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Abstract
Nowadays, Large Language Models (LLMs)
mostly possess billions of parameters, bringing
significant challenges to hardware platforms. Al-
though quantization is an efficient approach to
reduce computation and memory overhead for in-
ference optimization, we stress the challenge that
mainstream low-bit quantization approaches still
suffer from either various data distribution out-
liers or a lack of hardware efficiency. We also
find that low-bit data format has further potential
expressiveness to cover the atypical language data
distribution. In this paper, we propose a novel nu-
merical representation, Bi-Exponent Block Float-
ing Point (BiE), and a new quantization flow. BiE
quantization shows accuracy superiority and hard-
ware friendliness on various models and bench-
marks.

1. Introduction
Large language models (LLMs) (Brown et al., 2020; Zhang
et al., 2022a) exhibit superior efficacy in a multitude of tasks
within the domain of natural language processing (NLP).
Furthermore, LLMs’ remarkable language comprehension
capabilities can be effectively extended to multi-modal tasks
(Liu et al., 2023; Li et al., 2023). Nevertheless, LLMs’ com-
putational and memory requirements are significant factors
that affect their sustained use and further development. For
example, the GPT-3 model (Brown et al., 2020), which con-
tains 175B parameters, requires 350GB memory to load and
at least 5×A100-80G GPUs for inference.

The importance of model compression techniques for ef-
ficient large model deployment is increasing (Han et al.,
2015; Hinton et al., 2015). Among these techniques, quanti-
zation (Jacob et al., 2018) has surfaced as a prevalent and
fundamental methodology for model compression. Quan-
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Figure 1. Normalized value distribution of input activations in one
Linear Layer of OPT-66B model. Integer quantization may not
cover outliers due to limited value range. Floating Point may result
in redundant bit number and complex calculation.

tizing the weight and activation into a lower-bit numerical
representation format can reduce the memory footprint and
computational overhead.

Benefiting from GPU native support, fixed point quanti-
zation like INT8 is the mainstream for prior quantization
works. Moreover, due to limited value range of INT type,
some choose different scaling factors at a finer granularity
than per-tensor or per-token level (Dettmers et al., 2022; Yao
et al., 2022), (Zhang et al., 2023) systemically investigates
block-based arithmetic quantization. Among the block-
based numerical representations, the 6-bit block floating
point (BFP), which is a fixed-point-variant, shows promis-
ing potential for LLMs quantization without any complex
transformation or shifting operations. However, we found
that BFP can not maintain accuracy in 4-bit and lower-bit
LLMs quantization, which is a result of the homogeneity
of its numerical representation. Inspired by these observa-
tions, we theoretically investigate the properties of BFP and
claim that fixed point inherently cannot handle superposi-
tion of distributions in LLM activition scenario, as shown
in Figure 1.

However, scaling up LLMs beyond 6.7B parameters will
lead to the emergence of systematic outliers with large
magnitudes in activations (Dettmers et al., 2022), which
makes quantization for LLMs challenging, as visualized
in Figure 1. To prevent quantization errors and performance
degradation, LLM.int8() (Dettmers et al., 2022) introduces
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a mixed-precision approach that keeps outliers in FP16 and
quantizes other activations in INT8. ZeroQuant (Yao et al.,
2022) proposes a fine-grained quantization scheme that ap-
plies dynamic per-token activation quantization and group-
wise weight quantization. Smoothquant (Xiao et al., 2023)
smooths the magnitude across the channels using a math-
ematically equivalent scaling transformation between ac-
tivation and weight to reduce quantization errors. Such a
method can make the model quantization-friendly. Some
outliers may concentrate on specific channels and are asym-
metric across channels. Outlier Suppression+ (Wei et al.,
2023) adopts channel-wise shifting and scaling to handle the
problem. Orthogonally, some weight-only quantization ap-
proaches preserve activations in FP16 (Frantar et al., 2022;
Lin et al., 2023).

In general, these approaches may still suffer from the data
format restriction. We propose Bi-Exponent Block Floating
Point (BiE), a novel numerical representation to achive the
mutual optimality in both efficiency and accuracy. BiE
contains a bi-shared exponent and is designed to be more
robust to represent a larger dynamic range covering the
data distributions of LLMs than BFP with tiny hardware
overhead. For the vanilla BFP, when converting FP16 into
BFP, the encoder will select the max exponent within the
block/group as the shared exponent of this block/group.
With the emergence of outliers in LLMs, once there is an
outlier in this block, other normal values will be transformed
into zero directly since the magnitude of the outlier value
is much larger than the other values, leading to significant
performance degradation. Building upon the vanilla BFP,
BiE uses a bi-shared exponent, one for the normal values
part and the other for the outlier values part, which will be
distinguished by a pre-determined threshold value. In this
way, BiE can maintain accuracy even if some outlier values
are in the block.

The contributions of our paper include:

• We propose a novel numerical representation, Bi-
Exponent Block Floating Point (BiE), tackling the
drawbacks of current quantization methods on LLMs
from the various data characteristics.

• We analyze that BiE shows advantages of data ef-
ficiency and quantization error reduction and beats
SOTA baselines.

• We propose an offline thresholding optimization strat-
egy to enhance the BiE encoding flow with Bayesian
Optimization.

• We implement the BiE hardware design to validate
the hardware efficiency of BiE. The simulation results
demonstrate that BiE W4A4 quantization configura-
tion can obtain 3.51× computation- and 2.8× memory-
efficiency improvements compared with FP16.

2. Preliminaries
2.1. Quantization

Current mainstream quantization approaches (Liu et al.,
2021; Johnson, 2018; Lin et al., 2016; Nagel et al., 2020a;
Kim et al., 2021) focus on lower-bit data types either in
floating point such as FP16, FP8 or fixed point INT8, INT4,
etc. Most popular quantization approaches in recent years
revolve around uniform integer quantization (Choi et al.,
2018; Nagel et al., 2020a) with the same quantization func-
tion composed of rounding and scaling operations:

Q(r) = Round(
r

S
), (1)

where r is the original real number andQ(r) is the quantized
number. S is the scaling factor, a real number that maps
r to an integer number, Round() is the rounding function.
Other quantization methods include non-uniform quantiza-
tion, where the value range of each projected quantized num-
ber is not equally assigned. Although non-uniform quanti-
zation may be accuracy-friendly for its flexibility with data
distribution, implementing the quantization and bit assign-
ment is not trivial and requires special design on hardware
and, thus, not that common in real applications.

Apart from that, quantization flows are usually classified
into two categories: Post-Training Quantization (PTQ)
(Nagel et al., 2020b; Li et al., 2021; Wei et al., 2022) and
Quantization-Aware Training (QAT) (Bengio et al., 2013;
Gong et al., 2019; Pei et al., 2023). While QAT quantizes
weight to lower-bit data format, it requires fine-tuning the
model parameters to adjust the value range. On the other
hand, PTQ only focuses on the data format transformation
and leaves the model parameters fixed. In general, PTQ may
show less flexibility on the numerical adjustment. On the
other hand, fine-tuning or retraining is not a practical choice
in the LLM scenario; the data expense and hardware require-
ments are souring as the LLM models get bulky. PTQ is the
feasible solution for LLM deployment, which is also why
we explore the potential of PTQ in this paper.

Hardware-aware quantization shall be discussed in-
evitably. Given that the main objective of quantization is to
optimize the inference latency on hardware platforms, it is
important to consider provided hardware resources such as
memory hierarchy, bandwidth limit, specific accelerator ar-
chitecture (Yao et al., 2021; Zhao et al., 2023; Hawks et al.,
2021; Wang et al., 2019). Some approaches are dedicated to
targeting mixed-precision quantization (Zhou et al., 2018;
Wu et al., 2018) while some others target the compilation
stage (Yao et al., 2021) with system-level optimization on
quantization kernels such as dataflow optimization and loop
order/tiling optimization during quantization. Memory ac-
cess patterns also need to be considered. Several memory
access patterns can seriously affect model efficiency, such
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Figure 2. An illustration of different numerical representation formats: (a) IEEE Half-Precision Floating-Point (FP16), (b) Block Floating-
Point and (c) Bi-Exponent Block Floating-Point.

as per-channel quantization for activation. Thus, when de-
signing quantization algorithms, similar operations should
be avoided to be more relevant to practical applications.

2.2. Block Floating Point

The IEEE standard Floating-Point comprises three compo-
nents: sign bit s, exponent e, and mantissam. The real value
is represented with v = (−1)s×1.m×2e−eoff where m, e
denotes binarized integer and eoff is the exponent offset. It
is well noted that floating point data types inherently repre-
sent much wider value range than integer for its exponent
bits. FP32 value ranges up to 2127, and FP16 ranges to 216,
and they can represent decimal numbers smaller than 1. On
the other hand, integer quantization is much more popular,
given its efficiency for computation and hardware friend-
liness. The processing unit architecture design for integer
operation is much simpler. Many DNN accelerator hard-
ware, such as Tensor Core on Nvidia GPU or open-sourced
Gemmini (Genc et al., 2021), are specifically designed for
integer matrix multiplication and addition operations.

For a vector X ofN elements, we can represent the elements
in FP16 representations with s, e, and m as the private
signs, private exponents, and private mantissas, Figure 2(a)
illustrates a 4-element vector in FP16 format:

[(−1)s02e0m0, (−1)s12e1m1, ..., (−1)sN−12eN−1mN−1].
(2)

In addition to floating point and fixed point, BFP is also a
commonly used numerical representation. BFP arithmetic
has been used in different kinds of signal processing ap-
plications like recursive digital filters (Oppenheim, 1970),
calculation of Fast Fourier Transform (FFT) (Oppenheim &
Weinstein, 1972) and Fast Hartley Transform (FHT) (ER-
ICkSON & Fagin, 1992). BFP representation is a special
case of floating-point representation where numbers within
a block share a common exponent. Due to its exponent part,
it provides BFP with a high dynamic range of floating-point
representation. However, the computational complexity
of two BFP blocks can be reduced to the degree of inte-

ger representation, which is much more efficient than the
floating-point arithmetic.

BFP format combines the precision of floating-point num-
bers with the efficiency of fixed-point numbers. There-
fore, some research has explored the application of BFP to
model quantization with specified hardware implementation
to achieve a balance between precision and efficiency (Fan
et al., 2019; Lian et al., 2019). In addition to optimizing
inference, efficient training is also a critical topic. FAST
(Zhang et al., 2022b) and FlexBlock (Noh et al., 2023) tried
to use BFP format for model training to optimize memory
requirements while maintaining accuracy. AFP proposes an
adaptive BFP with private exponent offset, which can dy-
namically adjust to the characteristics of deep learning data
to improve the precision (Yeh et al., 2022). BFP is also a
promising numerical representation for LLMs quantization
(Zhang et al., 2023).

Given a block X of N elements in FP16, we can convert
them into BFP format X′, including a shared exponent em,
private signs s and private block mantissas m′ shown in
Figure 2(b), which is written as

2em [(−1)s0m′
0, (−1)s1m′

1, ..., (−1)sN−1m′
N−1], (3)

where
em = max

i
ei, i ∈ 0, 1, ..., N − 1 (4)

m′
i = mi >> (em − ei), i ∈ 0, 1, ..., N − 1 (5)

where >> is the right shift operation.

The dot product of two vectors X1 and X2 with N elements
in BFP format, the calculation will be donated as

2em1+em2

N−1∑
i=0

((−1)s1,i
⊕

s2,im1,i ·m2,i), (6)

where em1 and em2 are the shared exponent of X1 and X2,⊕
is an XOR operation.

3



BiE: Bi-Exponent Block Floating-Point for Large Language Models Quantization

-2 -1 0 1 2 3 4 5 6 7
Shared Exponent

0

100

200

300

400

500

600
Fr

eq
ue

nc
y 

(N
um

. O
cc

ur
an

ce
)

(a) BFP

<latexit sha1_base64="pPE9vzHSf9VZkbc35Qit2owjUFU="></latexit>p�
<latexit sha1_base64="pPE9vzHSf9VZkbc35Qit2owjUFU="></latexit>p� decrease at 

higher exponent 

(b) BiE

Figure 3. pγ distribution of BFP and BiE on the same activation in
OPT-66B model. The y-axis represents the number of shared ex-
ponent occurance. pγ decrease at higher exponents in BiE format,
resulting in lower quantization error.

2.3. Data Distribution in LLMs

Outliers are the major challenge in LLMs quantization.
LLMs exhibit a distinct pattern in the appearance of outliers,
which are limited to a small number of channels in the acti-
vation tensor, and the variation within a channel is relatively
minor (Dettmers et al., 2022; Xiao et al., 2023). Further-
more, we found that the distribution can be approximated
as a superposition of two distributions as Figure 1 shows,
which is the value distribution of a batched input activation
tensor in OPT-66B model. One part has a distribution whose
magnitude is close to 0, while the other has a distribution
with a magnitude far from 0.

One way to deal with this situation is to separate the
two parts for further process—for example, LLM.Int8()
(Dettmers et al., 2022) introduces a mixed-precision method
for LLM quantization, separating the two distribution parts
based on a threshold value; the normal part is quantized into
INT8 format. The outlier part, which is the more difficult
part to quantize, is represented by FP16. Then, the other
option is to fuse the two parts, with outliers eliminated or
mitigated by the transformation between outlier activation
and flat weight, channel-wise shifting, and scaling (Xiao
et al., 2023; Wei et al., 2023). Inspired by the data distribu-
tion properties of LLMs and the limitation of the existing
numerical format, we explore the idea of separation on the
numerical representation, which is our proposed BiE. Un-
like the mixed-precision approach, BiE is a unified format
using the same arithmetic units, encoders, and decoders to
maximize hardware efficiency.

3. Bi-Exponent Block Floating-Point Flow
3.1. BiE Data Format

3.1.1. COMPUTING ERROR OF BLOCK FLOATING-POINT

In order to optimize BFP, we must first understand the source
of the BFP quantization error. The quantization error anal-
ysis was introduced by (Kalliojarvi & Astola, 1996; Song

et al., 2018), for a block X, when using rounding to nearest
scheme, the quantization error has zero mean and variance
σ2 which is defined as

σ2 =
2−2Lm

12

Nγ∑
i=1

pγi2
2γi , (7)

where Lm is the bit length of the private block mantissa m′
i,

pγi
is the probability mass function (PMF) of the shared

exponents γi (i = 1, 2, ...Nγ). Nγ = 2LE is the number of
available shared exponent levels, where LE is the bit length
of shared exponent.

From Equation (7), it is found that the quantization errors
mainly depend on Lm and pγi

. When Lm is increasing,
the quantization error will be reduced. Moreover, if the
probabilities of taking a larger exponent as the shared expo-
nent are smaller, then the quantization errors of BFP will be
reduced. Since the bit length is fixed in the typical quantiza-
tion flow, we can only decrease the probabilities of larger
shared exponents for quantization error reduction.

AFP (Yeh et al., 2022) introduces a 3-bit private exponent
offset for each component within the block. For example, if
the shared exponent is 3, the value 2 would have an offset
of 2. In this way, the influence of the large shared exponent
on the small-exponent value will be weakened. For low-bit
quantization, however, this format is not well suited. First,
AFP needs extra bits to store the offsets, reducing the mem-
ory efficiency. Second, in LLM quantization, the outliers
in activations will require more bits for offsets when the
mantissa bits get lower to maintain the precision. Third, the
AutoFocus features in AFP need a fully dynamic encoder
and decoder, which will cause significant hardware over-
head. An alternative that balances precision and efficiency
deserves discussion.

3.1.2. DESIGN DETAILS

To overcome the previously mentioned problems and chal-
lenges, we propose Bi-Exponent BFP (BiE), which is de-
signed to be effective and efficient for Deep Neural Network
(DNN) models, especially LLMs. Different from the vanilla
BFP, the significant modification is that the BiE format has
a bi-shared exponent for each block, eo for the outlier part
and en for the normal part, and private 1-bit type ti that
indicates this component belongs to outlier part or normal
part. That means the normal part of the block will use en as
their shared exponent, and the outlier part will use eo as the
corresponding shared exponent. The data format of BiE is
illustrated in Figure 2(c).

Given a vector X with N elements in FP16, we can obtain
its BiE representation X′′ as

2en|eo [(−1)s0m′′
0 , (−1)s1m′′

1 , ..., (−1)sN−1m′′
N−1], (8)
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en = max{ei | |xi| ≤ T}, (9)

eo = max{ei | |xi| > T}, (10)

ti =

{
0 |xi| ≤ T,

1 |xi| > T,
(11)

m′′
i = mi >>

{
en − ei ti = 0,

eo − ei ti = 1,
(12)

where T is the threshold value in FP16 for distinguishing the
normal part and the outlier part, which is always larger than
0. Hence, we use the magnitude of xi to determine whether
it is an outlier or not. m′′

i denotes the private mantissa of
BiE. en|eo means that if ti = 0, shared exponent of x′′i is
en, otherwise it is eo. Although T is an FP16 number, the
memory overhead is negligible because, in our quantization
configuration, each tensor will have only one threshold T ,
i.e., a threshold per tensor.

The BiE arithmetic is similar to the vanilla BFP. The man-
tissa part is the same as BFP, which is fixed point multipli-
cation. For the exponent part, the corresponding exponents
are then added as the result exponent.

The rationale for the bi-exponent is also to address the ef-
fect of a large shared exponent on other small-exponent
values in the block to reduce the quantization error. In this
way, the pγi

for relative large γi will be decreased, and the
pγi

for relative small γi will be increased, but the overall
quantization error will be reduced. For example, as Fig-
ure 3(a) shows, the shared exponents are concentrated in the
middle part of the distribution (0-3) and have quite a few
large exponent values as shared exponents (4-7) originally.
By introducing an additional shared exponent for outliers
within the block, the frequency of higher exponents (4-7)
shrinks tremendously, and even the frequency of some mid-
dle parts is significantly reduced (2-3) while migrating to
some exponents in the even smaller values (0-1) illustrated
in Figure 3(b). In this case, the quantization error of BiE
decreases, which can be derived from Equation (7). BiE
uses such a separate way to adapt to the data distribution of
LLMs.

For a uniform representation, the weights will also be di-
vided into two parts. Although the weights will not have
outliers of particularly large magnitude, there will be rel-
ative outliers or relatively large values in a block, so it is
possible to split the values in the block into relatively small
(normal) and relatively large (outlier) parts, thus conform-
ing to the BiE format. Hence, the BiE format can also be
extended and implemented for any other DNN models with
precision improvements compared with BFP.

3.1.3. NUMERICAL EFFICIENCY

Quantization Flow: For fixed-point quantization, FP16
number will be mapped to integer by using Equation (1).
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pruned search space.

Different from fixed-point quantization, BiE quantization
requires a comparative operation to find the bi-shared ex-
ponent and shifting and rounding operations to obtain the
quantized private block mantissa. These are all efficient
operations for hardware compared with scaling operation,
which is floating-point multiplication in fixed-point quanti-
zation. In post-training quantization, fixed-point quantiza-
tion is usually about finding an appropriate scaling factor,
whereas in BiE quantization, we are looking for thresholds,
which are both at a certain granularity, e.g., per-tensor or
per-channel.

Data Efficiency: BiE can also be seen as a special case of
fixed-point. When the bit length of mantissa equals the bits’
number of fixed points, the computational efficiency of both
is roughly the same. However, BiE has a bi-exponent, which
improves the dynamic range but sacrifices some memory
efficiency. As a result, BiE can achieve lower-bit quantiza-
tion. Thus, in a lower-bit configuration, BiE can achieve
precision comparable to INT8 with higher computation and
memory efficiency, which is the superiority of BiE.

3.2. Offline Threshold Searching Strategy

As discussed in Section 3.1.2, threshold determination is
rather critical before the BiE quantization flow. In order to
select the optimal threshold value for each tensor during
inference, we build an efficient offline threshold searching
strategy based on Bayesian Optimization (BO), which is
visualized in Figure 2(c).

Firstly, we define the threshold value search space for all
tensors of LLM inference stage (including weights and acti-
vations) here:

Ω = {T1, T2, ..., TN}, N = Na +Nw, (13)

whereNa andNw are the number of activations and weights
in the models, where each variable Ti denotes the threshold
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candidate (in real number) for i-th tensor. Now, this problem
is a multi-variable design space exploration (DSE) problem.

Before we dig into our specific design, We need to discuss
the limitations and how we narrow down our offline solu-
tion to this problem. For latency consideration, we give
up online thresholding: adaptively splitting the block into
two groups during FP-to-BiE conversion while minimizing
quantization error. This is impractical because dynamic
encoding is not only very time-consuming but also requires
additional hardware design overhead. We also give up using
the gradient-descent method because the partial derivatives
with respect to the thresholds do not exist, which is non-
differentiable and hard to approximate.

Now that we have the search space, we need a surrogate
model to guide the sampling by learning the quantization
performance distribution among the search space. As shown
in Figure 4, we adopt the Gaussian Process (GP) as the
surrogate model with matérn kernel function (details in
Appendix C) for its robust ability to capture uncertainty
quantification during modeling. For the quantization per-
formance indicator, we simply use the mean square error
(MSE) between the output of the full-precision model and
the quantized model:

min
T

1

Ns

∑
∥f(W,X)− f(QT(W), QT(X))∥22, (14)

where f is the LLM model inference, QT(·) denotes BiE
quantization operation with thresholds T for each weight
and activation tensor, Ns represents the number of calibra-
tion samples. W is the weights of the model and X is the
activations of the model. Using the MSE of the final output
as an indicator can take the dependencies between layers
into account, thus allowing the quantized model to better fit
the output of the original model.

We find the proposed search space in Equation (14) is still
too large for the enormous number of tensors in LLM. We
need to prune the search space, trimming off unnecessary
subspace before the sampling to improve searching effi-
ciency further. Given the design of our BiE format, we
need to divide a block of data into normal and outlier parts.
We empirically find that the threshold is around the median
of value distribution so that the superiority of BiE can be
fully exploited. We choose to use the percentile method
for calibration, which will set the range to a percentile of
the distribution of absolute values seen during calibration.
Hence, the search space is bounded as:

Ω = {T1, T2, ..., TN} , N = Na +Nw;

Ti ∈ [Plo(X), Phi(X)].
(15)

Plo and Phi are the lower-bound and higher-bound of the
percentile. X is the activations or weights in calibrations. In
our implementation, Plo and Phi are set as 75% and 95%.

Table 1. Hardware efficiency of the same size PE array with dif-
ferent numerical representations including the ratio of throughput
and memory efficiency compared with FP16. We highlight the
hardware efficiency of BiE.

Method Config Throughput Mem. Effi.

FP16 - 1.00× 1.0×
INT W8A8 1.46× 2.0×
INT W6A6 1.62× 2.7×
BFP W4A4 3.51× 3.7×
BFP W3A3 3.96× 4.8×
BiE W4A4 3.51× 2.8×
BiE W3A3 3.96× 3.5×

Once the surrogate model is established, we search within
the pruned parameter space by iteratively sampling T =
{T1, T2, T3...} candidates with given performance modeling
GP. The intuition is to select the next point T∗ with highest
expected improvement (EI):

T∗ = argmaxTEIΩ(P, GP (T)), (16)

where P is the optimal Pareto MSE reached by the sampled
threshold points. GP (T) is the performance distribution
modeled from the currently sampled Ts. The newly sam-
pled points will also be used to update the GP by updating
the Matérn kernel function. Here the EI(·) is the optimal
improvement from P . The details of the derivation of EI(·)
is in Appendix C.

3.3. Hardware-Level Analysis

In this section, we validate the hardware-level efficiency
of our proposed BiE quantization. We implement the cus-
tomized DNN accelerator for this data format and evaluate
the hardware resources and throughput advantage. Not only
is the performance competitive, but the hardware design
itself is simple, such that it can easily adapt to general-
purpose hardware accelerator (Jouppi et al., 2017; Genc
et al., 2021) with small effort.

The customized accelerator has a systolic array architecture
that supports the BiE arithmetic. The BiE systolic array
consists of three parts: Floating-Point to BiE converter (En-
coder), processing elements (PE) for BiE, and decoder.

Given two blocks X1 and X2 withN elements in BiE format,
the dot product of them can be formulated as

em = eo1 + eo2 (17)

2em
N−1∑
0

(−1)s1,i
⊕

s2,i(m1,i ·m2,i >> (em− e1,i− e2,i))

(18)
where em is the max exponent combination of the two
blocks which is determined by the summation of the two
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Figure 5. Our proposed BiE-based accelerator. Inside each Pe Unit,
the BiE multiplication is decomposed into integer multiplication
and bit shift operations. Two multiplexers are integrated to handle
outlier exponents.

outlier shared exponents eo1 and eo2 , e1,i and e2,i represent
the shared exponent used for the ith element of X1 and X2.

According to Equation (18), one of the most significant ad-
vantages of BiE is its computational efficiency. In BiE arith-
metic, it only involves INT multiplication, INT addition
and shifting, which are both efficient for hardware. For the
arithmetic of BiE, as shown in Figure 5, we illustrate how
to reorganize the original PE to support BiE multiplication.
The shared exponents of two blocks are added in parallel
with the INT multiplication. Thus, it avoids introducing
extra delay. A multiplexer detects the Type bit to select the
corresponding shared exponent. As shown in Equation (18),
a bit shifter is required for the mantissa product alignment.
The right shift amount is em − e1,i − e2,i.

Compared with fixed point quantization, the encoder and
decoder do not involve costly floating-point multiplication.
The encoder for BiE is required to handle the operations
related to the threshold, such as obtaining the Type bit ti of
each element through two comparator trees and determining
the maximum exponents of the numbers above and below
the threshold in the input block as the shared exponents eo
and en. If no outliers exist in the block, the default value for
eo equals en. It can reduce the necessity for the comparator
to determine em. The dot product of BiE will obtain a
partial sum of aligned mantissa products, and the max shared
exponents summation em; thus, the decoder is the same as
BFP. The decoder has a leading zero detector to obtain the
normalization factor and a shifter to achieve normalization.
Then, the decoder will convert the dot product result into
FP16 format for further inter-block summation, the same as
BFP.

Table 2. Comparison with different methods and different quanti-
zation configurations for OPT-models on Wikitext2 (Perplexity↓).
We highlight our 4-bit BiE results which are comparable with
SmoothQuant W8A8.

Method Config 6.7B 13B 30B 66B

FP16 / 10.64 9.91 9.33 9.12
SmoothQuant W8A8 11.33 12.79 9.35 9.62
SmoothQuant W6A6 13.16 13.75 82.54 3383.21

BFP W4A4 11.22 11.15 9.90 14.16
BiE (Ours) W4A4 10.93 10.39 9.37 9.82

BFP W3A3 14.61 13.85 13.83 137.72
BiE (Ours) W3A3 12.10 11.13 10.01 32.41

Unlike the BFP hardware design, the hardware for BiE
requires an extra comparator tree for the additional shared
exponent extraction. The difference between the PE design
is that the products of mantissa need to be aligned by a
shift operation in order to compute the partial sum of the
products correctly. In addition, the shift amount depends
on the difference between the sum of the outlier shared
exponents and the sum of the shared exponents of the current
elements. The hardware implementations of the decoder
for BFP and BiE are identical, and no additional hardware
design is required for BiE. Concerning the inter-block FP
addition, the hardware overhead is identical for the BiE and
BFP. Thus, the hardware implementation of BiE will not
introduce much hardware overhead.

The BiE PE array is implemented by Xilinx Vitis High-Level
Synthesis Tool (HLS) 2020.1 targeting Field Programmable
Gate Arrays (FPGA), which is Xilinx Zynq UltraScale+
ZCU104 Evaluation Board.

For a fair comparison, we also implemented a PE array with
the same size for Floating-Point (FP16), Fixed-Point (INT8
and INT6), and Block Floating-Point (BFP4 and BFP3),
respectively.

From Table 1, the simulation results indicate that the BiE can
achieve the same performance with tiny memory overhead
in the same settings compared with BFP, as expected. BiE4
increases the throughput by 3.51×, 2.40× and 2.17×, and
memory efficiency by 2.80×, 1.40× and 1.04× compared
with FP16, INT8, INT6, respectively.

4. Experiments
4.1. Settings

Baselines. We compared with two baselines in different
post-training quantization configurations. For fixed-point
quantiation, we choose Smoothquant (Xiao et al., 2023)
with INT8 and INT6 settings. For naive BFP quantization
for LLM, we compare with (Zhang et al., 2023) with 4-bit
and 3-bit configurations.
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Table 3. BiE’s performance for OPT-30B and OPT-66B on other zero-shot tasks including multiple choice, commonsense reasoning, etc..
We highlight our 4-bit BiE results that can achieve nearly lossless quantization performance.

Model Method Config LAMBADA Arc easy PIQA COPA QNLI SST2 Average↑

OPT-30B

FP16 / 71.45% 70.03% 77.64% 82.00% 51.78% 66.51% 69.90%
SmoothQuant W8A8 71.71% 69.61% 77.75% 84.00% 52.52% 66.63% 70.37%
SmoothQuant W6A6 0.54% 41.29% 57.94% 66.00% 51.44% 58.26% 45.91%

BFP W4A4 61.25% 68.18% 76.28% 85.00% 54.09% 66.51% 68.55%
BiE (Ours) W4A4 70.11% 69.15% 77.26% 85.00% 52.15% 67.66% 70.22%

BFP W3A3 7.45% 56.40% 66.43% 77.00% 50.92% 56.42% 52.44%
BiE (Ours) W3A3 65.11% 68.14% 75.84% 81.00% 52.19% 61.12% 67.23%

OPT-66B

FP16 / 73.96% 71.12% 78.73% 86.00% 52.19% 68.58% 71.76%
SmoothQuant W8A8 73.26% 71.21% 78.35% 86.00% 51.84% 63.19% 70.64%
SmoothQuant W6A6 0.00% 25.29% 53.32% 55.00% 50.67% 51.26% 39.26%

BFP W4A4 63.83% 68.86% 76.66% 86.00% 52.10% 64.68% 68.69%
BiE (Ours) W4A4 72.50% 70.58% 77.26% 85.00% 51.95% 70.07% 71.23%

BFP W3A3 3.22% 36.49% 55.44% 61.00% 51.09% 52.98% 43.37%
BiE (Ours) W3A3 11.97% 38.34% 56.04% 60.00% 49.68% 53.33% 44.89%

Models and Datasets We evaluate BiE with two represen-
tative families of LLMs: OPT (Zhang et al., 2022a) ranging
from 6.7B to 66B and LLaMA-2 (Touvron et al., 2023) in-
cluding 7B, 13B and 70B. For threshold searching, we use
Pile datasets (Gao et al., 2020) with random 128 samples
as the calibration dataset to get the statistical characteristics
of activations and weights. Seven zero-shot NLP tasks in-
cluding multiple choice, commonsense reasoning, language
modeling, etc.: LAMBADA (Paperno et al., 2016), Arc easy
(Clark et al., 2018), PIQA (Bisk et al., 2020), COPA (Roem-
mele et al., 2011), QNLI (Wang et al., 2018) SST2 (Socher
et al., 2013), WikiText2 (Merity et al., 2016) are utilized for
evaluated on OPT and LLaMA-2 models. The evaluation
code is based on lm-evaluation-harness (Gao et al.,
2023).

Implementations. To simulate the behavior of BiE in hard-
ware, we use the Pytorch (Paszke et al., 2019) and hugging-
face (Wolf et al., 2019) libraries to quantize the models on
four A100-80G GPUs. The quantization configurations are
W4A4 and W3A3 for BiE and BFP, with 4-bit mantissa
and 3-bit mantissa, respectively; both of them have 5-bit
for one shared exponent. We use 16 elements as a block
for both activations and weights, which is a slice along the
matrix row. Each tensor will use a threshold to distinguish
between normal and outlier parts. We quantized all the
matrix multiplications in the Transformer Decoder Layer,
including all the Linear Layer, bmm in OPT models and
matmul in LLaMA-2 models, and left other parts in FP16,
e.g., Softmax and LayerNorm.

4.2. Results of PTQ for LLMs

Results on OPT models. We apply BiE PTQ for dif-
ferent scales OPT ranging from 6.7B to 66B compared
with SmoothQuant (Xiao et al., 2023) and vanilla BFP

Table 4. Block-based quantization for OPT-models (<6.7B) on
Wikitext2 (Perplexity↓). We highlight our BiE results which
outperform BFP under the same quantization configurations.

Method Config 125m 350m 1.3B 2.7B

FP16 / 27.50 21.76 14.38 12.18
BFP W4A4 30.17 23.82 16.38 13.06
BiE W4A4 28.20 22.34 15.28 12.54
BFP W3A3 52.76 47.58 55.67 27.83
BiE W3A3 34.54 27.10 19.85 15.39

(Zhang et al., 2023) on various tasks. From Table 2, BiE
with 4-bit achieves comparable performances with FP16
and SmoothQuant with 8-bit and outperforms the vanilla
BFP on language modeling task WikiText2. With 6-bit
SmoothQuant and 3-bit BFP, performances degrade consid-
erably, especially on the OPT-30B and 66B models. This is
because, compared to the other two models, the OPT-30B
and 66B models have more severe and larger outliers. How-
ever, even in the 3-bit case, BiE is able to maintain a stable
performance without significant precision degradation. For
other tasks, including multiple-choice, commonsense rea-
soning, etc., the performances of BiE are shown in Table 3.
Experimental results demonstrate the comprehensive supe-
riority of BiE. To show the performance of BiE in models
that are non-outliers or whose maximum magnitude is rela-
tively low, we applied BiE to small-scale OPT models from
125m to 2.7B. From Table 4, the performance of BiE is
similar to its results for OPT (>6B). BiE4 enables almost
lossless quantization, while BiE3 better preserves preci-
sion compared to BFP3. This demonstrates BiE’s ability
to push the boundaries of low-bit block-based quantization
and maintain its good properties even in the non-outliers
distribution. More detailed experimental results about BiE
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Table 5. PTQ performances using different methods on LLaMA-
2 models for various tasks. Average↑ is the average accuracy
among various tasks. Perplexity↓ is for WikiText2. SQ represents
SmoothQuant. We highlight our 4-bit BiE results.

Config Average↑ Perplexity↓
7B 13B 70B 7B 13B 70B

FP16 / 76.16 77.50 81.62 6.73 5.95 4.51
SQ W8A8 75.12 77.47 80.35 6.93 5.94 4.56
SQ W6A6 66.07 67.51 76.96 10.38 8.28 5.73

BFP W4A4 68.65 71.20 80.24 7.69 6.74 4.69
BiE W4A4 72.83 75.90 80.21 7.00 6.16 4.61
BFP W3A3 42.28 43.52 73.05 20.86 14.70 5.78
BiE W3A3 50.00 63.25 77.24 8.92 7.86 5.21

on OPT models are shown in Appendix A.1.

Results on LLaMA-2 models. BiE also works well for
LLaMA-2 family shown in Table 5. 4-bit BiE will be the
first choice that can balance precision and efficiency. For
Wikitext2 tasks in particular, the stability of BiE is very
impressive, and even at 3bit, the performance gap is not
particularly large. It should be noted that 6bit SmoothQuant
also gives quite good results on the LLaMA-2 model. How-
ever, block-based methods, BFP and BiE, do not require any
transformations between activations and weights or com-
plex operations on the model architectures but only focus
on the data itself. The experimental results indicate that the
performance degradation of the low-bit quantization method
is lesser than that of the OPT models, which can be due to
two reasons: firstly, the model architectures of the two are
different, and secondly, the magnitude of the outliers for
the activations is not as high in the LLaMA-2 models as
in the OPT models. More detailed results can be found in
Appendix A.2.

5. Conclusion
In this paper, we discuss the the limitations of the existing
quantization data format for LLMs and propose a novel
numerical representation, BiE, Bi-Exponent Block Floating-
point combined with a new quantization flow. BiE can
balance precision and hardware efficiency. BiE can be nat-
urally adapted to the numerical distribution characteristics
of the LLMs and achieve negligible loss in 4-bit activations
and weights quantization. We also implement a hardware
accelerator to validate the hardware-level computational
efficiency of BiE quantization.

Impact Statement
This paper contributes to the advancement of Machine
Learning. While there are numerous potential societal im-
pacts stemming from our research, we do not believe that
any specific issues need to be highlighted in this context.
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A. Detailed Experiments
A.1. Results on OPT

The Table 6 demonstrates the complete experimental results on OPT (>6B) models. The results show the robustness of
BiE on various scales of OPT models with outliers. To illustrate the generalizability of BiE, we also conducted the same
experiments on the small OPT model. From Table 7, we compare it to a vanilla BFP with the same quantization configuration,
and we can see that BiE still outperforms the BFP when the outlier is less pronounced, or there is no distribution of outliers.
According to the design of BiE, no matter what kind of data distribution is, if the data distribution can be divided into two
parts by the threshold (relatively normal and relatively outlier), then its performance will be better than that of BFP.

Table 6. Detailed comparison with different methods on OPT family
Model Method Config LAMBADA Arc easy PIQA COPA QNLI SST2 Average↑ WikiText↓

OPT-6.7B

FP16 / 67.65% 65.61% 76.28% 81.00% 50.87% 76.49% 69.65% 10.64
SmoothQuant W8A8 68.62% 64.81% 76.50% 80.00% 50.67% 68.23% 68.14% 11.33
SmoothQuant W6A6 64.16% 59.55% 71.93% 82.00% 51.38% 57.22% 64.37% 13.16

BFP W4A4 57.11% 63.85% 75.19% 81.00% 54.07% 69.61% 66.81% 11.22
BiE W4A4 66.18% 64.65% 76.17% 83.00% 50.70% 73.39% 69.02% 10.93
BFP W3A3 30.43% 55.09% 68.72% 79.00% 50.47% 61.24% 57.49% 14.61
BiE W3A3 56.41% 60.56% 71.55% 79.00% 53.41% 62.27% 63.87% 12.10

OPT-13B

FP16 / 68.64% 67.09% 75.90% 86.00% 57.06% 59.86% 69.09% 9.91
SmoothQuant W8A8 68.41% 66.54% 75.30% 84.00% 56.14% 75.69% 71.01% 12.79
SmoothQuant W6A6 46.19% 54.00% 68.28% 63.00% 49.81% 60.09% 56.90% 13.75

BFP W4A4 59.11% 65.99% 74.54% 83.00% 54.18% 69.04% 67.64% 11.15
BiE W4A4 67.53% 66.54% 75.52% 83.00% 56.75% 55.96% 67.55% 10.39
BFP W3A3 6.75% 55.30% 67.03% 79.00% 51.88% 65.48% 54.24% 13.85
BiE W3A3 59.48% 65.19% 73.94% 81.00% 53.94% 67.89% 66.91% 11.13

OPT-30B

FP16 / 71.45% 70.03% 77.64% 82.00% 51.78% 66.51% 69.90% 9.33
SmoothQuant W8A8 71.71% 69.61% 77.75% 84.00% 52.52% 66.63% 70.37% 9.35
SmoothQuant W6A6 0.54% 41.29% 57.94% 66.00% 51.44% 58.26% 45.91% 82.54

BFP W4A4 61.25% 68.18% 76.28% 85.00% 54.09% 66.51% 68.55% 9.90
BiE W4A4 70.11% 69.15% 77.26% 85.00% 52.15% 67.66% 70.22% 9.37
BFP W3A3 7.45% 56.40% 66.43% 77.00% 50.92% 56.42% 52.44% 13.83
BiE W3A3 65.11% 68.14% 75.84% 81.00% 52.19% 61.12% 67.23% 10.01

OPT-66B

FP16 / 73.96% 71.12% 78.73% 86.00% 52.19% 68.58% 71.76% 9.12
SmoothQuant W8A8 73.26% 71.21% 78.35% 86.00% 51.84% 63.19% 70.64% 9.62
SmoothQuant W6A6 0.00% 25.29% 53.32% 55.00% 50.67% 51.26% 39.26% 3383.21

BFP W4A4 63.83% 68.86% 76.66% 86.00% 52.10% 64.68% 68.69% 14.16
BiE W4A4 72.50% 70.58% 77.26% 85.00% 51.95% 70.07% 71.23% 9.82
BFP W3A3 3.22% 36.49% 55.44% 61.00% 51.09% 52.98% 43.37% 137.72
BiE W3A3 11.97% 38.34% 56.04% 60.00% 49.68% 53.33% 44.89% 32.41

Table 7. Detailed comparison with blocked-based methods on OPT family (<6.7B)
Model Method Config LAMBADA Arc easy PIQA COPA QNLI SST2 Average↑ WikiText↓

OPT-125m

FP16 / 37.84% 43.43% 63.06% 66.00% 49.44% 53.21% 52.16% 27.50
BFP W4A4 33.59% 41.08% 60.07% 71.00% 49.44% 50.80% 51.00% 30.17
BiE W4A4 37.98% 42.05% 61.53% 68.00% 49.44% 50.23% 51.54% 28.20
BFP W3A3 12.71% 34.81% 54.46% 64.00% 49.39% 50.46% 44.31% 52.76
BiE W3A3 30.25% 39.10% 58.27% 67.00% 49.35% 50.34% 49.05% 34.54

OPT-350m

FP16 / 45.16% 44.11% 64.47% 72.00% 49.53% 61.81% 56.18% 21.76
BFP W4A4 41.24% 42.13% 62.02% 69.00% 49.53% 60.55% 54.08% 23.82
BiE W4A4 45.20% 43.77% 64.04% 69.00% 49.51% 57.11% 54.77% 22.34
BFP W3A3 17.70% 35.27% 56.15% 67.00% 49.70% 49.66% 45.91% 47.58
BiE W3A3 36.74% 39.77% 62.08% 63.00% 49.22% 56.54% 51.23% 27.10

OPT-1.3B

FP16 / 57.93% 57.15% 71.65% 79.00% 51.57% 81.88% 66.53% 14.38
BFP W4A4 43.86% 53.11% 68.66% 75.00% 51.64% 65.25% 59.59% 16.38
BiE W4A4 50.88% 56.69% 70.35% 77.00% 51.75% 75.11% 63.63% 15.28
BFP W3A3 3.90% 40.78% 58.71% 66.00% 49.99% 50.57% 44.99% 55.67
BiE W3A3 33.48% 50.42% 66.10% 74.00% 49.64% 62.39% 56.00% 19.85

OPT-2.7B

FP16 / 63.63% 60.73% 73.83% 77.00% 51.20% 51.72% 63.02% 12.18
BFP W4A4 54.05% 57.95% 71.71% 78.00% 50.96% 51.72% 60.73% 13.06
BiE W4A4 61.61% 59.43% 72.58% 74.00% 50.17% 51.95% 61.62% 12.54
BFP W3A3 6.64% 44.61% 57.56% 69.00% 49.97% 53.78% 46.93% 27.83
BiE W3A3 39.26% 54.63% 68.82% 74.00% 49.70% 56.08% 57.08% 15.39
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A.2. Results on LLaMA-2

Different from OPT models, the outliers are not severe in LLaMA-2 models. From Table 8, BiE W4A4 enables lossless
quantization and achieves comparable performance with SmoothQuant (Xiao et al., 2023) W8A8.

Table 8. Detailed comparison with different methods on LLaMA-2 family
Size Method Config LAMBADA Arc easy PIQA COPA QNLI SST2 Average↑ WikiText↓

7B

FP16 / 70.95% 73.86% 76.39% 89.00% 58.01% 88.76% 76.16% 6.73
SmoothQuant W8A8 70.83% 73.61% 75.90% 90.00% 55.15% 85.21% 75.12% 6.93
SmoothQuant W6A6 56.61% 66.58% 72.52% 80.00% 52.11% 68.58% 66.07% 10.38

BFP W4A4 51.93% 68.39% 71.06% 83.00% 54.05% 83.49% 68.65% 7.69
BiE W4A4 64.51% 71.30% 73.29% 88.00% 58.91% 80.96% 72.83% 7.00
BFP W3A3 2.43% 33.80% 55.22% 64.00% 49.94% 48.28% 42.28% 20.86
BiE W3A3 23.09% 52.82% 65.23% 72.00% 51.05% 65.83% 55.00% 8.92

13B

FP16 / 73.03% 77.57% 77.80% 90.00% 54.38% 92.20% 77.50% 5.95
SmoothQuant W8A8 72.89% 77.95% 77.42% 90.00% 54.68% 91.86% 77.47% 5.94
SmoothQuant W6A6 60.86% 70.79% 74.48% 83.00% 51.13% 64.79% 67.51% 8.28

BFP W4A4 54.73% 73.27% 74.65% 89.00% 51.24% 84.29% 71.20% 6.74
BiE W4A4 70.10% 76.81% 75.63% 88.00% 52.88% 91.95% 75.90% 6.16
BFP W3A3 3.43% 35.35% 56.26% 66.00% 50.67% 49.43% 43.52% 14.70
BiE W3A3 42.85% 66.12% 68.55% 82.00% 51.88% 68.12% 63.25% 7.86

70B

FP16 / 75.43% 80.30% 80.63% 89.00% 72.49% 91.86% 81.62% 4.51
SmoothQuant W8A8 75.22% 80.60% 80.36% 88.00% 66.19% 91.74% 80.35% 4.56
SmoothQuant W6A6 69.16% 77.23% 78.84% 86.00% 63.96% 86.58% 76.96% 5.73

BFP W4A4 73.14% 79.38% 79.54% 89.00% 69.54% 90.83% 80.24% 4.69
BiE W4A4 74.50% 80.64% 79.43% 90.00% 65.84% 90.83% 80.21% 4.61
BFP W3A3 59.11% 74.87% 74.54% 88.00% 54.05% 87.73% 73.05% 5.78
BiE W3A3 68.43% 76.01% 77.15% 92.00% 59.34% 90.48% 77.24% 5.21

B. Hardware Implementation
We have demonstrated the detailed hardware implementation of BiE in a PE array in Section 3.3. Here, we will give an
analysis of the hardware simulation results. From Table 9, we list the major metrics and resource utility reported by the
simulation tool. For the resource utility, we report the number of Digital Signal Processor Slices (DSPs), Flip-Flops (FFs),
and Look-Up Tables (LUTs).

DSP usually refers to specialized hardware modules for high-speed digital signal processing in FPGAs. FF is a digital
storage element that stores one bit of binary data in a digital circuit. The LUT is an FPGA’s basic programmable logic unit
and is used to implement logic functions. It is found that the usage of LUT in BiE is slightly more than that in BFP. This
result aligns with our expectations, as BiE requires additional logic operations to handle the threshold compared to BFP and
an additional shared exponent via the Type bit.

The throughput is the same for both, as it depends mainly on the multiplication calculation, which is the same for both.
Although the sum operation of the exponent is different, it is operated in parallel with tail multiplication and will require
fewer cycles than multiplication, so it does not affect throughput. Although BiE introduces an extra 5-bit shared exponent,
its memory efficiency is averaged out by the size of the block, so the actual impact is negligible. Here, memory efficiency is
smaller than BFP because each element needs a 1-bit type bit to distinguish whether it is a normal or outlier part. However,
BiE’s memory efficiency is still better than INT6. From a comprehensive perspective, BiE can combine accuracy and
hardware efficiency.

Table 9. Hardware Efficiency of the same size PE array with different numerical representations
Method Config #DSPs #FFs #LUTs Throughput Memory Efficiency

FP16 - 2 182 414 1.00× 1.0×
INT W8A8 0 86 442 1.46× 2.0×
INT W6A6 0 90 402 1.62× 2.7×
BFP W4A4 0 71 839 3.51× 3.7×
BFP W3A3 0 71 775 3.96× 4.8×
BiE W4A4 0 71 849 3.51× 2.8×
BiE W3A3 0 71 785 3.96× 3.5×

14



BiE: Bi-Exponent Block Floating-Point for Large Language Models Quantization

C. Bayesian Optimization
In a GP model we place a prior distribution over g(xxx) indexed by xxx, in our threshold searching task, xxx represents threshold
tenser T:

g(xxx)|θ ∼ GP (m(xxx), k(xxx,xxx′|θ)) , (19)

with mean and covariance functions:
m0(xxx) = E[g(xxx)], (20)

k(xxx,xxx′|θθθ) = E[(g(xxx)−m0(xxx))(g(xxx
′)−m0(xxx

′))]. (21)

Here E[·] denotes the expectation, and the hyperparameters θθθ determine the kernel function. The mean function can be
assumed to be zero, for example m0(xxx) ≡ 0, by virtue of centering the data. Alternative choices are possible, e.g., a linear
function of xxx, but rarely adopted unless information on the form of the function is a-priori available. The covariance function
can take many forms, the kernel function we use for threshold searching is matérn kernel, as shown in Equation (22),

k(xxx,xxx′|θθθ) = 21−ν

Γ(ν)

(√
2ν|xxx− xxx′|

θθθ

)ν

Kν

(√
2ν|xxx− xxx′|

θθθ

)
. (22)

From this point on we omit the explicit notation of the dependence of k(xxx,xxx′) on θθθ. The hyperparameters θ1, . . . , θl in
this case are called the length-scales, ν is a positive parameter and Kν is a modified Bessel function. The ν parameter
effectively controls the level of smoothness of the function. As ν → ∞, we recover exactly the RBF kernel. For lower
values of ν, we obtain rougher functions. When ν is a half-integer, the kernel has an especially nice form as the product
of an exponential function and a polynomial function. Thus, for our threshold searching task, we set ν = 3

2 . The kernel
function is Equation (23),

k(xxx,xxx′|θθθ) =

(
1 +

√
3|xxx− xxx′|
θθθ

)
exp

(
−
√
3|xxx− xxx′|
θθθ

)
. (23)

For any fixed xxx, g(xxx) is a random variable. A collection of values g(xxxi), i = 1, . . . , N , on the other hand, is a partial
realization of the GP. Realizations of the GP are deterministic functions of xxx. The main property of GPs is that the joint
distribution of g(xxxi), i = 1, . . . , N , is multivariate Gaussian. Assuming the model inadequacy ε ∼ N (0, σ2) is Gaussian,
with the prior (19) and available data yyy = (y1, . . . , yN )⊤, we can derivative the model likelihood

L ≜ p(yyy|xxx,θθθ) =
∫
(g(xxx) + ε)dg = N (yyy|0,K + σ2III)

= −1

2
yyyT (K + σ2III)−1yyy − 1

2
ln |K + σ2III| − N

2
log(2π),

(24)

where the covariance matrix K = [Kij ], in which Kij = k(xxxi,xxxj), i, j = 1, . . . , N . The hyperparameters θθθ are normally
obtained from point estimates by maximum likelihood estimate (MLE) of Equation (24) w.r.t. θ.

The joint distribution of yyy and g(xxx) also forms a joint Gaussian distribution. Conditioning on yyy provides the conditional
predictive distribution ĝ(xxx) ∼ N (µ(xxx), v(xxx)), where

µ(xxx) = k(xxx)⊤
(
K + σ2III

)−1
yyy,

v(xxx) = σ2 + k(xxx,xxx)− k⊤(xxx)
(
K + σ2III

)−1
k(xxx).

(25)

Based on the posterior in Equation (25), we can simply calculate the improvements for a new input xxx as I(xxx) = max(ĝ(xxx)−
yyy†, 0), where yyy† is the current optimal and ĝ(xxx) is the predictive posterior in Equation (25). The expected improvement (EI)
over the probabilistic space is

EI(xxx) = Eĝ(xxx)[max(ĝ(xxx)− yyy†, 0)]

= (µ(xxx)− yyy†)ψ (u(xxx)) + v(xxx)ϕ (u(xxx)) ,
(26)

where u(xxx) = (µ(xxx)− yyy†)/v(xxx), ψ(·) and ϕ(·) are the probabilistic density function (PDF) and cumulative density function
(CDF) of a standard normal distribution, respectively.
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