c, wt

0X + wt
1X

2 −mX2 − cX⟩
]

= ⟨wt
0, w

t
1⟩ − η

(〈
E[wt

0 + wt
1X −mX − c],E[wt

0X + wt
1X

2 −mX2 − cX]
〉)

= ⟨wt
0, w

t
1⟩ − η

(
⟨wt

0 − c, wt
1 −m⟩

)
= ⟨(1− η)wt

0 + ηc, (1− η)wt
1 + ηm⟩.

B.2 FULL UPDATES

The model is given by
f(x, d) = w0 + w1x+ w2d.

Let the noise variable D be uniformly distributed between 0 and 1, D ∼ U(0, 1). Then, its expected
value and variance are

E[D] =
1

2
and

Var(D) = E[D2]− (E[D])2 =
1

12
,

which implies

E[D2] =
1

3
.

Since X ∼ N (0, 1) and D ∼ U(0, 1) are sampled independently, their covariance is zero, and thus

E[XD] = E[X]E[D] = 0 · 1
2
= 0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We denote the expectation over X ∼ N (0, 1) and D ∼ U(0, 1) as E[(·)]. The gradient descent
update for the weight vector w = ⟨w0, w1, w2⟩ is

⟨wt+1
0 , wt+1

1 , wt+1
2 ⟩ = ⟨wt

0, w
t
1, w

t
2⟩ − ηE

[
∇wt

{
(wt

0 + wt
1X + wt

2D)− (mX + c)
}2

]
= ⟨wt

0, w
t
1, w

t
2⟩ − ηE

[{
(wt

0 + wt
1X + wt

2D)− (mX + c)
}
∇wt(wt

0 + wt
1X + wt

2D)
]

= ⟨wt
0, w

t
1, w

t
2⟩ − ηE

[{
(wt

0 + wt
1X + wt

2D)− (mX + c)
}〈

∂f

∂wt
0

,
∂f

∂wt
1

,
∂f

∂wt
2

〉]
= ⟨wt

0, w
t
1, w

t
2⟩ − ηE

[{
(wt

0 + wt
1X + wt

2D)− (mX + c)
}
⟨1, X,D⟩

]
= ⟨wt

0, w
t
1, w

t
2⟩ − ηE

[
⟨wt

0 + wt
1X + wt

2D −mX − c,

wt
0X + wt

1X
2 + wt

2XD −mX2 − cX,wt
0D + wt

1XD + wt
2D

2 −mXD − cD⟩
]

= ⟨wt
0, w

t
1, w

t
2⟩ − η

{〈
E[wt

0 + wt
1X + wt

2D −mX − c],

E[wt
0X + wt

1X
2 + wt

2XD −mX2 − cX],E[wt
0D + wt

1XD + wt
2D

2 −mXD − cD]⟩
}

= ⟨wt
0, w

t
1, w

t
2⟩ − η

{〈
wt

0 +
wt

2

2
− c, wt

1 −m,
wt

0

2
+

wt
2

3
− c

2

〉}
=

〈
(1− η)wt

0 −
η

2
wt

2 + ηc, (1− η)wt
1 + ηm,

(
1− η

3

)
wt

2 −
η

2
wt

0 +
ηc

2

〉
.

B.3 ATTENTION UPDATES

The model with attention mechanisms is

f(x, d) = w0 + w1(xσ(ϕ1)) + w2(d σ(ϕ2)),

where σ(ϕ) = 1
1+e−ϕ is the sigmoid function, and its derivative is

d

dϕ
σ(ϕ) = σ(ϕ)(1− σ(ϕ)).

The gradient descent update for the parameter vector ⟨w0, w1, w2, ϕ1, ϕ2⟩ is

⟨wt+1
0 , wt+1

1 , wt+1
2 , ϕt+1

1 , ϕt+1
2 ⟩ = ⟨wt

0, w
t
1, w

t
2, ϕ

t
1, ϕ

t
2⟩

− ηE
[
∇w,ϕ {(w0 + w1(X σ(ϕ1)) + w2(Dσ(ϕ2)))− (mX + c)}2

]
= ⟨wt

0, w
t
1, w

t
2, ϕ

t
1, ϕ

t
2⟩

− ηE [{f(X,D)− (mX + c)}∇w,ϕf(X,D)] ,

where the gradient of f(X,D) with respect to the parameters is

∇w,ϕf(X,D) = ⟨1, X σ(ϕ1), D σ(ϕ2), w1 X σ(ϕ1)(1− σ(ϕ1)), w2 Dσ(ϕ2)(1− σ(ϕ2))⟩ .
Let the error be denoted as error = f(X,D)− (mX + c). Taking expectations, we derive the update
rules for each parameter.

For the w0 component:

E[error · (1)] = w0 +
w2 σ(ϕ2)

2
− c,

leading to the update

wt+1
0 = w0 − η

(
w0 +

w2 σ(ϕ2)

2
− c

)
.

For the w1 component:

E[error · (X σ(ϕ1))] = σ(ϕ1)(w1 σ(ϕ1)−m),

leading to the update
wt+1

1 = w1 − η
(
w1 σ(ϕ1)

2 −mσ(ϕ1)
)
.

For the w2 component:

E[error · (Dσ(ϕ2))] = σ(ϕ2)

(
w0

2
+

w2 σ(ϕ2)

3
− c

2

)
,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

leading to the update

wt+1
2 = w2 − η σ(ϕ2)

(
w0

2
+

w2 σ(ϕ2)

3
− c

2

)
.

For the ϕ1 component:

E[error · (w1 X σ(ϕ1)(1− σ(ϕ1)))] = w1 σ(ϕ1)(1− σ(ϕ1))(w1 σ(ϕ1)−m),

leading to the update

ϕt+1
1 = ϕ1 − η w1 σ(ϕ1)(1− σ(ϕ1))(w1 σ(ϕ1)−m).

For the ϕ2 component:

E[error · (w2 Dσ(ϕ2)(1− σ(ϕ2)))] = w2 σ(ϕ2)(1− σ(ϕ2))

(
w0

2
+

w2 σ(ϕ2)

3
− c

2

)
,

leading to the update

ϕt+1
2 = ϕ2 − η w2 σ(ϕ2)(1− σ(ϕ2))

(
w0

2
+

w2 σ(ϕ2)

3
− c

2

)
.

In summary, the gradient descent update rules for the attention model are:

wt+1
0 = w0 − η

(
w0 +

w2 σ(ϕ2)

2
− c

)
,

wt+1
1 = w1 − η

(
w1 σ(ϕ1)

2 −mσ(ϕ1)
)
,

wt+1
2 = w2 − η σ(ϕ2)

(
w0

2
+

w2 σ(ϕ2)

3
− c

2

)
,

ϕt+1
1 = ϕ1 − η w1 σ(ϕ1)(1− σ(ϕ1))(w1 σ(ϕ1)−m),

ϕt+1
2 = ϕ2 − η w2 σ(ϕ2)(1− σ(ϕ2))

(
w0

2
+

w2 σ(ϕ2)

3
− c

2

)
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C HYPERPARAMETERS

C.1 FOR SAC

Table 1: Key hyperparameters and architecture details of our SAC implementation.

Component Setting
Environment
Environment DM Control Suite
Observation Dim Original + 20 controllable + 20 uncontrollable distractors
Action Space Continuous (Box)

Actor Network
Architecture MLP: 256-256, ReLU

Critic Networks (Q1/Q2)
Architecture MLP: 256-256, ReLU
Target Update Soft update with τ = 0.005

Training Setup
Replay Buffer Size 5× 106

Batch Size 256
Learning Starts 10,000 steps
Total Steps 1M
Policy LR 3× 10−4

Critic LR 1× 10−3

Optimizer Adam
Max Grad Norm 10

Entropy Tuning
α Tuning Enabled (learned)

Distractors
Controllable Linear in action + bias
Uncontrollable Random + bias

Evaluation & Logging
Eval Episodes 50 (continuous)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.2 PPO

Table 2: Key hyperparameters and architecture details of our PPO implementation.

Component Setting
Environment
Environment DM Control Suite
Observation Dim Original + 20 controllable + 20 uncontrollable distractors
Action Space Continuous (Box)

Agent Architecture
Policy/Value Network Shared MLP: 64-64, Tanh activations

Training Setup
Total Timesteps 3M
Rollout Length 2000 steps
Mini-batches 40
Update Epochs 10
Optimizer Adam, LR = 3× 10−4

Annealed LR Yes
Gradient Clipping Max norm = 0.5

PPO Settings
GAE Lambda 0.95
Discount Factor γ 0.99
Advantage Normalization Enabled
Clip Coefficient 0.2
Clip Value Loss Enabled
Entropy Coefficient 0.0
Value Loss Coef 0.5
Target KL None

Distractor Variables
Controllable Linear in action + fixed bias
Uncontrollable Random noise + fixed bias

Evaluation & Logging
Eval Returns from rollouts

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.3 TD3

Table 3: Key hyperparameters and architectural details of our TD3 implementation with shared
attention.

Component Setting
Environment
Environment DM Control Suite
Observation Dim Original + 20 controllable + 20 uncontrollable distractors
Action Space Continuous (Box)

Actor Network
Architecture MLP: 256-256, ReLU

Critic Networks (Q1, Q2)
Architecture MLP: 256-256, ReLU
Target Networks Soft update with τ = 0.005

Training Setup
Total Timesteps 1M
Learning Starts 25K steps
Batch Size 256
Replay Buffer Size = 106 transitions
Optimizer Adam, LR = 3× 10−4

Gradient Clipping Not used

TD3-Specific Settings
Policy Delay 2 steps
Target Policy Noise Std = 0.2, Clipped at 0.5
Exploration Noise Std = 0.1 (added to actor output)

Distractor Variables
Controllable Linear in action + fixed bias
Uncontrollable Random noise + fixed bias

Evaluation & Logging
Eval Episodes 50 continuous episodes per checkpoint

D CODE

Anonymous GitHub link:

https://anonymous.4open.science/r/submission-41DF

23

https://anonymous.4open.science/r/submission-41DF

	Introduction
	Related Work
	Learning Approximate State Abstractions
	Handling distractions in Deep RL

	Problem Setting: Factored MDPs with Task-Irrelevant Distractors
	State Abstraction through Observation-Independent Input Masking
	DM Control Suite Experiments
	Empirical Setup
	Results

	Controlled Analysis
	Gradient Dynamics in Linear Models
	Policy Evaluation in Toy MDPs

	Conclusion
	Additional Results
	Gradient Updates Derivation
	Oracle Updates
	Full Updates
	Attention Updates

	Hyperparameters
	For SAC
	PPO
	TD3

	code

