Under review as a conference paper at ICLR 2026

ARCHITECTURAL INDUCTIVE BIASES CAN BE ENOUGH
FOR STATE ABSTRACTION IN DEEP REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The ability to ignore task irrelevant environment variables is central to intelligent
behavior. In reinforcement learning (RL), existing methods typically rely on
auxiliary objectives to learn similar forms of abstraction. Such objectives tend to
add significant complexity to the base RL algorithm. In this work, we take a step
back and ask: can selective abstraction emerge naturally from reward optimization
alone, without any additional objectives? Following prior work, we show that
standard deep RL learns slowly or not at all in the presence of distracting, task-
irrelevant state variables, failing to learn meaningful state abstractions. We then
introduce a surprisingly simple neural network architecture change: a learnable,
observation-independent attention mask applied to the inputs of the policy and
value networks and trained end-to-end using only the RL objective. Despite its
simplicity, this architectural modification consistently improves sample efficiency
and learns to mask out distracting input variables across 12 continuous control
tasks. We analyze the dynamics of gradient descent using this method on a linear
regression task and demonstrate improved feature credit assignment. Finally, we
conduct experiments on toy MDPs and show that the attention mask leads to
accurate Q-value estimation and induces soft abstractions over a factored state
space. Our findings challenge the need for complex auxiliary objectives to learn
state abstractions in deep RL and suggest a simple baseline for future research.

1 INTRODUCTION

In complex environments, reinforcement learning (RL) agents observe a wide range of environment
variables of which only a subset are relevant for decision-making. For example, a household robot may
simultaneously perceive furniture, humans, ambient sound levels, lighting conditions, temperature,
and floor texture, yet only certain features contribute meaningfully to its task at hand. This abundance
of candidate features is a challenge for RL algorithms without prior knowledge of which variables
are relevant. RL algorithms without such prior knowledge can learn policies and value functions that
incorrectly depend upon task irrelevant variables and consequently fail to learn efficiently (Wang
et al., [2024).

In order to identify and discard task-irrelevant state variables, prior work has introduced various
auxiliary objectives to provide learning signals beyond the reward alone. These include metrics
that quantify state similarity based on reward and transition dynamics (Zhang et al.| |2020; Castro
et al.,[2021)) and learning through causal reward modeling (Wang et al., [2024)). However, the role
of architectural choices in enabling or shaping state abstraction has received comparatively little
attention. Motivated by this gap, we aim to answer the following question:

Are architectural choices and the RL objective alone sufficient to learn abstract state representations?

In this work, we show that the answer can be yes. Building on the framework of Wang et al.| (2024),
we investigate the capacity of neural networks to suppress distracting input variables. We first reaffirm
that standard architectures used for continuous control benchmarks, such as multi-layered perceptrons
(MLPs), learn slower in the presence of such distractors, as prior work has also shown (Wang et al.,
2024).

Under review as a conference paper at ICLR 2026

We then introduce a learnable attention mask applied to the inputs of the neural network. Our
approach draws inspiration from prior work on masking mechanisms, which have been integrated into
various architectures and shaped using diverse optimization objectives (Wang et al.|[2024; Wu et al.}
20215 |Grooten et al., 2023} |Salter et al.,|2021). However, a key distinction lies in the nature of the
masking: existing methods are typically context-dependent, suppressing features only locally when it
negatively affects performance, whereas we use a simpler observation-independent mask. Moreover,
there has been limited empirical or theoretical inquiry into why distractors are so detrimental or
how such seemingly minor architectural modifications can produce substantial gains in performance.
Saxe et al.| (2019) show that MLPs experience a loss in mutual information between distracting
inputs and hidden layers of an MLP, but not enough to consistently recover optimal performance
in MuJoCo control tasks, as we demonstrate. We provide insight into this phenomenon from two
complementary perspectives. First, we perform a gradient dynamics analysis of stochastic gradient
descent updates in-expectation for linear models with and without attention-based masking. We show
that the detrimental effects of distractors and the benefits of bounded masking extend beyond RL to
general function approximation. Second, using a Deep Q-Network (DQN) (Mnih et al.l [2015) trained
on randomly generated toy MDPs adapted from Yang et al.|(2022), we show that even in non-linear
regimes, our method yields statistically significantly better estimates of the optimal Q-value function
compared to vanilla MLPs.

Together, our findings show that an architecture inductive bias, driven solely by the reward signal, is
sufficient to give rise to an abstract state representation. These findings question the need for auxiliary
losses to induce appropriate state abstraction.

2 RELATED WORK

In this section, we review the significant literature on learning state abstractions, abstract state
representations, and handling distracting inputs in deep RL.

2.1 LEARNING APPROXIMATE STATE ABSTRACTIONS

Bisimulation (Givan et al.|2003) formalizes exact abstraction by grouping states that have behaviorally
indistinguishable dynamics. In contrast, MDP homomorphisms (Ravindran, 2004) define a more
flexible surjective mapping from ground to abstract states that preserves rewards and transition
structure in expectation, allowing dissimilar states to be merged as long as abstract behavior remains
approximately faithful. In subsequent work, |Dean et al.|(2013)) relaxed the exact equivalence of
bisimulations to aggregate states that behave approximately the same in a factored representation of a
bounded parameter MDP. Taylor et al.| (2008)) relate MDP homomorphisms with lax bisimulation and
devise a metric on states to provide approximation guarantees. Abel et al.| (2016) show that the error
in behavior due to approximate abstractions is polynomially bounded, while approximation does not
require solving the exact MDP and allows for a greater degree of compression and tunable strictness
of abstraction. [Li et al.|(2006) provide a unifying framework for different types of abstractions and
show that under certain conditions, approximate abstractions can still lead to near-optimal policies,
motivating the study of lossy but useful state representations. We extend this line of work by showing
that graded abstractions can be induced implicitly through end-to-end learning in RL. Auxiliary losses
based on bisimulation metrics (Ferns et al.,[2004) have been introduced to shape the feature space such
that the distance between two states’ representations reflects their behavioral similarity in the MDP
(Zhang et al.| 20205 |Castro et al.| 2021)). Other approaches such as DeepMDP (Gelada et al.l 2019)),
learn a latent MDP model by predicting both rewards and next-state distributions in latent space.
These objectives ensure that states with dissimilar transitions or rewards are embedded distinctly,
thereby preserving bisimulation-based structure. In contrast, we show that an appropriately biased
architecture can eliminate the need for such auxiliary supervision, learning task-aligned abstractions
solely through interaction and reward feedback.

2.2 HANDLING DISTRACTIONS IN DEEP RL

A common approach to studying distractors in RL involves appending irrelevant variables to state
observations. Our work builds on the setup of[Wang et al.[|(2024)), who learn a binary mask via causal
and reward models to identify variables that influence dynamics or reward, yielding bisimulation-

Under review as a conference paper at ICLR 2026

consistent abstractions. Much of the prior work on distractors focuses on visual domains. The DMC
Distracting Control Suite (Stone et al., 2021)) adds noise through camera variation and background
motion. In this setting, |Zhou et al.|(2023) use sequential reward prediction to shape representations,
while Liu et al.| (2023) use bisimulation distances and prototype clustering for robustness. Our work is
related to approaches that leverage architectural attention: Bramlage and Cortese| (2022) incorporate
self-attention into policy and value networks; | Mott et al.|(2019)) introduce a recurrent attention model
using key-query-value attention (Vaswani et al.,|2017); and [Salter et al.|(2021) show its benefits in
noisy visual tasks. Some methods fully decouple distractor suppression from policy learning: Wang
et al.[(2021)) extract invariant foreground features via keypoint detection, while Wu et al.| (2021)
learn input-dependent attention masks through reconstruction, though these are task-agnostic. Most
recently, (Grooten et al.[(2023) train an observation-conditioned mask using only critic loss. In contrast
to these methods, our approach is solely reward-guided and observation-independent, enabling it
to identify globally relevant features across the entire observation space, those most predictive of
returns.

3 PROBLEM SETTING: FACTORED MDPS WITH TASK-IRRELEVANT
DISTRACTORS

We consider the setup introduced in [Wang et al.| (2024), where observations are state-based and
contain both task-relevant and task-irrelevant components. We model these environments as factored
MDPs, defined by the tuple M = (S, A, P,r,v), where s € S denotes the state, a € A the action,
P :SxAxS —[0,1]is the transition probability function with P(s’ | s,a) =P(s;41 = &' | st =
s,a; =a),r:S x A — R is the reward function, and -y € [0, 1) is the discount factor. A stochastic
policy 7 : S x A — [0, 1] defines a distribution over actions, such that 7(s, a) = P(a; = a | s = s).

The state space factorizes as S = Xy X Xi. A full state s € S is represented as s = (Tyel, Tirr)»
where x| € X, comprises task-relevant variables that influence both the transition dynamics and
the reward, and x;; € X, comprises task-irrelevant distractors that evolve independently and have
no causal influence on either reward or dynamics. Specifically, the transition and reward functions
factor as:

P(s' | s,a) = P(xl, | Tw,a) - P(xl, | Tin,a), 7(s,a) =1r(Tw,a). (1)

In practice, the exact factorization may only hold approximately. In our experiments, we include
a mixture of distractor types: some evolve independently of the agent’s actions (e.g., randomly
sampled or following their own stochastic processes), while others evolve conditionally on the agent’s
actions via P(«!, | @iy, @). Crucially, these variables remain irrelevant to both the reward and the
transitions of x|, thereby they are unnecessary inputs for the optimal policy. This relaxation from
strict independence allows us to simulate more realistic distractor dynamics.

4 STATE ABSTRACTION THROUGH OBSERVATION-INDEPENDENT INPUT
MASKING

Given a standard model-free deep reinforcement learning (RL) algorithm (e.g., SAC |Haarnoja
et al.| (2018)), we introduce a lightweight architectural module designed to identify and discard
task-irrelevant variables induce task-specific abstraction throughout end-to-end training. Let the
observation space be factored as s = (1,22, ...,2,) € R", where each x; represents an individual
state variable. We associate with each variable x; a corresponding learnable parameter ¢; € R,
and collectively define the masking parameter vector ¢ = (¢1,...,¢,) € R™. We initialize these
parameters to zero and share the same mask across all function approximators involved (e.g., the
policy and value networks).

At each training step, we compute a gating vector a = o(¢p) € (0,1)™, where o(+) is the element-
wise sigmoid activation, and apply it to the input via a Hadamard product: § = a¢ ® s. This masked
observation is used as input to both the actor and critic networks.

For actor-critic methods, we found it beneficial to update ¢ using either the actor or critic loss—but
not both. To enforce this, we stop gradients from flowing through the loss not being used. For
instance, if updating via the actor loss only, the critic receives S.ic = detach(a) ® s, while the

Under review as a conference paper at ICLR 2026

actor receives Sycor = ¢ © 8. The gating parameters are then updated via backpropagation through
the actor loss:

¢ «— ¢ —Ne v¢£act0r(07 ¢)a ()

where Lyor(0, ¢) denotes the actor loss (e.g., from PPO or SAC), computed with respect to the
policy network parameters € and the shared masking parameters ¢. The learning rate 7, controls
the step size for updating ¢. Note that while 8 governs the weights of the policy network, ¢ is a
separate parameter vector whose gradients are computed solely through its influence on the masked
mput Sycior-

This setup ensures that ¢ is learned solely from the RL task objective, yielding a soft abstraction
rather than a hard partition over the state space. Since the masking vector a = o(¢) lies in (0,1)",
each variable is only partially suppressed, allowing a graded notion of relevance. This continuous
relaxation enables differentiable credit assignment and supports gradient-based optimization. In the
ideal case, the masking vector associates a weight of almost zero with all task-irrelevant inputs and a
weight of almost one with task-relevant variables. In practice, this hard abstraction is not necessarily
recovered but, as we will show, the weights still correctly suppress task-irrelevant variables more and
doing this leads to faster learning in the presence of such variables.

5 DM CONTROL SUITE EXPERIMENTS

To evaluate the effectiveness of our proposed abstraction mechanism, we conduct extensive experi-
ments across a range of continuous control benchmarks. We show that the presence of distractors
in the state space leads to significant performance degradation of SAC, TD3, and PPO in standard
MuJoCo tasks compared to learning without the distractors. We then show that the simple architecture
modification we introduced in the previous section is sufficient to significantly decrease the gap
between the methods. These results show that the RL objective and a simple architecture can be
sufficient for learning in the presence of such distractors.

5.1 EMPIRICAL SETUP

Tasks. Our experiments span 12 continuous control tasks from the DeepMind Con-
trol Suite (MuJoCo): walker-walk, walker-run, cheetah-run, hopper-hop,
hopper-stand, finger-spin, finger-turn_easy, finger—-turn_hard,
fish-swim, fish-upright, reacher-hard, and swimmer-swimmer6. These tasks
cover a broad spectrum of locomotion and manipulation challenges, with varying levels of complexity
in dynamics, control frequency, and reward structure. The diversity of tasks ensures that our findings
are not tied to a narrow class of dynamics or reward functions. Each environment features continuous
state and action spaces.

Distractor Augmentation. The distractor augmented MDP is instantiated using two types of
distractor variables: uncontrollable and controllable (Wang et al., 2024). Let a; € R? denote the
action taken at time step t. Uncontrollable distractors are modeled as noise vectors acff”m) € Rbune
sampled independently at each time step:

2" ~ U(tune — 0, fune + 6), A3)

where ftye € R%x is a fixed bias sampled once at the beginning of each experiment, and § € R‘i“““
defines the range of variation. These variables evolve independently of the agent’s behavior and serve
as purely exogenous noise.

Controllable distractors, by contrast, evolve deterministically as a function of the agent’s actions. At
each time step, they are generated by an affine transformation of the current action:

' = Wa, +b,)

where W € R%n x4 s a weight matrix and b € R% is a bias vector. Both W and b are sampled
uniformly at random once per experiment and held fixed throughout. This ensures that controllable
distractors are correlated with the agent’s behavior but remain irrelevant to task performance, as they
are not part of the reward or transition-generating processes for x;.

Under review as a conference paper at ICLR 2026

To simulate high-dimensional, distractor-laden observations, we augment the native task-relevant
state vector x,; with 40 task-irrelevant variables, comprising 20 controllable and 20 uncontrollable
distractor dimensions, resulting in a factored observation of the form s = (&1, Tcon, Tunc)- This
allows us to test the agent’s ability to filter out noise across both deterministic and stochastic distractor
sources in a variety of control settings.

Implementation Details. We evaluate our learned masking mechanism across three deep reinforce-
ment learning algorithms: Soft Actor-Critic (SAC) (Haarnoja et al.l 2018)), Twin Delayed Deep
Deterministic Policy Gradient (TD3) (Fujimoto et al., [2018), and Proximal Policy Optimization
(PPO)(Schulman et al.,[2017)). In all cases, the actor and critic networks are implemented as mul-
tilayer perceptrons (MLPs), with ReLU activations used for SAC and TD3, and Tanh activations
for PPO. The temperature of the sigmoid is kept at 1 for these experiments. SAC and TD3 are
trained off-policy using a replay buffer of size 1 million and run for 1 million environment steps per
seed. For SAC, the entropy regularization coefficient is automatically tuned using a dedicated Adam
optimizer. PPO, being an on-policy algorithm, is trained longer for 3 million steps. The full set of
hyperparameters for each algorithm will be provided in the Appendix [C| The results are compared
against two baselines. First, oracle receives only task relevant variables as input (the ground truth
abstraction) and thus serves as a strong upper bound on performance in that task and, second, fu!ll
observes the full state augmented with distractors, which we show performs poorly compared to
oracle performance.

All experiments were conducted on a high-throughput computing cluster. The compute pool consists
of heterogeneous CPU-only worker nodes with Intel Xeon processors, ranging from 8 to 64 cores and
16-256 GB of RAM per node.

Evaluation Protocol. SAC and TD3 use a fixed protocol: after every training episode, the agent is
evaluated on 50 episodic rollouts using a separate environment with independently sampled distractor
biases and projection matrices. This ensures that the evaluation distractors are in-distribution but
different from those seen during training. The average episodic return across the 50 test episodes
is logged. For PPO, evaluation is conducted online by recording episodic returns directly during
training rollouts.

5.2 RESULTS

Figure[I]reports the average performance of each algorithm across all 12 tasks. The baseline setting
using vanilla MLP function approximators performs consistently worse than the oracle, particularly in
the presence of distractors. In contrast, our method closes this gap, recovering performance towards
the oracle despite having access only to reward-based supervision. Individual plots for each task are
provided in the Appendix [A]and show, in many cases, the ability to match the oracle upper bound.

Average Normalized Returns over All 12 Tasks Average Normalized Returns over All 12 Tasks Average Normalized Returns over All 12 Tasks
0.4
208 e 2 2
2 /""/:A.,WM”V”" o 206 B 2 A '»/"ﬂ'\’
0.6 s 3 R $0.3 " W/W“J‘-w“WWW s
& - & a5 & At A
A P A AR
3 1 To.a S 3 1
NO04 s b / 0.2 T Ly GO
s / —— sAc-0 SAC-C s / — TD3-0 TD3-C s clit
/l 1
Eo2l 14 SAC-D SAC-M 02 / TD3-D TD3-M Eol —— PPO-O -~ PPO-AC
s0. J S / S 0.1y
z Iy —— SACA SAC-AC =) —— TD3-A =z PPO-D
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Episode Episode Episode

Figure 1: Performance of SAC, TD3, and PPO averaged across 12 MuJoCo tasks. For each of the
algorithms—Oracle (—0O), distractors without attention (-D), attention trained with the actor (—A),
attention trained with the critic (—C), separate attention trained with both (—AC) and MaDi (-M)—the
performance curves are computed as the mean across all tasks. These per-seed curves are then
averaged across the 10 random seeds with 95% confidence intervals to obtain the final aggregated
results as shown.

Actor vs. Critic. When using the learned attention mask, using either the actor or critic signal in
isolation yields stable training, suggesting that each loss alone is sufficient to drive task-aligned
abstraction. For SAC, we also evaluate a variant where separate masks are trained for the actor
and critic using their respective gradients. All these approaches achieve comparable performance.
This similarity may stem from an implicit overlap in relevant features: in many continuous control
tasks, variables useful for value estimation also aid policy learning. In contrast, training a single

Under review as a conference paper at ICLR 2026

shared mask using both losses simultaneously results in degenerate attention weights and near-zero
returns. This indicates that the actor and critic provide conflicting gradient signals when applied
jointly, consistent with findings from |Garcin et al.[(2025), which show that actor and critic networks
tend to learn representations that are optimized for different purposes.

Interestingly, we find that in PPO updating the masking parameters using both actor and critic losses
yields performance indistinguishable from using either loss alone. This may be due to the shared
backbone architecture of PPO and the synchronized updates of the actor and critic, which reduce the
representational divergence between the two losses, minimizing the gradient conflict we observe in
off-policy methods.

Comparison with MaDi. Our observation-independent masking performs comparably (for TD3)
or better (for SAC) than the observation-conditioned mask proposed in |Grooten et al.| (2023). In
contrast to our approach, such methods may overfit to idiosyncrasies in the input and learn contextual
abstractions, rather than identifying a globally relevant set of features for RL.

Average Weights for SAC with Critic Attention Across Seeds Average Weights for PPO with Actor Attention Across Seed
g 80.60 ———
© ©
>
e z 0.55
o
S 20.50
= =
g 20.45
© @©
o e
g 90.40
Z —— Relevant —— lrrelevant E —— Relevant —— lrrelevant
-0.25
0 50 100 150 200 035~5 50 100 150 200 250 300
Time Step Time Step
reacher-hard with SAC hopper-stand with PPO
Average Weights for SAC with Actor Attention Across Seeds 1.00 Average Weights for SAC with Actor Attention Across Seeds
[} o = -
= =
T 075 s
e b=
= 0.50 =
2 2
=~ 0.25 -
3 g
£ 0.00 s
Z —— Relevant —— Irrelevant z —— Relevant —— lrrelevant
-0.25 -0.25
0 50 100 150 200 0 50 100 150 200
Time Step Time Step
swimmer-swimmer6 with SAC hopper-stand with SAC
(@ (b)

Figure 2: Trajectory of average attention weights across training. (a) SAC on reacher-hard and
swimmer—-swimmer6: confident masks emerge in easier tasks like reacher-hard, while swimmer shows
more ambiguous gating. (b) PPO vs. SAC on hopper—-stand: SAC shows sharper convergence; PPO remains
diffuse. Task-relevant features are highlighted in blue, task-irrelevant in red. Results aggregated over 10 seeds.

Correctness of Learned Abstraction. We track the evolution of attention weights during training
and plot the weights for each observation variable for two distinct environments using the SAC
agent in Figure Za] While the attention weights do not strictly go to either 0 or 1 (producing a
hard abstraction), they generally correspond to task-relevant variables receiving higher weights and
task-irrelevant variables receiving lower weights. Notably, we observe that the sharpness of the
learned gating values and the overall task performance are correlated. In environments where the
agent performs well, such as reacher-hard, the attention mechanism tends to converge to a
confident binary-like mask. As shown in Figure 2a] most attention weights (all but two) converge
to either O or 1, indicating that the model has learned to clearly distinguish between relevant and
irrelevant input variables. For more challenging tasks such as swimmer-swimmer6, where the
agent’s performance is relatively lower, the learned attention masks are less confident. The attention
weights remain diffuse and fail to clearly separate important features from distractors. However,
while the mask is less sharp, it still preserves the correct relative ranking of feature relevance. Similar
plots are provided for all environments in Appendix [A]

Under review as a conference paper at ICLR 2026

As shown in Figure [2b] attention masks learned by on-policy methods like PPO fail to strongly
suppress distractors, while off-policy methods such as SAC and TD3 learn sharper, more selective
patterns that effectively mask out all task-irrelevant variables. A plausible explanation lies in
differences in sample efficiency and data reuse (Queeney et al.,2021)). On-policy methods discard
trajectories after each update, limiting the diversity of experiences and restricting the refinement
of internal representations like attention masks. In contrast, off-policy methods continually reuse
past interactions, enabling more stable gradient estimates and better credit assignment, which in turn
supports stronger attention patterns.

Takeaway #1

The attention mask we introduce and train solely with RL objectives is able to (1) down-weight
the influence of distractors and (2) learn nearly as well as when the distractors are known.

6 CONTROLLED ANALYSIS

In this section, we show mathematically and through controlled toy experiments that an input-
independent attention mask can lead to meaningful abstractions that discards task-irrelevant variables.
Of particular note, we show mathematically that the presence of distractors can slow learning even
when using expected updates (i.e., using infinite data to compute each gradient step). We then show
that the input-independent attention mask serves to suppress the effect of the distracting variable.

6.1 GRADIENT DYNAMICS IN LINEAR MODELS

As critic training in RL amounts to repeatedly solving a regression task, in this section, we analyze
the expected gradient updates for linear regression in the presence of distracting inputs. This setting
is equivalent to learning a critic in a contextual bandit setting where value prediction reduces to
supervised regression from state to reward. We analyze expected gradient descent updates for three
settings: (i) in the absence of distractor variables (oracle case), (ii) in the presence of distractors
without any form of masking or attention (full case), and (iii) in the presence of distractors with our
proposed soft attention mechanism. We use expected updates (i.e., the infinite data regime) to focus
on optimization rather than statistical challenges.

Consider a regression setting in which data is generated according to Y = mX + ¢ where X ~
N(0,1). There is also a distracting variable D ~ U(0, 1). We consider training linear functions of
the form fo,(z,d) = w ' [1, x, d] using gradient descent. The gradient descent update is

w' — w' — nExonoEpau(0,1) [Vt (fwt (X, D) = Y)?] ©)
Proposition 1 (Gradient Updates with Known Distractors (Oracle)). The linear model is given as:
fuw () = wo + w1z (6)

and the expected update for w is given by:
(w™ wi™h) = (1= mwg +ne, (1—n)wi +mm) (7)

Proposition 2 (Gradient Updates with Unknown Distractors (Full)). The linear model with distractors
and no attention mechanism is given by:

fw(@,d) = wo + wrz + wad)

and the expected updates for each component of w are given by:

whtt « (1= n)wh — Fwh +ne

wit! e« (1= n)wi +nm
wit — (1— 1) wh — Zwh + e ©)
Observation 1 (Distracting inputs mislead bias learning in the full model). With oracle knowledge

of the distractor variable, the expected update results in wy — ¢ and w1 — m and the true data
generating function is recovered. Without this oracle knowledge, the update for w, is unchanged but

Under review as a conference paper at ICLR 2026

wo and wq now depend upon one another and change to try and explain the bias term, c, in the data

generation function. Consequently, for any non-zero values of wo and ws, wo moves toward ¢ —

and w9 moves toward = — M albeit the latter moves at the slower rate of 3. As the target for wo

is only 0 when wy = 1, We do not, in general, expect ws to reach zero and d to be ignored.

Proposition 3 (Gradient Update: Attention-Based Model). The linear model with input-independent
attention mask is given as:

Jw(z,d) = wo +wi(zo(¢1)) + w2 (do(¢2)), (10)

where ¢1 and ¢o are learnable parameters and o is the sigmoid function. The expected update
equations for w, ¢1, and ¢4 are given as:

t+1 %wo 777(w0+ wszQ(¢2) 70)

f+1 —wl -7 (w1 g(¢1)2 - mcr(¢1))

t+1 - wQ B 7}0((,‘152) (wo 4 w2 03(¢>2) _ %)
T ol —nwio(d1) (1 — o)) (w1 o(d1) —m)
5 0h —nwao(90)(1 - o(en) (% + 2252 — ¢) (an

Observation 2 (Attention mask updates suppress distractors.). The direction of the update for ¢5 is

determined by the expression:
wy wao(d2) ¢
w2 (5 + 3 2)

as the factor o(¢2)(1 — o(¢2)) in Equation[I1)is always non-negative and thus only serves to scale
the update. When the distractor’s contribution is large, i.e., when |ws| is large or o(¢2) closer to one,
this term is typically positive, leading to a downward update that drives o(¢2) — 0 and effectively
suppressing the distractor. Notably, suppression emerges without explicit knowledge of distracting
variables; the model learns to attenuate irrelevant inputs purely from the error signal.

Empirical Validation We also validate these conclusions empirically in a synthetic regression
setting using the derived gradient update equations for both the full and attention-based model. All
weights are initialized using a uniform distribution 2/(—1/+/2, 1/+/2), and updates are performed
using fixed-step gradient descent with a step size of 0.01. For the attention-based model, the attention
weights are initialized to zero and updated jointly with the main weights via backpropagation through
the sigmoid gating functions. At each training step, we compute the loss over a sampled batch of
5,000 data points drawn from the true data-generating process. This process is repeated across 50
random seeds to account for variance due to initialization. As shown in Figure|3| even in the infinite
data regime, the attention-based updates consistently converge faster and more stably to the optimal
solution compared to updates without the attention interactions.

Takeaway #2

Distractors can lead to conflicting gradient updates even with infinite data; the attention mask is
updated in a way that suppresses the distractors’ influence.

6.2 PoLicY EVALUATION IN Toy MDPs

Finally, we run a policy evaluation experiment in a controlled, low-dimensional MDP to understand if
the attention mask is improving the accuracy of policy evaluation. The base environment is a custom
MDP with continuous one-dimensional state space and two discrete actions adapted from|Yang et al.
(2022)). The transition dynamics for each action are defined via randomly sampled piecewise linear
functions, making the environment deterministic but non-trivial. We discretize the continuous state
space into 20 evenly spaced states and compute the ground-truth Q-values via value iteration. For
the full setting, the agent is trained with 20 additional task-irrelevant dimensions—10 controllable
and 10 uncontrollable—appended to the 1D input. Each DQN variant is trained for 2,000 episodes
using a small MLP. The distractors are generated similar to the main experiments. To evaluate

Under review as a conference paper at ICLR 2026

Average Loss Curves Across Seeds

0.5

15.0{ — dan oracle error Q(s, a=0) —— dan oracle error Q(s, a=1)
— Average Oracle Loss —— dqn full error Q(s, a=0) g| — dan full error Q(s, a=1)
0.4 —— Average Full Loss —— dan attn error Q(s, a=0) —— dan attn error Q(s, a=1)

—— Average Attention Loss

Loss
Error
Error

0 1000 2000 3000 4000 5000 6000 7000
Steps

0.0

Figure 3: Loss with respect to the Figure 4: Mean squared error of Q-value estimation for ac-
true data generating function. Results tion 0 and 1 across oracle, full, and attention-based agents.
aggregated over 50 seeds.

learned Q-values, we run all trained models on a fixed evaluation set of states with the same distractor
statistics and compare the predicted Q-values against the ground-truth values for both actions using
per-state mean squared error.

We repeat all experiments over 20 random seeds and report the mean Q-value estimation errors along
with 95% confidence intervals. Additionally, we perform paired t-tests across seeds to assess the
statistical significance of the differences in estimation error between the attention-based and vanilla
models. Each black star denotes a statistically significant difference in Q-value estimation error for
that state, as determined by a paired t-test. The results are presented in Figure] for 20 discretized
states in a randomly generated MDP. The sigmoid temperature used for the attention masks in this
setting is the default value of 1 as used in the main experiments. Plots for other temperature settings
are provided in Appendix [A] Temperature is a sensitive hyperparameter: higher values yield sharper,
more confident masks, but excessively high temperatures can lead to vanishing gradients and unstable
training, resulting in overly confident but incorrect masking. As shown, the attention-based model
yields significantly lower errors than the baseline in most of the 20 discretized states, indicating more
accurate approximation of the true Q-values.

Takeaway #3

The attention mechanism achieves statistically significant improvements in value estimation
across the majority of states and all actions, even within the deep RL setting.

7 CONCLUSION

In this paper, we considered the problem of learning state abstractions in RL and asked the question
of whether this was possible without relying on auxiliary objectives as done in prior work. We
introduced a simple neural network architecture modification — an observation-independent attention
mask applied to the inputs of the actor and critic networks — that is trained along with other network
parameters using only RL objectives. Across 12 continuous control DMControl tasks augmented
with task-irrelevant observation variables, we found that this small change enables agents to suppress
task-irrelevant inputs and close the gap with agents with access to the ideal state abstraction. Through
a combination of empirical evaluation and theoretical insights from linear settings, we demonstrate
that this lightweight inductive bias supports selective credit assignment and facilitates the emergence
of soft abstractions aligned with task dynamics and reward structure. Our findings suggest that, when
combined with appropriate architectural constraints, the reward signal alone can suffice to induce
abstraction, challenging the prevailing reliance on auxiliary losses in prior work. These findings (1)
suggest that future work in abstraction learning should consider this simple architecture as a baseline
before introducing more complex methods based on auxiliary losses and (2) open up a promising new
research direction into designing architectures that promote abstraction through RL objectives alone.

REPRODUCIBILITY STATEMENT

Full derivations for the results presented in Section [f]are provided in Appendix [B] Plots for additional
experiments can be found in Appendix Al and the complete code to reproduce all results in this paper

Under review as a conference paper at ICLR 2026

is available via an anonymous link in Appendix D] A detailed list of hyperparameters used for all
experiments is included in Appendix

REFERENCES

David Abel, David Hershkowitz, and Michael Littman. Near optimal behavior via approximate state
abstraction. In International Conference on Machine Learning, pages 2915-2923. PMLR, 2016.

Lennart Bramlage and Aurelio Cortese. Generalized attention-weighted reinforcement learning.
Neural Networks, 145:10-21, 2022.

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. Mico: Improved
representations via sampling-based state similarity for markov decision processes. Advances in
Neural Information Processing Systems, 34:30113-30126, 2021.

Thomas L Dean, Robert Givan, and Sonia Leach. Model reduction techniques for computing
approximately optimal solutions for markov decision processes. arXiv preprint arXiv:1302.1533,
2013.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In UAI volume 4, pages 162—169, 2004.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pages 1587-1596. PMLR,
2018.

Samuel Garcin, Trevor Mclnroe, Pablo Samuel Castro, Prakash Panangaden, Christopher G Lu-
cas, David Abel, and Stefano V Albrecht. Studying the interplay between the actor and critic
representations in reinforcement learning. arXiv preprint arXiv:2503.06343, 2025.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. In International conference
on machine learning, pages 2170-2179. PMLR, 2019.

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in
markov decision processes. Artificial intelligence, 147(1-2):163-223, 2003.

Bram Grooten, Tristan Tomilin, Gautham Vasan, Matthew E Taylor, A Rupam Mahmood, Meng
Fang, Mykola Pechenizkiy, and Decebal Constantin Mocanu. Madi: Learning to mask distractions
for generalization in visual deep reinforcement learning. arXiv preprint arXiv:2312.15339, 2023.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction for
mdps. AI&M, 1(2):3, 2006.

Qiyuan Liu, Qi Zhou, Rui Yang, and Jie Wang. Robust representation learning by clustering with
bisimulation metrics for visual reinforcement learning with distractions. In Proceedings of the
AAAI conference on artificial intelligence, volume 37, pages 8843-8851, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo Jimenez Rezende.
Towards interpretable reinforcement learning using attention augmented agents. Advances in
neural information processing systems, 32, 2019.

James Queeney, Yannis Paschalidis, and Christos G Cassandras. Generalized proximal policy
optimization with sample reuse. Advances in Neural Information Processing Systems, 34:11909—
11919, 2021.

10

Under review as a conference paper at ICLR 2026

Balaraman Ravindran. An algebraic approach to abstraction in reinforcement learning. University
of Massachusetts Ambherst, 2004.

Sasha Salter, Dushyant Rao, Markus Wulfmeier, Raia Hadsell, and Ingmar Posner. Attention-
privileged reinforcement learning. In Conference on Robot Learning, pages 394-408. PMLR,
2021.

Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D
Tracey, and David D Cox. On the information bottleneck theory of deep learning. Journal of
Statistical Mechanics: Theory and Experiment, 2019(12):124020, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting control suite—a
challenging benchmark for reinforcement learning from pixels. arXiv preprint arXiv:2101.02722,
2021.

Jonathan Taylor, Doina Precup, and Prakash Panagaden. Bounding performance loss in approximate
mdp homomorphisms. Advances in Neural Information Processing Systems, 21, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Xudong Wang, Long Lian, and Stella X Yu. Unsupervised visual attention and invariance for
reinforcement learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 6677-6687, 2021.

Zizhao Wang, Caroline Wang, Xuesu Xiao, Yuke Zhu, and Peter Stone. Building minimal and reusable
causal state abstractions for reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 1577815786, 2024.

Haiping Wu, Khimya Khetarpal, and Doina Precup. Self-supervised attention-aware reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
10311-10319, 2021.

Ge Yang, Anurag Ajay, and Pulkit Agrawal. Overcoming the spectral bias of neural value approxima-
tion. arXiv preprint arXiv:2206.04672, 2022.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742, 2020.

Qi Zhou, Jie Wang, Qiyuan Liu, Yufei Kuang, Wengang Zhou, and Houqiang Li. Learning robust
representation for reinforcement learning with distractions by reward sequence prediction. In
Uncertainty in Artificial Intelligence, pages 2551-2562. PMLR, 2023.

11

Under review as a conference paper at ICLR 2026

A ADDITIONAL RESULTS

Returns over Episodes: cheetah-run

Returns over Episodes: finger-spin

Returns over Episodes: finger-tum eas

R v
800 A= | P trs ol
800 800, AT e
AT
N Y M N »f"ﬂ M‘ﬁ*
g £ °00 \W‘WWMWWM i £ 600 o
a0 % o H ol W
400| 3
200]
o o
Episode Episode Episode
(a) cheetah-run (b) finger-spin (c) finger-turneasy
Returns over Episodes: finger-turn_hard Returns over Episodes: fish-swim Returns over Episodes: fish-upright
B oy o e
il 800 AERERARAI
m Mr’,ww 200 | A
)
g i geoo
2200 S R Zs00
g Y N &
150 MMW" 400
oo L R S s 300
i 200
Episode Episode Episode
(d) finger-turnhard (e) fish-swim (f) fish-upright
Returns over Episodes: hopper-hop Returns over Episodes: hopper-stand 1000 Returns over Episodes: reacher-hard
o
1M il fW » 600
u"’w»'.‘ *”MWW& g
iy M’M"‘M‘ 2 400
- 0 200 400 600 800 1000 [] 200 400 600 800 1000 [] 200 400 600

(g) hopper-hop

Returns over Episodes: swimmer-swimmer6

(h) hopper-stand

Returns over Episodes: walker-run

(i) reacher-hard

Returns over Episodes: walker-walk

350 800
700
300 J fﬁ 600
2 d 2500
w g
] 5 400)
L4 s
) 300
200)
r/ i
v i 200
ssof "
o
3 200 700 00 3 200 00 00 00 000 3 200 300 00 500 000
Episode Episode Episode

(j) swimmer-swimmer6

(k) walker-run

(1) walker-walk

Figure 5: Performance of SAC agents with and without the proposed observation-conditioned gating
mechanism across various DM Control Suite tasks. The presence of distractors significantly impairs
performance when no attention is applied. Incorporating our learned gating improves robustness and
sample efficiency.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Returns over Episodes: cheetah-run

Returns over Episodes: hopper-hop

} A .le‘lrumwﬁwf 20{— cors
£ g g m;‘mﬁ%mﬁww w"'v vrm
Bl H H s e e St e
al 0
[= - /
Episode Episode Episode
(a) cheetah-run (b) hopper-hop (c) walker-run
Re(um‘s over. Ews‘odes: walke‘r-walk ‘ Returns over Episodes: hopper-stand Returns over Episodes: reacher-hard
. A . . 1
§ ! PRSIV g §4Do,
2007
2007
Episode Episode Episode
(d) walker-walk (e) hopper-stand (f) reacher-hard
Returns over Episodes: fish-swim ‘ Retum‘s over Episodes: ﬁsh-\an\qM ‘ ‘ Returns over Episodes: finger-spin
= 700
200 7‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ —
g gsoo) g
K Sa00 K
1001 300] RN |
N A B s
[500 1000 1500 2000 2500 3000 500 1 1500 500 1 1500 0 2500 3000
Episode Episode Episode
(g) fish-swim (h) fish-upright (i) finger-spin
Returns over Episodes: finger-turn_easy Returns over Episodes: finger-turn_hard Returns over Episodes:
-
T
1 L
H 200
200
1004
0

0 500 1000 2000 2500 3000

1500
Episode

(j) finger-turn_easy

500 000 2000 2500 3000

1500
Episode

(k) finger-turn_hard

500 1000 1500 2000 2500 3000
Episode

(1) swimmer-swimmer6

Figure 6: Performance of PPO with and without the proposed observation-conditioned gating
mechanism across various DM Control Suite tasks. Plots are averaged over 10 random seeds

13

Under review as a conference paper at ICLR 2026

Returns over Episodes: walker-walk

Returns over Episodes: walker-run

1000
800 600
500
§ 600] §4on §2
£ 400 £ 300 &
200
200 3 Oracle — 03 Oracle. 150
L A— 100 o]
Episode Episode
(a) walker-walk (b) walker-run
Returns over Episodes: reacher-hard Returns over Episodes: hopper-stand
1000 700/ 753 oracke
so0| = Do
w00 = e
200 S R b
w 600 n s
: g ‘W}W t
g 8 300) A]
E g o bt E
200] £ B
20011 e 100
) e P o
Episode Episode
(d) reacher-hard (e) hopper-stand
Returns over Episodes: fish-upright Returns over Episodes: fish-swim
900 4001 T T e S0 s
00 350|— o e
300, W
goo E250 14
Zs00 2] H
H 209 [st £
400 150 ! %vwm"“'“’*"w’ X
300 o AR RIS
. o
200 oo
5 e I T § =0 N I
Episode Episode
(g) fish-upright (h) fish-swim
Returns over Episodes: finger-turn_easy Returns over Episodes: finger-turn_hard
900 700 — 103 Oracie
ano) — Bn e 00| — aang e Tt
B ol Y
§ 400 g
&30 ,,wwrw“‘“"”‘“‘*“" 24
100}

1000

00 600
Episode

(j) finger-turn_easy

260 1000

00 660
Episode

(k) finger-turn_hard

Returns over Episodes: swimmer-swimmer6

103 witncr Atetion

epsade
(c) swimmer-swimmer6
Returns over Episodes: hopper-hop
= e
N

T e

300 600 1000
Episode

(f) hopper-hop

Returns over Episodes: finger-spin

760 600
Episode

(i) finger-spin

Returns over Episodes: cheetah-run

— Torome

800 1000

00 600
Episode

(1) cheetah-run

Figure 7: Performance of TD3 on the DM Control Suite tasks. Plots are averaged over 10 random

seeds

Average Weights for PPO with Actor Attention Across Seeds

Average Weights for PPO with Actor Attention Across Seeds

Average Weights for PPO with Actor Attention Across Seeds

. Average Weights for PPO with Actor Attention Across Seeds

o — o o o

E]]] E]

]]]]

Zo.6 Z 0.6l Sog S04

5] 5 3 3

= 5] = 5] =0.5) =0.5)

s @ @ s

& & & &

g - = =- g g 8 s

g eva g Lo 204 y

Z04 —— Relevant —— lIrrelevant Z04 —— Relevant —— lIrrelevant z —— Relevant —— lIrrelevant z0- —— Relevant —— lIrrelevant
0 50 100150 200 250 300 0 50 100150 200 250 300 0 50 100150 200 250 300 0 50 100150 200 250 300

Time Step Time Step Time Step Time Step

(a) finger-spin

(b) finger-turn_easy

(c) finger-turn_hard

(d) fish-swim

Average Weights for PPO with Actor Attention Across Seeds Average Weights for PPO with Actor Attention Across Seeds Average Weights for PPO with Actor Attention Across Seeds

g _ — g0.7 o g

3 3 F0.6|

So.6| s s

K] S, 506 K]

g g 205

=05 = = =

v v 905 v

S &0-) &

8 o — e — e =

Lo r g0 g - 5 S04 Jovant evar

A —— Relevant —— lIrrelevant Ed —— Relevant —— Irrelevant Z 04 —— Relevant —— Irrelevant z —— Relevant —— lIrrelevant
G 50 100_ 150 200 250 300 0357550 100 150 200 250 300 G 50 100_ 150 200 250 300 G 50 100_ 150 200 250 300

Time Step Time Step Time Step Time Step

(e) fish-upright

(f) hopper-stand

(g) reacher-hard

(h) swimmer-swimmer6

Figure 8: Masks for PPO. The task-relevant variables are plotted in blue while the task-irrelevant

variables are plotted in red

14

Under review as a conference paper at ICLR 2026

Average Weights for SAC with Actor Attention Across Seeds Average Weights for SAC with Critic Attention Across Seeds Average Weights for SAC with Actor Attention Across Seeds Average Weights for SAC with Critic Attention Across Seeds
0f — 1.00 1.00{ 1.00
S g - [— g S 1
3 S 075 V S 075 3
S S 050 g % 0.50] S
> 2 025(1N 3 025 >
g g g g
g g 000 g 000 g
Ed —— Relevant —— lIrrelevant Ed —— Relevant —— Irrelevant Ed —— Relevant —— Irrelevant Ed —— Relevant —— Irrelevant
-0.251 -0.251 -0.251 -0.251
g 50 00 50 200 50 00 50 200 g 50 00 50 200 g 50 00 50 200
Time Step Time Step Time Step Time Step

(a) finger-spin with actor
loss

(b) finger-spin with critic
loss

werage Weights for SAC with Critic Attention Across Seeds,

(c) finger-turn_easy with
actor loss

(d) finger-turn_easy with
critic loss

werage Weights for SAC with Actor Attention Across Seeds,

werage Weights for SAC with Actor Attention Across Seeds,
0

werage Weights for SAC with Critic Attention Across Seeds
0

o 100 o 100f — o L0 o L0
E} E} / E} 3
s S o075 S 075 S o075
2 2 a 2 2
) 5 0sol [\ 5 0.50] 5 0.50]
g 3 3 5
= = = =
> > 0.25] > 0.25] > 0.25]
g g g g
g £ 0.00] £ 0.00] £ 0.00] — =
2 —— Relevant —— lrrelevant 2 —— Relevant —— lrrelevant 2 —— Relevant —— lrrelevant ES —— Relevant —— lrrelevant
-025 -025 -025 -025
0 50 00 150 200 0 50 00 150 200 0 50 00 150 200 0 50 00 150 200
Time Step Time Step Time Step Time Step

(e) finger-turn_hard with
actor loss

(f) finger-turn_hard with
critic loss

(g) fish-swim with actor
loss

Average Weights for SAC with Actor Attention Across Seeds

(h) fish-swim with critic
loss

Average Weights for SAC with Critic Attention Across Seeds.
0! p—

Average Weights for SAC with Actor Attention Across Seeds Average Weights for SAC with Critic Attention Across Seeds
0f 0f 1.00 — = o
9 9 9 = 9
E] E] E] E]
K]] S 075 S 075
£) 5 0.50] 5 050
9 9 9 g
= = = =
v > = 0.25] = 025
g g g g ———
£ £ £ 0.00 $ 0.00 =
Ed —— Relevant —— lIrrelevant Ed —— Relevant —— lIrrelevant Ed —— Relevant —— lIrrelevant Ed —— Relevant —— lIrrelevant
-0.25 -0.25 -0.25 -0.25
50 00 50 200 50 00 50 200 50 00 50 200 g 50 00 50 200
Time Step Time Step Time Step Time Step

(1) fish-upright with actor
loss

Average Weights for SAC with Actor Attention Across Seeds
00/

(j) fish-upright with critic
loss

Average Weights for SAC with Critic Attention Across Seeds

(k) hopper-stand with actor
loss

Average Weights for SAC with Actor Attention Across Seeds

(1) hopper-stand with critic
loss

Average Weights for SAC with Critic Attention Across Seeds

" 1. " 1.0¢ " "
H H H H
370 25 —— Relevant —— lIrrelevant 370 25 —— Relevant —— lIrrelevant 370 25 —— Relevant —— lIrrelevant 370 25 —— Relevant —— lIrrelevant
] 50 100 150 260 : 50 100 150 260 i 50 100 150 260] 50 100 150 260
Time Step Time Step Time Step Time Step
(m) reacher-hard with actor (n) reacher-hard with critic (0) swimmer-swimmer6 (p) swimmer-swimmer6

loss

loss

with actor loss

Figure 9: Masks for SAC

15

with critic loss

Under review as a conference paper at ICLR 2026

\werage Weights for TD3 with Actor Attention Across Seed:

\werage Weights for TD3 with Actor Attention Across Seed:

\verage Weights for TD3 with Critic Attention Across Seeds

\verage Weights for TD3 with Critic Attention Across Seeds

g gt gt

20.8| 2 2 —

s g0 g0

4 z z —

£09 £0.6 £0.6

204 2 0.4 2 0.4

8 8, 8,

§02 = | g §02 §02

o o o o =

200 — Relevant — Ielevant | £0.0) — Relevant — Imelevant | £0.0) — Relevant —— Imrelevant | £0.0) ~— Relevant —— Imelevant
o EY T00 150 70 o 50 100 150 70 o EY 100 150 70 o EY T00 150 70

Time Step Time Step Time Step Time Step

(a) finger-spin with actor
loss

\verage Weights for TD3 with Actor Attention Across Seed:

(b) finger-spin with critic
loss

(c) finger-turn_easy with
actor loss

\verage Weights for TD3 with Actor Attention Across Seed:

(d) finger-turn_easy with
critic loss

\verage Weights for TD3 with Critic Attention Across Seeds

\verage Weights for TD3 with Critic Attention Across Seeds

10| 1.0] — 1.0] 1.0] —

il E — | 2 E

50.8| S 50.8| - 50.8| 5038

12,0.6 12,0.6 12,0.6 12,0.6

S04 S04 2 0.4 S04

& 8 8 8

g0.2] I g0.2] — - g0.2] g0.2]

] g —] =] =

Z0.0] — Relevant —— Irrelevant | Z0.0| — Relevant —— Irrelevant | Z0.0| — Relevant —— Irrelevant | Z0.0| —— Relevant — Irrelevant
0 50 00 50 20 0 50 00 150 201 0 50 00 150 201 0 50 00 150 20

Time Step Time Step Time Step Time Step

(e) finger-turn_hard with
actor loss

\werage Weights for TD3 with Actor Attention Across Seed:

(f) finger-turn_hard with
critic loss

\verage Weights for TD3 with Critic Attention Across Seeds

(g) fish-swim with actor
loss

(h) fish-swim with critic
loss

\verage Weights for TD3 with Critic Attention Across Seeds

oAverage Weights for TD3 with Actor Attention Across See:

1. 1.
419 P P
3 5048 30.8|
508]]
Zos £06 205 _
20.4| 20.4| 20.4|
s s
. g0.2] 3 802 802 — —
g e g — g =
Z0.0] — Relevant —— Irrelevant | Z0.0| — Relevant —— Irrelevant | Z0.0| — Relevant —— Irrelevant | Z0.0| — Relevant —— Irrelevant
0 50 00 150 20 0 50 00 150 20 0 50 00 150 20 0 50 00 150 201
Time Step Time Step Time Step Time Step

(i) fish-upright with actor
loss

1, oferage Weiahts for T03 with Actor Attention Across Seeds

(j) fish-upright with critic
loss

\verage Weights for TD3 with Critic Attention Across Seeds

(k) hopper-stand with actor
loss

wverage Weights for TD3 with Actor Attention Across Seed:

(1) hopper-stand with critic
loss

1, ofAverage Weights for TD3 with Crtc Attention Across Seed:

o 10 10
208l 2 2
] ELE ELE)
204 Zos /ﬁ—w\t Zos
20.4| S04 204
g g g
302 g0.2) 0.2
g g g
Z00| — Relevan Imelevant | £ 0.0| — Relevant — Irrelevant | £0.0| — Relevant —— Imelevant
g 50 150 201 g 50 150 201 g 50 150 201 g 50 150 201

100
Time Step

(m) reacher-hard with actor
loss

100
Time Step

(n) reacher-hard with critic
loss

100
Time Step

(0) swimmer-swimmer6
with actor loss

100
Time Step

(p) swimmer-swimmer6
with critic loss

werage Weights for TD3 with Actor Attention Across Seed:

\werage Weights for TD3 with Actor Attention Across Seed:

werage Weights for TD3 with Actor Attention Across Seed: 1, ofAverage Weights for TDS3 with Actor Attention Across Seeds 10

9 1.0 9 o[] . ———— =] . _

g08 g0 508 508

Z0.| Z 0.6 Zo.6| Zo0.6|

g K 2 5

04| 04| =04 504

%0, 5 | e %02

0. 802 0. go. —

§ — § — § § - =

Z0.0 —— Relevant —— Irrelevant Z0.0| —— Relevant —— Irrelevant Z0.0 —— Relevant —— Irrelevant Z0.0] —— Relevant —— Irrelevant
0 50 50 20 0 50 50 20 0 50 50 20 0 50 50 20

100
Time Step

(q) walker-run with actor
loss

100
Time Step

(r) walker-walk with actor
loss

100
Time Step

(s) cheetah-run with actor
loss

Figure 10: Masks for TD3

16

100
Time Step

(t) hopper-hop with actor
loss

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

15.01 — dagn oracle error Q(s, a=0) —— dqgn oracle error Q(s, a=1)
—— daqn full error Q(s, a=0) —— daqn full error Q(s, a=1) /
12.5{ — dan attn error Q(s, a=0) 81 :
10.01 6
— —
o o
= 7.51 =
w w 4
5.01
24
2571
0.01 % * % % % % % % % % % % & % * * * Of % % % % % % % % % % % % * * * *
00 02 04 06 08 10 0.0 02 0.4 0.6 0.8 1.0
States States
action 0 action 1

Figure 11: Mean squared error of Q-value estimation for action 0 and 1 across oracle, full, and
attention-based agents with sigmoid temperature 10.

15.01 — dan oracle error Q(s, a=0) —— dqn oracle error Q(s, a=1)
—— dqn full error Q(s, a=0) —— daqn full error Q(s, a=1)
1254 — dgn attn error Q(s, a=0) 81 — dqgn attn error Q(s, a=1)
10.0 61
g 75 g
wi w 4]
5.0
2.5 21
0.0 * ok ok ok Kk 04
00 02 04 06 08 10 0.0 0.2 0.4 0.6 0.8 1.0
States States
action 0 action 1

Figure 12: Mean squared error of Q-value estimation for action 0 and 1 across oracle, full, and
attention-based agents with sigmoid temperature 50.

17

Under review as a conference paper at ICLR 2026

B GRADIENT UPDATES DERIVATION

Let the true data generating function be given by
y(X)=mX +¢,
and the oracle function with learnable weights wq and w; be
f(z) = wo + wyz.
The gradient descent update rule for the weight vector w = (wg, w1) is

wt = w' - UEXNP(X) [th(f(X) - Y)Q] .

w't =w' —nEx [V (f(X) - Y)?] (12)
=w' = 2NEx [(fuw(X) = Y)Vu f(X)] (13)

B.1 ORACLE UPDATES

Assuming the input X follows a standard normal distribution, X ~ A(0, 1), we have
E[X]=0

and

Var(X) = E[X?] — (E[X])? = E[X?]=1.
We denote the expectation over X ~ N(0,1) as E[(-)]. The gradient descent update for the weights
(wg, w1) is derived as follows:
(Wit Wity = (wi, wh) — nE [VW (wh +wiX) — (mX + c))ﬂ
(wg + wi X) = (mX +¢)) Vi (wg + wi X)]
I(wh + wiX) O(wh +wiX) >]

(
(b + 0t) - (x +)

[
[((wé +wtX) — (mX + c)) <1,X>}
(

ow ’ Owt
= <w87w§> -n
= (wh,wl) —n w6+w§X—mX—c,wéX+w§X2—mX2—cX)]
= (wh,wl) —n (<]E[w6 +wi X —mX — o], Elwy X 4+ wi X? — mX? — cX]>)
= (wg, wi) —n ((wy — ¢, wi —m))
= (1 = n)wh +ne, (1 = n)wi + nm).

B.2 FULL UPDATES

The model is given by
flx,d) = wo + wix + wad.

Let the noise variable D be uniformly distributed between 0 and 1, D ~ (0, 1). Then, its expected
value and variance are

1
E[D] = -
=
and 1
Var(D) = E[D?] - (E[D])* = o
which implies
1
E[D?] = .
3
Since X ~ N(0,1) and D ~ U(0, 1) are sampled independently, their covariance is zero, and thus
1
E[XD] = E[X]E[D] =0 =0.

18

Under review as a conference paper at ICLR 2026

We denote the expectation over X ~ AN (0,1) and D ~ U(0,1) as E[(-)]. The gradient descent
update for the weight vector w = (wp, w1, ws) is
(wh™ it wh) = (wh w, w) — 1B [Ve {(wh + wi X +whD) — (mX +0)}’]
= (wo, wy, wa) — E [{(wo + w1 X +ws D) — (mX +¢)} Vot (wg + wi X + w3 D)]

of of 9of
Oowl’ dwt’ dws
= (wé,wtl,wé) —nE [{(wé +wiX + wéD) - (mX + c)} (1,X,D>]
= (wp, wi, w3) — NE [(wo +wi X +wsD —mX — e,

woX +wiX? +wsXD — mX? — cX,woD + wi XD + w5 D> —mXD — cD)]
= (wé,wf,wé) -7 {<E[w8 +wi X +wiD —mX — cl,

ElwsX +wiX* + ws XD — mX? — eX],E[wsD + wi XD + wyD* — mXD — ¢D]) }

t

t t
w w w c
= <w6,wf,w§) —n{<w6+—22 —qwi —m,—; —l——; — §>}

— (b, wh, w) — nE [{ws +wlX +whD) — (mX + o)} <

= (0w — Dk e (1=t (1 1) — T+).

B.3 ATTENTION UPDATES

The model with attention mechanisms is
f(l‘, d) = wo + w1 (.27 U(¢1)) + wz(d O'(¢2)),

where o(¢) = Hﬁ is the sigmoid function, and its derivative is
d
@0(@ =o(¢)(1 —0a(9)).

The gradient descent update for the parameter vector (wq, w1, we, @1, d2) is
<w(t)+1’ w§+1’ w;Jrlv §+17 ¢g+1> = <w6’ wia wéa 37 ¢§>
B |V {(w0 + wa(X 0(61)) + wa(D o (62)) = (mX +)|
= (wp, wi, w, ¢, 63)
—nE[{f(X, D) = (mX 4)}V ¢ f(X, D),
where the gradient of f(X, D) with respect to the parameters is

Vuw,gf(X,D)=(1, Xo(¢1), Do(d2), w1 X o(¢1)(1 = 0(¢1)), wa Do(d2)(1—0(¢2))).

Let the error be denoted as error = f(X, D) — (mX + ¢). Taking expectations, we derive the update
rules for each parameter.

For the w, component:

Elerror - (1)] = wo + %(@) —c,
leading to the update
Wit = wy — (w0+ w202(q§2) _c> .

For the w; component:

Elerror - (X 0(1))] = o(61) (w1 o(¢1) —m),

leading to the update
wiﬂ =w1—1N (wl U(¢1)2 - m0(¢1)) .

For the w2 component:

woo(P2) ¢
3 2]’

Bleror- (Do6a))] = o(oa) (2 + 2902 - ¢

19

Under review as a conference paper at ICLR 2026

leading to the update

witt = wy —no(¢s) <I;0 + =2 ‘;(%) ;) :

For the ¢; component:

Eferror - (w1 X o(¢1)(1 = 0(61)))] = w1 0(¢1)(1 = o (¢1)) (w1 0(¢1) —m),
leading to the update

= 6y — wy o(61)(1— o(60)) (wr o(d1) —m).

For the ¢, component:

Blerror (12 Do(62)(1 ~ o(0n))] = wa0(62)(1 — o(6) (50 + 22522 - 2.

leading to the update

S = g0 —nwao(d2)(1 — o (¢2)) (H;O + %((/52) - ;) :

In summary, the gradient descent update rules for the attention model are:

w202(¢2) _c) ’

wéﬂ =wp—1N (wo +
witt = wi —n (w10(41)? = ma(s1)),

uf = un = paton) (4 22500 -)
=01 —nwia(d) (¢1))(w1 (1) —m),

(1—o0(én
{41 = 0n = (o1 - aton)) (B + 250 - 2.

20

Under review as a conference paper at ICLR 2026

C HYPERPARAMETERS
C.1 For SAC

Table 1: Key hyperparameters and architecture details of our SAC implementation.

Component Setting

Environment

Environment DM Control Suite
Observation Dim Original + 20 controllable + 20 uncontrollable distractors
Action Space Continuous (Box)
Actor Network

Architecture MLP: 256-256, ReLU
Critic Networks (Q1/Q2)

Architecture MLP: 256-256, ReLU
Target Update Soft update with 7 = 0.005
Training Setup

Replay Buffer Size 5 x 106

Batch Size 256

Learning Starts 10,000 steps

Total Steps IM

Policy LR 3x 1074

Critic LR 1x1073

Optimizer Adam

Max Grad Norm 10

Entropy Tuning

« Tuning Enabled (learned)
Distractors

Controllable Linear in action + bias
Uncontrollable Random + bias

Evaluation & Logging
Eval Episodes 50 (continuous)

21

Under review as a conference paper at ICLR 2026

C.2 PPO

Table 2: Key hyperparameters and architecture details of our PPO implementation.

Component Setting
Environment
Environment DM Control Suite

Observation Dim
Action Space

Original + 20 controllable + 20 uncontrollable distractors
Continuous (Box)

Agent Architecture

Policy/Value Network Shared MLP: 64-64, Tanh activations
Training Setup

Total Timesteps 3M

Rollout Length 2000 steps

Mini-batches 40

Update Epochs 10

Optimizer Adam, LR =3 x 10~*
Annealed LR Yes

Gradient Clipping Max norm = 0.5

PPO Settings

GAE Lambda 0.95

Discount Factor ~ 0.99

Advantage Normalization Enabled

Clip Coefficient 0.2

Clip Value Loss Enabled

Entropy Coefficient 0.0

Value Loss Coef 0.5

Target KL None

Distractor Variables

Controllable Linear in action + fixed bias
Uncontrollable Random noise + fixed bias

Evaluation & Logging
Eval

Returns from rollouts

22

Under review as a conference paper at ICLR 2026

C.3 TD3

Table 3: Key hyperparameters and architectural details of our TD3 implementation with shared

attention.
Component Setting
Environment
Environment DM Control Suite

Observation Dim
Action Space

Original + 20 controllable + 20 uncontrollable distractors
Continuous (Box)

Actor Network
Architecture

MLP: 256-256, ReLU

Critic Networks (Q1, Q2)

Architecture
Target Networks

MLP: 256-256, ReLU
Soft update with 7 = 0.005

Training Setup
Total Timesteps
Learning Starts
Batch Size
Replay Buffer
Optimizer
Gradient Clipping

1M

25K steps

256

Size = 10° transitions
Adam, LR =3 x 10~*
Not used

TD3-Specific Settings

Policy Delay

Target Policy Noise
Exploration Noise

2 steps
Std = 0.2, Clipped at 0.5
Std = 0.1 (added to actor output)

Distractor Variables

Controllable
Uncontrollable

Linear in action + fixed bias
Random noise + fixed bias

Evaluation & Logging

Eval Episodes

50 continuous episodes per checkpoint

D CODE

Anonymous GitHub link:

https://anonymous.4open.science/r/submission—41DF

23

https://anonymous.4open.science/r/submission-41DF

	Introduction
	Related Work
	Learning Approximate State Abstractions
	Handling distractions in Deep RL

	Problem Setting: Factored MDPs with Task-Irrelevant Distractors
	State Abstraction through Observation-Independent Input Masking
	DM Control Suite Experiments
	Empirical Setup
	Results

	Controlled Analysis
	Gradient Dynamics in Linear Models
	Policy Evaluation in Toy MDPs

	Conclusion
	Additional Results
	Gradient Updates Derivation
	Oracle Updates
	Full Updates
	Attention Updates

	Hyperparameters
	For SAC
	PPO
	TD3

	code

