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Abstract

Inspired by BatchNorm, there has been an explosion of normalization layers in
deep learning. Recent works have identified a multitude of beneficial properties
in BatchNorm to explain its success. However, given the pursuit of alternative
normalization layers, these properties need to be generalized so that any given
layer’s success/failure can be accurately predicted. In this work, we take a first
step towards this goal by extending known properties of BatchNorm in randomly
initialized deep neural networks (DNNs) to several recently proposed normalization
layers. Our primary findings follow: (i) similar to BatchNorm, activations-based
normalization layers can prevent exponential growth of activations in ResNets, but
parametric techniques require explicit remedies; (ii) use of GroupNorm can ensure
an informative forward propagation, with different samples being assigned dissimi-
lar activations, but increasing group size results in increasingly indistinguishable
activations for different samples, explaining slow convergence speed in models
with LayerNorm; and (iii) small group sizes result in large gradient norm in earlier
layers, hence explaining training instability issues in Instance Normalization and
illustrating a speed-stability tradeoff in GroupNorm. Overall, our analysis reveals
a unified set of mechanisms that underpin the success of normalization methods
in deep learning, providing us with a compass to systematically explore the vast
design space of DNN normalization layers.

1 Introduction

Normalization techniques are often necessary to effectively train deep neural networks (DNNs) [1, 2,
3]. Arguably, the most popular of these is BatchNorm [1], whose success can be attributed to several
beneficial properties that allow it to stabilize a DNN’s training dynamics: for example, ability to
propagate informative activation patterns in deeper layers [4, 5]; reduced dependence on initializa-
tion [6, 7, 8]; faster convergence via removal of outlier eigenvalues [9, 10]; auto-tuning of learning
rates [11], equivalent to modern adaptive optimizers [12]; and smoothing of loss landscape [13, 14].
However, depending on the application scenario, BatchNorm’s use can be of limited benefit or even
a hindrance: for example, BatchNorm struggles when training with small batch-sizes [3, 15]; in
settings with train-test distribution shifts, BatchNorm can undermine a model’s accuracy [16, 17]; in
meta-learning, it can lead to transductive inference [18]; and in adversarial training, it can hamper
accuracy on both clean and adversarial examples by estimating incorrect statistics [19, 20].

To either address specific shortcomings or to replace BatchNorm in general, several recent works
propose alternative normalization layers (interchangeably called normalizers in this paper). For
example, Brock et al. [23] propose to match BatchNorm’s forward propagation behavior in Residual
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(a) Non-Residual CNN with 10 layers (b) Non-Residual CNN with 20 layers

(c) ResNet-56 (without SkipInit [6]) (d) ResNet-56 (with SkipInit [6])

Figure 1: Each normalization method has its own success and failure modes. We plot training
curves (3 seeds) for different combinations of normalizer (see Table 1), network architecture, and
batch-size at largest stable initial learning rate on CIFAR-100. Learning rate is scaled linearly with
batch-size [21]. Layers for which loss reaches infinity are not plotted. Test curves and several other
settings are provided in the appendix. The plots show that all methods, including BatchNorm (BN),
have their respective success and failure modes: e.g., LayerNorm (LN) [2] often converges slowly
and Instance Normalization (IN) [22] can have unstable training with large depth or small batch-sizes.

networks [24] by replacing it with Scaled Weight Standardization [25, 26]. Wu and He [3] design
GroupNorm, a batch-independent method that groups multiple channels in a layer to perform
normalization. Liu et al. [27] use an evolutionary algorithm to search for both normalizers and
activation layers. Given the right training configuration, these works show their proposed normalizers
often achieve similar test accuracy to BatchNorm and even outperform it on some benchmarks. This
begs the question, are we ready to replace BatchNorm? To probe this question, we plot training curves
for models defined using different combinations of normalizer, network architecture, batch size, and
learning rate on CIFAR-100. As shown in Figure 1, clear trends begin to emerge. For example, we
see LayerNorm [2] often converges at a relatively slower speed; Weight Normalization [28] cannot
be trained at all for ResNets (with and without SkipInit [6]); Instance Normalization [22] results
in unstable training in deeper non-residual networks, especially with small batch-sizes. Overall,
evaluating hundreds of models in different settings, we see evident success/failure modes exist for all
normalization techniques, including BatchNorm.

As we noted before, prior works have established several properties to help explain such suc-
cess/failure modes for the specific case of BatchNorm. However, given the pursuit of alternative
normalizers in recent works, these properties need to be generalized so that one can accurately
determine how normalization techniques beyond BatchNorm affect DNN training. In this work, we
take a first step towards this goal by extending known properties of BatchNorm at initialization to
several alternative normalization techniques. As we show, these properties are highly predictive of a
normalizer’s influence on DNN training and can help ascertain exactly when an alternative technique
is capable of serving as a replacement for BatchNorm. Our contributions follow.

• Stable Forward Propagation: In Section 3, we show activations-based normalizers are provably
able to prevent exploding variance of activations in ResNets, similar to BatchNorm [5, 6]. Paramet-
ric normalizers like Weight Normalization [28] do not share this property; however, we explain
why architectural modifications proposed in recent works [6, 7] can resolve this limitation.

• Informative Forward Propagation: In Section 4, we first show the ability of a normalizer to
generate dissimilar activations for different inputs is a strong predictor of optimization speed. We
then extend a known result for BatchNorm to demonstrate the rank of representations in the deepest
layer of a Group-normalized [3] model is at least Ω(

√
width/Group Size). This helps us illustrate

how use of GroupNorm can prevent high similarity of activations for different inputs if the group
size is small, i.e., the number of groups is large. This suggests Instance Normalization [22] (viz.,
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GroupNorm with group size equal to 1) is most likely and LayerNorm [2] (viz., GroupNorm with
group size equal to layer width) is least likely to produce informative activations.

• Stable Backward Propagation: In Section 5, we show normalization techniques that rely on
individual sample and/or channel statistics (e.g., Instance Normalization [22]) suffer from an
exacerbated case of gradient explosion [29], often witnessing unstable backward propagation. We
show this behavior is mitigated by grouping of channels in GroupNorm, thus demonstrating a
speed–stability trade-off characterized by group size.

Related Work: Due to its ubiquity, past work has generally focused on understanding BatchNorm [5,
4, 6, 9, 10, 7, 13, 29, 30, 31]. A few works have studied LayerNorm [32, 33], due to its relevance in
natural language processing. In contrast, we try to analyze normalization methods in deep learning in a
general manner. As we show, we can identify properties in BatchNorm that readily generalize to other
normalizers and are often predictive of the normalizer’s impact on training. Our analysis is inspired
by a rich body of work focused on understanding randomly initialized DNNs [34, 35, 36, 37, 38].
Most related to us is the contemporary work by Labatie et al. [39], who analyze the impact of different
normalization layers on expressivity of activations and conclude LayerNorm leads to high similarity
of activations in deeper layers. As we discuss, this result is in fact a special case of our Claim 3.

2 Preliminaries: Normalization Layers for DNNs

Activations-Based Layers
µ{d} = µ{d}(A); σ{d} = σ{d}(A)

BN [1]
A−µ{b,x}
σ{b,x}

LN [2]
A−µ{c,x}
σ{c,x}

IN [22]
A−µ{x}
σ{x}

GN [3]
A−µ{c/g,x}
σ{c/g,x}

FRN [40] A
RMS{x}

VN [4] A
σ{b,x}

EvoBO [27] A
max{σ{b,x},v�A+σ{x}}

EvoSO [27] Aρ(v�A)
σ{c/g,x}

Parametric Layers
µ{d} = µ{d}(W); σ{d} = σ{d}(W)

WN [28] g W
||W||

SWS [23] g
W−µ{c,h,w}

σ{c,x}

Table 1: Operations performed by dif-
ferent normalizers. A denotes layer in-
put;W denotes incoming neuron weights
to a neuron.

We first clarify the notations and operations used by the
normalizers discussed in this work. Specifically, we de-
fine operators µ{d}(T ) and σ{d}(T ), which calculate the
mean and standard deviation of a tensor T along the di-
mensions specified by set {d}. ‖T ‖ denotes the `2 norm
of T . RMS{d}(T ) denotes the root mean square of T
along dimensions specified by set {d}. For example, for
a vector v ∈ Rn, we have RMS{1}(v) =

√∑
i v

2
i/n. We

assume the outputs of these operators broadcast as per
requirements. ρ(.) denotes the sigmoid function. We de-
fine symbols b, c, x to denote the batch, channel, and
spatial dimensions. For feature maps in a CNN, x will
include both the height and the width dimensions. The
notation c/g denotes division of c neurons (or channels)
into groups of size g. When grouping is performed, each
group is normalized independently.

Normalization Layers: We analyze ten normalization
layers in this work. These layers were chosen to cover a
broad range of ideas: e.g., activations-based layers [1, 40],
parametric layers [23, 28], hand-engineered layers [3],
AutoML designed layers [27], and layers [22, 2, 4] that
form building blocks of recent techniques [41].
1. Activations-Based Layers: BatchNorm (BN) [1], Layer-
Norm (LN) [2], Instance Normalization (IN) [22], GroupNorm (GN) [3], Filter Response Normaliza-
tion (FRN) [40], Variance Normalization (VN) [4], EvoNormBO [27], and EvoNoRMSO [27] fall in
this category. These layers function in the activation space. Note that Variance Normalization is an ab-
lation of BatchNorm that does not use the mean-centering operation. Typically, given activations AL
at layer L, these layers use an operation of the form Anorm = φ

(
γ

σ{d}(AL)
(AL − µ{d}(AL)) + β

)
).

Here, γ and β are learned affine parameters used for controlling quantities affected by the normaliza-
tion operations (such as mean, standard deviation, and RMS) and φ is a non-linearity, such as ReLU.
The exact operations for these layers, minus the affine parameters, are shown in Table 1.
2. Parametric Layers: Weight Normalization (WN) [28] and Scaled Weight Standardization
(SWS) [23] fall in this category. Table 1 shows the exact operations. These layers function in
the parameter space and act on a filter’s weights (W) to generate normalized weights (Wnorm). The
normalized weightsWnorm are used for processing the input: AL+1 = φ(Wnorm ∗ AL).
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3 Stable Forward Propagation

Stable forward propagation is a necessary condition for successful DNN training [36]. In this
section, we identify and demystify the role of normalization layers in preventing the problem of
exploding or vanishing activations during forward propagation. These problems can result in training
instability due to exploding or vanishing gradients during backward propagation [36, 38]. Building
on a previous study on BatchNorm, we first show that activations-based normalizers provably
avoid exponential growth of variance in ResNets1, ensuring training stability. Thereafter, we show
parametric normalizers do not share this property and ensuring stable training requires explicit
remedies.

3.1 Activations-Based Normalizers and Exponential Variance in Residual Networks

Hanin and Rolnick [38] show that for stable forward propagation in ResNets, the average variance of
activations should not grow exponentially (i.e., should not explode). Interestingly, Figure 1 shows
that all activations-based normalizers are able to train the standard ResNet [24] architecture stably.
For BatchNorm, this behavior is provably expected. Specifically, De and Smith [6] find that to ensure
variance along the batch-dimension is 1, BatchNorm rescales the Lth layer’s residual path output by a
factor of O (1/

√
L). This causes the growth of variance in a Batch-Normalized ResNet to be linear in

depth, hence avoiding exponential growth of variance in and ensuring effective training. We now
show this result can be extended to other normalization techniques too.
Claim 1. Similar to BatchNorm [6], GroupNorm [3] avoids exponential growth of variance in
ResNets, ensuring stable training.

Proof. We follow the same setup as De and Smith [6]. Assume the Lth residual path (fL) is
processed by a normalization layer N , after which it combines with the skip connection to
generate the next output: yL = yL−1 + N (fL(yL−1)). The covariance of layer input and
Residual path’s output is assumed to be zero. Hence, the output’s variance is: Var(yL) =
Var(yL−1) + Var(N (fL(yL−1))). Now, assume GroupNorm with group size G is used for nor-
malizing the D-dimensional activation signal, i.e., N = GN(.). This implies for the gth group,
σg,x(GN(fL(yL−1))) = 1. Then, for a batch of size N , denoting the ith sample activations as
y
(i)
L , and using (y

(i)
L )j to index the activations, we note the residual output’s variance averaged

along the spatial dimension is: 〈Var(N (fL(yL−1))〉 = 1
D

∑D
j=1( 1

N

∑N
i=1(GN(fL(y

(i)
L−1))j)2) =

1
N

∑N
i=1( 1

D

∑D
j=1(GN(fL(yL−1)(i))j)2) = 1

N

∑N
i=1

G
D (
∑D/G
g=1(σg,x(GN(fL(yL−1)(i))))2) = 1.

Overall, this implies 〈Var(yL)〉 = 〈Var(yL−1)〉 + 1. Recursively applying this relationship for
a bounded variance input, we see average variance at the Lth layer is in O(L). Thus, similar to
BatchNorm, use of GroupNorm will enable stable forward propagation in ResNets by ensuring signal
variance grows linearly with depth.

Figure 2: Activations-based normaliz-
ers ensure linear and stable forward
propagation, verifying Claim 1. Ac-
tivation Variance (Activ. Var.) as a
function of layer number in a ResNet-
56 [24] processing CIFAR-100 samples.

To understand the relevance of the above result, note that
for G = 1, GroupNorm is equal to Instance Normaliza-
tion [22] and for G = D, GroupNorm is equal to Lay-
erNorm [2]. Further, since the mean of the signal is as-
sumed to be zero, the average variance along the spatial
dimension is equal to the RMSx operation used by Filter
Response Normalization [40]. Thus, by proving the above
result for GroupNorm, we are able to show alternative
activations-based normalizers listed in Table 1 also avoid
the exponential growth of activation variance in ResNets.

We show empirical demonstrations of Claim 1 in Fig-
ure 2, where the average activation variance is plotted for
a ResNet-56. As can be seen, for all activations-based nor-
malizers, the growth of variance is linear in the number of
layers. At the end of a Residual module, which spatially
downsamples the signal, the variance plummets. However,

the remaining layers follow a pattern of linear growth, as expected by our result. We note our
1The case of non-residual networks is discussed in appendix. In brief, most normalizers help avoid explod-

ing/vanishing activations by enforcing unit activation variance in the batch, channel, or spatial dimensions.

4



ReLU

Conv

YL-1

N(.)
Residual
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(a) Standard ResNet

ReLU
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YL-1

N(.)
Residual
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α (=0 at init)

(b) SkipInit

Conv

YL-1

N(.)
Residual

Skip

ReLU α (=0 at init)

(c) Non-Linearity on Residual Path

Figure 3: Parametric normalizers witness exponentially growing variance, verifying Claim 2,
but we can stabilize it by modifying the residual-path. We plot log activation variance as a function
of layer number in a randomly initialized ResNet-56 [24], using CIFAR-100 samples, with Scaled
Weight Standardization (SWS) [23] and Weight Normalization (WN) [28] for different architectures
(simplified illustrations provided on top). (a) Standard ResNet: Both SWS and WN witness variance
explosion in a standard ResNet model, as claimed in Claim 2. (b) SkipInit: SkipInit [6] multiplies
the residual signal with a scalar α initialized as zero, thus preventing variance explosion in an SWS
model at initialization. Meanwhile, by scaling the non-linearity after addition, a WN model continues
to witness exploding variance. (c) Non-Linearity on Residual Path: Shifting the non-linearity to the
residual path prevents variance explosion in both WN and SWS models.

theory does not apply to EvoNorms, which are designed via AutoML. However, empirically, we
see EvoNorms also avoid exponential growth of variance in ResNets. Thus, our analysis shows,
all activations-based normalizers in Table 1 share the beneficial property of stabilizing forward
propagation in ResNets, similar to BatchNorm.

3.2 Parametric Normalizers and Exploding Variance in Residual Networks

By default, parametric normalizers such as Weight Normalization [28] and Scaled Weight Standard-
ization [23] do not preserve the variance of a signal during forward propagation, often witnessing
vanishing activations. To address this limitation, properly designed output scale and bias corrections
are needed. Specifically, for Weight Normalization and ReLU non-linearity, Arpit et al. [42] show
the output should be modified as follows: AL+1 =

√
2π/π−1(φ(Wnorm ∗ AL)−

√
1/2π). For Scaled

Weight Standardization, only output scaling is needed [23]: AL+1 = φ(
√

2π/π−1Wnorm ∗ AL).

In Figure 1, ResNet training curves for Weight Normalization [28] and Scaled Weight Standardiza-
tion [23] were not reported as the loss diverges to infinity. As we explain in the following, this is a
result of using correction factors designed to enable variance preservation in non-residual networks.
Claim 2. Unlike BatchNorm [6], Weight Normalization [28] and Scaled Weight Standardization [23]
witness unstable training due to exponential growth of variance in standard ResNets [24].

Proof. Using the correction factors above, both Weight Normalization and Scaled Weight Standardiza-
tion will ensure signal variance is preserved on the residual path: Var(N (f(yL−1))) = Var(yL−1).
Thus, using these methods, the output variance at layer L becomes: Var(yL) = Var(yL−1) +
Var(N (f(yL−1))) = 2 Var(yL−1). Recursively applying this relationship for a bounded variance
input, we see signal variance at the Lth layer is in O(2L). Thus, Weight Normalization and Scaled
Weight Standardization witness exponential growth in variance.

More generally, the above result shows if the residual path is variance preserving, ResNets will
witness exploding variance with growing depth. Prior works [43, 5, 8, 6, 7, 44] have noted this result
in the context of designing effective ResNet initializations. Here, we extended this result to show why
Weight Normalized and Scaled Weight Standardized ResNets undergo unstable forward propagation.
Empirical demonstration is provided in Figure 3a.

In their work introducing Scaled Weight Standardization [23], Brock et al. are able to circumvent
exponential growth in variance by using SkipInit [6]. Specifically, inspired by the fact that BatchNorm
biases Residual paths to identity functions, De and Smith [6] propose SkipInit, which multiplies the
output of the residual path by a learned scalar α that is initialized to zero. This suppresses the Residual
path’s contribution, hence avoiding exponential growth in variance (see Figure 3b). Interestingly, even
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Figure 4: Modified residual-path allows for successful training with parametric layers. We plot
train/test accuracy (over 3 seeds) for ResNet-56 architecture on CIFAR-100 with non-linearity located
on the residual path. We see parametric normalizers can train effectively if scaled non-linearities are
not located after the addition operation in a ResNet.

after using SkipInit, we find Weight Normalized ResNets witness variance explosion (see Figure 3b).
To explain this behavior, we note that in the standard ResNet architecture, the non-linearity is located
after the addition operation of skip connection and the residual path’s signals (see Figure 3a). Thus,
even if SkipInit is used to suppress the residual path, the non-linearity will still be applied to the
skip connections. Since the scale correction for Weight Normalization (

√
2π/π−1) is greater than 1,

this implies the signal output is amplified at every layer to preserve signal variance; however, since
convolutions are absent on the skip path, signal variance never decays. Consequently, variance is
only amplified, causing the variance to increase exponentially in the number of layers (see Figure 3b).

Training ResNets with Weight Normalization: The above discussion shows that for Weight Nor-
malization, since the output has to be scaled-up to preserve signal variance, standard ResNets [24]
witness exploding activations. This also hints at a solution: place the non-linearity on the Residual
path. This modification (see Figure 3c) in fact results in one of the architectures proposed by He
et al. in their original work on ResNets [45]. We verify the effectiveness of this modification in
Figure 3c. As can be seen, the signal variance in a Weight Normalized ResNet stays essentially
constant for this architecture. Furthermore, we show in Figure 4 that these models are able to
match BatchNorm in performance for several training configurations. In general, our discussion here
explains the exact reasons why architectures with non-linearity on residual path are better suited for
parametric normalizers. Finally, we note that another ResNet architecture which boasts non-linearity
on residual paths is pre-activation ResNets [45]. In their experimental setup for designing Scaled
Weight Standardization [23], Brock et al. specifically focused on pre-activation ResNets [45]. This is
another reason why the problem of exploding activations does not surface in their work.

4 Informative Forward Propagation

Proper magnitude of activations is a necessary, but not sufficient, condition for successful training.
Here, we study another failure mode for forward propagation, rank collapse, where activations for
different input samples become indistinguishably similar in deeper layers. This can significantly slow
training as the gradient updates no longer reflect information about the input data [4]. To understand
this problem’s relevance, we first show why the ability to generate dissimilar activations is useful in the
context of normalization methods for deep learning. Specifically, given a randomly initialized network
that uses a specific normalizer, we relate its average cosine similarity of activations at the penultimate

layer (i.e., layer before the linear classifier) with its mean training accuracy (=
∑# of epochs
i=1 Train Acc.[i]

# of epochs , a
measure of optimization speed [46]). Results for three different architectures (Non-Residual CNN
with 10 layers and 20 layers as well as ResNet-56 without SkipInit) are shown in Figure 5. As can be
seen, the correlation between mean training accuracy and the average cosine similarity of activations
is high. In fact, for any given network architecture, one can predict which normalizer will enable the
fastest convergence without even training the model. This shows normalizers which result in more
dissimilar representations at initialization are likely to be more useful for training DNNs.

We now note another interesting pattern in Figure 5: LayerNorm results in highest similarity of
activations for any given architecture. To explain this, we again revisit known properties of Batch-
Norm. As shown by Daneshmand et al. [4, 47], BatchNorm provably ensures activations generated
by a randomly initialized network have high rank, i.e., different samples have sufficiently different
activations. To derive this result, the authors consider activations for N samples at the penultimate
layer, Y ∈ Rwidth×N , and define the covariance matrix Y Y T , whose rank is equal to that of the
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(a) Stable rank vs. group size. (b) Layer-wise Cosine Similarity.

Figure 6: The smaller the group size, the higher the rank of the activations, verifying Claim 3
(a) We plot stable rank of activations at the penultimate layer for random Gaussian inputs. As
proposed in Claim 3, we find a perfect linear fit between stable rank and values of

√
Width/Group Size

for different group sizes. (b) Implications of Claim 3 on CIFAR-100 sampels: by increasing group
size (constant across layers), we see similarity of features at any given layer increases. This shows
LayerNorm [2] cannot generate informative features, thus witnessing slow convergence (see Figure 5).

similarity matrix Y TY . The authors then show that in a zero-mean, randomly initialized network
with BatchNorm layers, the covariance matrix will have a rank at least as large as Ω(

√
width). That

is, there are at least Ω(
√

width) distinct directions that form the basis of the similarity matrix, hence
indicating the model is capable of extracting informative activations. In the following, we propose a
claim that extends this result to activations-based normalizers beyond BatchNorm.

Claim 3. For a zero-mean, randomly initialized network with GroupNorm [3] layers, the penultimate
layer activations have a rank of at least Ω(

√
width/Group Size), where width denotes the layer-width

(e.g., number of channels in a CNN).

Figure 5: Informative forward
propagation results in faster opti-
mization. We plot mean training

accuracy (=
∑# of epochs
i=1 Train Acc.[i]

# of epochs ) on
CIFAR-100 vs. average cosine simi-
larity at initialization. As shown, nor-
malizers which induce dissimilar ac-
tivations converge faster. Instance
Normalization was removed due to
training instability (see Section 5).

The intuition behind the above claim is based on the proof
by Daneshmand et al. [4]. In their work, the authors extend a
prior result from random matrix theory which suggests multi-
plication of several zero-mean, randomly initialized gaussian
matrices will result in a rank-one matrix [10]. The use of
BatchNorm ensures that on multiplication with a randomly
initialized weight matrix, the values of on-diagonal elements
of the covariance matrix Y Y T are preserved, while the off-
diagonal elements are suppressed. This leads to a lower bound
of the order of Ω(

√
width) on the stable rank [48] of the co-

variance matrix. Now, if one directly considers the similarity
matrix Y TY and uses GroupNorm instead of BatchNorm,
then a similar preservation and suppression of on- and off-
diagonal matrix blocks should occur. Here, the block size
will be equal to the Group size used for GroupNorm. This
indicates the lower bound is in Ω(

√
width/Group Size).

We provide demonstration of this claim in Figure 6a. We use
a similar setup as Daneshmand et al. [4], randomly initializ-
ing a CNN with constant layer-width (64) and 30 layers. A
GroupNorm layer is placed before every ReLU layer and the
group size is sweeped from 1 to 64. As seen in Figure 6a, we
find a perfect linear fit between the stable rank and the value
of
√

width/Group Size, validating our claim empirically as well.

To understand the significance of Claim 3, note that the result
shows if the group size is large, then use of GroupNorm
cannot prevent collapse of representations (i.e., cannot result
in informative activations). To demonstrate this effect, we calculate the mean cosine similarity of
activations between different samples of a randomly initialized network that uses GroupNorm. We
sweep the group size from layer-width to 1, thus covering the spectrum from LayerNorm (Group Size
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= layer-width) to Instance Normalization (Group Size = 1). We analyze both a non-residual CNN with
20 layers and a ResNet-56. Results are shown in Figure 6b and confirm our claim that by grouping the
entire layer for normalization, LayerNorm results in highly similar activations. This explains the slow
convergence behavior of LayerNorm in Figure 5. Meanwhile, if we reduce the group size, similarity
of representations decreases as well, indicating generation of informative activations. This shows
use of GroupNorm with group size greater than layer-width can help prevent a collapse of features
onto a single representation. Importantly, this result helps explain why GroupNorm can serve as a
successful replacement for BatchNorm in similarity based self-supervised learning frameworks [49],
which often witness representation collapse issues [50]. Similar to BatchNorm, GroupNorm helps
discriminate between representations of different inputs, helping avoid a collapse of representations.

5 Stable Backward Propagation

Taking the results of Section 4 to the extreme should imply Instance Normalization (i.e., Group Size
= 1) is the best configuration for GroupNorm, but as we noted in Figure 1, Instance Normalization
witnesses unstable training. To explain this, we describe a “speed-stability” trade-off in GroupNorm
in the next section by extending the property of gradient explosion in BatchNorm to alternative
normalization layers. Specifically, Yang et al. [29] recently show that gradient norm in earlier layers
of a randomly-initialized BatchNorm network increases exponentially with increasing model depth
(see Figure 8). This shows the maximum depth of a model trainable with BatchNorm is finite. The
theory leading to this result is quite involved, but a much simpler analysis can not only explain this
phenomenon accurately, but also illustrate the existence of gradient explosion in alternative layers.

Gradient explosion in BatchNorm: Following Luther [51], we analyze the origin of gradient
explosion based on the expression of gradient backpropagated through a BatchNorm layer. We
calculate the gradient of loss w.r.t. activations at layer L, denoted as YL ∈ RdL×N . We define two
sets of intermediate variables: (i) pre-activations, generated by weight multiplication,XL = WLYL−1
and (ii) normalized pre-activations, generated by BatchNorm, X̂L = BN(XL) = γ

σ{N}(XL)
(XL −

µ{N}(XL)) + β. Under these notations, the gradient backpropagated from layer L to layer L− 1 is
(see appendix for derivation): ∇YL−1

(J) = γ
σ{N}(XL)

WT
L P [∇X̂L

(J)]. Here P is a composition

of two projection operators: P[Z] = P⊥1N [P⊥Ob(X̂L/
√
N)

[Z]]. The operator P⊥Ob(X̂L/
√
N)

[Z] = Z −
1
N diag(ZX̂T

L)X̂L subtracts its input’s component that is inline with the BatchNorm outputs via
projection onto the Oblique manifold diag( 1

N X̂LX̂
T
L) = diag(1). Similarly, P⊥1 [Z] = Z(I −

1
N 1N1TN ) mean-centers its input along the batch dimension via projection onto 1N ∈ RN .

Figure 7: Gradient norm vs.
pre-activation statistics. We
see high correlation between gra-
dient norm and inverse product
of layer-wise pre-activation std.
deviations.

Notice that at initialization, the gradient is unlikely to have a
large component along specific directions such as the all-ones
vector (1) or the oblique manifold defined by X̂L. Thus, the gra-
dient norm will remain essentially unchanged when propagating
through the projection operation (P). However, the next opera-
tion, multiplication with γ

σ{N}(XL)
(= 1

σ{N}(XL)
at initialization)

will re-scale the gradient norm according to the standard devia-
tion of pre-activations along the batch dimension. As shown by
Luther [51], for a standard, zero-mean Gaussian initialization, the
pre-activations have a standard deviation equal to

√
π−1/π < 1.

Thus, at initialization, the division by standard deviation operation
amplifies the gradient during backward propagation. For each
BatchNorm layer in the model, such an amplification of the gra-
dient will take place, hence resulting in an exponential increase
in the gradient norm at earlier layers. Overall, our analysis exposes an interesting tradeoff in Batch-
Norm: Divison by standard deviation during forward propagation, which is important for generating
dissimilar activations [4], results in gradient explosion during backward propagation, critically
limiting the maximum trainable model depth! Empirically, the above analysis is quite accurate near
initialization. For example, in Figure 7, we show that the correlation between the norm of the gradient
at a layer (‖∇YL

(J)‖) and the inverse product of standard deviation of the pre-activations of layers
ahead of it (ΠL+1

l=10
1/σ{N}(XL)) remains very high (0.6–0.9) over the first few hundred iterations in a

10-layer CNN trained on CIFAR-100.
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Figure 8: Small group size increases gradient explosion, verifying Claim 4. We use CIFAR-
100 samples and plot layer-wise gradient norm for different models and batch sizes. As shown,
Instance Normalization [22] undergoes highest gradient explosion, followed by BatchNorm [1],
GroupNorm [3], and LayerNorm [2] in all settings.

Gradient Explosion in Other Normalizers: We now extend the phenomenon of gradient explosion
to other normalizers. The primary idea is that since all activation-based normalizers have a gradient
expression similar to BatchNorm (i.e., projection followed by division by standard deviation), they
all re-scale the gradient norm during backprop. However, the statistic used for normalization varies
across normalizers, resulting in different severity of gradient explosion.

Claim 4. For a given set of pre-activations, the backpropagated gradient undergoes higher average
amplification through an Instance Normalization layer [22] than through a BatchNorm layer [1].
Further, GroupNorm [3] witnesses lesser gradient explosion than both these layers.

Proof. The gradient backpropagated through the gth group in a GroupNorm layer with group-size
G is expressed as: ∇Yg

L−1
(J) = γ

σ{g}(X
g
L)
WT
L P [∇X̂g

L
(J)] (see appendix for derivation). Here, P

is defined as: P[Z] = P⊥1 [P⊥S(X̂L/√G) [Z]], where P⊥S(X̂L/√G)[Z] = (I − 1
GX̂

g
LX̂

g T
L )Z. That is, the

component of gradient inline with the normalized pre-activations will be removed via projection
onto the spherical manifold defined by ||X̂g

L|| =
√
G. As can be seen, the gradient expressions

for GroupNorm and BatchNorm are very similar. Hence, the discussion for gradient explosion in
BatchNorm directly applies to GroupNorm as well. This implies, when Instance Normalization is
used in a CNN, the gradient norm for a given channel c and the ith sample is amplified by the factor

1
σ{x}(X

c
L,i)

(inverse of spatial standard deviation). Then, over N samples, using the arithmetic-mean
≥ harmonic-mean inequality, we see the average gradient amplification in Instance Normalization is
greater than gradient amplification in BatchNorm: 1

N

∑
i

1
σ2
{x}(X

c
L,i)
≥ N∑

i σ
2
{x}(X

c
L,i)

= 1
σ2
{N}(XL)

.

Similarly applying arithmetic-mean ≥ harmonic-mean for a given sample and the gth group, we
see average gradient amplification in Instance Normalization is greater than gradient amplification
in GroupNorm: 1

G

∑
c

1
σ2
{x}(X

g,c
L )
≥ G∑

c σ
2
{x}(X

g,c
L )

= 1
σ2
{g}(XL)

. Extending this last inequality by

averaging over N samples, we see average gradient amplification in GroupNorm is lower than that in
BatchNorm. This implies grouping of neurons in GroupNorm helps reduce gradient explosion.
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Figure 9: Speed–Stability trade-
off in GroupNorm using 20-layer
CNNs with batch-size 256 on
CIFAR-100. We see increasing
group size decreases gradient explo-
sion (improved training stability) at
the expense of high activation simi-
larity (reduced optimization speed).

We show empirical verification of Claim 4 in Figure 8. As
can be seen, the gradient norm in earlier layers follows the
order Instance Normaliation ≥ BatchNorm ≥ GroupNorm ≥
LayerNorm, as proved in Claim 4. Further, since increasing
depth implies more normalization operations, we see gradi-
ent explosion increases as depth increases. Similarly, since
reducing batch-size increases gradient noise, we find gradient
explosion increases with decrease in batch-size as well.

Speed–stability trade-off in GroupNorm: Combined with
Section 4, our discussion in this section helps identify a speed–
stability trade-off in GroupNorm. Specifically, we find that
while GroupNorm with group size equal to 1 (viz., Instance
Normalization) results in more diverse features (see Claim 3),
it is also more susceptible to gradient explosion and hence sees
training instability for small batch-sizes/large model depth
(see Figure 1). Meanwhile, when group size is equal to layer-
width (viz., LayerNorm), gradient explosion can be avoided,
but the model is unable to generate informative activations
and thus witnesses slower optimization. Combining these
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results demonstrates that the group size in GroupNorm ensues a trade-off between high similarity
of activations (influences training speed) and gradient explosion (influences training stability). To
illustrate this trade-off, we can estimate training instability by fitting an exponential curve to layerwise
gradient norms (measures degree of gradient explosion) and estimate training speed by calculating
cosine similarity of activations at the penultimate layer at initialization (highly correlated with training
speed; see Figure 6). Results are shown in Figure 9. We see increasing group size clearly trades-off
the two properties related to training speed and stability, with a moderately large group size resulting
in best performance. In fact, we see test accuracy is highest exactly at this point of intersection in
the trade-off. This explains the success of channel grouping in GroupNorm and other successful
batch-independent normalization layers like EvoNormSO [27]. Interestingly, these results also help
explain why in comparison to BatchNorm, which suffers from gradient explosion and exacerbates the
problem of high gradient variance in non-IID Federated learning setups [52, 53], use of GroupNorm
with a properly tuned group-size helps achieve better performance [52, 54].

6 Discussion and Limitations

Discussion: As the number of deep learning architectures continues to explode, the use of normaliza-
tion layers is becoming increasingly common. However, past works provide minimal insight into
what makes normalization layers beyond BatchNorm (un)successful. Our work acts as a starting
point to bridge this gap. Specifically, we extend known results on benefits/limitations of BatchNorm
to recently proposed normalization layers and provide a thorough characterization of their behavior
at initialization. This generalized analysis provides a compass that can help systematically infer
which normalization layer is most appealing under the constraints imposed by a given application,
reducing reliance on empirical benchmarking. Moreover, since our results show phenomenon used
to explain BatchNorm’s success exist in alternative normalizers as well, we argue the success of
BatchNorm requires further characterization. Our work also opens avenues for several new fronts of
research. For example, in Section 4 we demonstrated that a normalization layer’s impact on similarity
of activations accurately predicts resulting optimization speed. As shown in a contemporary work by
Boopathy and Fiete [55], the weight update dynamics of a neural network are in fact guided by the
matrix defining similarity of activations. Beyond providing grounding to our observation, their results
indicate that relating design choices in neural network development with similarity of activations can
help optimize their values. Indeed, a recent method for neural architecture search directly utilizes the
similarity of activations to design “good” architectures [56].

Limitations: In this work, we limit our focus to discriminative vision applications. We highlight that
nine out of ten normalizers studied in this work were specifically designed for this setting and we
indeed find that all our analyzed properties show predictive control over the final performance of a
model in discriminative vision tasks, generalizing across multiple network architectures. However,
extending our work to develop similar analyses in other contexts such as NLP will be very useful.
The primary hurdle is that for different data modalities, the standard architecture families and their
corresponding optimization difficulties vary widely. For example, in both LSTM and transformer
architectures, an often noted training difficulty arises from large gradient norms, which can result in
divergent training or training restarts [57, 58]. In fact, optimizers in existing NLP frameworks have
gradient clipping enabled by default to avoid this problem [59]. Beyond large gradients, unbalanced
gradients are also known to be a training difficulty in NLP architectures [60]. We think a thorough
treatment of the role of normalization layers in addressing these problems will be very valuable and
leave it for future work.
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Normalization Help Optimization? In Proc. Adv. in Neural Information Processing Systems
(NeurIPS), 2018.

[14] Hongwei Yong, Jianqiang Huang, Xiansheng Hua, and Lei Zhang. Gradient Centralization: A
New Optimization Technique for Deep Neural Networks. In Proc. European Conf. on Computer
Vision (ECCV), 2020.

[15] Sergey Ioffe. Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-
Normalized Models. In Proc. Adv. in Neural Information Processing Systems (NeurIPS),
2017.

[16] Cecilia Summers and Michael J. Dinneen. Four Things Everyone Should Know to Improve
Batch Normalization. In Proc. Int. Conf. on Learning Representations (ICLR), 2020.

[17] Ximei Wang, Ying Jin, Mingsheng Long, Jianmin Wang, and Michael I. Jordan. Transferable
Normalization: Towards Improving Transferability of Deep Neural Networks. In Proc. Adv. in
Neural Information Processing Systems (NeurIPS), 2020.

[18] John Bronskill, Jonathan Gordon, James Requeima, Sebastian Nowozin, and Richard E. Turner.
TaskNorm: Rethinking Batch Normalization for Meta-Learning. In Proc. Int. Conf. on Machine
Learning (ICML), Jul 2020.

[19] Angus Galloway, Anna Golubeva, Thomas Tanay, Medhat Moussa, and Graham W. Taylor.
Batch Normalization is a Cause of Adversarial Vulnerability. arXiv, abs/1905.02161, 2019.

11



[20] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L. Yuille, and Quoc V. Le.
Adversarial Examples Improve Image Recognition. In Proc. Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2020.

[21] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour. In Proc. Int. Conf. on Computer Vision and Pattern Recognition (CVPR),
2018.

[22] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance Normalization: The
Missing Ingredient for Fast Stylization. arXiv, abs/1607.08022, 2016.

[23] Andrew Brock, Soham De, and Samuel L Smith. Characterizing signal propagation to close the
performance gap in unnormalized ResNets. In Proc. Int. Conf. on Learning Representations
(ICLR), 2021.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proc. Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.

[25] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Micro-Batch Training with
Batch-Channel Normalization and Weight Standardization. arXiv, abs/1903.10520, 2019.

[26] Lei Huang, Xianglong Liu, Yang Liu, Bo Lang, and Dacheng Tao. Centered Weight Normaliza-
tion in Accelerating Training of Deep Neural Networks. In Proc. Int. Conference on Computer
Vision (ICCV), 2017.

[27] Hanxiao Liu, Andrew Brock, Karen Simonyan, and Quoc V. Le. Evolving Normalization-
Activation Layers. In Proc. Adv. in Neural Information Processing Systems (NeurIPS), 2020.

[28] Tim Salimans and Diederik P. Kingma. Weight Normalization: A Simple Reparameterization to
Accelerate Training of Deep Neural Networks. In Proc. Int. Conf. on Learning Representations
(ICLR), 2016.

[29] Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S. Schoenholz.
A Mean Field Theory of Batch Normalization. In Int. Conf. on Learning Representations
(ICLR), 2019.

[30] Yuxin Wu and Justin Johnson. Rethinking “Batch” in BatchNorm. arXiv preprint
arXiv:2105.07576, 2021.

[31] Vinay Rao and Jascha Sohl-Dickstein. Is Batch Norm unique? An empirical investigation and
prescription to emulate the best properties of common normalizers without batch dependence.
arXiv, abs/2010.10687, 2020.

[32] Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding
and Improving Layer Normalization. In Proc. Adv. in Neural Information Processing Systems
(NeurIPS), 2019.

[33] Sheng Shen, Zhewei Yao, Amir Gholami, Michael Mahoney, and Kurt Keutzer. Powernorm:
Rethinking batch normalization in transformers. In ICML, 2020.

[34] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proc. Int. Conf. on Artificial Intelligence and Statistics (AISTATS), 2010.

[35] Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. Resurrecting the sigmoid
in deep learning through dynamical isometry: theory and practice. In Proc. Adv. in Neural
Information Processing Systems (NeurIPS), 2017.

[36] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep Infor-
mation Propagation. In Proc. Int. Conf. on Learning Representations (ICLR), 2017.

[37] Antoine Labatie. Characterizing Well-Behaved vs. Pathological Deep Neural Networks. In
Proc. Int. Conf. on Machine Learning (ICML), Jul 2019.

12



[38] Boris Hanin and David Rolnick. How to Start Training: The Effect of Initialization and
Architecture. In Proc. Adv. in Neural Information Processing Systems (NeurIPS), 2018.

[39] Antoine Labatie, Dominic Masters, Zach Eaton-Rosen, and Carlo Luschi. Proxy-Normalizing
Activations to Match Batch Normalization while Removing Batch Dependence. arXiv preprint
arXiv:2106.03743, 2021.

[40] Saurabh Singh and Shankar Krishnan. Filter Response Normalization Layer: Eliminating Batch
Dependence in the Training of Deep Neural Networks. In Proc. Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2019.

[41] Ping Luo, Peng Zhanglin, Shao Wenqi, Zhang Ruimao, Ren Jiamin, and Wu Lingyun. Dif-
ferentiable Dynamic Normalization for Learning Deep Representation. In Proc. Int. Conf. on
Machine Learning (ICML), June 2019.

[42] Devansh Arpit, Yingbo Zhou, Bhargava Kota, and Venu Govindaraju. Normalization Propa-
gation: A Parametric Technique for Removing Internal Covariate Shift in Deep Networks. In
Proc. Int. Conf. on Machine Learning (ICML), Jul 2016.

[43] Masato Taki. Deep Residual Networks and Weight Initialization. arXiv, abs/1709.02956, 2017.

[44] Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, and Jitendra Malik. Deep Isometric Learning
for Visual Recognition. In Proc. Int. Conf. on Machine Learning (ICML), Jul 2020.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity Mappings in Deep Residual
Networks. In Proc. European Conf. on Computer Vision (ECCV), 2016.

[46] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer
learning? In Proc. Adv. in Neural Information Processing Systems (NeurIPS), 2020.

[47] Hadi Daneshmand, Amir Joudaki, and Francis Bach. Batch Normalization Orthogonalizes
Representations in Deep Random Networks. arXiv preprint arXiv:2106.03970, 2021.

[48] Joel A. Tropp. An Introduction to Matrix Concentration Inequalities. arXiv, abs/1501.01571,
2015.

[49] Pierre Richemond, Jean-Bastien Grill, Florent Altché, Corentin Tallec, Florian Strub, Andrew
Brock, Samuel Smith, Soham De, Razvan Pascanu, Bilal Piot, and Michal Valko. BYOL works
even without batch statistics. arXiv preprint arXiv:2010.10241, 2020.

[50] Xinlei Chen and Kaiming He. Exploring Simple Siamese Representation Learning. arXiv
preprint arXiv:2011.10566, 2020.

[51] Kyle Luther. Why Batch Norm Causes Exploding Gradients. https://kyleluther.github.
io/2020/02/18/batchnorm-exploding-gradients.html, 2020. Blogpost.

[52] Zhengming Zhang, Yaoqing Yang, Zhewei Yao, Yujun Yan, Joseph Gonzalez, and Michael
Mahoney. Improving Semi-supervised Federated Learning by Reducing the Gradient Diversity
of Models. arXiv preprint arXiv:2008.11364, 2020.

[53] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Aguera
y Arcas, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh
Data, Suhas Diggavi, Hubert Eichner, Advait Gadhikar, Zachary Garrett, Antonious M. Girgis,
Filip Hanzely, Andrew Hard, Chaoyang He, Samuel Horvath, Zhouyuan Huo, Alex Ingerman,
Martin Jaggi, Tara Javidi, Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konecny,
Sanmi Koyejo, Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi, Sashank J. Reddi, Peter Richtarik,
Karan Singhal, Virginia Smith, Mahdi Soltanolkotabi, Weikang Song, Ananda Theertha Suresh,
Sebastian U. Stich, Ameet Talwalkar, Hongyi Wang, Blake Woodworth, Shanshan Wu, Felix X.
Yu, Honglin Yuan, Manzil Zaheer, Mi Zhang, Tong Zhang, Chunxiang Zheng, Chen Zhu, and
Wennan Zhu. A Field Guide to Federated Optimization. arXiv preprint arXiv:2107.06917,
2021.

[54] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The Non-IID Data Quagmire
of Decentralized Machine Learning. In Proc. Int. Conf. on Machine Learning (ICML), Jul 2020.

13

https://kyleluther.github.io/2020/02/18/batchnorm-exploding-gradients.html
https://kyleluther.github.io/2020/02/18/batchnorm-exploding-gradients.html


[55] Akhilan Boopathy and Ila Fiete. Gradient-trained Weights in Wide Neural Networks Align
Layerwise to Error-scaled Input Correlations. arXiv preprint arXiv:2106.08453, 2021.

[56] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot Crowley. Neural Architecture Search
without Training. In Proc. Int. Conf. on Machine Learning (ICML), Jul 2021.

[57] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accel-
erates training: A theoretical justification for adaptivity. In Proc. Int. Conf. on Learning
Representations (ICLR), 2020.

[58] Xinlei Chen, Saining Xie, and Kaiming He. An Empirical Study of Training Self-Supervised
Vision Transformers. In Proc. Int. Conf. on Computer Vision (ICCV), 2021.

[59] HuggingFace. Why is grad norm clipping done during train-
ing by default? https://discuss.huggingface.co/t/
why-is-grad-norm-clipping-done-during-training-by-default/1866, 2020.
Discussion forum.

[60] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the
Difficulty of Training Transformers. In Proc. Conf. on Empirical Methods in Natural Language
Processing (EMNLP), April 2020.

14

https://discuss.huggingface.co/t/why-is-grad-norm-clipping-done-during-training-by-default/1866
https://discuss.huggingface.co/t/why-is-grad-norm-clipping-done-during-training-by-default/1866

	Introduction
	Preliminaries: Normalization Layers for DNNs
	Stable Forward Propagation
	Activations-Based Normalizers and Exponential Variance in Residual Networks
	Parametric Normalizers and Exploding Variance in Residual Networks

	Informative Forward Propagation
	Stable Backward Propagation
	Discussion and Limitations

