
Beyond BatchNorm: Towards a Unified
Understanding of Normalization in Deep Learning

Ekdeep Singh Lubana1∗, Robert P. Dick1, Hidenori Tanaka2,3
1EECS Department, University of Michigan

2Department of Applied Physics, Stanford University
3Physics & Informatics Laboratories, NTT Research, Inc.

Abstract

Inspired by BatchNorm, there has been an explosion of normalization layers in
deep learning. Recent works have identified a multitude of beneficial properties
in BatchNorm to explain its success. However, given the pursuit of alternative
normalization layers, these properties need to be generalized so that any given
layer’s success/failure can be accurately predicted. In this work, we take a first
step towards this goal by extending known properties of BatchNorm in randomly
initialized deep neural networks (DNNs) to several recently proposed normalization
layers. Our primary findings follow: (i) similar to BatchNorm, activations-based
normalization layers can prevent exponential growth of activations in ResNets, but
parametric techniques require explicit remedies; (ii) use of GroupNorm can ensure
an informative forward propagation, with different samples being assigned dissimi-
lar activations, but increasing group size results in increasingly indistinguishable
activations for different samples, explaining slow convergence speed in models
with LayerNorm; and (iii) small group sizes result in large gradient norm in earlier
layers, hence explaining training instability issues in Instance Normalization and
illustrating a speed-stability tradeoff in GroupNorm. Overall, our analysis reveals
a unified set of mechanisms that underpin the success of normalization methods
in deep learning, providing us with a compass to systematically explore the vast
design space of DNN normalization layers.

1 Introduction

Normalization techniques are often necessary to effectively train deep neural networks (DNNs) [1, 2,
3]. Arguably, the most popular of these is BatchNorm [1], whose success can be attributed to several
beneficial properties that allow it to stabilize a DNN’s training dynamics: for example, ability to
propagate informative activation patterns in deeper layers [4, 5]; reduced dependence on initializa-
tion [6, 7, 8]; faster convergence via removal of outlier eigenvalues [9, 10]; auto-tuning of learning
rates [11], equivalent to modern adaptive optimizers [12]; and smoothing of loss landscape [13, 14].
However, depending on the application scenario, BatchNorm’s use can be of limited benefit or even
a hindrance: for example, BatchNorm struggles when training with small batch-sizes [3, 15]; in
settings with train-test distribution shifts, BatchNorm can undermine a model’s accuracy [16, 17]; in
meta-learning, it can lead to transductive inference [18]; and in adversarial training, it can hamper
accuracy on both clean and adversarial examples by estimating incorrect statistics [19, 20].

To either address specific shortcomings or to replace BatchNorm in general, several recent works
propose alternative normalization layers (interchangeably called normalizers in this paper). For
example, Brock et al. [23] propose to match BatchNorm’s forward propagation behavior in Residual

Email: {eslubana, dickrp}@umich.edu, and hidenori.tanaka@ntt-research.com
*Work partially performed during an internship at Physics & Informatics Laboratories, NTT Research.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

(a) Non-Residual CNN with 10 layers (b) Non-Residual CNN with 20 layers

(c) ResNet-56 (without SkipInit [6]) (d) ResNet-56 (with SkipInit [6])

Figure 1:Each normalization method has its own success and failure modes.We plot training
curves (3 seeds) for different combinations ofnormalizer(see Table 1), network architecture,and
batch-sizeat largest stable initial learning rate on CIFAR-100. Learning rate is scaled linearly with
batch-size [21]. Layers for which loss reaches in�nity are not plotted. Test curves and several other
settings are provided in the appendix. The plots show that all methods, including BatchNorm (BN),
have their respective success and failure modes: e.g., LayerNorm (LN) [2] often converges slowly
and Instance Normalization (IN) [22] can have unstable training with large depth or small batch-sizes.

networks [24] by replacing it with Scaled Weight Standardization [25, 26]. Wu and He [3] design
GroupNorm, a batch-independent method that groups multiple channels in a layer to perform
normalization. Liu et al. [27] use an evolutionary algorithm to search for both normalizers and
activation layers. Given the right training con�guration, these works show their proposed normalizers
often achieve similar test accuracy to BatchNorm and even outperform it on some benchmarks. This
begs the question, are we ready to replace BatchNorm? To probe this question, we plot training curves
for models de�ned using different combinations ofnormalizer, network architecture, batch size,and
learning rateon CIFAR-100. As shown in Figure 1, clear trends begin to emerge. For example, we
see LayerNorm [2] often converges at a relatively slower speed; Weight Normalization [28] cannot
be trained at all for ResNets (with and without SkipInit [6]); Instance Normalization [22] results
in unstable training in deeper non-residual networks, especially with small batch-sizes. Overall,
evaluating hundreds of models in different settings, we see evident success/failure modes exist for all
normalization techniques, including BatchNorm.

As we noted before, prior works have established several properties to help explain such suc-
cess/failure modes for the speci�c case of BatchNorm. However, given the pursuit of alternative
normalizers in recent works, these properties need to be generalized so that one can accurately
determine how normalization techniques beyond BatchNorm affect DNN training. In this work, we
take a �rst step towards this goal by extending known properties of BatchNormat initialization to
several alternative normalization techniques. As we show, these properties are highly predictive of a
normalizer's in�uence on DNN training and can help ascertain exactly when an alternative technique
is capable of serving as a replacement for BatchNorm. Our contributions follow.

• Stable Forward Propagation: In Section 3, we show activations-based normalizers are provably
able to prevent exploding variance of activations in ResNets, similar to BatchNorm [5, 6]. Paramet-
ric normalizers like Weight Normalization [28] do not share this property; however, we explain
why architectural modi�cations proposed in recent works [6, 7] can resolve this limitation.

• Informative Forward Propagation: In Section 4, we �rst show the ability of a normalizer to
generate dissimilar activations for different inputs is a strong predictor of optimization speed. We
then extend a known result for BatchNorm to demonstrate the rank of representations in the deepest
layer of a Group-normalized [3] model is at least
(

p
width=Group Size). This helps us illustrate

how use of GroupNorm can prevent high similarity of activations for different inputs if the group
size is small, i.e., the number of groups is large. This suggests Instance Normalization [22] (viz.,

2

GroupNorm with group size equal to 1) is most likely and LayerNorm [2] (viz., GroupNorm with
group size equal to layer width) is least likely to produce informative activations.

• Stable Backward Propagation: In Section 5, we show normalization techniques that rely on
individual sample and/or channel statistics (e.g., Instance Normalization [22]) suffer from an
exacerbated case of gradient explosion [29], often witnessing unstable backward propagation. We
show this behavior is mitigated by grouping of channels in GroupNorm, thus demonstrating a
speed–stability trade-off characterized by group size.

Related Work: Due to its ubiquity, past work has generally focused on understanding BatchNorm [5,
4, 6, 9, 10, 7, 13, 29, 30, 31]. A few works have studied LayerNorm [32, 33], due to its relevance in
natural language processing. In contrast, we try to analyze normalization methods in deep learning in a
general manner. As we show, we can identify properties in BatchNorm that readily generalize to other
normalizers and are often predictive of the normalizer's impact on training. Our analysis is inspired
by a rich body of work focused on understanding randomly initialized DNNs [34, 35, 36, 37, 38].
Most related to us is the contemporary work by Labatie et al. [39], who analyze the impact of different
normalization layers on expressivity of activations and conclude LayerNorm leads to high similarity
of activations in deeper layers. As we discuss, this result is in fact a special case of our Claim 3.

2 Preliminaries: Normalization Layers for DNNs

Activations-Based Layers
� f d g = � f d g (A) ; � f d g = � f d g (A)

BN [1]
A� � f b;x g

� f b;x g

LN [2]
A� � f c;x g

� f c;x g

IN [22]
A� � f x g

� f x g

GN [3]
A� � f c=g;x g

� f c=g;x g

FRN [40] A
RMSf x g

VN [4] A
� f b;x g

EvoBO [27] A
max f � f b;x g ;v �A + � f x g g

EvoSO [27] A � (v �A)
� f c=g;x g

Parametric Layers
� f d g = � f d g (W); � f d g = � f d g (W)

WN [28] g W
jjWjj

SWS [23] g
W� � f c;h;w g

� f c;x g

Table 1: Operations performed by dif-
ferent normalizers. A denotes layer in-
put;W denotes incoming neuron weights
to a neuron.

We �rst clarify the notations and operations used by the
normalizers discussed in this work. Speci�cally, we de-
�ne operators� f dg(T) and� f dg(T), which calculate the
mean and standard deviation of a tensorT along the di-
mensions speci�ed by setf dg. kT k denotes thè2 norm
of T . RMSf dg(T) denotes the root mean square ofT
along dimensions speci�ed by setf dg. For example, for
a vectorv 2 Rn , we haveRMSf 1g(v) =

p P
i v2

i =n . We
assume the outputs of these operators broadcast as per
requirements.� (:) denotes the sigmoid function. We de-
�ne symbols b, c, x to denote the batch, channel, and
spatial dimensions. For feature maps in a CNN,x will
include both the height and the width dimensions. The
notationc=gdenotes division ofc neurons (or channels)
into groups of sizeg. When grouping is performed, each
group is normalized independently.

Normalization Layers: We analyze ten normalization
layers in this work. These layers were chosen to cover a
broad range of ideas: e.g., activations-based layers [1, 40],
parametric layers [23, 28], hand-engineered layers [3],
AutoML designed layers [27], and layers [22, 2, 4] that
form building blocks of recent techniques [41].
1. Activations-Based Layers: BatchNorm (BN) [1], Layer-
Norm (LN) [2], Instance Normalization (IN) [22], GroupNorm (GN) [3], Filter Response Normaliza-
tion (FRN) [40], Variance Normalization (VN) [4], EvoNormBO [27], and EvoNoRMSO [27] fall in
this category. These layers function in the activation space. Note that Variance Normalization is an ab-
lation of BatchNorm that does not use the mean-centering operation. Typically, given activationsA L

at layerL , these layers use an operation of the formA norm = �
�

� f d g (A L) (A L � � f dg(A L)) + �

�
).

Here, and� are learned af�ne parameters used for controlling quantities affected by the normaliza-
tion operations (such as mean, standard deviation, andRMS) and� is a non-linearity, such as ReLU.
The exact operations for these layers, minus the af�ne parameters, are shown in Table 1.
2. Parametric Layers: Weight Normalization (WN) [28] and Scaled Weight Standardization
(SWS) [23] fall in this category. Table 1 shows the exact operations. These layers function in
the parameter space and act on a �lter's weights (W) to generate normalized weights (Wnorm). The
normalized weightsWnorm are used for processing the input:A L +1 = � (Wnorm � A L).

3

3 Stable Forward Propagation

Stable forward propagation is a necessary condition for successful DNN training [36]. In this
section, we identify and demystify the role of normalization layers in preventing the problem of
explodingor vanishing activationsduring forward propagation. These problems can result in training
instability due to exploding or vanishing gradients during backward propagation [36, 38]. Building
on a previous study on BatchNorm, we �rst show that activations-based normalizers provably
avoid exponential growth of variance in ResNets1, ensuring training stability. Thereafter, we show
parametric normalizers do not share this property and ensuring stable training requires explicit
remedies.

3.1 Activations-Based Normalizers and Exponential Variance in Residual Networks

Hanin and Rolnick [38] show that for stable forward propagation in ResNets, the average variance of
activations should not grow exponentially (i.e., should not explode). Interestingly, Figure 1 shows
that all activations-based normalizers are able to train the standard ResNet [24] architecture stably.
For BatchNorm, this behavior is provably expected. Speci�cally, De and Smith [6] �nd that to ensure
variance along the batch-dimension is 1, BatchNorm rescales theL th layer's residual path output by a
factor ofO (1=

p
L). This causes the growth of variance in a Batch-Normalized ResNet to be linear in

depth, hence avoiding exponential growth of variance in and ensuring effective training. We now
show this result can be extended to other normalization techniques too.

Claim 1. Similar to BatchNorm [6], GroupNorm [3] avoids exponential growth of variance in
ResNets, ensuring stable training.

Proof. We follow the same setup as De and Smith [6]. Assume theL th residual path (f L) is
processed by a normalization layerN , after which it combines with the skip connection to
generate the next output:yL = yL � 1 + N (f L (yL � 1)) . The covariance of layer input and
Residual path's output is assumed to be zero. Hence, the output's variance is:Var(yL) =
Var(yL � 1) + Var(N (f L (yL � 1))) . Now, assume GroupNorm with group sizeG is used for nor-
malizing theD-dimensional activation signal, i.e.,N = GN(:). This implies for thegth group,
� g;x (GN (f L (yL � 1))) = 1 . Then, for a batch of sizeN , denoting thei th sample activations as
y (i)

L , and using(y (i)
L) j to index the activations, we note the residual output's variance averaged

along the spatial dimension is:hVar(N (f L (yL � 1)) i = 1
D

P D
j =1 (1

N

P N
i =1 (GN(f L (y (i)

L � 1)) j)2) =
1
N

P N
i =1 (1

D

P D
j =1 (GN(f L (yL � 1)(i)) j)2) = 1

N

P N
i =1

G
D (

P D =G

g=1 (� g;x (GN(f L (yL � 1)(i)))) 2) = 1 .
Overall, this implieshVar(yL)i = hVar(yL � 1)i + 1 . Recursively applying this relationship for
a bounded variance input, we see average variance at theL th layer is inO(L). Thus, similar to
BatchNorm, use of GroupNorm will enable stable forward propagation in ResNets by ensuring signal
variance grows linearly with depth.

Figure 2:Activations-based normaliz-
ers ensure linear and stable forward
propagation, verifying Claim 1. Ac-
tivation Variance (Activ. Var.) as a
function of layer number in a ResNet-
56 [24] processing CIFAR-100 samples.

To understand the relevance of the above result, note that
for G = 1 , GroupNorm is equal to Instance Normaliza-
tion [22] and for G = D, GroupNorm is equal to Lay-
erNorm [2]. Further, since the mean of the signal is as-
sumed to be zero, the average variance along the spatial
dimension is equal to theRMSx operation used by Filter
Response Normalization [40]. Thus, by proving the above
result for GroupNorm, we are able to show alternative
activations-based normalizers listed in Table 1 also avoid
the exponential growth of activation variance in ResNets.

We show empirical demonstrations of Claim 1 in Fig-
ure 2, where the average activation variance is plotted for
a ResNet-56. As can be seen, for all activations-based nor-
malizers, the growth of variance is linear in the number of
layers. At the end of a Residual module, which spatially
downsamples the signal, the variance plummets. However,

the remaining layers follow a pattern of linear growth, as expected by our result. We note our

1The case ofnon-residualnetworks is discussed in appendix. In brief, most normalizers help avoid explod-
ing/vanishing activations by enforcing unit activation variance in the batch, channel, or spatial dimensions.

4

(a) Standard ResNet (b) SkipInit (c) Non-Linearity on Residual Path

Figure 3:Parametric normalizers witness exponentially growing variance, verifying Claim 2,
but we can stabilize it by modifying the residual-path.We plot log activation variance as a function
of layer number in a randomly initialized ResNet-56 [24], using CIFAR-100 samples, with Scaled
Weight Standardization (SWS) [23] and Weight Normalization (WN) [28] for different architectures
(simpli�ed illustrations provided on top). (a)Standard ResNet:Both SWS and WN witness variance
explosion in a standard ResNet model, as claimed in Claim 2. (b)SkipInit: SkipInit [6] multiplies
the residual signal with a scalar� initialized as zero, thus preventing variance explosion in an SWS
model at initialization. Meanwhile, by scaling the non-linearity after addition, a WN model continues
to witness exploding variance. (c)Non-Linearity on Residual Path:Shifting the non-linearity to the
residual path prevents variance explosion in both WN and SWS models.

theory does not apply to EvoNorms, which are designed via AutoML. However, empirically, we
see EvoNorms also avoid exponential growth of variance in ResNets.Thus, our analysis shows,
all activations-based normalizers in Table 1 share the bene�cial property of stabilizing forward
propagation in ResNets, similar to BatchNorm.

3.2 Parametric Normalizers and Exploding Variance in Residual Networks

By default, parametric normalizers such as Weight Normalization [28] and Scaled Weight Standard-
ization [23] do not preserve the variance of a signal during forward propagation, often witnessing
vanishing activations. To address this limitation, properly designed output scale and bias corrections
are needed. Speci�cally, for Weight Normalization and ReLU non-linearity, Arpit et al. [42] show
the output should be modi�ed as follows:A L +1 =

p
2� =� � 1(� (Wnorm � A L) �

p
1=2�). For Scaled

Weight Standardization, only output scaling is needed [23]:A L +1 = � (
p

2� =� � 1Wnorm � A L).

In Figure 1, ResNet training curves for Weight Normalization [28] and Scaled Weight Standardiza-
tion [23] were not reported as the loss diverges to in�nity. As we explain in the following, this is a
result of using correction factors designed to enable variance preservation in non-residual networks.

Claim 2. Unlike BatchNorm [6], Weight Normalization [28] and Scaled Weight Standardization [23]
witness unstable training due to exponential growth of variance in standard ResNets [24].

Proof. Using the correction factors above, both Weight Normalization and Scaled Weight Standardiza-
tion will ensure signal variance is preserved on the residual path:Var(N (f (yL � 1))) = Var(yL � 1).
Thus, using these methods, the output variance at layerL becomes:Var(yL) = Var(yL � 1) +
Var(N (f (yL � 1))) = 2 Var(yL � 1). Recursively applying this relationship for a bounded variance
input, we see signal variance at theL th layer is inO(2L). Thus, Weight Normalization and Scaled
Weight Standardization witness exponential growth in variance.

More generally, the above result shows if the residual path is variance preserving, ResNets will
witness exploding variance with growing depth. Prior works [43, 5, 8, 6, 7, 44] have noted this result
in the context of designing effective ResNet initializations.Here, we extended this result to show why
Weight Normalized and Scaled Weight Standardized ResNets undergo unstable forward propagation.
Empirical demonstration is provided in Figure 3a.

In their work introducing Scaled Weight Standardization [23], Brock et al. are able to circumvent
exponential growth in variance by using SkipInit [6]. Speci�cally, inspired by the fact that BatchNorm
biases Residual paths to identity functions, De and Smith [6] propose SkipInit, which multiplies the
output of the residual path by a learned scalar� that is initialized to zero. This suppresses the Residual
path's contribution, hence avoiding exponential growth in variance (see Figure 3b). Interestingly, even

5

	Introduction
	Preliminaries: Normalization Layers for DNNs
	Stable Forward Propagation
	Activations-Based Normalizers and Exponential Variance in Residual Networks
	Parametric Normalizers and Exploding Variance in Residual Networks

	Informative Forward Propagation
	Stable Backward Propagation
	Discussion and Limitations

