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ABSTRACT

The ability to ignore task irrelevant environment variables is central to intelligent
behavior. In reinforcement learning (RL), existing methods typically rely on
auxiliary objectives to learn similar forms of abstraction. Such objectives tend to
add significant complexity to the base RL algorithm. In this work, we take a step
back and ask: can selective abstraction emerge naturally from reward optimization
alone, without any additional objectives? Following prior work, we show that
standard deep RL learns slowly or not at all in the presence of distracting, task-
irrelevant state variables, failing to learn meaningful state abstractions. We then
introduce a surprisingly simple neural network architecture change: a learnable,
observation-independent attention mask applied to the inputs of the policy and
value networks and trained end-to-end using only the RL objective. Despite its
simplicity, this architectural modification consistently improves sample efficiency
and learns to mask out distracting input variables across 12 continuous control
tasks. We analyze the dynamics of gradient descent using this method on a linear
regression task and demonstrate improved feature credit assignment. Finally, we
conduct experiments on toy MDPs and show that the attention mask leads to
accurate Q-value estimation and induces soft abstractions over a factored state
space. Our findings challenge the need for complex auxiliary objectives to learn
state abstractions in deep RL and suggest a simple baseline for future research.

1 INTRODUCTION

In complex environments, reinforcement learning (RL) agents observe a wide range of environment
variables of which only a subset are relevant for decision-making. For example, a household robot may
simultaneously perceive furniture, humans, ambient sound levels, lighting conditions, temperature,
and floor texture, yet only certain features contribute meaningfully to its task at hand. This abundance
of candidate features is a challenge for RL algorithms without prior knowledge of which variables
are relevant. RL algorithms without such prior knowledge can learn policies and value functions that
incorrectly depend upon task irrelevant variables and consequently fail to learn efficiently (Wang
et al., 2024).

In order to identify and discard task-irrelevant state variables, prior work has introduced various
auxiliary objectives to provide learning signals beyond the reward alone. These include metrics
that quantify state similarity based on reward and transition dynamics (Zhang et al., 2020; Castro
et al., 2021) and learning through causal reward modeling (Wang et al., 2024). However, the role
of architectural choices in enabling or shaping state abstraction has received comparatively little
attention. Motivated by this gap, we aim to answer the following question:

Are architectural choices and the RL objective alone sufficient to learn abstract state representations?

In this work, we show that the answer can be yes. Building on the framework of Wang et al. (2024),
we investigate the capacity of neural networks to suppress distracting input variables. We first reaffirm
that standard architectures used for continuous control benchmarks, such as multi-layered perceptrons
(MLPs), learn slower in the presence of such distractors, as prior work has also shown (Wang et al.,
2024).
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We then introduce a learnable attention mask applied to the inputs of the neural network. Our
approach draws inspiration from prior work on masking mechanisms, which have been integrated into
various architectures and shaped using diverse optimization objectives (Wang et al., 2024; Wu et al.,
2021; Grooten et al., 2023; Salter et al., 2021). However, a key distinction lies in the nature of the
masking: existing methods are typically context-dependent, suppressing features only locally when it
negatively affects performance, whereas we use a simpler observation-independent mask. Moreover,
there has been limited empirical or theoretical inquiry into why distractors are so detrimental or
how such seemingly minor architectural modifications can produce substantial gains in performance.
Saxe et al. (2019) show that MLPs experience a loss in mutual information between distracting
inputs and hidden layers of an MLP, but not enough to consistently recover optimal performance
in MuJoCo control tasks, as we demonstrate. We provide insight into this phenomenon from two
complementary perspectives. First, we perform a gradient dynamics analysis of stochastic gradient
descent updates in-expectation for linear models with and without attention-based masking. We show
that the detrimental effects of distractors and the benefits of bounded masking extend beyond RL to
general function approximation. Second, using a Deep Q-Network (DQN) (Mnih et al., 2015) trained
on randomly generated toy MDPs adapted from Yang et al. (2022), we show that even in non-linear
regimes, our method yields statistically significantly better estimates of the optimal Q-value function
compared to vanilla MLPs.

Together, our findings show that an architecture inductive bias, driven solely by the reward signal, is
sufficient to give rise to an abstract state representation. These findings question the need for auxiliary
losses to induce appropriate state abstraction.

2 RELATED WORK

In this section, we review the significant literature on learning state abstractions, abstract state
representations, and handling distracting inputs in deep RL.

2.1 LEARNING APPROXIMATE STATE ABSTRACTIONS

Bisimulation (Givan et al., 2003) formalizes exact abstraction by grouping states that have behaviorally
indistinguishable dynamics. In contrast, MDP homomorphisms (Ravindran, 2004) define a more
flexible surjective mapping from ground to abstract states that preserves rewards and transition
structure in expectation, allowing dissimilar states to be merged as long as abstract behavior remains
approximately faithful. In subsequent work, Dean et al. (2013) relaxed the exact equivalence of
bisimulations to aggregate states that behave approximately the same in a factored representation of a
bounded parameter MDP. Taylor et al. (2008) relate MDP homomorphisms with lax bisimulation and
devise a metric on states to provide approximation guarantees. Abel et al. (2016) show that the error
in behavior due to approximate abstractions is polynomially bounded, while approximation does not
require solving the exact MDP and allows for a greater degree of compression and tunable strictness
of abstraction. Li et al. (2006) provide a unifying framework for different types of abstractions and
show that under certain conditions, approximate abstractions can still lead to near-optimal policies,
motivating the study of lossy but useful state representations. We extend this line of work by showing
that graded abstractions can be induced implicitly through end-to-end learning in RL. Auxiliary losses
based on bisimulation metrics (Ferns et al., 2004) have been introduced to shape the feature space such
that the distance between two states’ representations reflects their behavioral similarity in the MDP
(Zhang et al., 2020; Castro et al., 2021). Other approaches such as DeepMDP (Gelada et al., 2019),
learn a latent MDP model by predicting both rewards and next-state distributions in latent space.
These objectives ensure that states with dissimilar transitions or rewards are embedded distinctly,
thereby preserving bisimulation-based structure. In contrast, we show that an appropriately biased
architecture can eliminate the need for such auxiliary supervision, learning task-aligned abstractions
solely through interaction and reward feedback.

2.2 HANDLING DISTRACTIONS IN DEEP RL

A common approach to studying distractors in RL involves appending irrelevant variables to state
observations. Our work builds on the setup of Wang et al. (2024), who learn a binary mask via causal
and reward models to identify variables that influence dynamics or reward, yielding bisimulation-
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consistent abstractions. Much of the prior work on distractors focuses on visual domains. The DMC
Distracting Control Suite (Stone et al., 2021) adds noise through camera variation and background
motion. In this setting, Zhou et al. (2023) use sequential reward prediction to shape representations,
while Liu et al. (2023) use bisimulation distances and prototype clustering for robustness. Our work is
related to approaches that leverage architectural attention: Bramlage and Cortese (2022) incorporate
self-attention into policy and value networks; Mott et al. (2019) introduce a recurrent attention model
using key-query-value attention (Vaswani et al., 2017); and Salter et al. (2021) show its benefits in
noisy visual tasks. Some methods fully decouple distractor suppression from policy learning: Wang
et al. (2021) extract invariant foreground features via keypoint detection, while Wu et al. (2021)
learn input-dependent attention masks through reconstruction, though these are task-agnostic. Most
recently, Grooten et al. (2023) train an observation-conditioned mask using only critic loss. In contrast
to these methods, our approach is solely reward-guided and observation-independent, enabling it
to identify globally relevant features across the entire observation space, those most predictive of
returns.

3 PROBLEM SETTING: FACTORED MDPS WITH TASK-IRRELEVANT
DISTRACTORS

We consider the setup introduced in Wang et al. (2024), where observations are state-based and
contain both task-relevant and task-irrelevant components. We model these environments as factored
MDPs, defined by the tupleM = (S,A, P, r, γ), where s ∈ S denotes the state, a ∈ A the action,
P : S×A× S→ [0, 1] is the transition probability function with P (s′ | s,a) = P(st+1 = s′ | st =
s,at = a), r : S× A→ R is the reward function, and γ ∈ [0, 1) is the discount factor. A stochastic
policy π : S×A→ [0, 1] defines a distribution over actions, such that π(s,a) = P(at = a | st = s).

The state space factorizes as S = Xrel × Xirr. A full state s ∈ S is represented as s = (xrel,xirr),
where xrel ∈ Xrel comprises task-relevant variables that influence both the transition dynamics and
the reward, and xirr ∈ Xirr comprises task-irrelevant distractors that evolve independently and have
no causal influence on either reward or dynamics. Specifically, the transition and reward functions
factor as:

P (s′ | s,a) = P (x′
rel | xrel,a) · P (x′

irr | xirr,a), r(s,a) = r(xrel,a). (1)

In practice, the exact factorization may only hold approximately. In our experiments, we include
a mixture of distractor types: some evolve independently of the agent’s actions (e.g., randomly
sampled or following their own stochastic processes), while others evolve conditionally on the agent’s
actions via P (x′

irr | xirr,a). Crucially, these variables remain irrelevant to both the reward and the
transitions of xrel, thereby they are unnecessary inputs for the optimal policy. This relaxation from
strict independence allows us to simulate more realistic distractor dynamics.

4 STATE ABSTRACTION THROUGH OBSERVATION-INDEPENDENT INPUT
MASKING

Given a standard model-free deep reinforcement learning (RL) algorithm (e.g., SAC Haarnoja
et al. (2018)), we introduce a lightweight architectural module designed to identify and discard
task-irrelevant variables induce task-specific abstraction throughout end-to-end training. Let the
observation space be factored as s = (x1, x2, . . . , xn) ∈ Rn, where each xi represents an individual
state variable. We associate with each variable xi a corresponding learnable parameter ϕi ∈ R,
and collectively define the masking parameter vector ϕ = (ϕ1, . . . , ϕn) ∈ Rn. We initialize these
parameters to zero and share the same mask across all function approximators involved (e.g., the
policy and value networks).

At each training step, we compute a gating vector α = σ(ϕ) ∈ (0, 1)n, where σ(·) is the element-
wise sigmoid activation, and apply it to the input via a Hadamard product: s̃ = α⊙ s. This masked
observation is used as input to both the actor and critic networks.

For actor-critic methods, we found it beneficial to update ϕ using either the actor or critic loss—but
not both. To enforce this, we stop gradients from flowing through the loss not being used. For
instance, if updating via the actor loss only, the critic receives s̃critic = detach(α)⊙ s, while the
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actor receives s̃actor = α⊙ s. The gating parameters are then updated via backpropagation through
the actor loss:

ϕ← ϕ− ηϕ∇ϕLactor(θ,ϕ), (2)

where Lactor(θ,ϕ) denotes the actor loss (e.g., from PPO or SAC), computed with respect to the
policy network parameters θ and the shared masking parameters ϕ. The learning rate ηϕ controls
the step size for updating ϕ. Note that while θ governs the weights of the policy network, ϕ is a
separate parameter vector whose gradients are computed solely through its influence on the masked
input s̃actor.

This setup ensures that ϕ is learned solely from the RL task objective, yielding a soft abstraction
rather than a hard partition over the state space. Since the masking vector α = σ(ϕ) lies in (0, 1)n,
each variable is only partially suppressed, allowing a graded notion of relevance. This continuous
relaxation enables differentiable credit assignment and supports gradient-based optimization. In the
ideal case, the masking vector associates a weight of almost zero with all task-irrelevant inputs and a
weight of almost one with task-relevant variables. In practice, this hard abstraction is not necessarily
recovered but, as we will show, the weights still correctly suppress task-irrelevant variables more and
doing this leads to faster learning in the presence of such variables.

5 DM CONTROL SUITE EXPERIMENTS

To evaluate the effectiveness of our proposed abstraction mechanism, we conduct extensive experi-
ments across a range of continuous control benchmarks. We show that the presence of distractors
in the state space leads to significant performance degradation of SAC, TD3, and PPO in standard
MuJoCo tasks compared to learning without the distractors. We then show that the simple architecture
modification we introduced in the previous section is sufficient to significantly decrease the gap
between the methods. These results show that the RL objective and a simple architecture can be
sufficient for learning in the presence of such distractors.

5.1 EMPIRICAL SETUP

Tasks. Our experiments span 12 continuous control tasks from the DeepMind Con-
trol Suite (MuJoCo): walker-walk, walker-run, cheetah-run, hopper-hop,
hopper-stand, finger-spin, finger-turn easy, finger-turn hard,
fish-swim, fish-upright, reacher-hard, and swimmer-swimmer6. These tasks
cover a broad spectrum of locomotion and manipulation challenges, with varying levels of complexity
in dynamics, control frequency, and reward structure. The diversity of tasks ensures that our findings
are not tied to a narrow class of dynamics or reward functions. Each environment features continuous
state and action spaces.

Distractor Augmentation. The distractor augmented MDP is instantiated using two types of
distractor variables: uncontrollable and controllable (Wang et al., 2024). Let at ∈ Rd denote the
action taken at time step t. Uncontrollable distractors are modeled as noise vectors x(unc)

t ∈ Rdunc ,
sampled independently at each time step:

x(unc)
t ∼ U(µunc − δ,µunc + δ), (3)

where µunc ∈ Rdunc is a fixed bias sampled once at the beginning of each experiment, and δ ∈ Rdunc
+

defines the range of variation. These variables evolve independently of the agent’s behavior and serve
as purely exogenous noise.

Controllable distractors, by contrast, evolve deterministically as a function of the agent’s actions. At
each time step, they are generated by an affine transformation of the current action:

x(con)
t = Wat + b, (4)

where W ∈ Rdcon×d is a weight matrix and b ∈ Rdcon is a bias vector. Both W and b are sampled
uniformly at random once per experiment and held fixed throughout. This ensures that controllable
distractors are correlated with the agent’s behavior but remain irrelevant to task performance, as they
are not part of the reward or transition-generating processes for xrel.

4
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To simulate high-dimensional, distractor-laden observations, we augment the native task-relevant
state vector xrel with 40 task-irrelevant variables, comprising 20 controllable and 20 uncontrollable
distractor dimensions, resulting in a factored observation of the form s = (xrel,xcon,xunc). This
allows us to test the agent’s ability to filter out noise across both deterministic and stochastic distractor
sources in a variety of control settings.

Implementation Details. We evaluate our learned masking mechanism across three deep reinforce-
ment learning algorithms: Soft Actor-Critic (SAC) (Haarnoja et al., 2018), Twin Delayed Deep
Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018), and Proximal Policy Optimization
(PPO)(Schulman et al., 2017). In all cases, the actor and critic networks are implemented as mul-
tilayer perceptrons (MLPs), with ReLU activations used for SAC and TD3, and Tanh activations
for PPO. The temperature of the sigmoid is kept at 1 for these experiments. SAC and TD3 are
trained off-policy using a replay buffer of size 1 million and run for 1 million environment steps per
seed. For SAC, the entropy regularization coefficient is automatically tuned using a dedicated Adam
optimizer. PPO, being an on-policy algorithm, is trained longer for 3 million steps. The full set of
hyperparameters for each algorithm will be provided in the Appendix C. The results are compared
against two baselines. First, oracle receives only task relevant variables as input (the ground truth
abstraction) and thus serves as a strong upper bound on performance in that task and, second, full
observes the full state augmented with distractors, which we show performs poorly compared to
oracle performance.

All experiments were conducted on a high-throughput computing cluster. The compute pool consists
of heterogeneous CPU-only worker nodes with Intel Xeon processors, ranging from 8 to 64 cores and
16–256 GB of RAM per node.

Evaluation Protocol. SAC and TD3 use a fixed protocol: after every training episode, the agent is
evaluated on 50 episodic rollouts using a separate environment with independently sampled distractor
biases and projection matrices. This ensures that the evaluation distractors are in-distribution but
different from those seen during training. The average episodic return across the 50 test episodes
is logged. For PPO, evaluation is conducted online by recording episodic returns directly during
training rollouts.

5.2 RESULTS

Figure 1 reports the average performance of each algorithm across all 12 tasks. The baseline setting
using vanilla MLP function approximators performs consistently worse than the oracle, particularly in
the presence of distractors. In contrast, our method closes this gap, recovering performance towards
the oracle despite having access only to reward-based supervision. Individual plots for each task are
provided in the Appendix A and show, in many cases, the ability to match the oracle upper bound.
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Figure 1: Performance of SAC, TD3, and PPO averaged across 12 MuJoCo tasks. For each of the
algorithms—Oracle (–O), distractors without attention (–D), attention trained with the actor (–A),
attention trained with the critic (–C), separate attention trained with both (–AC) and MaDi (–M)—the
performance curves are computed as the mean across all tasks. These per-seed curves are then
averaged across the 10 random seeds with 95% confidence intervals to obtain the final aggregated
results as shown.

Actor vs. Critic. When using the learned attention mask, using either the actor or critic signal in
isolation yields stable training, suggesting that each loss alone is sufficient to drive task-aligned
abstraction. For SAC, we also evaluate a variant where separate masks are trained for the actor
and critic using their respective gradients. All these approaches achieve comparable performance.
This similarity may stem from an implicit overlap in relevant features: in many continuous control
tasks, variables useful for value estimation also aid policy learning. In contrast, training a single
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shared mask using both losses simultaneously results in degenerate attention weights and near-zero
returns. This indicates that the actor and critic provide conflicting gradient signals when applied
jointly, consistent with findings from Garcin et al. (2025), which show that actor and critic networks
tend to learn representations that are optimized for different purposes.

Interestingly, we find that in PPO updating the masking parameters using both actor and critic losses
yields performance indistinguishable from using either loss alone. This may be due to the shared
backbone architecture of PPO and the synchronized updates of the actor and critic, which reduce the
representational divergence between the two losses, minimizing the gradient conflict we observe in
off-policy methods.

Comparison with MaDi. Our observation-independent masking performs comparably (for TD3)
or better (for SAC) than the observation-conditioned mask proposed in Grooten et al. (2023). In
contrast to our approach, such methods may overfit to idiosyncrasies in the input and learn contextual
abstractions, rather than identifying a globally relevant set of features for RL.
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Figure 2: Trajectory of average attention weights across training. (a) SAC on reacher-hard and
swimmer-swimmer6: confident masks emerge in easier tasks like reacher-hard, while swimmer shows
more ambiguous gating. (b) PPO vs. SAC on hopper-stand: SAC shows sharper convergence; PPO remains
diffuse. Task-relevant features are highlighted in blue, task-irrelevant in red. Results aggregated over 10 seeds.

Correctness of Learned Abstraction. We track the evolution of attention weights during training
and plot the weights for each observation variable for two distinct environments using the SAC
agent in Figure 2a. While the attention weights do not strictly go to either 0 or 1 (producing a
hard abstraction), they generally correspond to task-relevant variables receiving higher weights and
task-irrelevant variables receiving lower weights. Notably, we observe that the sharpness of the
learned gating values and the overall task performance are correlated. In environments where the
agent performs well, such as reacher-hard, the attention mechanism tends to converge to a
confident binary-like mask. As shown in Figure 2a, most attention weights (all but two) converge
to either 0 or 1, indicating that the model has learned to clearly distinguish between relevant and
irrelevant input variables. For more challenging tasks such as swimmer-swimmer6, where the
agent’s performance is relatively lower, the learned attention masks are less confident. The attention
weights remain diffuse and fail to clearly separate important features from distractors. However,
while the mask is less sharp, it still preserves the correct relative ranking of feature relevance. Similar
plots are provided for all environments in Appendix A.
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As shown in Figure 2b, attention masks learned by on-policy methods like PPO fail to strongly
suppress distractors, while off-policy methods such as SAC and TD3 learn sharper, more selective
patterns that effectively mask out all task-irrelevant variables. A plausible explanation lies in
differences in sample efficiency and data reuse (Queeney et al., 2021). On-policy methods discard
trajectories after each update, limiting the diversity of experiences and restricting the refinement
of internal representations like attention masks. In contrast, off-policy methods continually reuse
past interactions, enabling more stable gradient estimates and better credit assignment, which in turn
supports stronger attention patterns.

Takeaway #1

The attention mask we introduce and train solely with RL objectives is able to (1) down-weight
the influence of distractors and (2) learn nearly as well as when the distractors are known.

6 CONTROLLED ANALYSIS

In this section, we show mathematically and through controlled toy experiments that an input-
independent attention mask can lead to meaningful abstractions that discards task-irrelevant variables.
Of particular note, we show mathematically that the presence of distractors can slow learning even
when using expected updates (i.e., using infinite data to compute each gradient step). We then show
that the input-independent attention mask serves to suppress the effect of the distracting variable.

6.1 GRADIENT DYNAMICS IN LINEAR MODELS

As critic training in RL amounts to repeatedly solving a regression task, in this section, we analyze
the expected gradient updates for linear regression in the presence of distracting inputs. This setting
is equivalent to learning a critic in a contextual bandit setting where value prediction reduces to
supervised regression from state to reward. We analyze expected gradient descent updates for three
settings: (i) in the absence of distractor variables (oracle case), (ii) in the presence of distractors
without any form of masking or attention (full case), and (iii) in the presence of distractors with our
proposed soft attention mechanism. We use expected updates (i.e., the infinite data regime) to focus
on optimization rather than statistical challenges.

Consider a regression setting in which data is generated according to Y = mX + c where X ∼
N (0, 1). There is also a distracting variable D ∼ U(0, 1). We consider training linear functions of
the form fw(x, d) = w⊤[1, x, d] using gradient descent. The gradient descent update is

wt+1 ← wt − η EX∼N (0,1)ED∼U(0,1)

[
∇wt(fwt(X,D)− Y )2

]
(5)

Proposition 1 (Gradient Updates with Known Distractors (Oracle)). The linear model is given as:

fw(x) = w0 + w1x (6)

and the expected update for w is given by:

⟨wt+1
0 , wt+1

1 ⟩ ← ⟨(1− η)wt
0 + ηc, (1− η)wt

1 + ηm⟩ (7)

Proposition 2 (Gradient Updates with Unknown Distractors (Full)). The linear model with distractors
and no attention mechanism is given by:

fw(x, d) = w0 + w1x+ w2d (8)

and the expected updates for each component of w are given by:

wt+1
0 ← (1− η)wt

0 −
η
2w

t
2 + ηc

wt+1
1 ← (1− η)wt

1 + ηm

wt+1
2 ←

(
1− η

3

)
wt

2 −
η
2w

t
0 +

η
2 c (9)

Observation 1 (Distracting inputs mislead bias learning in the full model). With oracle knowledge
of the distractor variable, the expected update results in w0 → c and w1 → m and the true data
generating function is recovered. Without this oracle knowledge, the update for w1 is unchanged but
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w0 and w2 now depend upon one another and change to try and explain the bias term, c, in the data
generation function. Consequently, for any non-zero values of w0 and w2, w0 moves toward c− w2

2

and w2 moves toward 3c
2 −

3w0

2 , albeit the latter moves at the slower rate of η
3 . As the target for w2

is only 0 when w0 = 1, we do not, in general, expect w2 to reach zero and d to be ignored.

Proposition 3 (Gradient Update: Attention-Based Model). The linear model with input-independent
attention mask is given as:

fw(x, d) = w0 + w1(xσ(ϕ1)) + w2(d σ(ϕ2)), (10)

where ϕ1 and ϕ2 are learnable parameters and σ is the sigmoid function. The expected update
equations for w, ϕ1, and ϕ2 are given as:

wt+1
0 ← wt

0 − η
(
w0 +

w2 σ(ϕ2)
2 − c

)
wt+1

1 ← wt
1 − η

(
w1 σ(ϕ1)

2 −mσ(ϕ1)
)

wt+1
2 ← wt

2 − η σ(ϕ2)
(

w0

2 + w2 σ(ϕ2)
3 − c

2

)
ϕt+1
1 ← ϕt

1 − η w1 σ(ϕ1)(1− σ(ϕ1))(w1 σ(ϕ1)−m)

ϕt+1
2 ← ϕt

2 − η w2 σ(ϕ2)(1− σ(ϕ2))
(

w0

2 + w2 σ(ϕ2)
3 − c

2

)
(11)

Observation 2 (Attention mask updates suppress distractors.). The direction of the update for ϕ2 is
determined by the expression:

w2

(
w0

2
+

w2 σ(ϕ2)

3
− c

2

)
as the factor σ(ϕ2)(1− σ(ϕ2)) in Equation 11 is always non-negative and thus only serves to scale
the update. When the distractor’s contribution is large, i.e., when |w2| is large or σ(ϕ2) closer to one,
this term is typically positive, leading to a downward update that drives σ(ϕ2)→ 0 and effectively
suppressing the distractor. Notably, suppression emerges without explicit knowledge of distracting
variables; the model learns to attenuate irrelevant inputs purely from the error signal.

Empirical Validation We also validate these conclusions empirically in a synthetic regression
setting using the derived gradient update equations for both the full and attention-based model. All
weights are initialized using a uniform distribution U(−1/

√
2, 1/
√
2), and updates are performed

using fixed-step gradient descent with a step size of 0.01. For the attention-based model, the attention
weights are initialized to zero and updated jointly with the main weights via backpropagation through
the sigmoid gating functions. At each training step, we compute the loss over a sampled batch of
5,000 data points drawn from the true data-generating process. This process is repeated across 50
random seeds to account for variance due to initialization. As shown in Figure 3, even in the infinite
data regime, the attention-based updates consistently converge faster and more stably to the optimal
solution compared to updates without the attention interactions.

Takeaway #2

Distractors can lead to conflicting gradient updates even with infinite data; the attention mask is
updated in a way that suppresses the distractors’ influence.

6.2 POLICY EVALUATION IN TOY MDPS

Finally, we run a policy evaluation experiment in a controlled, low-dimensional MDP to understand if
the attention mask is improving the accuracy of policy evaluation. The base environment is a custom
MDP with continuous one-dimensional state space and two discrete actions adapted from Yang et al.
(2022). The transition dynamics for each action are defined via randomly sampled piecewise linear
functions, making the environment deterministic but non-trivial. We discretize the continuous state
space into 20 evenly spaced states and compute the ground-truth Q-values via value iteration. For
the full setting, the agent is trained with 20 additional task-irrelevant dimensions—10 controllable
and 10 uncontrollable—appended to the 1D input. Each DQN variant is trained for 2,000 episodes
using a small MLP. The distractors are generated similar to the main experiments. To evaluate
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Figure 3: Loss with respect to the
true data generating function. Results
aggregated over 50 seeds.
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Figure 4: Mean squared error of Q-value estimation for ac-
tion 0 and 1 across oracle, full, and attention-based agents.

learned Q-values, we run all trained models on a fixed evaluation set of states with the same distractor
statistics and compare the predicted Q-values against the ground-truth values for both actions using
per-state mean squared error.

We repeat all experiments over 20 random seeds and report the mean Q-value estimation errors along
with 95% confidence intervals. Additionally, we perform paired t-tests across seeds to assess the
statistical significance of the differences in estimation error between the attention-based and vanilla
models. Each black star denotes a statistically significant difference in Q-value estimation error for
that state, as determined by a paired t-test. The results are presented in Figure 4 for 20 discretized
states in a randomly generated MDP. The sigmoid temperature used for the attention masks in this
setting is the default value of 1 as used in the main experiments. Plots for other temperature settings
are provided in Appendix A. Temperature is a sensitive hyperparameter: higher values yield sharper,
more confident masks, but excessively high temperatures can lead to vanishing gradients and unstable
training, resulting in overly confident but incorrect masking. As shown, the attention-based model
yields significantly lower errors than the baseline in most of the 20 discretized states, indicating more
accurate approximation of the true Q-values.

Takeaway #3

The attention mechanism achieves statistically significant improvements in value estimation
across the majority of states and all actions, even within the deep RL setting.

7 CONCLUSION

In this paper, we considered the problem of learning state abstractions in RL and asked the question
of whether this was possible without relying on auxiliary objectives as done in prior work. We
introduced a simple neural network architecture modification – an observation-independent attention
mask applied to the inputs of the actor and critic networks – that is trained along with other network
parameters using only RL objectives. Across 12 continuous control DMControl tasks augmented
with task-irrelevant observation variables, we found that this small change enables agents to suppress
task-irrelevant inputs and close the gap with agents with access to the ideal state abstraction. Through
a combination of empirical evaluation and theoretical insights from linear settings, we demonstrate
that this lightweight inductive bias supports selective credit assignment and facilitates the emergence
of soft abstractions aligned with task dynamics and reward structure. Our findings suggest that, when
combined with appropriate architectural constraints, the reward signal alone can suffice to induce
abstraction, challenging the prevailing reliance on auxiliary losses in prior work. These findings (1)
suggest that future work in abstraction learning should consider this simple architecture as a baseline
before introducing more complex methods based on auxiliary losses and (2) open up a promising new
research direction into designing architectures that promote abstraction through RL objectives alone.

REPRODUCIBILITY STATEMENT

Full derivations for the results presented in Section 6 are provided in Appendix B. Plots for additional
experiments can be found in Appendix A, and the complete code to reproduce all results in this paper
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is available via an anonymous link in Appendix D. A detailed list of hyperparameters used for all
experiments is included in Appendix C.
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A ADDITIONAL RESULTS
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Figure 5: Performance of SAC agents with and without the proposed observation-conditioned gating
mechanism across various DM Control Suite tasks. The presence of distractors significantly impairs
performance when no attention is applied. Incorporating our learned gating improves robustness and
sample efficiency.
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Figure 6: Performance of PPO with and without the proposed observation-conditioned gating
mechanism across various DM Control Suite tasks. Plots are averaged over 10 random seeds

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Episode

0

200

400

600

800

1000

Re
tu

rn
s

Returns over Episodes: walker-walk

TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(a) walker-walk

0 200 400 600 800 1000
Episode

0

100

200

300

400

500

600

700

Re
tu

rn
s

Returns over Episodes: walker-run

TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(b) walker-run

0 200 400 600 800 1000
Episode

100

150

200

250

300

350

Re
tu

rn
s

Returns over Episodes: swimmer-swimmer6
TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(c) swimmer-swimmer6

0 200 400 600 800 1000
Episode

0

200

400

600

800

1000

Re
tu

rn
s

Returns over Episodes: reacher-hard

TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(d) reacher-hard

0 200 400 600 800 1000
Episode

0

100

200

300

400

500

600

700

Re
tu

rn
s

Returns over Episodes: hopper-stand
TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(e) hopper-stand

0 200 400 600 800 1000
Episode

0

20

40

60

80

100

Re
tu

rn
s

Returns over Episodes: hopper-hop
TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(f) hopper-hop

0 200 400 600 800 1000
Episode

200

300

400

500

600

700

800

900

Re
tu

rn
s

Returns over Episodes: fish-upright

TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(g) fish-upright

0 200 400 600 800 1000
Episode

50

100

150

200

250

300

350

400

Re
tu

rn
s

Returns over Episodes: fish-swim
TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(h) fish-swim

0 200 400 600 800 1000
Episode

0

200

400

600

800

1000

Re
tu

rn
s

Returns over Episodes: finger-spin

TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(i) finger-spin

0 200 400 600 800 1000
Episode

100

200

300

400

500

600

700

800

900

Re
tu

rn
s

Returns over Episodes: finger-turn_easy
TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(j) finger-turn easy

0 200 400 600 800 1000
Episode

100

200

300

400

500

600

700

Re
tu

rn
s

Returns over Episodes: finger-turn_hard
TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(k) finger-turn hard

0 200 400 600 800 1000
Episode

0

200

400

600

800

Re
tu

rn
s

Returns over Episodes: cheetah-run
TD3 Oracle
TD3 with 20+20 Distractors
TD3 with Critic Attention
TD3 with Actor Attention

(l) cheetah-run

Figure 7: Performance of TD3 on the DM Control Suite tasks. Plots are averaged over 10 random
seeds
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(f) hopper-stand
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(g) reacher-hard
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Figure 8: Masks for PPO. The task-relevant variables are plotted in blue while the task-irrelevant
variables are plotted in red
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critic loss
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(e) finger-turn hard with
actor loss
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(f) finger-turn hard with
critic loss
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(g) fish-swim with actor
loss
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(h) fish-swim with critic
loss
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(i) fish-upright with actor
loss
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(j) fish-upright with critic
loss
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(k) hopper-stand with actor
loss
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(l) hopper-stand with critic
loss
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(m) reacher-hard with actor
loss
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(n) reacher-hard with critic
loss
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(o) swimmer-swimmer6
with actor loss
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(p) swimmer-swimmer6
with critic loss

Figure 9: Masks for SAC
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(d) finger-turn easy with
critic loss
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(e) finger-turn hard with
actor loss
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(f) finger-turn hard with
critic loss
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loss
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(h) fish-swim with critic
loss
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(i) fish-upright with actor
loss
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(j) fish-upright with critic
loss
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(k) hopper-stand with actor
loss
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(l) hopper-stand with critic
loss
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(m) reacher-hard with actor
loss
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(n) reacher-hard with critic
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(o) swimmer-swimmer6
with actor loss
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(p) swimmer-swimmer6
with critic loss
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(q) walker-run with actor
loss

0 50 100 150 200
Time Step

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e 

W
ei

gh
t V

al
ue

Average Weights for TD3 with Actor Attention Across Seeds

Relevant Irrelevant

(r) walker-walk with actor
loss
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(s) cheetah-run with actor
loss
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Figure 10: Masks for TD3
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Figure 11: Mean squared error of Q-value estimation for action 0 and 1 across oracle, full, and
attention-based agents with sigmoid temperature 10.
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Figure 12: Mean squared error of Q-value estimation for action 0 and 1 across oracle, full, and
attention-based agents with sigmoid temperature 50.
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B GRADIENT UPDATES DERIVATION

Let the true data generating function be given by

y(X) = mX + c,

and the oracle function with learnable weights w0 and w1 be

f(x) = w0 + w1x.

The gradient descent update rule for the weight vector w = ⟨w0, w1⟩ is

wt+1 = wt − ηEX∼P (X)

[
∇wt(f(X)− Y )2

]
.

wt+1 =wt − ηEX

[
∇w(f(X)− Y )2

]
(12)

=wt − 2ηEX [(fw(X)− Y )∇wf(X)] (13)

B.1 ORACLE UPDATES

Assuming the input X follows a standard normal distribution, X ∼ N (0, 1), we have

E[X] = 0

and
Var(X) = E[X2]− (E[X])2 =⇒ E[X2] = 1.

We denote the expectation over X ∼ N (0, 1) as E[(·)]. The gradient descent update for the weights
⟨w0, w1⟩ is derived as follows:

⟨wt+1
0 , wt+1

1 ⟩ = ⟨wt
0, w

t
1⟩ − ηE

[
∇w

(
(wt

0 + wt
1X)− (mX + c)

)2]
= ⟨wt

0, w
t
1⟩ − ηE

[(
(wt

0 + wt
1X)− (mX + c)

)
∇w(wt

0 + wt
1X)

]
= ⟨wt

0, w
t
1⟩ − ηE

[(
(wt

0 + wt
1X)− (mX + c)

)〈∂(wt
0 + wt

1X)

∂wt
0

,
∂(wt

0 + wt
1X)

∂wt
1

〉]
= ⟨wt

0, w
t
1⟩ − ηE

[(
(wt

0 + wt
1X)− (mX + c)

)
⟨1, X⟩

]
= ⟨wt

0, w
t
1⟩ − ηE

[
⟨wt

0 + wt
1X −mX − c, wt

0X + wt
1X

2 −mX2 − cX⟩
]

= ⟨wt
0, w

t
1⟩ − η

(〈
E[wt

0 + wt
1X −mX − c],E[wt

0X + wt
1X

2 −mX2 − cX]
〉)

= ⟨wt
0, w

t
1⟩ − η

(
⟨wt

0 − c, wt
1 −m⟩

)
= ⟨(1− η)wt

0 + ηc, (1− η)wt
1 + ηm⟩.

B.2 FULL UPDATES

The model is given by
f(x, d) = w0 + w1x+ w2d.

Let the noise variable D be uniformly distributed between 0 and 1, D ∼ U(0, 1). Then, its expected
value and variance are

E[D] =
1

2
and

Var(D) = E[D2]− (E[D])2 =
1

12
,

which implies

E[D2] =
1

3
.

Since X ∼ N (0, 1) and D ∼ U(0, 1) are sampled independently, their covariance is zero, and thus

E[XD] = E[X]E[D] = 0 · 1
2
= 0.
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We denote the expectation over X ∼ N (0, 1) and D ∼ U(0, 1) as E[(·)]. The gradient descent
update for the weight vector w = ⟨w0, w1, w2⟩ is

⟨wt+1
0 , wt+1

1 , wt+1
2 ⟩ = ⟨wt

0, w
t
1, w

t
2⟩ − ηE

[
∇wt

{
(wt

0 + wt
1X + wt

2D)− (mX + c)
}2

]
= ⟨wt

0, w
t
1, w

t
2⟩ − ηE

[{
(wt

0 + wt
1X + wt

2D)− (mX + c)
}
∇wt(wt

0 + wt
1X + wt

2D)
]

= ⟨wt
0, w

t
1, w

t
2⟩ − ηE

[{
(wt

0 + wt
1X + wt

2D)− (mX + c)
}〈

∂f

∂wt
0

,
∂f

∂wt
1

,
∂f

∂wt
2

〉]
= ⟨wt

0, w
t
1, w

t
2⟩ − ηE

[{
(wt

0 + wt
1X + wt

2D)− (mX + c)
}
⟨1, X,D⟩

]
= ⟨wt

0, w
t
1, w

t
2⟩ − ηE

[
⟨wt

0 + wt
1X + wt

2D −mX − c,

wt
0X + wt

1X
2 + wt

2XD −mX2 − cX,wt
0D + wt

1XD + wt
2D

2 −mXD − cD⟩
]

= ⟨wt
0, w

t
1, w

t
2⟩ − η

{〈
E[wt

0 + wt
1X + wt

2D −mX − c],

E[wt
0X + wt

1X
2 + wt

2XD −mX2 − cX],E[wt
0D + wt

1XD + wt
2D

2 −mXD − cD]⟩
}

= ⟨wt
0, w

t
1, w

t
2⟩ − η

{〈
wt

0 +
wt

2

2
− c, wt

1 −m,
wt

0

2
+

wt
2

3
− c

2

〉}
=

〈
(1− η)wt

0 −
η

2
wt

2 + ηc, (1− η)wt
1 + ηm,

(
1− η

3

)
wt

2 −
η

2
wt

0 +
ηc

2

〉
.

B.3 ATTENTION UPDATES

The model with attention mechanisms is

f(x, d) = w0 + w1(xσ(ϕ1)) + w2(d σ(ϕ2)),

where σ(ϕ) = 1
1+e−ϕ is the sigmoid function, and its derivative is

d

dϕ
σ(ϕ) = σ(ϕ)(1− σ(ϕ)).

The gradient descent update for the parameter vector ⟨w0, w1, w2, ϕ1, ϕ2⟩ is

⟨wt+1
0 , wt+1

1 , wt+1
2 , ϕt+1

1 , ϕt+1
2 ⟩ = ⟨wt

0, w
t
1, w

t
2, ϕ

t
1, ϕ

t
2⟩

− ηE
[
∇w,ϕ {(w0 + w1(X σ(ϕ1)) + w2(Dσ(ϕ2)))− (mX + c)}2

]
= ⟨wt

0, w
t
1, w

t
2, ϕ

t
1, ϕ

t
2⟩

− ηE [{f(X,D)− (mX + c)}∇w,ϕf(X,D)] ,

where the gradient of f(X,D) with respect to the parameters is

∇w,ϕf(X,D) = ⟨1, X σ(ϕ1), D σ(ϕ2), w1 X σ(ϕ1)(1− σ(ϕ1)), w2 Dσ(ϕ2)(1− σ(ϕ2))⟩ .
Let the error be denoted as error = f(X,D)− (mX + c). Taking expectations, we derive the update
rules for each parameter.

For the w0 component:

E[error · (1)] = w0 +
w2 σ(ϕ2)

2
− c,

leading to the update

wt+1
0 = w0 − η

(
w0 +

w2 σ(ϕ2)

2
− c

)
.

For the w1 component:

E[error · (X σ(ϕ1))] = σ(ϕ1)(w1 σ(ϕ1)−m),

leading to the update
wt+1

1 = w1 − η
(
w1 σ(ϕ1)

2 −mσ(ϕ1)
)
.

For the w2 component:

E[error · (Dσ(ϕ2))] = σ(ϕ2)

(
w0

2
+

w2 σ(ϕ2)

3
− c

2

)
,
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leading to the update

wt+1
2 = w2 − η σ(ϕ2)

(
w0

2
+

w2 σ(ϕ2)

3
− c

2

)
.

For the ϕ1 component:

E[error · (w1 X σ(ϕ1)(1− σ(ϕ1)))] = w1 σ(ϕ1)(1− σ(ϕ1))(w1 σ(ϕ1)−m),

leading to the update

ϕt+1
1 = ϕ1 − η w1 σ(ϕ1)(1− σ(ϕ1))(w1 σ(ϕ1)−m).

For the ϕ2 component:

E[error · (w2 Dσ(ϕ2)(1− σ(ϕ2)))] = w2 σ(ϕ2)(1− σ(ϕ2))

(
w0

2
+

w2 σ(ϕ2)

3
− c

2

)
,

leading to the update

ϕt+1
2 = ϕ2 − η w2 σ(ϕ2)(1− σ(ϕ2))

(
w0

2
+

w2 σ(ϕ2)

3
− c

2

)
.

In summary, the gradient descent update rules for the attention model are:

wt+1
0 = w0 − η

(
w0 +

w2 σ(ϕ2)

2
− c

)
,

wt+1
1 = w1 − η

(
w1 σ(ϕ1)

2 −mσ(ϕ1)
)
,

wt+1
2 = w2 − η σ(ϕ2)

(
w0

2
+

w2 σ(ϕ2)

3
− c

2

)
,

ϕt+1
1 = ϕ1 − η w1 σ(ϕ1)(1− σ(ϕ1))(w1 σ(ϕ1)−m),

ϕt+1
2 = ϕ2 − η w2 σ(ϕ2)(1− σ(ϕ2))

(
w0

2
+

w2 σ(ϕ2)

3
− c

2

)
.
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C HYPERPARAMETERS

C.1 FOR SAC

Table 1: Key hyperparameters and architecture details of our SAC implementation.

Component Setting
Environment
Environment DM Control Suite
Observation Dim Original + 20 controllable + 20 uncontrollable distractors
Action Space Continuous (Box)

Actor Network
Architecture MLP: 256-256, ReLU

Critic Networks (Q1/Q2)
Architecture MLP: 256-256, ReLU
Target Update Soft update with τ = 0.005

Training Setup
Replay Buffer Size 5× 106

Batch Size 256
Learning Starts 10,000 steps
Total Steps 1M
Policy LR 3× 10−4

Critic LR 1× 10−3

Optimizer Adam
Max Grad Norm 10

Entropy Tuning
α Tuning Enabled (learned)

Distractors
Controllable Linear in action + bias
Uncontrollable Random + bias

Evaluation & Logging
Eval Episodes 50 (continuous)
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C.2 PPO

Table 2: Key hyperparameters and architecture details of our PPO implementation.

Component Setting
Environment
Environment DM Control Suite
Observation Dim Original + 20 controllable + 20 uncontrollable distractors
Action Space Continuous (Box)

Agent Architecture
Policy/Value Network Shared MLP: 64-64, Tanh activations

Training Setup
Total Timesteps 3M
Rollout Length 2000 steps
Mini-batches 40
Update Epochs 10
Optimizer Adam, LR = 3× 10−4

Annealed LR Yes
Gradient Clipping Max norm = 0.5

PPO Settings
GAE Lambda 0.95
Discount Factor γ 0.99
Advantage Normalization Enabled
Clip Coefficient 0.2
Clip Value Loss Enabled
Entropy Coefficient 0.0
Value Loss Coef 0.5
Target KL None

Distractor Variables
Controllable Linear in action + fixed bias
Uncontrollable Random noise + fixed bias

Evaluation & Logging
Eval Returns from rollouts
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C.3 TD3

Table 3: Key hyperparameters and architectural details of our TD3 implementation with shared
attention.

Component Setting
Environment
Environment DM Control Suite
Observation Dim Original + 20 controllable + 20 uncontrollable distractors
Action Space Continuous (Box)

Actor Network
Architecture MLP: 256-256, ReLU

Critic Networks (Q1, Q2)
Architecture MLP: 256-256, ReLU
Target Networks Soft update with τ = 0.005

Training Setup
Total Timesteps 1M
Learning Starts 25K steps
Batch Size 256
Replay Buffer Size = 106 transitions
Optimizer Adam, LR = 3× 10−4

Gradient Clipping Not used

TD3-Specific Settings
Policy Delay 2 steps
Target Policy Noise Std = 0.2, Clipped at 0.5
Exploration Noise Std = 0.1 (added to actor output)

Distractor Variables
Controllable Linear in action + fixed bias
Uncontrollable Random noise + fixed bias

Evaluation & Logging
Eval Episodes 50 continuous episodes per checkpoint

D CODE

Anonymous GitHub link:

https://anonymous.4open.science/r/submission-41DF
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