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ABSTRACT

Despite significant advancements in out-of-distribution (OOD) detection, existing
methods still struggle to maintain robustness against adversarial attacks, com-
promising their reliability in critical real-world applications. Previous studies
have attempted to address this challenge by exposing detectors to auxiliary OOD
datasets alongside adversarial training. However, the increased data complexity
inherent in adversarial training, and the myriad of ways that OOD samples can arise
during testing, often prevent these approaches from establishing robust decision
boundaries. To address these limitations, we propose AROS, a novel approach
leveraging neural ordinary differential equations (NODEs) with Lyapunov stability
theorem in order to obtain robust embeddings for OOD detection. By incorporating
a tailored loss function, we apply Lyapunov stability theory to ensure that both
in-distribution (ID) and OOD data converge to stable equilibrium points within the
dynamical system. This approach encourages any perturbed input to return to its
stable equilibrium, thereby enhancing the model’s robustness against adversarial
perturbations. To not use additional data, we generate fake OOD embeddings by
sampling from low-likelihood regions of the ID data feature space, approximating
the boundaries where OOD data are likely to reside. To then further enhance
robustness, we propose the use of an orthogonal binary layer following the stable
feature space, which maximizes the separation between the equilibrium points of
ID and OOD samples. We validate our method through extensive experiments
across several benchmarks, demonstrating superior performance, particularly under
adversarial attacks. Notably, our approach improves robust detection performance
from 37.8% to 80.1% on CIFAR-10 vs. CIFAR-100 and from 29.0% to 67.0% on
CIFAR-100 vs. CIFAR-10.

1 INTRODUCTION

Deep neural networks have demonstrated remarkable success in computer vision, achieving sig-
nificant results across a wide range of tasks. However, these models are vulnerable to adversarial
examples—subtly altered inputs that can lead to incorrect predictions (1; 2; 3). As a result, designing
a defense mechanism has emerged as a critical task. Various strategies have been proposed, and
adversarial training has become one of the most widely adopted approaches (4; 5; 6). Recently,
Neural Ordinary Differential Equations (NODEs) have attracted attention as a defense strategy
by leveraging principles from control theory. By leveraging the dynamical system properties of
NODEs, and imposing stability constraints, these methods aim to enhance robustness with theoretical
guarantees. However, they have been predominantly studied in the context of classification tasks
(7; 8; 9; 10; 11; 12; 13; 14; 15), and not in out-of-distribution (OOD) detection.

OOD detection is a safety-critical task that is crucial for deploying models in the real world. In this
task, training is limited to in-distribution (ID) data, while the inference task involves identifying OOD
samples, i.e., samples that deviate from the ID data (16; 17). Recent advancements have demonstrated
impressive performance gains across various detection benchmarks (18; 19; 20; 21). However, a
significant challenge arises concerning the robustness of OOD detectors against adversarial attacks.
An adversarial attack on a detector involves introducing minor perturbations to test samples, causing
the detector to predict OOD as ID samples or vice versa. Yet, a robust OOD detector is imperative,
especially in scenarios like medical diagnostics and autonomous driving (22; 23; 24; 25; 26).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 1
255

2
255

3
255

4
255

8
255

16
255

Perturbation Radius ( )

0

20

40

60

80

100
A

U
R

O
C

(%
)

(A) ImageNet vs. Texture

0 1
255

2
255

3
255

4
255

5
255

6
255

7
255

8
255

16
255

32
255

Perturbation Radius ( )

0

20

40

60

80

100

A
U

R
O

C
(%

)

(B) CIFAR­10 vs. CIFAR­100
AROS (Ours) RODEO ATD ALOE CSI VOS DHM

0 1
255

2
255

3
255

4
255

5
255

6
255

7
255

8
255

16
255

32
255

Perturbation Radius ( )

0

20

40

60

80

100

A
U

R
O

C
(%

)

(C) CIFAR­100 vs. CIFAR­10

Figure 1: OOD detection performance for various models under different perturbation magni-
tudes. The perturbations are generated using PGD1000 (ℓ∞) attack targeting both test ID and OOD
samples. (A) ImageNet is used as the ID dataset, while the Texture dataset is used as the OOD during
test time. (B) CIFAR-10 is utilized as the ID, with CIFAR-100 as the OOD. (C) CIFAR-100 is used
as the ID, with CIFAR-10 as the OOD. A perfect detector achieves an AUROC of 100%, a random
detector scores 50%, and a fully compromised detector under attack scores 0%. Notably, no other
model achieves detection performance above random (i.e., greater than 50% AUROC) at ϵ = 8

255 .

Recently, several approaches have sought to address this challenge by first demonstrating that relying
solely on ID data is insufficient for building adversarially robust detectors (27; 28; 29; 23; 30; 26;
31; 32; 33; 34; 35; 36; 37; 38). Consequently, new methods propose incorporating copious amounts
of auxiliary OOD data in conjunction with adversarial training to improve the detector’s robustness.
While effective, a significant gap remains between detector performance on clean data and their
robustness against adversarial attacks (see Figure 1, Tables 1, 2a, and 2b).

This performance gap primarily arises from the wide variety of potential OOD samples encountered
during testing. Relying exclusively on an auxiliary dataset to generate perturbed OOD data can bias
the model toward specific OOD instances, thereby compromising the detector’s ability to generalize to
unseen OOD data during inference (16; 39; 40; 41; 42; 43). This limitation is particularly pronounced
in adversarial settings, where adversarial training demands a higher level of data complexity compared
to standard training (44; 45; 46; 5; 47). Additionally, the collection of auxiliary OOD data is a costly
process, as it must be carefully curated to avoid overlap with ID semantics to ensure that the detector
is not confused by data ambiguities (39; 41). Finally, as our empirical analysis reveals, existing
OOD detection methods are vulnerable even to non-adversarial perturbations – a concerning issue
for open-world applications, where natural factors such as lighting conditions or sensor noise can
introduce significant variability (48) (see Table 3).

Our Contribution: To address these challenges, we propose AROS (Adversarially Robust OOD
Detection through Stability), a novel approach that leverages NODEs with the Lyapunov stability
theorem (Figure 2). This constraint asserts that small perturbations near stable equilibrium points
decay over time, allowing the system state to converge back to equilibrium. By ensuring that both
ID and OOD data are stable equilibrium points of the detector, the system’s dynamics mitigate the
effects of perturbations by guiding the state back to its equilibrium. Instead of using extra OOD
image data, we craft fake OOD samples in the embedding space by estimating the ID boundary.
Additionally, we show that adding an orthogonal binary layer increases the separation between ID
and OOD equilibrium points, enhancing robustness. We evaluate AROS under both adversarial and
clean setups across various datasets, including large-scale datasets such as ImageNet (49) and real-
world medical imaging data (i.e., ADNI (22)), and compare it to previous state-of-the-art methods.
Under adversarial scenarios, we apply strong attacks, including PGD1000 (44), AutoAttack (50), and
Adaptive AutoAttack (51).

2 PRELIMINARIES

Out-of-Distribution Detection. In an OOD detection setup, it is assumed that there are two
sets: an ID dataset and an OOD dataset. We denote the ID dataset as Din, which consists of
pairs (xin, yin), where xin represents the ID data, and yin ∈ Y in := {1, . . . ,K} denotes the class
label. Let Dout represent the OOD dataset, containing pairs (xout, yout), where yout ∈ Yout :=
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{K + 1, . . . ,K + O}, and Yout ∩ Y in = ∅ (52; 18). In practice, different datasets are often used
for Din and Dout. Alternatively, another scenario is called open-set recognition, where a subset of
classes within a dataset is considered as ID, while the remaining classes are considered as OOD
(53; 16; 54; 55). A trained model F assigns an OOD score SF to each test input, with higher scores
indicating a greater likelihood of being OOD.

Adversarial Attack on OOD Detectors. Adversarial attacks involve perturbing an input sample x
to generate an adversarial example x∗ that maximizes the loss function ℓ(x∗; y). The perturbation
magnitude is constrained by ϵ to ensure that the alteration remains imperceptible. Formally, the
adversarial example is defined as x∗ = argmaxx′ ℓ(x′; y), subject to ∥x − x∗∥p ≤ ϵ, where
p denotes the norm (e.g., p = 2, ∞) (56; 3; 44). A widely used attack method is Projected
Gradient Descent (PGD) (44), which iteratively maximizes the loss by following the gradient sign
of ℓ(x∗; y) with a step size α. For adversarial evaluation (28; 34; 37), we adapt this approach by
targeting the OOD score SF (x). Specifically, the adversarial attack aims to mislead the detector by
increasing the OOD score for ID samples and decreasing it for OOD samples, causing misprediction:
x∗
0 = x, x∗

t+1 = x∗
t + α · sign (I(y) · ∇xSF (x

∗
t )) , x∗ = x∗

n, where n is the number of steps,
and I(y) = +1 if y ∈ Y in and −1 if y ∈ Yout. This approach is consistently applied across all attacks
considered in our study.

Neural ODE and Stability. In the NODE framework, the input and output are treated as two
distinct states of a continuous dynamical system, whose evolution is described by trainable layers
parameterized by weights ϕ and denoted as hϕ. The state of the neural ODE, represented by Z,
evolves over time according to these dynamics, establishing a continuous mapping between the input
and output (57; 58; 59). The relationship between the input and output states is governed by the
following differential equations: dz(t)

dt = hϕ(z(t), t), z(0) = zinput, z(T ) = zoutput.

3 RELATED WORK

OOD Detection Methods. Existing OOD detection methods can be broadly categorized into post-
hoc and training-based approaches. Post-hoc methods involve training a classifier on ID data and
subsequently using statistics from the classifier’s outputs or intermediate representations to identify
OOD samples. For instance, Hendrycks et al. (52) propose using the maximum softmax probability
distributions (MSP) as a metric. The MD method (60) leverages the Mahalanobis Distance in the
feature space, and OpenMax (61) recalibrates classification probabilities to improve OOD detection.
Training-based methods, modify the training process to enhance OOD detection capabilities. Such
modifications can include defining additional loss functions, employing data augmentation techniques,
or incorporating auxiliary networks. Examples of training-based methods designed for standard OOD
detection include VOS (39), DHM (19), CATEX (62), and CSI (63). On the other hand, ATOM (30),
ALOE (28), ATD (34), and RODEO (37) have been developed specifically for robust detection. For
detailed descriptions of these methods, please refer to Appendix A1.

Stable NODE for Robustness. TiSODE (64) introduces a time-invariant steady NODE to constrain
trajectory evolution by keeping the integrand close to zero. Recent works employ Lyapunov stability
theory to develop provable safety certificates for neural network systems, particularly in classification
tasks. PeerNets (9) was among the first to use control theory and dynamical systems to improve
robustness. Kolter et al. (65) designed a Lyapunov function using neural network architectures to
stabilize a base dynamics model’s equilibrium. ASODE (66) uses non-autonomous NODEs with
Lyapunov stability constraints to mitigate adversarial perturbations in slowly time-varying systems.
LyaDEQ (67) introduces a new module based on ICNN (68) into its pipeline, leveraging deep
equilibrium models and learning a Lyapunov function to enhance stability. SODEF (69) enhances
robustness against adversarial attacks by applying regularizers to stabilize the behavior of NODE
under the time-invariant assumption. In Table 4a, we analyze these stability-based classifiers as OOD
detectors and highlight the potential of Lyapunov’s theorem as a framework for robust OOD detection,
and show our method’s ability to improve performance over these excellent baselines.

4 PROPOSED METHOD

Motivation. A robust detector should be resistant to shifting ID test samples to OOD, and vice
versa, under adversarial attack. A common approach for developing robust OOD detectors involves

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: An illustration of AROS. (A) To obtain robust initial features for OOD detection, we
perform adversarial training on a classifier using only ID samples. (B) We estimate the ID distribution
within the embedding space and generate fake OOD embeddings as a proxy for real OOD data.
This enables the creation of two balanced classes of samples: ID and fake OOD. (C) The model
incorporates a NODE layer hϕ and an Orthogonal Binary Layer Bη. Using these two classes, we
train the pipeline with the loss function LSL to stabilize the system dynamics. (D) During inference,
an input passes through the feature extractor fθ, NODE hϕ, and Orthogonal Binary Layer Bη, and
the resulting likelihood from Bη serves as the OOD score. The complete algorithmic workflow of
AROS can be found in Appendix A2.

employing adversarial training on ID data, combined with an auxiliary real OOD dataset, to expose the
detector to potential vulnerable perturbations. The core intuition is that adversarial training on ID data
alone, without an accompanying OOD dataset, leaves the detector susceptible to perturbations that
alter the boundary between ID and OOD data during testing (28; 29; 30; 23; 34; 26; 31; 33; 36; 35; 37).
Beyond the unsatisfactory performance of the prior approach, there are further challenges with this
strategy. A key issue is the cost of preparing an auxiliary dataset disjoint from the ID data, along
with ensuring that the selected OOD images adequately cover the boundary between ID and OOD
samples—a critical factor for such frameworks (70; 37; 30; 24). Moreover, adversarial training of
neural networks is notably more data-intensive than standard setups, further increasing complexity
(45; 46; 5; 47). There is also the concern that exclusively relying on perturbed OOD data may
introduce biases toward specific OOD examples (39; 41). To address these challenges, we propose
AROS, which utilizes provable stability theorems in the embedding space to develop a robust OOD
detector without requiring exposure to perturbed OOD image data.

Overview of AROS. AROS ensures that perturbed input samples remain close to their non-perturbed
counterparts in the feature space by leveraging the Lyapunov stability theorem (71; 72; 73; 74).
By using a NODE, we consider the model as a dynamical system and design it so that ID and
OOD samples converge to distinct stable equilibrium points of that system. This approach prevents
significant deviations in the output when adversarial perturbations are applied. However, since OOD
data is unavailable, we craft fake OOD samples in the embedding space by estimating the boundaries
of the ID distribution and sampling from the corresponding low-likelihood regimes. To further avoid
any misprediction between OOD and ID data caused by perturbations, we maximize the distance
between their equilibrium points by leveraging an orthogonal binary layer for classification. In the
following, we will thoroughly explain each proposed component, highlighting the benefits of AROS.

4.1 FAKE EMBEDDING CRAFTING STRATEGY

There have been efforts to utilize synthetic features, primarily under clean scenarios (39; 41; 75; 70).
However, for adversarial settings, prior work has often relied on a large pre-trained model and
additional data. In contrast, our approach limits information to ID samples, proposing to craft OOD
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data from ID data in the embedding space. These generated OOD samples are subsequently utilized
in the training step.

We employ a well-trained encoder to transform ID training data into robust embedding spaces. To
achieve these embeddings, we first adversarially train a classifier on ID training samples using
cross-entropy loss LCE and the PGD10(l∞) attack. By removing the last fully connected layer from
the classifier, we utilize the remaining encoder, denoted as fθ, to extract ID embeddings r, where
r = fθ(x) from an ID training sample x (Figure 2A). Specifically, by considering Din

train with K
classes, we estimate their distribution as a K class-conditional Gaussian distribution, a well-known
approach in the detection literature (39; 76; 77; 78; 79; 80).

We then select fake embeddings r from the feature space corresponding to class j such that r ∼
N (µ̂j , Σ̂j) satisfies:

1
(2π)d/2|Σ̂j |1/2

exp
(
− 1

2 (r − µ̂j)
T Σ̂−1

j (r − µ̂j)
)

< β, (1)

where, β serves as a threshold, and we set that to a very small value (e.g., 0.001) (Figure 2B).
Additionally, we conduct an ablation study to evaluate the impact of different values of β and discuss
practical considerations (see Appendix A3). Here, d is the dimensionality of the feature vectors r,
and j = 1, . . . ,K. The terms µ̂j and Σ̂j represent the mean vector and covariance matrix of the j-th
class of ID training samples in feature space, respectively:

µ̂j =
1
nj

∑
i:yi=j fθ(xi), Σ̂j =

1
nj−1

∑
i:yi=j(fθ(xi)− µ̂j)(fθ(xi)− µ̂j)

T , (2)

where nj is the number of samples in class j. By sampling equally across each class of Din
train,

we generate a set of synthetic, “fake” OOD embeddings (Figure 2C), denoted as rOOD. We then
construct a balanced training set by taking the union of the embeddings of ID samples and the OOD
embeddings, defining it as: Xtrain =

{
fθ(Din

train) ∪ rOOD
}
. We define the labels y for this set as 0 for

ID and 1 for fake OOD embeddings.

4.2 LYAPUNOV STABILITY FOR ROBUST OOD DETECTION

As mentioned, several approaches have been proposed to apply Lyapunov’s theorem to deep networks
in practice, including methods such as LyaDEQ (67), ASODE (66), and SODEF (69). Here, we utilize
their framework to define the objective function and also benchmark our approach to these baselines.
Amongst them, SODEF adopts a time-invariant (69; 64) assumption, which makes stability analysis
more practical, as the behavior of the neural ODE depends solely on the state z(t), independent of
the specific time that the state is reached. This assumption implies that the equilibrium points of the
NODE remain constant over time, facilitating a more tractable analysis of how perturbations evolve
around these points (64; 81; 69). This is supported by our experiments in Table 4a, which highlight
SODEF’s superior robustness. Consequently, we adopt the time-invariant framework and use their
approach to define the loss function. In order to gain intuition for our approach, we provide the basic
mathematical overview of how we leverage the Lyapunov theorems. In this study, as a practical
consideration, we assume that the networks utilized have continuous first derivatives with respect to
the input z(0), which has been shown to be a reasonable assumption (82).

For a given dynamic system dz(t)
dt = hϕ(z(t)), a state z⋆ is an equilibrium point of system if z⋆

satisfies h(z⋆) = 0. An equilibrium point is stable if the trajectories starting near z⋆ remain around it
all the time. More formally:

Definition 1: (Lyapunov stability (83)). An equilibrium z⋆ is said to be stable in the sense of
Lyapunov if, for every ε > 0, there exists δ > 0 such that, if ∥z(0)− z⋆∥ < δ, then ∥z(t)− z⋆∥ < ε
for all t ≥ 0. If z⋆ is stable, and limt→∞ ∥z(t)− z⋆∥ = 0, z⋆ is said to be asymptotically stable.

Theorem 1: (Hartman–Grobman Theorem (84)). Consider a time-invariant system with continuous
first derivatives, represented by dz(t)

dt = h(z(t)). For a fixed point z∗, if the Jacobian matrix ∇h
evaluated at z∗ has no eigenvalues with a real part equal to zero, the behavior of the original
nonlinear dynamical system can be analyzed by studying the linearization of the system around this
fixed point. The linearized system is given by dz′(t)

dt = Az′(t), where A is the Jacobian matrix
evaluated at z∗. This allows for a simplified analysis of the local dynamics in the vicinity of z∗.
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Theorem 2: (Lyapunov Stability Theorem (83)) The equation dz′(t)
dt = Az′(t), is asymptotically

stable if and only if all eigenvalues of A have negative real parts.

Theorem 3: (Levy–Desplanques Theorem (85)) Let A = [aij ] be an n-dimensional square matrix
and suppose it is strictly diagonally dominant, i.e., |aii| ≥

∑
i̸=j |aij | and aii ≤ 0 for all i. Then

every eigenvalue of A has a negative real part.

Definition 1 introduces the concept of asymptotic stability. Building on this, Theorem 1 demonstrates
that the behavior of a nonlinear, time-invariant system near a fixed point can be effectively analyzed
through its linearization. Theorem 2 then establishes a key condition for the asymptotic stability of
linear systems: all eigenvalues of the system matrix must have negative real parts. To facilitate the
verification of this stability condition, Theorem 3 provides a practical criterion based on the matrix’s
eigenvalues. In the subsequent section, we will introduce an objective function designed to adhere to
these stability criteria.

4.3 ORTHOGONAL BINARY LAYER AND TRAINING STEP

We propose incorporating an orthogonal binary layer (86) denoted as Bη after the NODE hϕ in our
pipeline to maximize the distance between the equilibrium points of ID and OOD data. Intuitively,
this layer prevents the misalignment of convergence between perturbed OOD data and ID data
by maximizing the distance between their equilibrium points. Given the output z from the hϕ,
the orthogonal binary layer Bη applies a transformation using weights w such that wTw = I ,
ensuring orthogonality. Although Lyapunov stability encourages perturbed inputs to converge to
neighborhoods of their unperturbed counterparts, the infinite-depth nature of NODE (87) makes them
susceptible to degraded activations due to exploding or vanishing gradients (88). The introduction of
an orthogonal layer mitigates this risk. Moreover, encouraging orthogonality within neural networks
has demonstrated multiple benefits, such as preserving gradient norms and enforcing low Lipschitz
constants—both of which contribute to enhanced robustness (89; 90; 91).

To satisfy the aforementioned conditions, we optimize the following empirical Lagrangian LSL with
training data (Xtrain, y):

LSL = min
ϕ,η

1

|Xtrain|

(
ℓCE(Bη(hϕ(Xtrain)), y) + γ1∥hϕ(Xtrain)∥2 + γ2exp

(
−

n∑
i=1

[∇hϕ(Xtrain)]ii

)

+ γ3exp

 n∑
i=1

−|[∇hϕ(Xtrain)]ii|+
∑
j ̸=i

|[∇hϕ(Xtrain)]ij |

) (3)

Note that here, Xtrain serves as the initial hidden state, i.e., z(0), for the NODE layer. The first term,
ℓCE, is a cross-entropy loss function. The second term forces z(0) to be near the equilibrium points,
while the remaining terms ensure strictly diagonally dominant derivatives, as described in Theorem
3. The exp(.) function is selected as a monotonically increasing function with a minimum bound to
limit the unbounded influence of the two regularizers, preventing them from dominating the loss. We
choose the hyperparameters as γ1 = 1 and γ2 = γ3 = 0.05, and we discuss the ablation study on
these hyperparameters, as well as other training step details, in Appendix A4. By optimizing this
objective function, the model learns Lyapunov-stable representations where ID and OOD equilibrium
points are well-separated in the feature space after the NODE. The Bη captures the probability
distribution over the binary classes (ID vs. fake OOD), and for the OOD score of an input x, we use
its probability assigned to the OOD class (Figure 2D).

5 EXPERIMENTS

Here we present empirical evidence to validate the effectiveness of our method under various setups,
including adversarial attacks, corrupted inputs (non-adversarial perturbations), and clean inputs
(non-perturbed scenarios). We note that the backbone architecture for the methods considered is the
same as described in Table 1.

First, we adversarially train a classifier on ID data and then use it to map the data into a robust
embedding space. A Gaussian distribution is fitted around these embeddings, and low-likelihood

6
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Table 1. Performance of OOD detection methods under clean evaluation, random corruption (Gaussian
noise), and PGD (l∞) adversarial attack with 1000 steps and 8

255 , as well as AutoAttack and Adaptive
AutoAttack (AA), measured by AUROC (%). A clean evaluation is one where no attack is made on
the data. For corruption evaluation, Gaussian noise from the ImageNet-C (48) benchmark was used.
The best results are highlighted in bold, and the second-best results are underlined in each row.

† These methods leveraged auxiliary datasets and these ∗ used large pretrained models as part of their pipeline.

Dataset Attack Method

Din Dout
VOS DHM CATEX∗ CSI ATOM† ALOE† ATD†∗ RODEO†∗ AROS
(ResNet) (WideResNet) (CLIP) (ResNet) (DenseNet) (WideResNet) (WideResNet) (CLIP) (WideResNet)

C
IF

A
R

10

C
IF

A
R

10
0

Clean 87.9 100.0 88.3 92.2 94.2 78.8 82.0 75.6 88.2

Corruption 56.2 57.7 60.4 54.7 57.3 54.5 59.2 58.6 84.3

PGD1000 4.2 1.8 0.8 3.6 1.6 16.1 37.1 37.8 80.1

AutoAttack 0.0 1.2 0.0 0.4 0.5 14.8 36.2 35.9 78.9

AdaptiveAA 0.0 0.0 1.7 0.0 0.0 11.5 34.8 32.3 76.4

C
IF

A
R

10
0

C
IF

A
R

10

Clean 71.3 100.0 85.1 53.2 87.5 43.6 57.5 61.5 74.3

Corruption 53.8 58.2 57.4 50.1 55.3 56.1 56.0 54.9 71.8

PGD1000 5.4 0.0 4.0 2.8 2.0 1.3 12.1 29.0 67.0

AutoAttack 2.6 0.0 0.3 0.9 0.0 0.0 10.5 28.3 66.5

AdaptiveAA 0.0 1.4 0.0 0.0 0.0 0.2 9.4 26.7 65.2

regions of the distribution are sampled to create fake OOD data as a proxy for OOD test samples. We
then demonstrate that time invariance, which establishes that the NODE’s behavior does not explicitly
depend on time, leads to more stable behavior of the detector under adversarial attacks (see Section
5). Consequently, we leverage Lyapunov stability regularization under a time-invariant assumption
for training. However, a potential challenge arises when ID and OOD equilibrium points are located
near each other. As a remedy, we introduce an orthogonal binary layer (86; 92; 93) that increases the
separation between ID and OOD equilibrium points, thereby expanding the stability region around
each point. This enhances the model’s robustness against shifting adversarial samples from OOD to
ID and vice versa. Finally, we use the orthogonal binary layer’s confidence output as the OOD score
during inference.

Experimental Setup & Datasets. We evaluated OOD detection methods under both adversarial and
clean scenarios (see Tables 1 and 2a). Each experiment utilized two disjoint datasets: one as the ID
dataset and the other as the OOD test set. For Table 1, CIFAR-10 or CIFAR-100 (94) served as the ID
datasets. Table 2a extends the evaluation to ImageNet-1k as the ID dataset, with OOD datasets being
comprised of Texture (95), SVHN (96), iNaturalist (97), Places365 (98), LSUN (99), and iSUN (100)
– all sourced from disjoint categories (48).

An OSR (101) setup was also tested, in which each experiment involved a single dataset that was
randomly split into ID (60%) and OOD (40%) subclasses, with results averaged over 10 trials.
Datasets used for OSR included CIFAR-10, CIFAR-100, ImageNet-1k, MNIST (102), FMNIST
(103), and Imagenette (104) (Table 2b). Additionally, models were evaluated on corrupted data
using the CIFAR-10-C and CIFAR-100-C benchmarks (48) (see Table 3). Specifically, both the ID
and OOD data were perturbed with corruptions that did not alter semantics but introduced slight
distributional shifts during testing. Further details on the datasets are provided in Appendix A5.

Evaluation Details. For adversarial evaluation, all ID and OOD test data were perturbed by using a
fully end-to-end PGD (l∞) attack targeting their OOD scores (as described in Section 2). We used
ϵ = 8

255 for low-resolution images and ϵ = 4
255 for high-resolution images. The PGD attack steps

denoted as M were set to 1000, with 10 random initializations sampled from the interval (−ϵ, ϵ).
The step size for the attack was set to α = 2.5 × ϵ

M (4). Additionally, we considered AutoAttack
and Adaptive AutoAttack (Table 1). Details on how these attacks are tailored for the detection task
can be found in Appendix A4. As the primary evaluation metric, we used AUROC, representing
the area under the receiver operating characteristic curve. Additionally, we used AUPR and FPR95
as supplementary metrics, with results presented in Table 4b. AUPR represents the area under
the precision-recall curve, while FPR95 measures the false positive rate when the model correctly
identifies 95% of the true positives.
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Table 2a. Performance of OOD detection methods under clean evaluation and PGD1000(l∞) measured by
AUROC (%). The perturbation budget ϵ is set to 8

255
for low-resolution datasets and 4

255
for high-resolution

datasets. The table cells denote results in the ‘Clean/PGD1000 ’ format.

Dataset Method

Din Dout VOS DHM CATEX CSI ATOM ALOE ATD RODEO AROS
(Ours)

C
IF

A
R

-1
0

CIFAR-100 87.9/4.2 100.0/1.8 88.3/0.8 92.2/3.6 94.2/1.6 78.8/16.1 82.0/37.1 75.6/37.8 88.2/80.1

SVHN 93.3/2.8 100.0/ 4.5 91.6/2.3 97.4/1.7 89.2/4.7 83.5/26.6 87.9/39.0 83.0/38.2 93.0/86.4

Places 89.7/5.2 99.6/0.0 90.4/ 4.7 93.6/0.1 98.7/5.6 85.1/21.9 92.5/59.8 96.2/70.2 90.8/83.5

LSUN 98.0/7.3 100.0/2.6 95.1/0.8 97.7/0.0 99.1/1.0 98.7/50.7 96.0/68.1 99.0/ 85.1 90.6/ 82.4

iSUN 94.6/0.5 99.1/2.8 93.2/ 4.4 95.4/3.6 99.5/2.5 98.3/49.5 94.8/65.9 97.7/78.7 88.9/81.2

C
IF

A
R

-1
00

CIFAR-10 71.3/5.4 100.0/2.6 85.1/ 4.0 53.2/0.7 87.5/2.0 43.6/1.3 57.5/12.1 61.5/29.0 74.3/67.0

SVHN 92.6/3.2 100.0/0.8 94.6/5.7 90.5/4.2 92.8/5.3 74.0/18.1 72.5/27.6 76.9/31.4 81.5/70.6

Places 75.5/0.0 100.0/3.9 87.3/1.4 73.6/0.0 94.8/3.0 75.0/12.4 83.3/40.0 93.0/66.6 77.0/69.2

LSUN 92.9/5.7 100.0/1.6 94.0/8.9 63.4/1.8 96.6/1.5 98.7/50.7 96.0/68.1 98.1/63.1 74.3/68.1

iSUN 70.2/4.5 99.6/3.6 81.2/0.0 81.4/3.0 96.4/1.4 98.3/49.5 94.8/65.9 95.1/65.6 72.8/67.9

Im
ag

eN
et

-1
k

Texture 86.7/0.8 82.4/0.0 92.7/0.0 85.8/0.6 88.9/7.3 76.2/21.8 74.2/15.7 71.3/19.4 78.3/69.2

iNaturalist 94.5/0.0 80.7/0.0 97.9/2.0 85.2/1.7 83.6/10.5 78.9/19.4 72.5/12.6 72.7/15.0 84.6/75.3

Places 90.2/0.0 76.2/0.4 90.5/0.0 83.9/0.2 84.5/12.8 78.6/15.3 75.4/17.5 69.2/18.5 76.2/68.1

LSUN 91.9/0.0 82.5/0.0 92.9/0.4 78.4/1.9 85.3/11.2 77.4/ 16.9 68.3/15.1 70.4/16.2 79.4/69.0

iSUN 92.8/2.7 81.6/0.0 93.7/0.0 77.5/0.0 80.3/14.1 75.3/11.8 76.6/15.8 72.8/17.3 80.3/71.6

Mean 88.1/2.8 93.4/1.6 91.2/2.3 83.3/1.5 91.4/5.6 81.4/25.5 81.6/37.4 82.1/44.4 82.0/74.0

Table 2b. Performance (Clean/PGD1000) of OOD detection methods under clean and PGD1000(l∞), measured
by AUROC (%), on the OSR setup, which splits one dataset’s classes randomly to create Din and Dout.

Dataset Method

VOS DHM CATEX CSI ATOM ALOE ATD RODEO AROS
(Ours)

MNIST 86.3/4.8 92.6/0.4 92.3/1.9 93.6/6.1 74.8/4.1 79.5/37.3 68.7/56.5 97.2/85.0 94.4/86.3

FMNIST 78.1/2.0 85.9/0.0 87.0/0.4 84.6/1.2 64.3/4.2 72.6/28.5 59.6/42.1 87.7/65.3 84.1/72.6

CIFAR-10 74.7/0.0 90.8/0.0 95.1/0.0 91.4/0.6 68.3/5.0 52.4/25.6 49.0/32.4 79.6/62.7 78.8/69.5

CIFAR-100 63.5/0.0 78.6/0.0 91.9/0.0 86.7/1.9 51.4/2.6 49.8/18.2 50.5/36.1 64.1/35.3 67.0/58.2

Imagenette 76.7/0.0 84.2/0.0 96.4/1.6 92.8/0.0 63.5/8.2 61.7/14.2 63.8/28.4 70.6/39.4 78.2/67.5
ADNI 73.5/4.1 69.4/5.2 86.9/0.1 82.1/0.0 66.9/2.3 64.0/11.0 68.3/33.9 75.5/24.6 80.9/61.7

Mean 75.5/1.8 83.6/0.9 91.6/0.7 88.5/1.6 64.9/4.4 63.3/22.5 60.0/38.2 79.1/52.1 80.6/69.3

Reported and Re-Evaluated Results. Some methods may show different results here compared to
those reported in their original papers (30; 28) due to our use of stronger attacks we incorporated
for evaluation, or the more challenging benchmarks used. For example, ALOE (28) considered a
lower perturbation budget for evaluation (i.e., 1

255 ), and the ATD (34) and RODEO (37) benchmarks
used CIFAR-10 vs. a union of several datasets, rather than CIFAR-10 vs. CIFAR-100. The union
set included datasets such as MNIST, which is significantly different from CIFAR-10, leading to a
higher reported robust performance.

Results Analysis. Without relying on additional datasets or pretrained models, AROS significantly
outperforms existing methods in adversarial settings, achieving up to a 40% improvement in AUROC
and demonstrating competitive results under clean setups (see Table 2b). Specifically, AROS also
exhibits greater robustness under various corruptions, further underscoring its effectiveness in OOD
detection. We further verify our approach through an extensive ablation study of various components
in AROS (see Section 6).
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Table 3. Performance of OOD detection methods under various types of non-adversarial perturbations,
referred to as image corruptions, as introduced in the CIFAR-10-C and CIFAR-100-C datasets (48),
measured by AUROC (%). Specifically, test inputs, including both ID and OOD, are perturbed with a
particular corruption in each experiment.

Dataset Methods Corruption
Mean

Din Dout Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

C
IF

A
R

-1
0-

C

C
IF

A
R

-1
00

-C

VOS 56.2 67.5 76.5 77.7 73.9 78.7 76.3 72.0 54.1 77.0 58.5 79.1 81.2 83.6 74.4 72.5
DHM 57.7 78.7 72.4 75.4 75.6 73.9 77.5 75.8 70.8 56.8 74.5 58.0 77.4 78.4 80.6 72.2
CATEX 62.4 80.9 73.0 78.4 76.3 78.6 81.3 79.9 78.9 58.3 80.0 54.0 79.0 80.5 82.4 74.9
CSI 54.7 58.0 58.7 62.9 61.7 69.0 65.9 77.2 69.2 74.8 91.9 65.8 74.2 62.6 74.9 68.1
ATOM 57.3 75.5 63.6 70.7 72.2 69.9 74.6 77.2 76.5 55.3 80.5 54.1 74.7 77.4 80.8 70.7
ALOE 54.5 76.4 64.0 71.5 73.0 70.9 75.5 78.2 77.9 56.3 81.5 54.0 76.9 79.3 82.1 71.5
ATD 59.2 79.2 71.0 76.7 76.9 75.6 79.5 78.2 74.9 59.5 77.8 59.5 79.0 80.8 82.9 73.7
RODEO 58.6 76.0 68.5 73.5 73.8 72.1 75.5 74.5 70.9 57.8 74.5 57.7 75.3 76.8 79.5 71.0
AROS 84.3 76.5 79.2 83.8 77.3 82.0 81.3 83.4 84.0 84.0 84.7 83.3 80.7 79.6 82.5 81.8

C
IF

A
R

-1
00

-C

C
IF

A
R

-1
0-

C

VOS 53.8 55.7 65.6 58.2 47.1 51.4 57.6 53.9 59.0 57.2 56.5 54.8 48.2 59.4 51.1 55.3
DHM 58.2 59.9 64.0 57.7 48.9 58.0 57.4 57.6 58.5 57.9 58.1 58.3 49.8 55.6 56.7 57.1
CATEX 57.4 60.2 65.7 59.6 64.9 62.9 59.3 67.5 61.4 59.8 60.0 64.2 56.8 57.5 58.6 61.0
CSI 50.1 48.8 50.6 47.8 47.5 46.9 46.8 50.6 50.3 51.8 49.9 52.2 42.9 48.0 47.7 48.8
ATOM 55.3 51.2 53.1 50.2 49.9 49.2 49.6 53.1 52.8 54.4 52.4 54.8 45.0 50.4 50.8 51.5
ALOE 56.1 53.4 62.8 54.5 51.8 54.9 54.1 54.4 55.6 54.8 52.7 56.4 47.8 51.7 53.2 54.3
ATD 56.0 57.4 61.5 57.5 44.8 57.1 54.2 56.9 58.3 55.2 53.7 57.5 49.3 50.8 56.0 55.1
RODEO 54.9 58.1 60.6 56.4 51.0 60.5 58.9 58.4 57.9 54.6 57.4 52.3 52.7 53.5 51.2 55.9
AROS 71.8 74.8 67.7 59.6 72.6 73.9 65.7 68.5 64.4 59.8 75.0 64.2 72.8 69.5 58.6 67.9

Table 4a. Comparison of post-hoc OOD detection meth-
ods using different classifiers trained with various strate-
gies and evaluated with multiple scoring functions. The
comparison (Clean/PGD1000) is conducted under clean
and PGD1000 conditions, measured by AUROC (%).

Classifier Posthoc CIFAR-10 CIFAR-100
Method CIFAR-100 SVHN CIFAR-10 SVHN

MSP 87.9/0.0 91.8/1.4 75.4/0.2 71.4/3.6
Standard MD 88.5/4.3 99.1/0.6 75.0/1.9 98.4/0.6

OpenMax 86.4/0.0 94.7/2.8 77.6/0.0 93.9/4.2

MSP 79.3/16.0 85.1/19.7 67.2/10.7 74.6/11.3
AT MD 81.4/25.6 88.2/27.5 71.8/15.0 81.5/19.7

OpenMax 82.4/27.8 86.5/26.9 80.0/16.4 75.4/22.9

MSP 84.2/10.6 89.3/15.4 69.7/12.5 76.1/23.8
ODENet MD 80.7/9.1 84.6/13.0 66.4/14.8 72.9/16.4

OpenMax 83.8/14.2 87.4/20.9 70.3/15.6 75.6/18.2

MSP 77.5/56.5 83.7/58.5 69.1/48.0 69.4/53.3
LyaDEQ MD 79.1/56.9 82.0/56.5 60.3/ 53.4 69.3/54.2

OpenMax 76.0/47.4 77.5/56.5 67.8/57.1 73.3/ 58.0

MSP 76.3/56.3 80.5/62.5 64.6/44.9 64.6/58.9
ASODE MD 74.9/49.5 76.1/54.4 59.3/ 52.0 72.1/55.1

OpenMax 72.6/44.2 75.9/57.9 66.1/52.1 80.5/ 50.4

MSP 83.5/61.9 86.4/65.3 67.2/53.1 73.7/60.4
SODEF MD 75.4/57.7 81.9/64.2 65.8/58.4 71.8/62.5

OpenMax 82.8/65.3 86.4/69.1 66.3/56.6 75.2/64.9

AROS N/A 88.2/80.1 93.0/86.4 74.3/67.0 82.5/70.6

Table 4b. Performance of OOD detection methods
under clean and PGD1000, measured by AUPR↑ (%)
and FPR95 ↓(%) metrics. The perturbation budget ϵ
is set to 8

255
. The table cells present results in the

‘Clean/PGD1000’ format.

Method Metric
CIFAR-10 CIFAR-100

CIFAR-100 SVHN CIFAR-10 SVHN

VOS AUPR↑ 85.8/0.0 90.4/6.2 75.8/0.0 93.9/7.6
FPR95↓ 35.2/100.0 38.2/99.8 48.7/100.0 41.5/98.2

DHM AUPR↑ 100.0/0.3 100.0/4.8 100.0/0.0 100.0/3.2
FPR95↓ 0.2/99.2 0.0/98.5 1.1/100.0 0.4/99.7

CATEX AUPR↑ 89.5/0.4 93.1/7.6 84.2/0.0 96.6/1.3
FPR95↓ 36.6/99.1 27.3/95.6 42.8/100.0 37.1/98.4

CSI AUPR↑ 93.4/0.0 98.2/4.6 65.8/0.0 82.9/0.4
FPR95↓ 40.6/100.0 37.4/99.1 65.2/100.0 42.6/97.5

ATOM AUPR↑ 97.9/5.8 98.3/11.6 89.3/5.1 94.6/7.2
FPR95↓ 24.0/96.4 12.7/93.1 38.6/98.0 29.2/97.9

ALOE AUPR↑ 80.4/21.7 86.5/27.3 54.8/9.2 85.1/18.6
FPR95↓ 38.6/89.2 45.1/93.7 72.8/96.1 57.4/84.8

ATD AUPR↑ 81.9/44.6 85.3/53.7 61.4/27.2 68.3/26.1
FPR95↓ 47.3/86.2 42.4/83.0 68.2/94.8 59.0/91.9

RODEO AUPR↑ 83.5/47.0 88.2/51.6 72.8/26.5 81.7/42.9
FPR95↓ 42.9/81.3 49.6/75.4 65.3/89.0 61.8/83.5

AROS AUPR↑ 87.2/80.5 97.2/91.4 71.0/65.3 72.4/66.8
FPR95↓ 39.3/45.2 15.5/27.0 54.2/67.8 46.3/62.7

We note the superiority of AROS compared to representative methods in terms of robust OOD
detection. Notably, AROS, without relying on pre-trained models or extra datasets, improves
adversarial robust OOD detection performance from 45.9% to 74.0%. In the OSR setup, the results
increased from 52.1% to 69.3%. Similar gains are observed in robustness against corruptions, as
shown in Table 3.

For instance, performance improved from 72.5% to 81.8% on the CIFAR-10-C vs. CIFAR-100-C
setup, and from 61.0% to 67.9% on the CIFAR-100-C vs. CIFAR-10-C benchmark. Meanwhile,
AROS achieves competitive results in clean scenarios (82.0%) compared to state-of-the-art methods
like DHM (93.4%), though it should be noted that DHM performs near zero under adversarial attacks.
The trade-off between robustness and clean performance is well-known in the field (5; 105; 44), and
AROS offers the best overall balance among existing methods. Furthermore, we demonstrate that by
using pre-trained models or auxiliary data, AROS’s clean performance can be further improved (see
Appendix A3). Moreover, we provide additional experiments in Appendix A3 to support our claims.
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Table 5. An ablation study (Clean/PGD1000), measured by AUROC (%), on our method with the
exclusion of different components while keeping all others intact. The left side is the configurations.

Config
Components CIFAR10 CIFAR100 ImageNet-1k

Adv. Trained Fake Orthogonal Extra LCE LSL CIFAR100 SVHN CIFAR10 SVHN Texture iNaturalistBackbone Sampling Binary Layer Data

A ✓ ✓ ✓ - ✓ - 81.4/17.6 86.9/23.5 68.4/12.7 79.0/16.2 76.4/18.8 82.7/20.3
B - ✓ ✓ - - ✓ 90.1/56.7 93.8/51.5 75.2/41.8 82.0/47.5 81.9/36.0 84.9/48.6
C ✓ ✓ - - - ✓ 85.6/67.3 88.2/74.6 66.9/57.1 78.4/63.3 75.4/60.7 79.8/70.2
D ✓ - ✓ - - ✓ 85.3/76.5 89.4/78.1 70.5/61.3 74.4/62.5 76.1/67.4 81.3/72.7

E(Ours ) ✓ ✓ ✓ - - ✓ 88.2/80.1 93.0/86.4 74.3/67.0 81.5/70.6 78.3/69.2 84.6/75.3
F (Ours+Data) ✓ ✓ ✓ ✓ - ✓ 90.4/81.6 94.2/87.9 75.7/68.1 82.2/71.8 79.2/70.4 85.1/76.8

Classifier Training Strategies for Robust OOD Detection. We assessed the impact of different
training strategies on the robust OOD detection performance of various classifiers, including those
trained with standard training, adversarial training (AT), and NODE-based methods such as ODENet,
LyaDEQ, SODEF, and ASODE. To utilize these classifiers as OOD detectors, various post-hoc score
functions were applied, as described in Section 3. The results are presented in Table 4a. In brief,
adversarially trained classifiers exhibit enhanced robustness compared to standard training but still
fall short of optimal performance. Furthermore, the time-invariance assumption in SODEF leads to
improved robust performance relative to ODENet, LyaDEQ, and ASODE by effectively constraining
the divergence between output states, which motivated us to explore similar frameworks. Notably,
AROS demonstrates superior performance compared to all these approaches.

Implementation details. We use a WideResNet-70-16 model as fθ (106) and train it for 200 epochs
on classification using PGD10. For the integration of hϕ, an integration time of T = 5 is applied.
To implement the orthogonal layer Bη, we utilize the geotorch.orthogonal library. Training
with the loss LSL is performed over 100 epochs. We used SGD as the optimizer, employing a cosine
learning rate decay schedule with an initial learning rate of 0.05 and a batch size of 128. See Appendix
A3 for more details and additional ablation studies on different components of AROS.

6 ABLATION STUDY

AROS Components. To verify the effectiveness of AROS, we conducted ablation studies across
various datasets. The corresponding results are presented in Table 5. In each experiment, individual
components were replaced with alternative ones, while the remaining elements were held constant.
In Config A, we ignored the designed loss function LSL and instead utilized the cross-entropy loss
function LCE for binary classification. Config B represents the scenario in which we train the classifier
in the first step without adversarial training on the ID data, instead using standard training. This
reduces robustness as fθ becomes more susceptible to perturbations within ID classes, ultimately
making the final detector more vulnerable to attacks. In Config C, the orthogonal binary layer was
replaced with a regular binary layer. In Config D, rather than estimating the ID distribution and
sampling OOD data in the embedding space, we substituted this process by creating random Gaussian
noise in the embedding space as fake OOD data. This removes the conditioning of the fake OOD
distribution on the ID data and, as a result, makes them unrelated. This is in line with previous works
that have shown that related and nearby auxiliary OOD samples are more useful (43; 24). Config
E represents our default pipeline. Finally, in Config F, we extended AROS by augmenting the fake
OOD embedding data with additional OOD images (i.e., Food-101 (107)) alongside the proposed fake
OOD strategy. Specifically, we transformed these additional OOD images into the embedding space
using fθ and combined them with the crafted fake embeddings, which led to enhanced performance.

7 CONCLUSIONS

In this paper we introduce AROS, a framework for improving OOD detection under adversarial
attacks. By leveraging Lyapunov stability theory, AROS drives ID and OOD samples toward
stable equilibrium points to mitigate adversarial perturbations. Fake OOD samples are generated
in the embedding space, and a tailored loss function is used to enforce stability. Additionally, an
orthogonal binary layer is employed to enhance the separation between ID and OOD equilibrium
points. Limitations and future directions can be found in the Appendix A6.
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Appendix
A1 REVIEW OF RELATED WORK

In our experimental evaluation we compare our results with works that have proposed a defense
mechanism for their OOD detection method, as well as those that have not. We will describe each
separately below. Subsequently, we will detail the post-hoc score functions.

Adversarially Robust OOD Detection Methods. Previous adversarially robust methods for OOD
detection have built on the outlier exposure (27) technique and conducted adversarial training on
a union of exposed outliers and ID samples. These methods primarily aim to enhance the outlier
exposure technique by improving the diversity of the extra OOD image dataset. To tackle this,
ALOE leverages an auxiliary OOD dataset and perturbs the samples to adversarially maximize the
KL-divergence between the model’s output and a uniform distribution. It is important to note that the
adversarial evaluation in their pipeline was less rigorous than that in our approach, due primarily to the
limited budget allocated for adversarial attacks. ATOM, in contrast, selectively samples informative
outliers rather than using random outliers. The adversarial evaluation of ATOM is also not entirely
standard, as it exclusively targets OOD test samples. However, a more comprehensive approach
would involve attacking both ID and OOD test samples to ensure enhanced robustness. Meanwhile,
ATD employs a GAN to generate auxiliary OOD images for adversarial training, instead of relying
on an external dataset. RODEO aims to demonstrate that enhancing the diversity of auxiliary OOD
images, while maintaining their stylistic and semantic alignment with ID samples, will improve
robustness. Consequently, they utilize a pretrained CLIP model (108) and a diffusion model for OOD
image synthesis.

Standard OOD Detection Methods. CSI enhances the outlier detection task by building
on standard contrastive learning through the introduction of ’distributionally-shifted augmenta-
tions’—transformations that encourage the model to treat augmented versions of a sample as OOD.
This approach enables the model to learn representations that more effectively distinguish between
ID and OOD samples. The paper also proposes a detection score based on the contrastive features
learned through this training scheme, which demonstrates effectiveness across various OOD detection
scenarios, including one-class, multi-class, and labeled multi-class settings. DHM involves modeling
the joint density of data and labels in a single forward pass. By factorizing this joint density into
three sources of uncertainty (aleatoric, distributional, and parametric), DHMs aim to distinguish
in-distribution samples from OOD samples. To achieve computational efficiency and scalability, the
method employs weight normalization during training and utilizes normalizing flows (NFs) to model
the probability distribution of the features. The key idea is to use bi-Lipschitz continuous mappings,
enabled by spectral normalization, which allows the use of state-of-the-art deep neural networks for
learning expressive and geometry-preserving representations of data. VOS uses virtual outliers to
regularize the model’s decision boundary and improve its ability to distinguish between ID and OOD
data. The framework includes an unknown-aware training objective that uses contrastive learning
to shape the uncertainty surface between the known data and the synthesized outliers. This method
is effective for both object detection and image classification. CATEX use of two hierarchical con-
texts—perceptual and spurious—to describe category boundaries more precisely through automatic
prompt tuning in vision-language models like CLIP. The perceptual context distinguishes between
different categories (e.g., cats vs. apples), while the spurious context helps identify samples that are
similar but not ID (e.g., distinguishing cats from panthers). This hierarchical structure helps create
more precise category boundaries.

Post-hoc Methods for OOD Detection. Post-hoc methods for OOD detection are approaches applied
after training a classifier on ID samples. These methods utilize information from the classifier to
indicate OOD detection. A simple but effective approach is the Maximum Softmax Probability (MSP)
method. Applied to a K-class classifier fc, MSP returns maxc∈{1,2,...,K} fc(x) as the likelihood that
the sample x belongs to the ID set. In contrast, OpenMax replaces the softmax layer with a calibrated
layer that adjusts the logits by fitting a class-wise probability model, such as the Weibull distribution.
Another perspective on OOD detection is to measure the distance of a sample to class-conditional
distributions. The Mahalanobis distance (MD) is a prominent method for this. For an ID set with K
classes, MD-based approaches fit a class-conditional Gaussian distribution N (µk,Σ) to the pre-logit
features z. The mean vector and covariance matrix are calculated as follows:
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µk =
1

N

∑
i:yi=k

zi, Σ =
1

N

K∑
k=1

∑
i:yi=k

(zi − µk)(zi − µk)
T , k = 1, 2, ...,K.

The MD for a sample z′ relative to class k is defined as: MDk(z
′) = (z′ − µk)

TΣ−1(z′ − µk).

The final score MD used for OOD detection is given by: scoreMD(x
′) = −mink{MDk(z

′)}

A2 ALGORITHM

Here we provide pseudocode for our proposed AROS framework, designed for adversarially robust
OOD detection. We begin by leveraging adversarial training on ID data to obtain robust feature
representations, utilizing the well-known practice of adversarial training with 10-step PGD. These
features are then used to fit class-conditional multivariate Gaussians, from which we sample low-
likelihood regions to generate fake OOD embeddings, effectively creating a proxy for real OOD data
in the embedding space. By constructing a balanced training set of ID and fake OOD embeddings, we
then employ a stability-based objective using a NODE pipeline, coupled with an orthogonal binary
layer. This layer maximizes the separation between the equilibrium points of ID and OOD samples,
promoting a robust decision boundary under perturbations. During inference, we compute the OOD
score based on the orthogonal binary layer’s output, enabling the model to reliably distinguish ID
samples from OOD samples, even in the presence of adversarial attacks.

Algorithm 1 Adversarially Robust OOD Detection through Stability (AROS)

Require: ID training samples Din
train consisting of N samples spanning k classes, a k-class classifier

fθ, a time-invariant NODE hϕ, an orthogonal binary layer Bη, an ℓ∞ norm constraint, pertur-
bation budget ϵ set to 4

255 for low-resolution and 8
255 for high-resolution, Lyapunov-based loss

LST.
Ensure: Adversarially Robust OOD Detector

1:
2: Step A-1. Adversarial Training of Classifier fθ on ID:
3: for each sample (x, y) ∈ Din

train do
4: Generate adversarial example x∗ using PGD10 to maximize the cross-entropy loss:
5: x∗ ← x+ α · sign(∇xLCE(fθ(x), y)), constrained by ϵ
6: Train the classifier fθ on (x∗, y) to improve robustness
7: end for
8: Step A-2. Feature Extraction:
9: Map ID samples to the robust embedding space: IDfeatures = fθ(Din

train)
10:
11: Step B. Fake OOD Embedding Generation:
12: Fit a class-conditional multivariate Gaussian N (µj ,Σj) on IDfeatures for each class j
13: for 0 ≤ j < K do
14: for 0 ≤ i <

[
N
K

]
do

15: Sample synthetic OOD embeddings r from the low-likelihood regions of N (µj ,Σj)
16: rOOD ← rOOD ∪ {r}
17: end for
18: end for
19: Construct a balanced training set Xtrain = IDfeatures ∪ rOOD
20:
21: Step C. Lyapunov Stability Objective Function:
22: Create the pipeline Bη(hϕ(.)) and train it on Xtrain using LST
23:
24: Step D. Inference:
25: for each test sample xtest do
26: Compute the OOD score based on the probability output of the orthogonal binary layer for

each input image x: OOD score(x) = fθ(Bη(hϕ(x)))[1]
27: end for
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A3 SUPPLEMENTARY EXPERIMENTAL RESULTS AND DETAILS FOR AROS

A3.1 ADDITIONAL EXPERIMENTAL RESULTS

Each experiment discussed in the main text was repeated 10 times, with the reported results represent-
ing the mean of these trials. Here, we provide the standard deviation across these runs, as summarized
in Table 6a.

Table 6a: Standard deviation of AROS performance under both clean and PGD, across 10 repeated
experiments ‘Clean/PGD1000‘.

AROS CIFAR-10 CIFAR-100 ImageNet-1k
CIFAR-100 SVHN LSUN CIFAR-10 SVHN LSUN Texture iNaturalist LSUN

Mean Performance 88.2 / 80.1 93.0 / 86.4 90.6 / 82.4 74.3 / 67.0 81.5 /7 0.6 74.3 / 68.1 78.3 / 69.2 84.6 / 75.3 79.4 / 69.0

Standard Deviation ± 0.9 / ± 1.6 ± 0.7 / ± 1.3 ± 0.6/± 0.9 ± 1.3 / ± 1.8 ± 1.4 / ± 2.0 ± 1.8 / ± 2.3 ± 2.5 / ± 3.1 ± 1.9 / ± 3.0 ± 2.8 / ± 3.7

A3.1.1 COMPARATIVE ANALYSIS OF AROS AND DIFFUSION-BASED PURIFICATION
METHODS

We present additional experiments to further demonstrate the effectiveness of AROS. We compare
AROS’s performance against diffusion-based (purification) methods, with results detailed in Table 7a.

Purification techniques in adversarial training aim to enhance model robustness by ‘purifying’ or
‘denoising’ adversarial examples prior to feeding them into the model. The primary goal is to
mitigate adversarial perturbations through preprocessing, often by leveraging neural networks or
transformation-based methods to restore perturbed inputs to a state resembling clean data. A common
approach involves training a generative diffusion model on the original training samples, which is
then utilized as a purification module (109; 110; 111). In contrast, certain approaches categorize
stable NODE-based methods as non-diffusion-based strategies for improving robustness (112).

However, in the context of OOD detection, purification using diffusion methods (113) may not
be effective. This is primarily because diffusion models trained on ID samples tend to shift the
features of unseen OOD data towards ID features during the reverse process. Such a shift can
mistakenly transform OOD samples into ID, compromising both OOD detection performance and
clean robustness (114). To emphasize this distinction, we compare our approach against purification
using diffusion-based models. Specifically, we adopt the AdvRAD (115) setup for OOD detection
and present a comparison with our method in Table 7a.

Table 7a: Comparison of AROS and AdvRAD under clean and PGD1000(l∞) evaluation, measured by
AUROC (%). The table cells denote results in the ‘Clean/PGD1000‘ format. The perturbation budget ϵ is set to
8

255
for low-resolution datasets and 4

255
for high-resolution datasets.

Method CIFAR-10 CIFAR-100 ImageNet-1k
CIFAR-100 SVHN LSUN CIFAR-10 SVHN LSUN Texture iNaturalist LSUN

AdvRAD 61.0/49.0 68.5/52.7 66.8/50.7 54.8/49.4 60.1/52.0 54.8/50.2 57.7/51.0 62.4/56.5 58.5/50.9

AROS 88.2/80.1 93.0/86.4 90.6/ 82.4 74.3/67.0 81.5/70.6 74.3/68.1 78.3/ 69.2 84.6/75.3 79.4/69.0

A3.1.2 AROS UNDER ADDITIONAL ADVERSARIAL ATTACKS

In this section, we further emphasize the robustness of AROS by evaluating its performance under
different attacks. First, we conducted additional experiments considering different perturbation norms,
specifically substituting the l∞ norm with the l2 norm in PGD1000, setting ϵ = 128

255 . The outcomes of
this evaluation are presented in Table 8a. See Figure 3 for an illustration of some clean and perturbed
samples.

Next, we evaluated the robustness of AROS under PGD1000(l∞) with a higher perturbation budget
(i.e., ϵ = 16

255 ), as shown in Table 8b. Furthermore, the performance of AROS under AutoAttack
(AA) and adaptive AA is reported in Table 9a.

Additionally, evaluating a model against a variety of transfer-based adversarial attacks is crucial for
understanding its robustness in real-world scenarios, where adversarial examples crafted for one
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Figure 3: Visualization of clean and perturbed images from the CIFAR-10 dataset to illustrate the
impact of perturbations on semantic content. The first row depicts clean images, while the second and
third rows show images perturbed with L∞ norm of 8

255 and L2 norm of 128
255 , respectively. Despite

the added perturbations, the semantic content of the images remains unchanged, demonstrating that
robustness expectations from models under these perturbations are fair.

model can successfully deceive others. These attacks simulate diverse and challenging conditions by
targeting features such as generalization, input transformations, and model invariance, providing a
comprehensive assessment of the model’s resilience. Such evaluations reveal potential vulnerabilities,
measure performance under adversarial conditions, and offer insights into the model’s ability to
generalize across different attack strategies.

Motivated by this, we evaluate our method, as well as DHM and RODEO, against several adver-
sarial attacks, including DTA (116), DeCoWA (117), and SASD-WS (118). We selected DHM
and RODEO for comparison due to their strong performance in clean detection and robust de-
tection, respectively. For these experiments, we utilized the implementation provided in the
https://github.com/Trustworthy-AI-Group/TransferAttack repository. The re-
sults of this evaluation are presented in Table 9b.

The consistent and superior performance of AROS against the aforementioned attacks underscores its
effectiveness in adversarial scenarios.

Table 8a: Evaluation of AROS under PGD1000(l2), where ϵ = 128
255

is used for low-resolution datasets and
ϵ = 64

255
for high-resolution datasets. The results are measured by AUROC (%).

Attack CIFAR-10 CIFAR-100 ImageNet-1k
CIFAR-100 SVHN LSUN CIFAR-10 SVHN LSUN Texture iNaturalist LSUN

PGD1000(l2) 81.6 87.1 83.7 67.4 71.0 69.3 70.5 75.9 69.8

Table 8b: : Evaluation of AROS under PGD1000(l∞), where ϵ = 16
255

is used for all datasets, including both
high- and low-resolution ones. The results are reported in terms of AUROC (%).

Attack CIFAR-10 CIFAR-100 ImageNet-1k
CIFAR-100 SVHN LSUN CIFAR-10 SVHN LSUN Texture iNaturalist LSUN

PGD1000(l∞) 70.3 78.4 72.6 58.2 63.9 60.4 60.5 66.8 62.7

A3.2 DETECTING BACKDOORED SAMPLES

We conducted an experiment to evaluate our method’s ability to detect clean samples (without triggers)
as ID and poisoned samples as OOD. The results are presented in this section, with STRIP (119)
included as a baseline method for identifying Trojaned samples.
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Table 9a: Evaluation of AROS under AutoAttack and Adaptive AA. The perturbation budget ϵ is set to 8
255

for low-resolution datasets and 4
255

for high-resolution datasets.
Attack CIFAR-10 CIFAR-100 ImageNet-1k

CIFAR-100 SVHN LSUN CIFAR-10 SVHN LSUN Texture iNaturalist LSUN
AutoAttack 78.9 83.4 80.2 66.5 70.2 68.9 67.4 73.6 67.1
Adaptive AA 76.4 82.9 78.6 65.2 67.4 68.3 66.1 70.5 66.9

Table 9b: Comparison of AROS, DHM, and RODEO under Transfer-Based Attacks. The perturbation
budget ϵ is set to 16

255
. Results compare AROS, DHM, and RODEO across DTA, DeCoWA, and SASD-WS

attacks.
Attack Methods CIFAR-10 CIFAR-100 ImageNet-1k

CIFAR-100 SVHN LSUN CIFAR-10 SVHN LSUN Texture iNaturalist LSUN
AROS 84.7 86.4 88.2 71.5 76.6 71.7 76.2 83.5 75.9

DTA RODEO 61.6 68.5 89.3 51.1 63.1 70.9 61.1 60.6 59.2
DHM 72.9 78.3 78.9 75.4 79.1 74.1 55.9 59.2 57.6

AROS 83.8 85.2 86.8 69.6 77.2 69.4 72.6 79.5 74.8
DeCoWA RODEO 57.8 64.6 80.4 43.0 57.7 67.5 54.7 54.8 52.5

DHM 60.1 64.3 64.9 68.9 62.1 60.8 54.9 58.4 56.0

AROS 82.3 84.9 81.7 67.6 75.0 67.7 72.4 77.5 71.2
SASD-WS RODEO 49.5 53.4 79.4 44.7 56.5 66.1 53.2 46.9 47.0

DHM 64.6 69.3 61.3 56.3 67.8 59.7 53.1 51.3 49.2

It is important to highlight a key distinction in the context of OOD detection, which underpins
our study. In traditional OOD detection scenarios, ID and OOD datasets typically differ at the
semantic level (e.g., CIFAR-10 versus SVHN). However, detecting backdoored samples presents a
unique challenge: the presence of triggers modifies clean images at the pixel level rather than the
semantic level. Consequently, this task often hinges on texture-level differences rather than semantic
distinctions, necessitating models designed specifically to leverage this inductive bias effectively.

Despite these challenges, our results demonstrate that AROS achieves strong performance in detecting
poisoned samples. This underscores the versatility and effectiveness of AROS, even when applied to
the nuanced problem of backdoor detection. The results are presented in Table 10a.

Table 10a: Effectiveness of the Proposed Method for Detecting Backdoor Attack Samples across CIFAR-10,
CIFAR-100, and GTSRB datasets. The results are presented for different backdoor attack methods, demonstrating
the performance of AROS and STRIP.

Method Backdoor Attack CIFAR-10 CIFAR-100 GTSRB
Badnets 80.3 67.5 72.8

AROS Wanet 62.7 58.9 54.4
SSBA 57.2 72.6 66.0

Badnets 79.2 86.0 87.1
STRIP Wanet 39.5 48.5 35.6

SSBA 36.4 68.5 64.1

A3.2.1 ARCHITECTURE COMPARISON & ENHANCING CLEAN PERFORMANCE WITH
TRANSFER LEARNING

Additionally, we investigate the influence of replacing our default backbone architecture, WideResNet,
with alternative architectures (Table 11a). We also explore transfer learning techniques to enhance
clean performance by leveraging robust pre-trained classifiers.

Lastly, while AROS demonstrates a significant improvement of up to 40% in adversarial robustness,
it shows a performance gap of approximately 10% when compared to state-of-the-art clean detection
methods. Although this trade-off between robustness and clean performance is well-documented
in the literature (5; 105; 44), our aim is to enhance clean performance. A promising approach
would involve enhancing clean performance while preserving robustness by leveraging transfer
learning through distillation from a large, robust pretrained model, rather than training the classifier
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from scratch, as is currently done in the pipeline. Specifically, by utilizing adversarially pretrained
classifiers on ImageNet (120), we aim to improve our clean performance. Results in lower part of
Table 11a indicate that leveraging such pretrained models can improve clean performance by 6%.
Moreover, we also consider using different architectures trained from scratch to further demonstrate
the robustness of AROS across various backbones.

Table 11a: Ablation study on different backbone architectures & Transfer learning. Results are reported
under clean and PGD1000(l∞) evaluations, measured by AUROC (%). Each table cell presents results in the
‘Clean/PGD1000‘ format.

† Denotes that the backbone is adversarially pretrained on ImageNet.
Backbone (fθ) CIFAR-10 CIFAR-100 ImageNet-1k

CIFAR-100 SVHN LSUN CIFAR-10 SVHN LSUN Texture iNaturalist LSUN

WideResNet (default) 88.2/80.1 93.0/86.4 90.6/ 82.4 74.3/67.0 81.5/70.6 74.3/68.1 78.3/ 69.2 84.6/75.3 79.4/69.0

PreActResNet 83.5/74.6 92.1/82.4 87.9/79.6 69.6/62.2 76.7/65.2 69.9/62.7 73.4/69.3 82.2/73.6 76.8/65.6

ResNet18 82.2/74.4 90.5/80.7 84.5/81.0 70.7/63.7 79.0/66.4 74.6/66.4 77.4/64.4 81.8/72.3 78.7/67.8

ResNet50 86.5/79.2 92.5/86.1 90.8/82.7 74.5/66.4 81.7/69.6 72.8/68.3 77.9/67.4 82.7/75.1 77.9/68.5

WideResNet † 91.2/75.2 97.4/80.9 92.1/77.9 80.5/60.1 87.8/70.0 76.7/62.9 - - -

PreActResNet† 93.1/79.5 96.3/84.4 96.5/76.6 75.4/62.2 83.1/66.7 79.4/64.9 - - -

ResNet18† 90.2/78.0 97.9/83.9 97.5/78.6 76.2/63.7 83.0/65.2 78.0/62.2 - - -

ResNet50† 90.6/76.8 95.5/82.3 94.6/74.7 79.5/64.9 85.7/69.7 78.7/45.5 - - -

ViT-b-16† 94.3/71.6 97.8/79.7 94.6/76.8 85.2/61.0 87.6/66.9 82.7/59.2 - - -
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A3.3 HYPERPARAMETER ABLATION STUDY

A3.3.1 ABLATION STUDY ON HYPERPARAMETER OF FAKE GENERATION (β)

To craft fake samples, we fit a GMM to the embedding space of ID samples. The objective is to sample
from the GMM such that the likelihood of the samples is low, ensuring they do not belong to the ID
distribution and are located near its boundaries. This approach generates near-OOD samples, which
are valuable for understanding the distribution manifold and improving the detector’s performance.

In practice, an encoder is used as a feature extractor to obtain embeddings of ID samples. A GMM
is then fitted to these embeddings, and the likelihood of each training sample under the GMM is
computed. The embeddings are subsequently sorted based on their likelihoods, and the β-th minimum
likelihood of the training samples is used as a threshold. Random samples are drawn from the GMM,
and their likelihoods are compared against this threshold. If a sample’s likelihood is lower than the
threshold, it is retained as fake OOD; otherwise, it is discarded.

For instance, setting β = 0.1 ensures that the crafted fake OOD samples have a likelihood of
belonging to the ID distribution that is lower than 90% of the ID samples. Conversely, setting β = 0.5
corresponds to randomly sampling from the ID distribution, rather than targeting low-likelihood
regions, which leads to poor performance. An ablation study in our manuscript explores the effects
of varying β values on model performance.

The sensitivity of AROS to this hyperparameter is analyzed in detail. As shown in Table 12a, AROS
demonstrates consistent performance for small values of β. Our experimental results indicate that
selecting β values in the range [0.0, 0.1] achieves optimal performance, highlighting the robustness
of AROS to changes in β.

Table 12a: Ablation study on the β hyperparameter. Results are reported under clean and PGD1000(l∞)
evaluations, measured by AUROC (%). Each table cell presents results in the ‘Clean/PGD1000‘ format.

Hyperparameter CIFAR-10 CIFAR-100 ImageNet-1k
CIFAR-100 SVHN LSUN CIFAR-10 SVHN LSUN Texture iNaturalist LSUN

β = 0.001(default) 88.2/80.1 93.0/86.4 90.6/ 82.4 74.3/67.0 81.5/70.6 74.3/68.1 78.3/ 69.2 84.6/75.3 79.4/69.0

β = 0.01 87.3/80.2 92.2/85.3 89.4/80.7 74.7/65.8 80.2/68.9 73.1/66.6 78.1/69.5 83.0/74.2 79.0/68.5

β = 0.025 86.3/79.6 93.8/85.0 89.3/83.1 72.7/67.5 81.7/70.8 74.3/68.0 76.7/67.7 84.7/75.3 79.8/69.7

β = 0.05 86.5/80.1 92.5/86.1 90.8/82.7 74.5/66.4 81.7/69.6 72.8/68.3 77.9/67.4 82.7/75.1 77.9/68.5

β = 0.075 88.4/78.4 92.7/85.2 89.1/82.3 72.4/65.7 81.5/69.4 72.5/67.9 78.6/69.7 84.8/73.5 78.8/69.3

β = 0.1 86.6/79.5 92.0/85.4 90.9/80.9 72.3/65.8 80.3/69.4 73.3/66.7 77.8/67.5 84.1/74.9 78.2/67.8

β = 0.25 79.4/67.5 89.0/79.5 78.7/69.4 67.7/54.3 69.5/60.3 70.1/62.7 62.6/65.0 65.2/57.9 70.9/62.0

β = 0.5 65.4/53.0 77.4/62.3 64.7/54.6 57.5/40.9 52.4/49.2 49.1/41.9 55.8/48.9 67.4/59.7 57.9/53.8

A3.3.2 ABLATION STUDY ON HYPERPARAMETERS OF THE OBJECTIVE FUNCTION (γ)

In our proposed method, we introduce the empirical loss function LSL as follows:

LSL = min
ϕ,η

1

|Xtrain|

(
ℓCE(Bη(hϕ(Xtrain)), y) + γ1∥hϕ(Xtrain)∥2

+ γ2 exp

(
−

n∑
i=1

[∇hϕ(Xtrain)]ii

)

+ γ3 exp

 n∑
i=1

− |[∇hϕ(Xtrain)]ii|+
∑
j ̸=i

|[∇hϕ(Xtrain)]ij |

) (1)

Here, γ1 controls the regularization term ∥hϕ(Xtrain)∥2, which encourages the system’s state to
remain near the equilibrium point. This term helps mitigate the effect of perturbations by ensuring
that trajectories stay close to the equilibrium. The hyperparameters γ2 and γ3 weight the exponential
terms designed to enforce Lyapunov stability conditions by ensuring that the Jacobian matrix sat-
isfies strict diagonal dominance, as per Theorem 3 in the paper. Specifically, γ2 weights the term
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Figure 4: t-SNE visualization of CIFAR-10 embeddings and the corresponding crafted OOD em-
beddings for each class. Orange points represent the ID embeddings for each class, while purple
points represent the synthetic OOD embeddings crafted using a GMM. The visualization highlights
the separability between ID and OOD embeddings. The crafted embeddings are positioned near the
boundaries of the ID concepts, emphasizing they are near OOD samples and they coverage the OOD
space. The β hyperparameter used in this experiment is set to 0.001.

Figure 5: Unified t-SNE visualization of embeddings for all CIFAR-10 classes and their corresponding
crafted OOD embeddings. Each color represents a specific CIFAR-10 class, while the purple points
represent the synthetic OOD embeddings crafted using a GMM. The figure demonstrates the clustering
of ID embeddings for each class and the distinct distribution of crafted OOD embeddings. The β
hyperparameter used in this experiment is set to 0.01. Highlighting both 0.01 and 0.001 leads to
crafting effective fake OOD samples, lying out of ID set.

exp (−
∑n

i=1[∇hϕ(Xtrain)]ii), encouraging the diagonal entries of the Jacobian to be negative with
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large magnitudes. γ3 weights the term

exp

 n∑
i=1

− |[∇hϕ(Xtrain)]ii|+
∑
j ̸=i

|[∇hϕ(Xtrain)]ij |

 ,

promoting strict diagonal dominance by penalizing large off-diagonal entries relative to the diagonal
entries.

We set γ1 = 1 to balance the influence of the regularization term with the primary cross-entropy loss.
This ensures sufficient regularization without overwhelming the classification objective. For γ2 and
γ3, we choose γ2 = γ3 = 0.05 Inspired by related works that incorporate stability terms into the
training process (8; 9; 10; 11; 12; 13; 14; 15).

We will now discuss why we select γ2 and γ3 equally:

• Balanced Contribution: Both regularization terms serve complementary purposes in
enforcing the stability conditions. Equal weighting ensures that neither term dominates,
maintaining a balanced emphasis on both negative diagonal dominance and strict diagonal
dominance.

• Simplified Hyperparameter Tuning: Setting γ2 and γ3 equal reduces the hyperparameter
search space, simplifying the tuning process without sacrificing performance.

• Empirical Validation: Experiments showed that equal values yield robust performance,
and deviating from this balance did not provide significant benefits.

Regarding the effect of γ1:

• Low Values (γ1 < 1): Reduces the emphasis on keeping the state near the equilibrium,
making the system more susceptible to perturbations.

• High Values (γ1 > 1): Overly constrains the state to the equilibrium point, potentially
limiting the model’s capacity to learn discriminative features.

• Chosen Value (γ1 = 1): Offers a good balance, ensuring sufficient regularization without
compromising learning.

Similarly, the effect of γ2 and γ3 is as follows:

• Low Values (< 0.05): Diminish the impact of the stability constraints, reducing robustness.
• High Values (> 0.05): Overemphasize the stability terms, potentially hindering the opti-

mization of the primary classification loss.
• Equal Values (γ2 = γ3): Ensure balanced enforcement of both stability conditions, leading

to optimal performance.

Our stability framework draws inspiration from prior works on deep equilibrium-based models
(8; 9; 10; 11; 12; 13; 14; 15), which proposed similar regularization and hyperparameter tuning
techniques. To evaluate the robustness of AROS with respect to these hyperparameters, we conducted
extensive ablation studies, holding all components constant while varying the values of γ1, γ2, and
γ3. These experiments demonstrate that AROS consistently performs well across a broad range of
hyperparameter values, including extreme cases (e.g., γ1 = 2). The results of this analysis, presented
in Table 13a, confirm the robust performance of AROS under varying hyperparameter configurations.

A3.4 TIME COMPLEXITY

The computational complexity of our model is reported in Table 14a.

A3.5 DISCUSSION ON THE FAKE GENERATION STRATEGY

It has been shown that utilizing auxiliary realistic OOD samples is generally effective for improving
OOD detection performance. However, this strategy comes with several challenges, as discussed
before.
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Table 13a: An ablation study on the hyperparameters γ3 and γ2 and γ1. Results are reported under clean and
PGD1000(l∞) evaluations, measured by AUROC (%). Each table cell presents results in the ‘Clean/PGD1000‘
format.

Hyperparameter CIFAR-10 CIFAR-100 ImageNet-1k
CIFAR-100 SVHN LSUN CIFAR-10 SVHN LSUN Texture iNaturalist LSUN

γ1 = 1,γ2 = γ3 = 0.05 (default) 88.2/80.1 93.0/86.4 90.6/ 82.4 74.3/67.0 81.5/70.6 74.3/68.1 78.3/ 69.2 84.6/75.3 79.4/69.0

γ1 = 1,γ2 = γ3 = 0.025 86.4/78.2 90.4/86.3 88.6/80.4 74.9/64.1 78.8/68.7 72.8/68.3 79.2/69.7 83.3/76.0 78.8/67.5

γ1 = 1,γ2 = γ3 = 0.075 87.5/80.3 92.1/87.2 88.9/81.6 72.7/67.7 80.8/68.7 73.2/68.8 76.4/69.9 83.4/73.4 80.2/69.9

γ1 = 1,γ2 = γ3 = 0.1 86.9/78.6 93.6/82.1 85.8/78.2 70.0/65.8 80.6/66.2 72.6/67.3 79.3/69.6 82.8/74.0 78.9/67.2

γ1 = 1,γ2 = γ3 = 0.25 86.2/78.7 94.3/82.3 87.1/77.9 70.2/65.2 81.3/65.8 73.9/66.7 78.6/70.1 82.8/74.1 78.9/68.2

γ1 = 1,γ2 = γ3 = 0.5 85.2/76.9 93.6/81.5 85.0/76.0 69.7/64.2 78.1/64.4 72.6/65.2 77.0/66.7 83.6/74.4 78.2/67.3

γ1 = γ2 = γ3 = 1 84.4/75.3 90.5/80.5 81.5/73.4 69.8/62.2 77.5/65.3 70.1/64.4 73.5/67.3 82.7/70.9 76.7/65.4

γ1 = γ2 = γ3 = 0.25 85.4/77.4 94.6/82.9 86.3/76.9 69.9/64.4 79.9/65.1 74.4/65.3 77.2/68.6 85.4/76.0 79.2/66.8

γ1 = 0.5,γ2 = γ3 = 0.05 86.0/78.6 92.7/82.5 86.3/77.7 69.7/66.1 81.2/65.5 70.9/67.1 78.8/68.6 83.0/73.7 78.8/67.1

γ1 = 1,γ2 = 0.1, γ3 = 0.05 84.0/76.3 91.5/81.5 81.7/76.4 70.1/63.4 76.2/63.8 69.8/67.7 77.4/69.5 83.2/71.0 78.5/64.8

γ1 = 1, γ2 = 0.05, γ3 = 0.1 83.5/77.5 90.2/78.0 81.4/75.1 67.2/63.5 76.7/66.2 67.5/60.4 74.3/70.0 83.6/74.1 74.2/61.7

γ1 = 2, γ2 = 0.5, γ3 = 0.5 80.4/74.0 93.5/80.7 81.8/70.9 65.2/66.0 77.3/60.0 65.0/60.1 78.4/63.3 80.3/70.6 71.6/59.5

Table 14a: Time Complexity of Model Steps for CIFAR-10, CIFAR-100, and ImageNet-1k, measured on a
NVIDIA RTX A5000 GPU (on a workstations running Ubuntu 20.04, Intel Core i9-10900X: 10 cores, 3.70 GHz,
19.25 MB cache; within Docker).

Step CIFAR-10 CIFAR-100 ImageNet-1k
Step 1: Adversarial Training of Classifier 15 hours 15 hours 180 hours

Step 2: Crafting Fake OOD Data 7 hours 7 hours 150 hours

Step 3: Training with Stability Loss (LSL) 8 hours 8 hours 100 hours

First, in certain scenarios, access to an external realistic OOD dataset may not be feasible, and
acquiring such data can be challenging. Even when a suitable dataset is available, it must be
processed to remove ID concepts to prevent the detector from being misled. This preprocessing step
is both time-consuming and computationally expensive. Additionally, studies highlight a potential
risk of bias being introduced into the detector when trained on specific auxiliary datasets. Such
reliance on a particular realistic dataset may undermine the detector’s ability to generalize effectively
to diverse OOD samples. These issues become even more pronounced in adversarial training setups,
where the complexity of the required data is significantly higher. Motivated by these challenges,
this study proposes an alternative strategy that does not depend on the availability of an auxiliary
OOD dataset. Notably, our approach is flexible and can incorporate auxiliary OOD datasets as
additional information if they are available. To validate this, we conducted an experiment assuming
access to a realistic OOD dataset (i.e., Food-101). In this scenario, we computed embeddings of
the real OOD samples and used them alongside crafted fake OOD embeddings during training. The
results, presented in Table 4 (Setup A), demonstrate improved performance compared to using fake
OOD embeddings alone. Furthermore, related studies have shown that in adversarial training, using
samples near the decision boundary of the distribution improves robustness by encouraging compact
representations. This boundary modeling is critical for enhancing the model’s robustness, especially
against adversarial attacks that exploit vulnerabilities near the decision boundary. In light of this, our
approach shifts focus from generating “realistic” OOD data to estimating low-likelihood regions of
the in-distribution. We generate fake “near" OOD data that is close to the ID boundary, which is
particularly beneficial for adversarial robustness.

For better intuition regarding usefulness of auxiliary near OOD samples here We will provide a
simple example that highlights the effectiveness of near-distribution crafted OOD samples in the
adversarial setup. We assume that the feature space is one-dimensional, i.e. R, and the ID class is
sampled according to a uniform distribution U(0, a− ϵ), with a > 0, and ϵ < a. We assume that the
OOD class is separable with a safety margin of 2ϵ from the ID class to allow a perfectly accurate
OOD detector under input perturbations of at most ϵ at inference. For instance, we let U(a+ ϵ, b) be
the feature distribution under the OOD class. The goal is to leverage crafted fake OOD samples to
find a robust OOD detector under the ℓ2 bounded perturbations of norm ϵ. We assume that the crafted
OOD samples data distribution is not perfectly aligned with the anomaly data, e.g. crafted OOD
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Figure 6: A depiction in a one-dimensional feature space where the crafted fake OOD samples form
a subset of actual OOD data. The gray area represents feasible thresholds separating ID (purple)
and fake OOD data (orange). r indicates the shift in exposed fake OOD samples from the real OOD
samples. Bold gray lines represent perfect test AUROC thresholds. Left: In standard scenarios,
perfect thresholds are abundant, even if the fake OOD samples are distant from the ID data. Middle:
With adversarial training, the feasible thresholds decrease due to the maximum margin constraint,
impacting the perfect thresholds. Large deviations in the crafted fake OOD data reduce the set of
perfect thresholds. Right: For adversarial testing, the overlap between feasible and perfect thresholds
narrows to point a, emphasizing the importance of near-OOD properties in adversarial contexts.

samples comes from U(a+ r, c), with r ≥ ϵ. It is evident that the optimal robust decision boundary
under infinite training samples that separates the ID and crafted OOD samples would be a threshold
k satisfying a ≤ k ≤ a + r − ϵ. The test adversarial error rate to separate ID and OOD classes
is 1

2 .I(k ≥ a + ϵ).
(

k−a−ϵ
b−a−ϵ + min(k+ϵ,b)−k

b−a−ϵ

)
+ 1

2 .I(a < k < a + ϵ)min(k+ϵ,b)−a−ϵ
b−a−ϵ , assuming that

the classes are equally probable a prior. It is obvious the adversarial error rate would be zero for
k = a. But otherwise, if k ≥ a+ ϵ the classifier incurs classification error in two cases; in intervals
(a+ ϵ, k) (even without any attack), and (k,min(k+ ϵ, b)) in which a perturbation of−ϵ would cause
classification error. Also if a < k < a+ ϵ, classification error only happens at (a+ ϵ,min(k+ ϵ, b)).
Now, for the crafted OOD samples to be near-distribution, r → ϵ, which forces k to be a in the
training, and makes the test adversarial error zero. Otherwise, the adversarial error is proportional to
k, for k being distant from b. Therefore, in the worst case, if k = a+r−ϵ, we get an adversarial error
proportional to r. As a result, minimizing r, which makes the crafted OOD samples near-distribution,
would be an effective strategy in making the adversarial error small. Refer to the figure 6 for further
intuition and clarity.

To provide a more practical intuition about our crafted fake OOD samples, we present t-SNE
visualizations of the embedding space. These visualizations demonstrate that the crafted fake data are
positioned near the ID samples and effectively cover their boundary. Please refer to Figures 4 and 5.

To further demonstrate the superiority of our strategy for crafting fake OOD samples—a simple
yet effective technique—we conducted an ablation study by replacing our proposed method with
alternative approaches. Please refer to Table 15a for the results.

Table 15a: Ablation study on different fake OOD crafting strategies. Results are measured by AUROC (%).
The perturbation budget ϵ is set to 8

255
for low-resolution datasets and 4

255
for high-resolution datasets. Table

cells present results in the ‘Clean/PGD1000’ format. We evaluate alternative OOD data synthesis strategies, such
as random Gaussian and uniform noise, while keeping other components fixed.

Fake Crafting CIFAR-10 CIFAR-100 ImageNet-1k
Strategy CIFAR-100 SVHN LSUN CIFAR-10 SVHN LSUN Texture iNaturalist LSUN
AROS 88.2/80.1 93.0/86.4 90.6/82.4 74.3/67.0 81.5/70.6 74.3/68.1 78.3/69.2 84.6/75.3 79.4/69.0

Random Gaussian Noise 85.3/76.5 89.4/78.1 82.5/77.1 70.5/61.3 74.4/62.5 71.5/64.6 76.1/67.4 81.3/72.7 75.8/67.3

Random Uniform Noise 81.2/74.3 87.1/79.5 84.8/75.4 65.6/59.6 73.8/63.5 65.8/60.1 70.0/63.8 78.8/67.3 71.6/62.8

A3.6 ORTHOGONAL BINARY LAYER

To demonstrate the superiority of the orthogonal binary layer used in our pipeline, we conducted
an ablation study. In this study, we fixed all other components and replaced the orthogonal binary
layer with a regular fully connected (FC) layer, then compared the results across different budget
levels. The results of this comparison are presented in Table 16a. Additionally, we visualized the
embedding space corresponding to the regular FC layer and the orthogonal binary layer in Figure 7.
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Figure 7: t-SNE visualizations of CIFAR-10 (ID) and CIFAR-100 (OOD) embeddings, illustrating the
effect of an orthogonal binary layer compared to a regualr fully connected (FC) layer under clean and
perturbed sample scenarios. Top row: Embeddings with the orthogonal binary layer for clean (left)
and perturbed (right) samples, showing enhanced ID-OOD separation. Bottom row: Embeddings
with the FC layer for clean (left) and perturbed (right) samples, demonstrating reduced separation in
adversarial settings. These results highlight the orthogonal binary layer’s effectiveness in preserving
ID-OOD distinction, in both clean and adversarial conditions.

Table 16a:Comparison of performance between the orthogonal binary layer (Ortho.) and the regular fully
connected (FC) layer across different datasets and perturbation levels (ϵ). The results demonstrate that the
orthogonal binary layer consistently outperforms the regular FC layer in both clean (ϵ = 0

255
) and adversarial

scenarios, with varying levels of perturbation (ϵ = 2
255

, 4
255

, 8
255

).

ϵ Methods CIFAR-10 CIFAR-100 ImageNet-1k
CIFAR-100 SVHN LSUN CIFAR-10 SVHN LSUN Texture iNaturalist LSUN

0
255 (Clean) FC 85.6 88.2 87.5 66.9 78.4 71.5 75.4 79.8 76.1

Ortho. 88.2 93.0 90.6 74.3 81.5 74.3 78.3 84.0 79.4

2
255

FC 82.0 84.9 84.1 63.6 75.8 68.6 73.2 76.9 72.2
Ortho. 85.5 90.7 88.8 72.2 79.9 72.1 75.7 82.7 76.6

4
255

FC 75.2 78.1 80.3 57.9 71.6 63.5 68.2 72.9 66.7
Ortho. 83.1 87.5 85.2 69.5 74.5 70.4 71.6 78.3 68.0

8
255

FC 67.3 74.6 79.5 57.1 63.3 62.4 60.7 70.2 65.1
Ortho. 80.1 86.4 82.4 67.0 70.6 68.1 69.2 75.3 69.0

These visualizations highlight the enhanced separability provided by the orthogonal binary layer in
both clean and adversarial scenarios.
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The orthogonal binary layer Bη is designed to apply a transformation to the NODE output hϕ(z),
where the weights W of the layer are constrained to be orthogonal (WTW = I). This constraint
encourages maximal separation between the equilibrium points of ID and OOD data by ensuring that
the learned representations preserve distinct directions in the feature space. Specifically, the layer
operates as:

Bη(z) = Wz + b, subject to WTW = I,

where W represents the weight matrix, b is the bias term, and the orthogonality constraint is enforced
during training using a regularization term.

To clarify its role in LSL, we now explicitly annotate Bη as the mapping responsible for projecting
the NODE output hϕ(z) into a binary classification space (ID vs. OOD).

The LSL with explicit reference to W and b would be as follows:

LSL = min
ϕ,w

1

|Xtrain|

(
ℓCE((Whϕ(Xtrain) + b), y) + γ1∥∥hϕ(Xtrain)∥∥2

+γ2exp
(
−

n∑
i=1

[∇hϕ(Xtrain)]ii

)

+γ3exp
( n∑

i=1

(−|[∇hϕ(Xtrain)]ii|

+
∑
j ̸=i

|[∇hϕ(Xtrain)]ij |)
))

where the orthogonality constraint WTW = I is enforced via regularization during optimization.

A4 DETAILS OF EVALUATION AND EXPERIMENTAL SETUP

OOD detection can be framed as a binary classification task, where training samples are confined to a
single set (the ID data), and during testing, input samples from OOD set must be identified. A key
challenge is that OOD data is not as clearly defined as ID data; any semantic content absent from the
ID distribution is considered OOD. The primary objective in OOD detection is to develop a pipeline
capable of assigning meaningful OOD scores to input samples, where a higher score suggests that the
model perceives the input as having a greater likelihood of being OOD. An optimal OOD detector
would produce score distributions for OOD and ID samples that are fully separated, with no overlap,
ensuring clear differentiation between the two.

Formally, the OOD detection decision can be performed as follows:

Gζ(x) =

{
ID if SF (x) ≤ ζ

OOD if SF (x) > ζ
,

where ζ is a threshold parameter.

Thus, the scoring function SF is central to the performance of the OOD detector. In the setup of
adversarial evaluation, PGD and other attack methods, we adversarially target SF and perturb the
inputs as described in Section 2. Intuitively, these attacks aim to shift ID samples closer to OOD
and vice versa. This approach is fair and consistent with existing OOD detection frameworks, as
all such methods define an OOD score function. Furthermore, this adversarial strategy has been
previously explored in related work. In the following, we will provide details on AutoAttack and
adaptive AutoAttack in our evaluation.
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AutoAttack. AutoAttack is an ensemble of six attack methods: APGD with Cross-Entropy loss,
APGD with Difference of Logits Ratio (DLR) loss, APGDT, FAB (121), multi-targeted FAB (122),
and Square Attack (123). However, the DLR loss-based attacks assume that the target model is a
classifier trained on more than two classes. In OOD detection, the problem is more akin to binary
classification, as we are only distinguishing between OOD and ID classes. Therefore, we excluded
these specific DLR-based attacks in our adaptation of AutoAttack and instead used an ensemble of
the remaining attacks.

Adaptive AA. We also employed Adaptive AutoAttack (AA) for evaluation, an attack framework
designed to efficiently and reliably approximate the lower bound of a model’s robustness. Adaptive
AA integrates two main strategies: Adaptive Direction Initialization to generate better starting points
for adversarial attacks, and Online Statistics-Based Discarding to prioritize attacking easier-to-perturb
images. Unlike standard AutoAttack, Adaptive AA adapts its attack directions based on the model’s
specific defense properties and dynamically allocates iterations to improve the efficiency of successful
attacks. For the perturbation budget, we used a similar budget to that considered for PGD, and for
other hyperparameters, we used their default values. For the implementation of adversarial attacks,
we utilized the Torchattacks library in PyTorch.

A4.1 DETAILS OF THE REPORTED RESULTS

To report and evaluate previous works, we reproduced their results using the official GitHub reposito-
ries. For the clean evaluation setup, if our reproduced results differed from the originally reported
values, we reported the higher value. If no results were available, we presented our reproduced
results. A similar approach was taken for adversarial evaluation: if their evaluation details and
considered datasets matched ours, we used their reported results. However, if the attacks details
in their evaluation differed or if they did not consider our datasets or benchmarks, we reported our
reproduced results.

A4.2 METRICS

Our main results are reported using AUROC for comparison across methods, as it is more commonly
utilized in the detection literature. However, in Table 4b, we also compare our method’s performance
using other metrics, including AUPR and FPR95. Below, we provide an explanation of each of these
metrics.

AUROC. The Area Under the Receiver Operating Characteristic Curve (AUROC) is a metric that
evaluates classification performance by measuring the trade-off between the True Positive Rate (TPR)
and the False Positive Rate (FPR) across various threshold settings. TPR, also known as recall or
sensitivity, measures the proportion of actual positives correctly identified, while FPR measures the
proportion of actual negatives incorrectly classified as positives. The AUROC, which ranges from 0.5
(random classifier) to 1.0 (perfect classifier), provides an aggregate performance measure.

AUPR. The Area Under the Precision-Recall Curve (AUPR) is particularly useful for imbalanced
datasets where the positive class is rare. The AUPR captures the trade-off between precision (the
proportion of predicted positives that are actual positives) and recall. A high AUPR indicates a model
with both high precision and recall, providing valuable insights in scenarios where the dataset is
skewed.

FPR95. False Positive Rate at 95% True Positive Rate (FPR95), which assesses the model’s ability
to correctly identify ID samples while rejecting OOD samples. Specifically, FPR95 is the false
positive rate when the true positive rate is set to 95%, indicating how often OOD samples are
misclassified as ID. Lower values of FPR95 indicate better OOD detection capabilities, as the
model more accurately differentiates between ID and OOD samples. Together, these metrics offer
a comprehensive understanding of model performance and robustness in classification and OOD
detection tasks.

A5 ADDITIONAL DETAILS ABOUT THE DATASETS

In our experiments, we considered several datasets. Our perturbation budget is determined based on
the image size of the ID training set. It is set to 4

255 for scenarios where the ID training set consists of
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high-resolution images (e.g., ImageNet-1K), and 8
255 for high-resolution datasets (e.g., CIFAR-10

and CIFAR-100). In all experiments, the ID and OOD datasets contain disjoint semantic classes. If
there is an overlap, we exclude those semantics from the OOD test set. In all experiments, the ID and
OOD datasets contain disjoint semantic classes. If there is an overlap, we exclude those semantics
from the OOD test set. In the following, we provide a brief explanation of the datasets used.

CIFAR-10 and CIFAR-100. are benchmark datasets commonly used for image classification tasks.
CIFAR-10 consists of 60,000 color images of size 32×32 pixels across 10 classes, with 6,000 images
per class. CIFAR-100 is similar but contains 100 classes with 600 images each, providing a more
fine-grained classification challenge.

ImageNet-1k. ImageNet-1K contains 1,281,167 training images, 50,000 validation images and
100,000 test images. This dataset was compiled to facilitate research in computer vision by providing
a vast range of images to develop and test algorithms, particularly in the areas of object recognition,
detection, and classification.

Texture Dataset. Texture Dataset is designed for studying texture recognition in natural images.
It comprises diverse textures captured in the wild, enabling research on classifying and describing
textures under varying conditions.

Street View House Numbers (SVHN). SVHN is a real-world image dataset for developing machine
learning and object recognition algorithms with minimal data preprocessing. It contains over 600,000
digit images obtained from house numbers in Google Street View images.

iNaturalist. The iNaturalist Species Classification and Detection Dataset aims to address real-world
challenges in computer vision by focusing on large-scale, fine-grained classification and detection.
This dataset, consisting of 859,000 images from over 5,000 different species of plants and animals,
is noted for its high class imbalance and the visual similarity of species within its collection. The
images are sourced globally, contributed by a diverse community through the iNaturalist platform,
and verified by multiple citizen scientists.

Places365. Places365 is a scene-centric dataset containing over 10 million images spanning 365
scene categories. It is designed for scene recognition tasks and aids in understanding contextual
information in images.

Large-scale Scene Understanding (LSUN).The Large-scale Scene Understanding (LSUN) challenge
is designed to set a new standard for large-scale scene classification and comprehension. It features a
classification dataset that includes 10 scene categories, such as dining rooms, bedrooms, conference
rooms, and outdoor churches, among others. Each category in the training dataset comprises an
extensive range of images, from approximately 120,000 to 3,000,000 images. The dataset also
provides 300 images per category for validation and 1,000 images per category for testing.

iSUN.The iSUN dataset is a large-scale eye tracking dataset that leverages natural scene images
from the SUN database. It was specifically developed to address the limitations of small, in-lab eye
tracking datasets by enabling large-scale data collection through a crowdsourced, webcam-based eye
tracking system deployed on Amazon Mechanical Turk.

MNIST. The MNIST dataset (Modified National Institute of Standards and Technology dataset) is
a large collection of handwritten digits that is widely used for training and testing in the field of
machine learning. It contains 70,000 images of handwritten digits from 0 to 9, split into a training set
of 60,000 images and a test set of 10,000 images. Each image is a 28x28 pixel grayscale image.

Fashion-MNIST (FMNIST). FMNIST dataset is a collection of article images designed to serve as
a more challenging replacement for the traditional MNIST dataset. It consists of 70,000 grayscale
images divided into 60,000 training samples and 10,000 test samples, each image having a resolution
of 28x28 pixels. The dataset contains 10 different categories of fashion items such as T-shirts/tops,
trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle boots.

Imagenette. Imagenette is a subset of ImageNet consisting of ten easily classified classes. It
was released to encourage research on smaller datasets that require less computational resources,
facilitating experimentation and algorithm development.

CIFAR-10-C and CIFAR-100-C. CIFAR-10-C and CIFAR-100-C are corrupted versions of CIFAR-
10 and CIFAR-100, respectively. They include various common corruptions and perturbations such
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as noise, blur, and weather effects, used to evaluate the robustness of image classification models
against real-world imperfections.

ADNI Neuroimaging Dataset. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
is a large-scale collection of neuroimaging data aimed at tracking the progression of Alzheimer’s
disease. In our study, we categorize the dataset into six classes based on cognitive status and
disease progression. The classes CN (Cognitively Normal) and SMC (Subjective Memory Concerns)
are designated as ID, representing individuals without significant neurodegenerative conditions
or with only minor memory concerns. The other four classes—AD (Alzheimer’s Disease), MCI
(Mild Cognitive Impairment), EMCI (Early Mild Cognitive Impairment), and LMCI (Late Mild
Cognitive Impairment)—are treated as OOD, encompassing various stages of cognitive decline
related to Alzheimer’s. The dataset contains 6,000 records for each class, providing a comprehensive
representation of the spectrum of cognitive health and Alzheimer’s disease. A summary of each class
is as follows:

• AD: Patients diagnosed with Alzheimer’s disease, showing significant cognitive decline.
• CN: Individuals with normal cognitive functioning, serving as a control group.
• MCI: A stage of cognitive decline that lies between normal aging and more advanced

impairment, often preceding Alzheimer’s disease.
• EMCI: Patients with early signs of mild cognitive impairment, indicating the initial onset of

cognitive issues.
• LMCI: Patients with symptoms indicative of more advanced mild cognitive impairment,

closer to Alzheimer’s in severity.
• SMC: Individuals reporting memory concerns but performing normally on cognitive assess-

ments.

We used the middle slice of MRI scans from ADNI phases 1, 2, and 3. We should note that the ADNI
dataset was the only one we split into ID and OOD using the strategy mentioned earlier. For the other
datasets in our OSR experiments, we randomly divided each dataset into ID and OOD at a ratio of
0.6 and 0.4, respectively.

A5.1 DETAILS ON DATASET CORRUPTIONS

Corruptions: The first type of corruption is Gaussian noise, which commonly appears in low-light
conditions. Shot noise, also known as Poisson noise, results from the discrete nature of light and
contributes to electronic noise. Impulse noise, similar to salt-and-pepper noise but in color, often
arises due to bit errors. Defocus blur happens when an image is out of focus. Frosted glass blur
is caused by the appearance of "frosted glass" on windows or panels. Motion blur occurs due to
rapid camera movement, while zoom blur happens when the camera moves swiftly towards an object.
Snow is an obstructive form of precipitation, and frost occurs when lenses or windows accumulate ice
crystals. Fog obscures objects and is often simulated using the diamond-square algorithm. Brightness
is affected by the intensity of daylight, and contrast levels change based on lighting conditions and
the object’s color. Elastic transformations distort small image regions by stretching or contracting
them. Pixelation results from upscaling low-resolution images. Lastly, JPEG compression, a lossy
format, introduces noticeable compression artifacts.

A6 LIMITATIONS AND FUTURE RESEARCH

We considered classification image-based benchmarks, that while difficult, do not cover the full
breadth of real-world attacks in situations such as more complex open-set images or video, i.e.,
time-series data. Future work should test our proposed method in video streaming data (time-series),
as inherently we leverage stability properties in dynamical systems that could be very attractive for
such settings. Namely, because video frames are often highly correlated, one can even leverage the
prior stability points in time in order to make better future predictions. This could also lower the
compute time.

Moreover, moving to tasks beyond classification could be very attractive. Concretely, one example is
pose estimation. This is a keypoint detection task that can often be cast as a panoptic segmentation
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task, where each keypoint needs to be identified in the image and grouped appropriately (124; 125).
By using AROS, one could find OOD poses could not only improve data quality, but alert users
to wrongly annotated data. Another example is in brain decoding where video frame or scene
classification is critical, and diffusion models are becoming an attractive way to leverage generative
models (126). Given AROS ability in OOD detection, this could be smartly used to correct wrong
predictions. In summary, adapting AROS to these other data domains could further extend its
applicability.

A7 THEORITCAL INSIGHT AND BACKGROUND

In this section, we provide additional background on the theorems utilized in the main text. The
structure of this background section is inspired by (127). Specifically, we present proofs for the
theorems referenced in the main text, including the Hartman-Grobman Theorem, and offer a theoreti-
cal justification for our proposed objective function, LSL. Additionally, we include Figures 8 and
9 as empirical support for the proposed loss function. The first figure illustrates how LSL ensures
that the real parts of the eigenvalues become negative, indicating stability, while the second figure
highlights the stable decrease of the proposed loss function throughout the training process. Inspired
by previous works leveraging control theory in deep learning, we set T = 5 as the integration time
for the neural ODE layer and employ the Runge-Kutta method of order 5 as the solver. This choice
ensures a balance between computational efficiency and robustness, allowing the ODE dynamics to
stabilize feature representations effectively and mitigate the impact of adversarial perturbations.

A7.1 BACKGROUND

The Hartman-Grobman Theorems is among the most powerful tools in dynamical systems. The
Hartman-Grobman theorem allows us to depict the local phase portrait near certain equilibria in a
nonlinear system using a similar, simpler linear system derived by computing the system’s Jacobian
matrix at the equilibrium point.

Why does linearization at fixed points reveal behavior around the fixed point?

For an n-dimensional linear system of differential equations (ẋ = Ax) with a fixed point at the
origin, we can classify behaviors such as saddle points, spirals, cycles, stars, and nodes based on the
eigenvalues of the matrix A. These behaviors are well-understood in the linear case. However, for
nonlinear systems, analyzing the behavior becomes more challenging. Fortunately, the situation is
not entirely intractable. By calculating the Jacobian matrix, or “total derivative,” J , of the system and
evaluating it at the fixed point, we obtain a linear approximation characterized by the matrix J . The
Hartman-Grobman theorem states that, within a neighborhood of the fixed point, if all eigenvalues of
J have nonzero real parts, we can infer qualitative properties of the solutions to the nonlinear system.
These include whether trajectories converge to or diverge from the equilibrium point and whether
they spiral or behave like a node.

Definitions
Definition 7.1: Homeomorphism

A function h : X → Y is called a homeomorphism between X and Y if it is a continuous
bijection (both one-to-one and onto) with a continuous inverse (denoted h−1). The existence of
a homeomorphism implies that X and Y have analogous structures, as h and h−1 preserve the
neighborhood relationships of points. Topologists often describe this concept as a process of stretching
and bending without tearing.

Definition 7.2: Topological Conjugacy

Consider two maps f : X → X and g : Y → Y . A map h : X → Y is called a topological
semi-conjugacy if it is continuous, onto, and satisfies h ◦ f = g ◦ h, where ◦ denotes function
composition (sometimes written as h(f(x)) = g(h(x)) for x in X). Furthermore, h is a topological
conjugacy if it is a homeomorphism between X and Y (i.e., h is also one-to-one and has a continuous
inverse). In this case, X and Y are said to be homeomorphic.

Definition 7.3: Hyperbolic Fixed Point
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A hyperbolic fixed point of a system of differential equations is a point where all eigenvalues of the
Jacobian evaluated at that point have nonzero real parts.

Definition 7.4: Cauchy Sequence

For the purposes of this document, we will provide a non-technical definition. A Cauchy sequence of
functions is a series xk = x1, x2, . . . such that the functions become increasingly similar as k →∞.

Definition 7.5: Flow

Let ẋ = F (x) be a system of differential equations with initial condition x0. Provided that the
solutions exist and are unique (conditions given by the existence and uniqueness theorem; see, for
example, ((128), pg. 149), the flow ϕ(t;x0) of F (x) provides the spatial solution over time starting
from x0. An important property of flows is that small changes in initial conditions in phase space
lead to continuous changes in flows, due to the continuity of the vector field in Rn.

Definition 7.6: Orbit/Trajectory

The set of all points in the flow ϕ(t;x0) for the differential equations ẋ = F (x) is called the "orbit"
or "trajectory" of F (x) with initial condition x0. We denote the orbit as ϕ(x0). When considering
only t ≥ 0, we refer to the "forward orbit" or "forward trajectory."

A7.2 THEOREM AND PROOF

Theorem 7.1 The Hartman-Grobman Theorem Let x ∈ Rn. Consider the nonlinear system
ẋ = f(x) with flow ϕt and the linear system ẋ = Ax, where A is the Jacobian Df(x∗) of f at a
hyperbolic fixed point x∗. Assume that we have appropriately shifted x∗ to the origin, i.e., x∗ = 0.

Suppose f is C1 on some E ⊂ Rn with 0 ∈ E. Let I0 ⊂ R, U ⊂ Rn, and V ⊂ Rn be neighborhoods
containing the origin. Then there exists a homeomorphism H : U → V such that, for all initial
points x0 ∈ U and all t ∈ I0,

H ◦ ϕt(x0) = eAtH(x0).

Thus, the flow of the nonlinear system is homeomorphic to the flow eAt of the linear system given by
the fundamental theorem for linear systems.

Proof

Essentially, this theorem states that the nonlinear system ẋ = f(x) is locally homeomorphic to the
linear system ẋ = Ax. To prove this, we begin by expressing A as the matrix

(
P 0
0 Q

)
where P and Q are sub-matrices of A such that the real parts of the eigenvalues of P are negative,
and those of Q are positive. Finding such a matrix A may require finding a new basis for our linear
system using linear algebra techniques. For more details, see section 1.8 on Jordan forms of matrices
in Perko (129).

Consider the solution x(t,x0) ∈ Rn given by

x(t,x0) = ϕt(x) =

(
y(t,y0, z0)
z(t,y0, z0)

)
with x0 ∈ Rn given by Consider the solution:

x(t,x0) = ϕt(x) =

(
y(t,y0, z0)
z(t,y0, z0)

)
where x0 ∈ Rn is given by
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x0 =

(
y0

z0

)
with y0 ∈ ES (the stable subspace of A) and z0 ∈ EU (the unstable subspace of A). The stable
and unstable subspaces of A are defined as the spans of the eigenvectors of A corresponding to
eigenvalues with negative and positive real parts, respectively. Define

Ỹ(y0, z0) = y(1,y0, z0)− ePy0,

Z̃(y0, z0) = z(1,y0, z0)− eQz0.

Here, Ỹ and Z̃ are functions of the trajectory with initial condition x0 evaluated at t = 1. If x0 = 0,
then y0 = z0 = 0, leading to Ỹ(0) = Z̃(0) = 0 and thus DỸ(0) = DZ̃(0) = 0 since x0 is at the
fixed point 0. Since f is C1 on E, it follows that Ỹ and Z̃ are also C1 on E. Knowing that DỸ and
DZ̃ are zero at the origin and that Ỹ and Z̃ are continuously differentiable, we can define a region
around the origin such that ∥y0∥2 + ∥z0∥2 ≤ s20 for some sufficiently small s0 ∈ R, where the norms
of DỸ and DZ̃ are each less than some real number a:

∥DỸ(y0, z0)∥ ≤ a,

∥DZ̃(y0, z0)∥ ≤ a.

We now apply the mean value theorem: Let Y and Z be smooth functions such that Y = Z = 0

when ∥y0∥2 + ∥z0∥2 ≥ s20, and Y = Ỹ and Z = Z̃ when ∥y0∥2 + ∥z0∥2 ≤ (s20/2). Then the mean
value theorem gives us

|Y | ≤ a
√
∥y0∥2 + ∥z0∥2 ≤ a(∥y0∥+ ∥z0∥),

|Z| ≤ a
√
∥y0∥2 + ∥z0∥2 ≤ a(∥y0∥+ ∥z0∥).

Let B = eP and C = eQ. With proper normalization (see (130)), we have b = ∥B∥ < 1 and
c = ∥C−1∥ < 1. We will now prove the existence of a homeomorphism H from U to V satisfying
H ◦ T = L ◦H using the method of successive approximations. Define the transformations L, T ,
and H as follows:

L(y, z) =

(
By
Cz

)
= eAx, (7.1)

T (y, z) =

(
By + Y (y, z)
Cz+ Z(y, z)

)
, (7.2)

H(x) =

(
Φ(y, z)
Ψ(y, z)

)
. (7.3)

From equations (2.1)-(2.3) and our desired relation H ◦ T = L ◦H , we obtain

BΦ = Φ(By + Y (y, z), Cz+ Z(y, z)),

CΨ = Ψ(By + Y (y, z), Cz+ Z(y, z)).

We define successive approximations for Ψ recursively by

Ψ0 = z, (7.4)

Ψk+1 = C−1Ψk(By + Y (y, z), Cz+ Z(y, z)), k ∈ N0. (7.5)
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This implies that we can increasingly approximate the function Φ by following the recursion relations
defined in equations (7.4)-(7.5). By induction, it follows that all Ψk are continuous because the flow
ϕt is continuous, which means Ψ0 is continuous. Since C−1 is continuous, Ψ1 is also continuous, and
by induction, Ψk is continuous for all k ∈ N0. Additionally, it follows that Ψk(y, z) = z whenever
|y|+ |z| ≥ 2s0 (129).

It can be shown by induction (129) that

|Ψj(y, z)−Ψj−1(y, z)| ≤Mrj(|y|+ |z|)σ

where j = 1, 2, . . ., r = c[2max(a, b, c)]σ, c < 1, and σ ∈ (0, 1) such that r < 1. This leads to
the conclusion that Ψk(y, z) forms a Cauchy sequence of continuous functions. These functions
converge uniformly as k →∞, and we denote the limiting function by Ψ(y, z). As with the Ψk, it
holds that Ψ(y, z) = z for |y|+ |z| ≥ 2s0.

A similar argument applies for BΦ = Φ(By + Y (y, z), Cz+ Z(y, z)), which can be rewritten as
B−1Φ(y, z) = Φ(B−1y + Y1(y, z), C

−1z+ Z1(y, z)), where T−1 defines Y1 and Z1 as follows:

T−1(y, z) =

(
B−1y + Y1(y, z)
C−1z+ Z1(y, z)

)
.

We can then solve for Φ in the same manner as we solved for Ψ earlier, starting with Φ0 = y. After
performing the necessary calculations to find Ψ and Φ, we obtain the homeomorphism H : Rn → Rn

given by

H =

(
Φ
Ψ

)
. (7.6)

A7.3 ANALYSIS AND JUSTIFICATION OF LSL

Consider a nonautonomous initial value ODE problem: dz(t)
dt = h(z(t), t), t ≥ t0; z(t0) = z0.

Let s(z0, t0, t) denote the solution of the ODE corresponding to the initial input z0 at time t0.

Definition 7.7 (Equilibrium (131)) A vector x∗ is called an equilibrium of a system if h(x∗, t) =
0, ∀t ≥ 0.

Definition 7.8 (Stability (132)) A constant vector x∗ ∈ Rd is a stable equilibrium point for a system
if, for every ϵ > 0 and every t0 ∈ R+, there exists δ(ϵ, t0) such that for each z0 ∈ Bδ(x

∗), it holds
that ∥s(z0, t0, t)− x∗∥ < ϵ, ∀t ≥ t0. Where Bδ(x

∗) = {x ∈ Rd : ∥x− x∗∥ < δ}.
Definition 7.9 (Attractivity (132)) A constant vector x∗ ∈ Rd is an attractive equilibrium point for
(1) if for every t0 ∈ R+, there exists δ(t0) > 0 such that for every z0 ∈ Bδ(x

∗),

lim
t→+∞

∥s(z0, t0, t)− x∗∥ = 0.

Definition 7.10 (Asymptotic stability (132)) A constant vector x∗ ∈ Rd is said to be asymptotically
stable if it is both stable and attractive. Note that if an equilibrium is exponentially stable, it is also
asymptotically stable with exponential convergence.

Our goal is to make the contaminated instance x̂ converge to the clean instance x. To achieve this
evolution, we impose constraints on the ODE to output z(T ) = x when the input is z(0) = x̂ ∈
Bδ(x). To ensure that

lim
t→+∞

∥s(x̂, t)− x∥ = 0,

where x̂ ∈ Bδ(x), we make all x ∈ X asymptotically stable equilibrium points.
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Theorem 7.2 Suppose the perturbed instance x̂ is produced by adding a perturbation smaller than δ
to the clean instance. If all the clean instances x ∈ X are asymptotically stable equilibrium points of
ODE (1), then there exists δ > 0 such that for each contaminated instance x̂ ∈ {x̂ : x̂ ∈ X̂ , x̂ ̸∈ X},
there exists x ∈ X satisfying

lim
t→+∞

∥s(x̂, t)− x∥ = 0.

Proof:

According to the definition of asymptotic stability, a constant vector of a system is asymptotically
stable if it is both stable and attractive. Based on the definition of stability of (1), for every ϵ > 0 and
every t0 ∈ R+, there exists δ1 = δ(ϵ, 0) such that

∀x̂ ∈ Bδ1(x) =⇒ ∥s(x̂, t)− x∥ < ϵ, ∀t ≥ t0.

Based on the attractivity definition, there exists δ2 = δ(0) > 0 such that

x̂ ∈ Bδ2(x), lim
t→+∞

∥s(x̂, t)− x∥ = 0.

We set δ = min{δ1, δ2}. Since the perturbed instance x̂ is produced by adding a perturbation smaller
than δ to the clean instance, then for each contaminated instance x̂ ∈ {x̂ : x̂ ∈ X̂ , x̂ ̸∈ X}, there
exists a clean instance x ∈ X such that x̂ ∈ Bδ(x). Because the clean instance x is an asymptotically
stable equilibrium point of (1), we have

lim
t→+∞

∥s(x̂, t)− x∥ = 0.

This theorem guarantees that if we make the clean instance x an asymptotically stable equilibrium
point, the ODE can reduce the perturbation and cause the perturbed instance to approach the clean
instance. This can help improve the robustness of the DNN and aid it in defending against adversarial
attacks.

Theoretical Justification for Lyapunov-Stable Embedding Representations in Neural ODEs:

We denote by λ the pushforward measure, which is a probability distribution derived from the original
distribution of the input data under the continuous feature extractor mapping hϕ. The conditional
probability distribution for the embeddings of each class in the training set, l ∈ {1, . . . , L}, has
compact support El ⊂ Rn, as El is closed and hϕ(X) is bounded in Rn.

Premise The input data are sampled from a probability distribution defined over a compact metric
space. The feature extractor fθ is injective and continuous. Furthermore, the supports of each class in
the embedding space are pairwise disjoint,

Lemma 1. Given k distinct points zi ∈ Rn and matrices Ai ∈ Rn×n, for i = 1, . . . , k, there exists a
function g ∈ C1(Rn,Rn) such that g(zi) = 0 and∇g(zi) = Ai.

Proof: The set of finite points {z1, . . . , zk} is closed, and this lemma is an immediate consequence
of the Whitney extension theorem (133).

We restrict hϕ to be in C1(Rn,Rn) to satisfy the condition in Theorem 1. C1 represents the function
with first-order derivative. From (82), we also know that standard multilayer feedforward networks
with as few as a single hidden layer and arbitrary bounded and non-constant activation functions
are universal approximators for C1(Rn,Rn) functions with respect to some performance criteria,
provided only that sufficiently many hidden units are available.

Suppose for each class l = 1, . . . , L, the embedding feature set El = {z(l)1 , . . . , z
(l)
k } is finite. For

each i = 1, . . . , k, let Ai ∈ Rn×n be a strictly diagonally dominant matrix with every main diagonal
entry negative, such that the eigenvalues of Ai all have negative real parts. From Theorem 3, each Ai

is non-singular and every eigenvalue of Ai has negative real part. Therefore, from Theorem 2 and
Lemma 1, there exists a function hϕ such that all z(l)i are Lyapunov-stable equilibrium points with
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corresponding first derivative∇hϕ(z
(l)
i ) = Ai. This shows that if there exist only finite representation

points for each class, we can find a function hϕ such that all inputs to the neural ODE layer are
Lyapunov-stable equilibrium points for hϕ and

(I) Eλ∥hϕ(Xtrain)∥2 = 0,

(II) Eλ

[
∇hϕ(Xtrain)

]
ii
< 0,

(III) Eλ

[[
∇hϕ(Xtrain)

]
ii
−
∑

j ̸=i

[
∇hϕ(Xtrain)

]
ij

]
> 0.

We will show that under mild conditions, for all ϵ > 0, we can find a continuous function hϕ with
finitely many stable equilibrium points such that conditions (II) and (III) above hold and condition (I)
is replaced by Eλ∥hϕ(Xtrain)∥2 < ϵ. This motivates the optimization constraints in (I, II, III).

Theorem 7.3. Suppose Premise hold. If λ is not a continuous measure on El for each l = 1, . . . , L,
then the following holds:

1. The function space satisfying the constraints in (I, II, III) is non-empty for all ϵ > 0.

2. If additionally the restriction of λ to any open set O ⊂ El is a continuous measure, then we
can find such a function such that each support El almost surely satisfies the conditions in
(I, II, III).

Proof: Consider g(z) = [g(1)(z(1)), . . . , g(n)(z(n))] with each g(i)(z(i)) ∈ C1(R,R). Since
g(i)(z(i)) depends only on z(i), ∇gθ(z) is a diagonal matrix with all off-diagonal elements be-
ing 0. The constraint (III) is thus immediately satisfied, and it suffices to show that there exists such
an f satisfying the constraints (II) and (III).

Select a point zl = (z
(1)
l , . . . , z

(n)
l ) from the interior of each El, for l = 1, . . . , L. Let g(i)(z(i)) =

−ν(z(i) − z
(i)
l ) on each El, where ν > 0. Then g(z) satisfies (II) for all ν > 0, and zl is a

Lyapunov-stable equilibrium point for each l since ∇hϕ(z) is a diagonal matrix with negative
diagonal values. Since each El ⊂ Rn is compact, we have that ∀ϵ > 0,∃ν > 0 sufficiently small
such that |f (i)(z(i))| < ϵ for all z ∈

⋃
l El. The constraint (I) is therefore satisfied for f(z) with a

sufficiently small ν. Since
⋃

l El is closed, the Whitney extension theorem (133) can be applied to
extend f(z) to a function in C1(Rn,Rn).

LSL(Ours) LCE

Figure 8: Eigenvalue visualization of the Jacobian matrix ∇hθ(z(0)) for a NODE trained on CIFAR-
10 using using the loss functions LCE and LSL. The results demonstrate that LSL encourages
eigenvalues with negative real parts, indicating stability.
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Figure 9: Training loss (LSL) and adversarial robustness performance of AROS on the CIFAR-10 vs.
CIFAR-100 benchmark (CIFAR-10 served as the ID dataset). The left plot shows the convergence of
the stability-based loss LSL over iterations, demonstrating effective training. The right plot depicts
the AUROC performance under PGD1000 attacks, highlighting the adversarial robustness achieved by
AROS as iterations progress.
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