Under review as submission to TMLR

Multi-Difficulty Measure Curriculum Learning
for Heterogeneous Graphs with Noise

Anonymous authors
Paper under double-blind review

Abstract

The use of heterogeneous graphs has gained significant traction for modeling and analyzing
complex systems across diverse domains because of their ability to represent various types of
entities and relationships. However, these graphs face considerable challenges due to different
types of noise, including node feature noise, edge noise, and label noise, which arise from
data collection imperfections, inconsistent labeling processes, and graph construction errors.
These noises significantly undermine the performance of Graph Neural Networks (GNNs),
which rely on high-quality data to learn meaningful patterns. In this paper, we address
these challenges by investigating the integration of Curriculum Learning (CL) to enhance
the robustness of GNNs against multiple forms of noise in heterogeneous graphs. We propose
a novel approach, Multi-Difficulty Measure Curriculum Learning (MDCL), which adaptively
incorporates diverse difficulty measures to capture various aspects of heterogeneous graphs,
including node features, topological structures, and training dynamics. MDCL utilizes an
adaptive weighting mechanism to dynamically balance these difficulty measures, optimizing
the learning process in the presence of complex noise. Empirical evaluations on benchmark
datasets and GNN architectures demonstrate that MDCL consistently improves the accuracy
and robustness of GNNs in scenarios with diverse noise types, establishing it as a promising
solution for real-world applications involving heterogeneous graphs.

1 Introduction

Heterogeneous graphs have become an essential tool for representing and analyzing complex systems across
various domains due to their ability to capture diverse entities and intricate relationships within a network.
Unlike homogeneous graphs, which consist of a single type of node and edge, heterogeneous graphs feature
multiple types of nodes and edges, offering a more comprehensive and nuanced representation of real-world
systems. This richer structure allows for a deeper understanding of the interactions within a system, mak-
ing heterogeneous graphs particularly valuable for tasks such as recommendation systems, social network
analysis, and biological data modeling Yang et al. (2020).

The diversity and complexity inherent in heterogeneous graphs also introduce significant challenges, particu-
larly related to the presence of various forms of noise. Noise in heterogeneous graphs can manifest in multiple
ways, including node feature noise Shi et al. (2022), edge noise Zhang et al. (2024), and label noise Dai et al.
(2021); Wei et al. (2023); Wong et al. (2024). Node feature noise arises from inaccuracies in the attributes
of graph nodes, such as incomplete or erroneous feature representations. Edge noise, on the other hand,
originates from incorrect or missing relationships between nodes, which can distort the graph’s topological
structure. Label noise, commonly caused by imperfect data collection and inconsistent labeling processes Dai
et al. (2021), further exacerbates the problem by altering the supervision required for the training of graph
learning models. Addressing these challenges is critical for the advancement of the study and application of
heterogeneous graphs.

Traditional Graph Neural Networks (GNNs) for homogeneous graphs, such as GCN Kipf & Welling (2016)
and GAT Velickovié et al. (2018), are sensitive to these types of noise, which significantly hampers their
performance. In heterogeneous graphs, the challenge is even more pronounced due to the added complexity

Under review as submission to TMLR

of multiple node and edge types, making models more susceptible to noise in both structural and feature
spaces. Furthermore, GNNs trained on noisy data are highly vulnerable to adversarial attacks, which exploit
these weaknesses to degrade performance Bojchevski & Giinnemann (2019); Ziigner et al. (2018); Jin et al.
(2021). Existing GNNs for heterogeneous graphs, such as HAN Wang et al. (2019), RGCN Schlichtkrull et al.
(2018), and MAGNN Fu et al. (2020), struggle to effectively handle these diverse types of noise, resulting
in reduced accuracy and robustness in learning outcomes. This underscores the need for methods that can
address node feature noise, edge noise, and label noise in a unified framework, enabling GNNs to perform
reliably in real-world heterogeneous graph settings.

Curriculum learning (CL) Bengio et al. (2009); Zhang et al. (2024); Guo et al. (2018) offers a promising
strategy to mitigate the effects of data noise by structuring the training process to begin with simpler,
higher-quality samples and gradually incorporating more complex and potentially noisy data Yang et al.
(2024); Han et al. (2018); Li et al. (2020); Wei et al. (2020); Liu et al. (2020); Guo et al. (2018). This
approach allows models to build a robust foundation before handling more challenging scenarios. In graph
learning, CL has been implemented through various models. For example, GNN-CL Li et al. (2024) rely
on limited, single-perspective difficulty metrics that inadequately represent the multifaceted nature of noise
in heterogeneous graphs, such as node feature noise, edge noise, and label noise. The dependence of these
models on labeled information further limits their applicability in contexts with sparse or imbalanced labels,
reducing their effectiveness in noisy environments. CLNode Wei et al. (2023) utilizes both local and global
difficulty measures but relies on manual adjustment of their proportions through empirical tuning, making
it labor-intensive and potentially suboptimal. In contrast, MCCL Vakil & Amiri (2023), while incorporating
a broader range of graph difficulty indices and an automated prioritization mechanism, focuses primarily
on degree, centrality, and connectivity metrics. However, these metrics fail to capture the heterogeneity
inherent in different types of entities and relationships within heterogeneous graphs. Moreover, methods like
MTGNN Wu et al. (2020) and DRL Qu et al. (2018) are tailored to specific graph structures, restricting
their generalizability and utility in heterogeneous graph settings. Similarly, curriculum learning adaptations
for heterogeneous graphs, such as loss-aware training schedules for node classification Wong et al. (2024),
often rely on single-difficulty measures and require extensive tuning, limiting their robustness in the presence
of multiple types of noise.

To address these challenges, this paper proposes a unified approach that integrates curriculum learning into
the training of Graph Neural Networks (GNNs) on heterogeneous graphs, with the goal of mitigating the
effects of node feature noise, edge noise, and label noise. Based on the unique characteristics of heterogeneous
graphs, we propose a novel method named Multi-Difficulty Measure Curriculum Learning (MDCL), which
dynamically addresses these challenges through adaptive learning strategies.

The main contributions of this paper are summarized as follows:

e Novel Difficulty Measures: We introduce three new difficulty measures specifically designed
to mitigate various types of noise in heterogeneous graphs. These include (1) a feature difficulty
measure derived from node embeddings, (2) a topological difficulty measure based on local graph
structure (e.g., neighborhoods), and (3) a loss difficulty measure to capture discrepancies during
training.

e Adaptive Multi-Difficulty Measure Weighting Mechanism: We propose an adaptive weight-
ing mechanism that dynamically adjusts the importance of each difficulty measure based on the
specific characteristics of the GNN and dataset. This approach optimizes the learning process in
the presence of node feature noise, edge noise, and label noise, enhancing the model’s generalization
ability in complex scenarios.

o Comprehensive Experimental Validation: We conduct extensive experiments on various bench-
mark datasets and backbone GNNs, and demonstrate that MDCL significantly improves accuracy
and robustness, particularly in the presence of diverse types of noise, establishing it as a valuable
solution for real-world heterogeneous graph applications.

Under review as submission to TMLR

.—O . Author (A) is the author DI'O Paper (P)
O_A O Paper (P) is published at A Venue (V)

Figure 1: Illustration of one example heterogeneous graph. In this example, the edge type is determined by
the types of nodes it connects, providing an implicit specification of the relationships between different node

types.

2 Preliminaries

2.1 Heterogeneous Graphs

A heterogeneous graph (Yang et al., 2020) is a graph G = {V,E, N, R, fn, fr}, where V is the set of nodes,
£ is the set of edges, A is the set of node types, R is the set of edge types, fyr : V — N is a mapping from
nodes to node types, and fr : € — R is a mapping from edges to edge types.

When |N| = [R] = 1, a heterogeneous graph reduces to a homogeneous graph. In this paper, we focus on
the case where both |[N| and |R] are larger than 1. An example is shown in Figure 1, which has 3 types of
nodes (author (A), paper (P) and venue (V)), and 4 types of edges specifying the types of nodes connected
(A-P/P-A, V-P/P-V).

2.2 Node Classification on Heterogeneous Graphs

The primary task addressed in this paper is node classification on heterogeneous graphs. Node classification
involves predicting the labels of nodes based on their features, neighborhood information, and the graph
structure. The heterogeneous nature of the graph, with its different node and edge types, adds complexity
to this task. Effective models must leverage the heterogeneous information to achieve accurate classification.

Formally, node classification on a heterogeneous graph is defined as follows. Consider a heterogeneous graph
G ={V.E,N,R, fx, fr}. Suppose its node types are given as N = {no,...,nx—1}, where [N is the size
of N, and each V; = {v € V : far(v) = n;} denotes the set of all nodes with node type m;. Suppose each
type of nodes n; is assigned a label space £;, node classification on heterogeneous graphs (Wang et al., 2019)
aims to learn a labelling function [; : V; — £; that maps each node in V; to a label in £;.

For simplicity, we focus on the task of classifying a single type of nodes, denoted as ng, which we call target
nodes. The node classification problem is thus reduced to learning the labeling function for these target
nodes.

2.3 Noises in Heterogeneous Graphs

A significant challenge in heterogeneous graph node classification is the presence of noise in the data, which
can degrade model performance. This noise can take various forms and affect different aspects of the graph,
including node features, labels, and edges. These noise sources can originate from different distributions,
which complicate the task of learning accurate node classifications. To capture these issues, we represent

Under review as submission to TMLR

Table 1: Illustration of different types of noise and their corresponding difficulty measures.

Noise Target

‘ Node Feature

‘ Edge

‘ Label

Definition A proportion of node fea-| A proportion of edges can|A proportion of labels can
tures are perturbed with|be unknown (i.e., missing) |be corrupted as closely re-
noise. in the heterogeneous graph. |lated labels or even unre-

lated labels.
I - C.h:u;ld_T;uTh .L;)ell _______
I
™ Grownd Truth abel: 0O 0D : Label: QO OO Node Types: MAO .
- Label: OO OONode Types:ll A O !
/%im Feature+Noise Feature
Clean Feature 2 >/ \ \
Illustration

Difficulty Measure ‘ Deqr (Section 3.1) ‘ Dyopo (Section 3.2) ‘ Dyoss (Section 3.3)

a noisy and incomplete heterogeneous graph as G = (f/, EN,R, fN, fR), where V is the set of nodes with
noisy features X, & C £ is the observed set of edges with some missing connections, and M, denotes the
set of missing edges. The node types N are a noisy version of N, representing inaccuracies in node type
assignments, while R is the noisy set of edge types, indicating errors or ambiguities in edge type definitions.
Similarly, far : V — N is a noisy mapping from nodes to node types, and fz : & — R is a noisy mapping from
edges to edge types. The presence of these issues necessitates the development of robust models that can
handle noisy and incomplete data while maintaining high performance in node classification tasks. Table 1
provides an intuitive illustration of the various noise types and the corresponding difficulty measures that
we propose to address these challenges.

3 Proposed Method

In this section, we introduce our MDCL (Figure 2), designed to implement curriculum learning on heteroge-
neous graphs by incorporating various difficulty measures. The key idea of curriculum learning is to reduce
the impact of noise by identifying node difficulties, allowing the model to learn from easy and correct samples
first. An intuitive way to define node difficulty is to rely on the current performance of the classification
model: nodes that are correctly classified are labeled as "easy," whereas those that are incorrectly classified
are labeled as "difficult." Building on this concept, we propose three categories of difficulty measures : (i)
those computed from node embeddings that capture the semantic and structural features of nodes (Sec-
tion 3.1), (ii) those computed from topological structures that leverage graph connectivity and structural
roles (Section 3.2), and (iii) those computed from label loss that quantify classification errors to directly
assess difficulty (Section 3.3). These difficulty measures are designed to address and mitigate issues related
to label noise, node feature noise, and edge noise respectively. Then, Section 3.4 introduces an adaptive
weighting mechanism that integrates these difficulty measures into a unified comprehensive difficulty score
by taking a weighted average of the individual difficulty measures. This overall difficulty score is used to
guide the sequential sampling of nodes, enabling a progression from easier to more challenging instances.
The complete algorithm is detailed in Section 3.5.

3.1 Measuring Difficulty from Node Embeddings

To effectively measure the difficulty of a target node in heterogeneous graphs, we propose an "augmented"
representation h/, for each target node u that incorporates information from its neighbors with different node
types. This approach is specifically designed to address the challenge of noisy node features in graphs by

Under review as submission to TMLR

Computing Node Difficulty Adaptive Weighting Mechanism for Tralmng With Schedule

’ Node Label: @@@@ Node Types: .A O Difficulty Measures {’Easy Epoch 1
| poch

B o it -'h] EITITIKE

- 5 .

Topological . bE: X

iﬁ) I)iH"\(‘\TH\'
O h—Q

@ Loss Difficulty

3 - :
9 . O}\C@ Spearman :
Correlation ’ ‘e GNN ”

V/
v

Figure 2: The overview of MDCL. We assess the difficulty of target nodes using a range of difficulty mea-

sures: feature difficulty (Djeqt), topological difficulty (Dtlopo,DtOpoand D},,,) and loss difficulty (Djoss),

corresponding to three different node types. Each measure is adaptively weighted by analyzing its correla-
tion with loss difficulty.

leveraging the diverse and complementary information provided by neighbors of various types. In heteroge-
neous graphs, different node types contribute uniquely to a node’s representation, and our method captures
this complexity to better assess the difficulty of nodes with noisy or incomplete features. Specifically, we
define the augmented representation as follows:

B, = hy + > Ry
vi(u,0)€E, f (v)#n0

For each class ¢, we similarly compute an averaged augmented representation h., for all nodes in class c:
he = AVG(hy, | Y[o] = ¢), (1)
where AVG(-) denotes a function that returns the average of the input representations.

Using h!, and h., we define the following difficulty measure:

exp(hy, - hy,,)
maxcec exp(hl, -)’

Dfeat(u) =1- (2)
In other words, we compare how similar the augmented representation h!, of a node w is to the average
representation h’ of its ground-truth label ¢, among all classes ¢ € C. Our approach extends beyond
existing methods such as CLNode Wei et al. (2023), which measures node difficulty by computing the
similarity between a target node’s representation h, and the average representation h. of all nodes in class c,
i.e.,, he = AvG(h, | Y[v] = ¢). This can be interpreted as utilizing a prototypical classifier Snell et al. (2017)
on node embeddings. While this measure can be extended to heterogeneous graphs, it fails to consider the
features of other node types that may contribute to more accurate predictions, which is addressed by our
augmented representation.

3.2 Measuring Difficulty from Topological Structures

While node features naturally encode important information regarding node difficulty, a critical shortcoming
of relying solely on these difficulty measures is the neglect of topological structures in heterogeneous graphs.
To address this gap and specifically tackle the challenge of edge noise (i.e., missing edges), we introduce a
novel difficulty measure for nodes based on their neighborhood topology.

Under review as submission to TMLR

In homogeneous graphs, the concept of a neighborhood is straightforward. However, in heterogeneous graphs,
it becomes more complex due to the presence of different node types and the possibility that direct edges
between target nodes may not exist or may be noisy. To account for these challenges, we extend the definition
of a neighborhood to incorporate various types of nodes and their interactions within the heterogeneous
graph. By doing so, our method not only captures the structural complexity but also mitigates the impact
of edge-related noise, providing a more robust evaluation of node difficulty.

Let the type of target nodes be ng, and let the other types of nodes in the heterogeneous graph be
n1,M2, ..., nn -1 € N, where |[N] is the total number of distinct node types. If there exist edges between
two nodes of type ng, we define the neighborhood of a node u (where far(u) = ng) as:

No(w) ={v|v=uor (uv) €&}

In addition to nodes of type ng, node u may also connect to nodes of other types. Consider any other node
type n; that u is connected to. In this case, the edge type (ng,n;) € R, and we use nodes of type n; as
intermediaries to link u to other nodes of type ng. Thus, we define the neighborhood of u with respect to
node type n; as:

Ni(w)={v|v=wor Iz €V, st. fa(r) =ny, (u,x),(v,z) € E}.

Using these definitions, for each training node w, we calculate its difficulty Dtopo
distribution within its neighborhood defined by edges to nodes of type n; as follows:

(u) based on the label

Y[l = elv e N}
P.(w) g 7 3)

topo Z PC % log ()) (4)

ceC

Here, P.;(u) represents the proportion of nodes in the neighborhood M(u) that belong to class c¢. The
difficulty measure D}, , is computed using Shannon entropy. Nodes with more diverse neighbors are naturally
more challenging to classify, as they tend to belong to more complex regions of the graph. Consequently, a
larger D}, value indicates a more diverse neighborhood, making the node more challenging for the model
to learn.

topo
Since we obtain multiple Dtopo values corresponding to different node types, a straightforward way to ag-
gregate all these difficulty measures is to take their average. For any node u, we define Dypo(u) as:

IN]—1
Dtopo |N| Z Dtopo (5)

This aggregated measure provides a comprehensive view of the node’s topological difficulty, accounting for
all possible node types and their interactions within the heterogeneous graph.

3.3 Measuring Difficulty from Node Loss

To address the challenge of noisy labels in graphs, we propose evaluating node difficulty from the perspective
of training dynamics. Specifically, we leverage a loss-based difficulty measure Djss(u), which is computed
using the node embedding h,,, and is commonly employed in existing curriculum learning methods Han et al.
(2018):

DlOéb E Z‘C))7 (6)

where £ represents the loss function, Y[v] is the ground truth label, and f(h,,) is the model’s predicted
output.

Under review as submission to TMLR

This measure directly relates to the impact of a node’s label on the model’s training process: a higher Dj,ss(1)
indicates that the node contributes significantly to the overall training loss, often signaling instances where
the model struggles to align its predictions with potentially noisy or ambiguous labels. By capturing this
relationship, Dj,ss(u) serves as a meaningful indicator of the difficulty arising from noisy labels, helping to
guide the model’s focus during training.

3.4 Adaptive Weighting Mechanism for Difficulty Measures

64 63.83 94.0 93.98 87.98 87.96

61.68

Macro-F1 Score
Macro-F1 Score
©
&
>
Macro-F1 Score

=

Plain +Dgnt +Dtopo +Diogs AvgDiff Plain +Dieat +Diopo +Diogs AvgDiff

Plain + Dot +Digpo +Dioss AvgDiff

(a) (HAN, IMDB). (b) (GAT, DBLP). (c) (GAT, ACM).

Figure 3: Comparison of backbone GNN performance on heterogeneous graphs using CL methods with
single-difficulty measure and a CL method with uniform-weighted multi-difficulty measure across different
datasets. The subfigures show the results for each combination of (backbone GNN, dataset).

When dealing with multiple difficulty measures, a key challenge is determining which measure will perform
best for a given scenario. Figure 3 compares the performance of these difficulty measures across different
datasets and model architectures. We consider the following methods: (i) plain, which does not employ
any curriculum learning, (ii) +Dfeat, Which uses Dyeq; defined in Eq. equation 2, (iii) +Dgopo, Which uses
Dyopo defined in Eq. equation 5 and (iv) +Dioss, which uses Dj,ss defined in Eq. equation 6 as the difficulty
measure. In addition to these individual difficulty measures, we consider a straightforward baseline that
averages all these difficulty measures, referred to as Uniform. However, while at least one curriculum
learning method demonstrates improvement over the baseline in each setting, none consistently outperforms
it across all scenarios. In fact, simply averaging the difficulty measures can sometimes perform worse than
the plain baseline, such as when using the GAT model on the IMDB dataset.

Motivated by the limitations of using a single-difficulty measure or a uniform averaging approach, we propose
an adaptive weighting mechanism to dynamically assign weights to each difficulty measure, enhancing the
overall performance of curriculum learning on heterogeneous graphs.

Let the different difficulty measures be denoted as dy,...,d,. To compute the weighted difficulty measure
d, we define it as:

d= i w;d;, (7)
=1

where w; is the weight assigned to each difficulty measure d;, which is determined by calculating the rela-
tionship between each difficulty measure and the loss difficulty Dj,ss. For each difficulty measure d; (where
d; # Djoss), we first calculate Spearman’s rank correlation with Dj,ss. The weight w; is then set to the
correlation value cor(d;, Djpss). For the loss difficulty measure Djss, the weight wyess is calculated as the
average of all other correlation scores:

COI‘(di, Dloss)a if d; 7é Dl0557
Wi ﬁ an::[Cor(dju Dloss)7 if di = Dloss~ (8)
j#loss

This adaptive weighting mechanism allows the curriculum learning process to effectively prioritize the most
relevant difficulty measures based on their relationship with the training dynamics, thereby enhancing the
model’s robustness and performance across diverse settings.

Under review as submission to TMLR

3.5 Complete Algorithm

Nodes with higher noise levels are typically assigned greater difficulty, as noisy nodes are harder for the
model to classify correctly. Based on the calculated difficulty of each node, we implement a curriculum-
based training strategy to enhance the performance of the GNN model, as illustrated in Figure 2. To
distinguish this model from the original model f;, we refer to the curriculum-trained model as fy. The
curriculum training then progresses from easy to difficult nodes. Specifically, we first sort the training set Vr,
in ascending order based on node difficulty, and introduce a pacing function g(¢) to determine the proportion
of nodes to be selected for training at each epoch. Let Ay represent the initial fraction of the easiest nodes
included, and T be the epoch when g(t) first reaches 1. The pacing function g(t) can then take the following
form:

g(t) = min(1, 0 + (1 = Xo) * 7). ©)

After reaching ¢t = T, the training does not stop immediately. Instead, it continues to ensure that the GNN
model f5 fully assimilates the knowledge of all nodes in the training set Vy,.

The complete training process is summarized in Algorithm 1. Our method generally involves two rounds of
training. In the first round, the model is trained like a standard GNN on heterogeneous graphs, without
any curriculum learning. Once the initial model is trained, we use it to compute the different difficulty
measures for all training nodes. These difficulty measures are then used in the second round to implement
the curriculum learning strategy, enabling the model to progressively learn from easier to more challenging
nodes, thereby improving robustness and generalization.

Algorithm 1 The complete algorithm of MDCL.

1: Input: A heterogeneous graph G = (V, £, X), the labeled node set Vy,, the input labels Y7, the backbone
GNN model, the hyper-parameters a, Ao, 7.
Output: The predicted labels Y.
Initialize parameters of two GNN models f; and fo;
Train f1 on (G, V5, YL);
for u € V;, do
Calculate:
Feature difficulty Dyeq(u) < Eq.equation 2;
Topological difficulty Dj,,,(u) < Eq.equation 4;
Loss difficulty Dj,ss(u) < Eq.equation 6;
end for
: Compute weights of each difficulty measure w; < Eq.equation 8;
: Compute node difficulty by d(u) = >, wid;(u);
Sort V;, according to node difficulty in ascending order;
Lett=1;
: while ¢ < T or not converge do
At = g(t);
Generate training subset V; <— Vi [1, ..., [A - 1]];
Use fo to predict the labels Yi;
Calculate loss £ on {Y;[v], Yr[v] |v € Vi };
Back-propagation on fo to minimize L;
t—1t+1;
: end while
Predict Y with fo3

I N N i e e e e el el
Fo I el S A o > el =

4 Experiments

In this section, we conduct experiments under different settings to evaluate the performance of the proposed
method MDCL!.

IThe codes of MDCL are provided at https://anonymous.4open.science/r/MDCL-2376.

Under review as submission to TMLR

4.1 Experimental Setup

Datasets. We conduct experiments on three heterogeneous graph benchmark datasets: IMDB, ACM,
and DBLP, which are frequently used in studies on heterogeneous graphs Wang et al. (2019); Hu et al.
(2020); Fu et al. (2020). We follow the data loading and splitting protocols outlined in Lv et al. (2021).

Table 2: Statistics of datasets used in this paper.
Datasets ‘ Classes # Nodes # Node Types # Edges # Edge Types

IMDB 5 21,420 4 86,642 6
ACM 4 10,942 4 947,872 8
DBLP 3 26,128 4 239,566 6

Baselines. We compare our MDCL with the following curriculum learning methods: (i) Plain, which does
not employ any curriculum learning; (ii) Loss Bengio et al. (2009); Wong et al. (2024), which uses Dj,ss
defined in Eq. equation 6 as the difficulty measure; (iii) CLINode Wei et al. (2023); and (iv) MCCL Vakil &
Amiri (2023). CLNode and MCCL are originally designed for homogeneous graphs, and when applying them
to heterogeneous graphs, we simplify the graph structure by discarding all edge types, effectively making it
homogeneous.

Backbone GNNs. We apply the above-mentioned curriculum learning methods to four backbone GNNs:
Graph Convolutional Network (GCN), Graph Attention Network (GAT), Relational GCN (RGCN), and
Heterogeneous Attention Network (HAN). GCN and RGCN are convolution-based models, while GAT and
HAN incorporate attention mechanisms to enhance information aggregation. HAN particularly leverages
metapath structures in heterogeneous graphs in its architecture.

Noises Setting. We consider various types of noise in graph-structured data to evaluate model robustness
under different levels of perturbation. Noise is applied to a proportion 7 of node features, edges and labels,
with each type governed by a well-defined probabilistic model, as described below:

e Node feature noise is introduced by perturbing the feature vectors of selected nodes. The noise is
sampled from either a standard normal distribution N'(0, 1) (Gaussian) or a uniform distribution ¢/(—1, 1)
(Uniform) and added to the node’s feature vector x;.

« Edge noise is introduced by randomly deleting a proportion 1 of edges. For each directed edge (u,v) € &,
there is a probability 7 that the edge is missing (Missing).

o Label noise is introduced by corrupting the labels of selected nodes using two strategies: Uniform where
a node’s label is randomly replaced with a label from the label set), ensuring the new label differs from
the original; and Pairwise where a node’s label is flipped according to a predefined pairwise mapping
M, simulating systematic mislabeling between related classes.

We also consider a mixed-noise setting, where all types of noise are combined, simulating real-world scenarios
where the type and intensity of noise are often unknown and unpredictable. In this setting, the noise rate n
remains consistent across all types to ensure a uniform level of perturbation.

Evaluation Metrics. We report macro-F1 as the evaluation metric. Macro-F1 equally considers all classes,
emphasizing performance on both majority and minority classes, making it suitable for imbalanced datasets.

4.2 Performance Comparison

Under review as submission to TMLR

Table 3: Performance (macro-F1) comparison of models under 25% noise rate on the IMDB dataset.

Noise Target | Node Feature | Label | Edge | Mixed
Noise Type ‘ Gaussian Uniform ‘ Pairwise Uniform ‘ Missing ‘

Plain 62.20 62.45 61.60 62.43 63.41 60.36

Loss 62.09 62.51 60.65 60.78 63.07 60.86

GAT CLNode 62.19 62.30 62.72 62.86 63.40 61.28
MCCL 61.63 61.53 59.37 60.79 62.88 60.50

MDCL 62.78 62.86 62.20 63.11 63.42 61.81

Plain 61.47 60.16 60.34 63.11 62.01 61.62

Loss 61.76 60.75 58.43 61.35 62.48 61.83

GCN CLNode 62.17 60.22 61.32 64.15 63.27 | 62.00
MCCL 61.96 59.95 57.92 60.60 60.63 61.83

MDCL 62.28 60.50 61.42 64.30 63.20 | 62.42

Plain 57.64 60.00 62.01 62.86 62.77 57.03

Loss 57.24 59.87 61.78 63.00 62.46 57.69

HAN CLNode 57.70 60.26 61.90 62.55 62.09 57.42
MCCL 57.50 59.62 62.46 58.45 62.46 57.69

MDCL 57.72 60.48 62.28 62.97 63.81 | 57.81

Plain 55.35 56.67 58.65 59.36 62.97 54.77

Loss 56.58 58.15 60.05 62.17 63.15 55.66

RGCN | CLNode 55.96 57.67 59.05 62.92 62.50 56.13
MCCL 57.75 58.42 58.94 64.01 63.02 56.83

MDCL 58.18 58.35 59.79 63.25 63.21 | 56.95

Performance Across Noise Types. We evaluate the performance of various methods under different
noise conditions, including node feature noise, label noise, edge noise, and mixed-noise scenarios. We provide
a comprehensive comparison across multiple datasets, including IMDB (Table 3), DBLP (Table 4), and ACM
(Table 5), as well as various GNN architectures such as GAT, GCN, HAN, and RGCN. The results underscore
the robustness and effectiveness of our proposed MDCL framework compared to other baselines under these
challenging conditions. Although no single baseline demonstrates consistent state-of-the-art performance
across all noise types and datasets, our method, MDCL, achieves an average improvement of 1.15% over the
plain baseline across individual noise types. In real-world scenarios, the type of noise present in graph data
is often unknown and typically involves a mixture of noise types. Even under such challenging conditions,
MDCL exhibits superior performance in the mixed-noise scenario, achieving a 1.92% improvement over the
plain baseline and outperforming the second-best baseline (i.e., Loss) by 0.84%. This result highlights the
capability of MDCL to adapt to and effectively handle complex noise environments, further establishing its
utility in practical applications.

Performance Across Noise Rates. We also explore how varying noise rates affect model performance.
Figure 4 depicts the macro-F1 scores of RGCN model on the ACM dataset under different noise rates.
We can first see that MDCL achieves the best performance from the start without any additional noise,
and maintains a top-ranking position as the noise level increases, demonstrating its robustness in handling
different kinds of noise.

4.3 Ablation Studies

In this section, we empirically analyze the contribution of different components proposed in our method.

Contribution of Difficulty Measures. To explore the impact of various difficulty measures, we con-
ducted experiments using RGCN as the backbone model on the IMDB dataset under different noise condi-

10

Under review as submission to TMLR

Table 4: Performance (macro-F1) comparison of models under 25% noise rate on the DBLP dataset.

Noise Target | Node Feature | Label | Edge | Mixed
Noise Type ‘ Gaussian Uniform ‘ Pairwise Uniform ‘ Missing ‘

Plain 85.74 88.80 89.15 89.82 89.61 84.30

Loss 85.74 88.87 89.40 89.75 89.86 | 84.61

GAT CLNode 85.92 88.88 88.77 89.86 89.68 84.37
MCCL 83.24 87.85 87.85 88.80 89.61 84.27

MDCL 85.77 89.08 89.26 89.89 89.72 84.65

Plain 87.68 87.46 86.94 87.01 87.50 85.53

Loss 87.89 87.64 85.81 86.97 88.13 85.92

GCN CLNode 87.78 87.78 86.34 87.46 87.46 85.49
MCCL 86.73 87.18 86.44 86.62 87.50 85.63

MDCL 87.92 87.82 87.29 87.32 88.27 | 85.95

Plain 80.18 81.30 77.08 77.56 83.38 76.09

Loss 80.30 82.04 76.73 77.66 83.63 78.31

HAN CLNode 75.73 81.90 77.11 7.7 82.71 78.06
MCCL 80.35 70.95 76.65 67.10 82.85 77.22

MDCL 80.51 81.62 77.18 77.94 83.66 | 78.35

Plain 86.84 90.96 81.09 86.16 91.68 84.70

Loss 88.04 91.43 85.80 87.32 92.53 84.94

RGCN | CLNode 88.35 92.06 86.01 87.50 92.56 85.65
MCCL 89.05 91.62 86.29 86.57 92.71 84.82

MDCL 89.55 91.80 86.06 87.63 92.77 | 85.77

tions. The results are presented in Table 6. For instance, in noisy feature scenarios, the +Dj.q; method
outperformed the plain baseline. Similarly, under label noise, the +Dj,ss method demonstrated superior
performance, highlighting its robustness to such conditions. These findings illustrate that each measure is
particularly effective in specific scenarios and can enhance the model’s learning through curriculum learning.

Contribution of Adaptive Weighting Mechanism. To further understand the impact of the adaptive
weighting mechanism in MDCL, we compare it with: (i) Plain, which trains backbone GNNs without cur-
riculum learning; (ii) +Dseat;, +Dtopo, and +Digss, which train backbone GNNs using curriculum learning
with a single-difficulty setting corresponding to Diopo, Dfeat, and Djoss, respectively; and (iii) AvgDiff,
which trains backbone GNNs with curriculum learning using a uniform mechanism that averages Dfcqt,
Dioss, and Dyopo. Table 6 presents the results obtained across various noise conditions. The results demon-
strate the superior consistency of MDCL’s adaptive weighting mechanism compared to uniform weighting.
Notably, in some cases, it can even leverage other difficulty measures to outperform methods specifically
designed for certain scenarios. For instance, under the condition of Gaussian noise added to node features,
MDCL surpasses +Dgeat by 0.44%. It is worth noting that in real-world scenarios, noise often comprises a
mixture of multiple types. As shown in the "All" category of the table, MDCL achieves the best performance
in such cases, underscoring the importance and effectiveness of the adaptive weighting mechanism.

4.4 \Visualization of Difficulty Measure Weights

To better understand how the adaptive mechanism enhances accuracy, we analyze how it assigns weights
across different difficulty measures, adapting to changes in the backbone GNNs or datasets. We visualize
the learned weights to explore this behavior.

Figure 5 illustrates the weights assigned to various difficulty measures across different datasets when training
the RGCN model. The results demonstrate that +D ..+ plays a more significant role in the IMDB dataset,
reflecting the importance of feature-based information in this domain. In contrast, +D;opo and +Djess exhibit

11

Under review as submission to TMLR

Table 5: Performance (macro-F1) comparison of models under 25% noise rate on the ACM dataset.

Noise Target | Node Feature | Label | Edge | Mixed
Noise Type ‘ Gaussian Uniform ‘ Pairwise Uniform ‘ Missing ‘

Plain 90.79 91.97 90.13 88.57 91.98 87.91

Loss 92.02 92.21 89.75 89.24 92.05 90.98

GAT CLNode 90.08 92.49 90.27 89.66 92.06 91.93
MCCL 90.18 92.48 89.57 89.90 91.93 91.03

MDCL 91.88 92.68 90.75 90.23 92.06 92.03

Plain 92.30 92.26 90.93 92.35 92.16 91.21

Loss 92.26 91.97 90.84 91.97 92.07 91.74

GCN CLNode 92.59 92.49 90.46 91.78 92.12 91.60
MCCL 92.49 92.07 90.27 91.97 92.12 91.64

MDCL 92.87 92.68 91.23 92.45 92.45 | 91.97

Plain 83.32 81.06 80.01 81.33 84.89 76.10

Loss 83.71 80.64 80.48 81.10 80.55 76.25

HAN CLNode 72.29 80.73 79.40 81.47 84.99 76.20
MCCL 79.84 78.71 77.37 77.32 83.47 76.30

MDCL 84.99 81.12 80.86 82.32 85.36 | 77.71

Plain 84.44 87.03 82.45 85.19 84.19 82.77

Loss 84.45 87.37 82.99 84.61 85.81 81.67

RGCN | CLNode 84.43 86.71 84.06 85.30 85.21 82.77
MCCL 84.07 86.75 81.27 83.96 85.29 84.10

MDCL 85.40 87.07 83.20 85.81 84.50 | 84.27

Table 6: Performance (macro-F1) comparison of different difficulty measures on the IMDB dataset using
RGCN.

Noise Target | Node Feature | Label | Edge | Mixed
Noise Type ‘ Gaussian Uniform ‘ Pairwise = Uniform ‘ Missing ‘

Plain 55.35 56.67 58.65 59.36 62.97 54.77
+Dfeat 57.74 59.27 59.37 62.17 62.67 56.44
+D:opo 56.32 56.68 59.04 62.05 63.16 56.15
+Dipss 56.58 58.15 60.05 63.63 63.15 55.66
AvgDiff 55.43 57.75 59.17 62.83 63.15 56.09
MDCL 58.18 58.35 59.79 63.25 63.21 | 56.95

greater importance for the DBLP and ACM datasets, highlighting the relevance of topological structures and
loss-based adjustments in these graphs. This suggests that the models adapt to the specific characteristics
of each dataset, emphasizing different aspects of the data. These findings further validate the effectiveness
of the adaptive weighting mechanism in handling diverse graph structures and learning tasks.

5 Conclusion

This paper confronts the significant challenge posed by noise in heterogeneous graphs and its detrimental
effects on the performance of GNNs. Despite the considerable advancements achieved by existing models
and methodologies, their inherent sensitivity to different noise conditions and the complexities associated
with heterogeneous data structures frequently undermine their effectiveness. In response to these limitations,
we propose a novel approach called Multi-Difficulty Measure Curriculum Learning (MDCL). This method
seamlessly integrates multiple difficulty measures specifically designed for heterogeneous graphs, alongside

12

Under review as submission to TMLR

0so] B~ —=— Plain —=— Plain 0.89 —=— Plain
e -~ Loss 090 -~ Loss ~¢- Loss
0ss «ae CLNode ’ CLNode 0.88 CLNode
881 .
H - MCCL - MCCL .
2 ——
P —e- MDCL - MDCL
5087
E
£0.586
s
0.85
0.84
0.81 N - v:‘\z ot
hd o 0.82 - 0.83
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Noise Rate (%) Noise Rate (%) Noise Rate (%)
(a) Node Feature Noise (Gaussian). (b) Node Feature Noise (Uniform). (c) Edge Noise (Missing).
L. —m— Plain —=— Plain —m&— Plain
0.90 -#- Loss -#- Loss -#- Loss
~a CLNode 090 - CLNode 088 < CLNode
. MCCL MCCL v MCCL
5088 —e- MDCL —e-- MDCL —e-- MDCL
&
% 0.86
3
0.84
0.84 . 0.82
0.82 . ST
0.82 v d
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Noise Rate (%) Noise Rate (%) Noise Rate (%)
(d) Label Noise (Pairwise). (e) Label Noise (Uniform). (f) Mixed Noise.

Figure 4: Performance comparison of RGCN across varying noise rates and different noise types on the ACM
dataset.

- 4 0.6
’ 0.5
0.4 0.3 @ o é
= = 5 04
503 £, z
E = 203 @
0.2 é
— 01 02 =
L - = :
0.0 '
+Dpat 4D}, +D%,, 4Dk, FDis +Dpeat +D),, +D},, +Dh,, HDos +Dgear +Dl,, +D},, +Dh, HDos
Difficulty Measurer Difficulty Measurer Difficulty Measurer
(a) IMDB. (b) DBLP. (c) ACM.

Figure 5: Weights learned for different difficulty measures in MDCL on various datasets using RGCN.

an adaptive weighting mechanism that enhances robustness against noise in heterogeneous graphs. By sys-
tematically progressing through easier tasks and incorporating nuanced difficulty metrics, MDCL establishes
a more resilient training paradigm, which in turn fosters improved accuracy and generalization capabilities
in noisy environments. Extensive experimental results provide compelling evidence for the effectiveness of
MDCL, showcasing its superiority in managing real-world heterogeneous graph data, particularly in scenar-
ios characterized by high levels and mixed types of noise when compared to existing methodologies. These
findings highlight the practical value of MDCL, contributing to the reliability of graph-based learning in
noisy, complex settings.

13

Under review as submission to TMLR

References

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Interna-
tional Conference on Machine Learning, pp. 41-48, 2009.

Aleksandar Bojchevski and Stephan Giinnemann. Adversarial attacks on node embeddings via graph poi-
soning. In International Conference on Machine Learning, pp. 695-704, 2019.

Enyan Dai, Charu Aggarwal, and Suhang Wang. NRGNN: Learning a label noise resistant graph neural
network on sparsely and noisily labeled graphs. In ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 227-236, 2021.

Xinyu Fu, Jiani Zhang, Zigiao Meng, and Irwin King. MAGNN: Metapath aggregated graph neural network
for heterogeneous graph embedding. In The Web Conference, pp. 2331-2341, 2020.

Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, Dengke Dong, Matthew R, Scott, and Dinglong
Huang. CurriculumNet: Weakly supervised learning from large-scale web images. In Furopean Conference
on Computer Vision, pp. 135-150, 2018.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.
Co-teaching: Robust training of deep neural networks with extremely noisy labels. In Advances in Neural
Information Processing Systems, pp. 8536-8546, 2018.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In The Web
Conference, pp. 2704-2710, 2020.

Wei Jin, Yaxing Li, Han Xu, Yiqi Wang, Shuiwang Ji, Charu Aggarwal, and Jiliang Tang. Adversarial
attacks and defenses on graphs. ACM SIGKDD Explorations Newsletter, 22(2):19-34, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2016.

Junnan Li, Richard Socher, and Steven C. H. Hoi. DivideMix: Learning with noisy labels as semi-supervised
learning. In International Conference on Learning Representations, 2020.

Xiaohe Li, Zide Fan, Feilong Huang, Xuming Hu, Yawen Deng, Lei Wang, and Xinyu Zhao. Graph neural
network with curriculum learning for imbalanced node classification. Neurocomputing, 574:127229, 2024.

Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning regular-
ization prevents memorization of noisy labels. In Advances in Neural Information Processing Systems, pp.
20331-20342, 2020.

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou, Jianguo
Jiang, Yuxiao Dong, and Jie Tang. Are we really making much progress? revisiting, benchmarking and
refining heterogeneous graph neural networks. In ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 1150-1160, 2021.

Meng Qu, Jian Tang, and Jiawei Han. Curriculum learning for heterogeneous star network embedding via
deep reinforcement learning. In ACM International Conference on Web Search and Data Mining, pp.
468-476, 2018.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling.
Modeling relational data with graph convolutional networks. In The Semantic Web, pp. 593-607. Springer,
2018.

Min Shi, Yufei Tang, Xingquan Zhu, Yuan Zhuang, Maohua Lin, and Jianxun Liu. Feature-attention graph
convolutional networks for noise resilient learning. IEEE Transactions on Cybernetics, 52(8):7719-7731,
2022.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In Advances in
Neural Information Processing Systems, pp. 4077-4087, 2017.

14

Under review as submission to TMLR

Nidhi Vakil and Hadi Amiri. Curriculum learning for graph neural networks: a multiview competence-based
approach. In Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 7036-7051, 2023.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous graph
attention network. In The Web Conference, pp. 2022-2032, 2019.

Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Combating noisy labels by agreement: a joint training
method with co-regularization. In IEEE/CVF Computer Vision and Pattern Recognition Conference, pp.
13723-13732, 2020.

Xiaowen Wei, Xiuwen Gong, Yibing Zhan, Bo Du, Yong Luo, and Wenbin Hu. CLNode: Curriculum learning
for node classification. In ACM International Conference on Web Search and Data Mining, pp. 670-678,
2023.

Zhen Hao Wong, Hansi Yang, Xiaoyi Fu, and Quanming Yao. Loss-aware curriculum learning for heteroge-
neous graph neural networks. arXiv preprint arXiv:2402.18875, 2024.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting the
dots: Multivariate time series forecasting with graph neural networks. In ACM SIGKDD Conference on
Knowledge Discovery € Data Mining, pp. 753-763, 2020.

Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Heterogeneous network representation
learning: a unified framework with survey and benchmark. IEEE Transactions on Knowledge and Data
Engineering, 34(10):4854-4873, 2020.

Hansi Yang, Quanming Yao, Bo Han, and James T. Kwok. Searching to exploit memorization effect in deep
learning with noisy labels. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1-17,
2024.

Xiong Zhang, Cheng Xie, Haoran Duan, and Beibei Yu. NoiseHGNN: Synthesized similarity graph-based neu-
ral network for noised heterogeneous graph representation learning. arXiv e-prints, pp. arXiv:2412.18267,
2024.

Zheng Zhang, Junxiang Wang, and Liang Zhao. Curriculum learning for graph neural networks: Which
edges should we learn first. In Advances in Neural Information Processing Systems, pp. 51113-51132,
2024.

Daniel Ziigner, Amir Akbarnejad, and Stephan Giinnemann. Adversarial attacks on neural networks for
graph data. In ACM SIGKDD Conference on Knowledge Discovery € Data Mining, pp. 2847-2856, 2018.

15

