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Abstract

The open-source community is experiencing a
surge in the release of large language models
(LLMs) that are trained to follow instructions and
align with human preference. However, further
training to improve them still requires expensive
computational resources and data annotations. Is
it possible to bypass additional training and cost-
effectively acquire better-aligned models? In-
spired by the literature on model interpolation,
we propose a simple method called EXPO to
boost LLMs’ alignment with human preference.
Utilizing a model that has undergone alignment
training (e.g., via DPO or RLHF) and its initial
SFT checkpoint, EXPO directly obtains a better-
aligned model by extrapolating from the weights
of the initial and the aligned models, which im-
plicitly optimizes the alignment objective via first-
order approximation. Through experiments with
twelve open-source LLMs on HuggingFace, we
demonstrate that EXPO consistently improves
off-the-shelf DPO/RLHF models, as evaluated
on the mainstream LLM benchmarks AlpacaEval
2.0 and MT-Bench. Moreover, EXPO exhibits
remarkable scalability across various model sizes
(from 1.8B to 70B) and capabilities. Through
controlled experiments and further empirical anal-
yses, we shed light on the essence of EXPO ampli-
fying the reward signal learned during alignment
training. Our work demonstrates the efficacy of
model extrapolation in expediting the alignment
of LLMs with human preference, suggesting a
promising direction for future research.
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1. Introduction
Over the past year, the open-source community has wit-
nessed explosive growth in large language models (LLMs).
These powerful LLMs, typically with billions of parame-
ters, are trained to follow instructions and align with human
preference (Ouyang et al., 2022; OpenAI, 2022; Bai et al.,
2022). Although the open weights of LLMs facilitate out-of-
the-box use, further training to improve their performance
usually requires expensive computational resources and ad-
ditional data annotations. Is it possible to bypass additional
training and cost-effectively acquire better-aligned models?

Interpolation Extrapolation

Figure 1: Calculating the reward scores (§ 3.1) on the Ul-
traFeedback (Cui et al., 2023) development set, we observe
that model interpolation usually gives trade-off performance
between the two original models (e.g., an SFT model and a
further-trained DPO/RLHF model). This observation mo-
tivates our proposal of EXPO, which cheaply acquires a
better-aligned (stronger) model from a DPO/RLHF model
and its initial SFT checkpoint (i.e., two relatively weaker
models) via model extrapolation.

We draw inspiration from the literature on model interpo-
lation, also known as model/weight averaging. This tech-
nique merges different models fine-tuned from the same
base model by interpolating between their weights (Utans,
1996; Izmailov et al., 2018; Wortsman et al., 2022), rely-
ing on the mode connectivity of neural networks (Garipov
et al., 2018; Entezari et al., 2022). Previous work observes
that while model interpolation can integrate the respective
strengths of different models to improve out-of-distribution
generalization, it usually results in in-between performance
compared to the original ones (Izmailov et al., 2018; Lin
et al., 2024; Wortsman et al., 2022). We similarly observe
this phenomenon when interpolating between a supervised
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AlpacaEval 2.0 LC Win Rate (%) over GPT-4 MT-Bench Score (1-10)

Figure 2: With no additional training, EXPO remarkably improves off-the-shelf DPO/RLHF models on HuggingFace across
various model sizes and capabilities, as evaluated on two leading LLM benchmarks: AlpacaEval 2.0 (Li et al., 2023a) (left)
and MT-Bench (Zheng et al., 2023b) (right). See Table 1 for full results.

fine-tuned (SFT) model and a model further trained by di-
rect preference optimization (DPO) (Rafailov et al., 2023)
or reinforcement learning from human feedback (RLHF)
(Ziegler et al., 2019), as shown in Figure 1.

Intrigued by the observations of model interpolation, we
turn to another compelling but unexplored direction: What
if we consider a DPO/RLHF model as the interpolated re-
sult from the initial SFT model and a hypothetically better-
aligned model? If this hypothetical model exists, we can
straightforwardly obtain its weights by reversely extrap-
olating from the weights of the SFT and the DPO/RLHF
models, as indicated by the gray arrow in Figure 1. This can
potentially further improve many off-the-shelf DPO/RLHF-
aligned LLMs without any additional training.

Building upon the above assumption, we propose a simple
method called EXPO (model extrapolation) to boost LLMs’
alignment with human preference (§ 2). Utilizing a model
M1 that has undergone alignment training (e.g., via DPO or
RLHF) and the SFT model M0 that initializes M1, EXPO
directly extrapolates a better-aligned (stronger) model M2

from the weights of the two relatively weaker models M1

and M0.

Despite its simplicity, we demonstrate the impressive ef-
ficacy of EXPO through extensive empirical experiments,
as summarized in Figure 2. Through experiments with
twelve open-source LLMs on HuggingFace, we show that
EXPO consistently improves off-the-shelf DPO/RLHF mod-
els, by up to 4.5% on AlpacaEval 2.0 (Li et al., 2023a) and
0.37 on MT-Bench (Zheng et al., 2023b) (§ 3). Moreover,
EXPO also manifests remarkable scalability across various

model sizes (from 1.8B to 70B) and capabilities. We fur-
ther conduct controlled experiments to shed light on how
EXPO amplifies the reward signal learned during M1’s
alignment training, where we show that EXPO can boost
models trained with less preference data (e.g., 10% or 20%)
to compete and even outperform the fully-trained one (§ 4).
Our work demonstrates model extrapolation as a promising
method for expediting the alignment of LLMs with human
preference, and we believe it deserves more exploration in
future research.

2. Methodology
2.1. Overview

Our proposed EXPO method is inspired by the observation
in Figure 1 and the mode connectivity of neural networks
(Garipov et al., 2018; Entezari et al., 2022; Goddard et al.,
2024). Formally, we denote that a language model M1

(parameterized by θ1) has undergone training for human
preference alignment (e.g., via DPO (Rafailov et al., 2023)
or RLHF (Ziegler et al., 2019)). We denote its corresponding
SFT checkpoint as M0 (parameterized by θ0), which is
used for initializing M1. We denote the model’s parameter
space as Θ and suppose that the alignment level can be
quantified by a continuous scalar function Ω : Θ → R,
where higher Ω(θ) indicates better alignment with human
preference. EXPO assumes that there exists a better-aligned
model M2 (parameterized by θ2) that satisfies Ω(θ0) <
Ω(θ1) < Ω(θ2), and an interpolation coefficient γ ∈ [0, 1]
such that θ1 = (1 − γ)θ0 + γθ2. Here, we consider the
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simplest form of uniform linear interpolation, as we find
it can already work well. With the substitution of α =
1/γ − 1 ∈ [0,+∞), EXPO obtains the assumed better-
aligned (stronger) model M2 by extrapolating from the
weights of the two (relatively weaker) models M1 and M0

(i.e., weak-to-strong extrapolation), formulated as follows:

θ2 = (1 + α)θ1 − αθ0

= θ1 + α(θ1 − θ0) = θ1 + α∆θ, (1)

where α serves as the hyperparameter that controls the ex-
trapolation length. In practice, α can be easily tuned as a
decoding hyperparameter (similar to the sampling temper-
ature). This requires only one 24GB GPU for 7B LLMs
(half-precision inference with vllm (Kwon et al., 2023)),
which, however, is far from sufficient for model training.

2.2. Explanation and Insights

Theoretically, EXPO takes first-order approximation to im-
plicitly optimize the alignment objective Ω(θ). Note that
alignment algorithms typically include the regularization
term (e.g., the KL constraint in RLHF) that restricts θ1
within the small vicinity of θ0 (i.e., |∆θ| is small), and we
can also control α such that |α∆θ| ≪ |θ1|. We then apply
first-order Taylor Expansion and have:

Ω(θ1 + α∆θ) ≈ Ω(θ1) + α∇Ω(θ1) ·∆θ. (2)

Therefore, Ω(θ2) = Ω(θ1 + α∆θ) > Ω(θ1) holds if the
gradient of Ω at θ1 has a positive component along ∆θ
(as long as Ω is not locally maximum at θ1). This can
generally be satisfied, as we can reasonably assume Ω to
monotonically increase from θ0 to θ1 during alignment
training, as illustrated in Figure 3.

θ0

α∆θ∆θ

θ1 θ2

Figure 3: Illustrative 1D diagram of Ω(θ). EXPO can be
viewed as a “global gradient update” along ∆θ. It essen-
tially amplifies the reward signal learned during alignment
training.

The above assumption also implies that the alignment train-
ing from M0 to M1 is suboptimal, as shown in Figure 3.
We conjecture this is very likely to occur in practice due to
both the regularization in alignment algorithms (e.g., the KL
constraint in RLHF) and the sparsity of reward signal. For
the latter, since it is intractable to directly optimize Ω(θ), the
dominant practice is to first employ another reward model

to assign preference labels (e.g., in DPO) or reward values
(e.g., in RLHF) to the language model M’s outputs, on
which we then train M. However, transmitting the reward
signal through the intermediate discrete, textual outputs can
make the learned reward signal noisy or sparse, which con-
sequently hinders the optimal alignment training. We will
show in § 3 that the open-source DPO/RLHF models usually
have significant room for further improvement.

Additionally, Figure 3 provides a more intuitive illustration
of EXPO. Specifically, EXPO can be viewed as a “global
gradient update” along the weight change ∆θ. Note that
starting from θ0, ∆θ indicates a direction in which the
alignment level Ω with human preference increases. There-
fore, EXPO essentially amplifies the learned reward signal
through the extrapolation α∆θ. This insight underscores
the importance of the “quality” of ∆θ, i.e., ∆θ should in-
dicate a direction that truly improves the alignment with
human preference. Otherwise, EXPO could also amplify
the learned spurious features in ∆θ. We will provide more
empirical analyses in § 4 to show that the “quality” of ∆θ
can vary depending on the training configuration for M1.

2.3. Highlights

We underline the following appealing properties of EXPO:

• Simplicity: EXPO is extremely simple and quick to im-
plement. It merely involves performing extrapolation
based on the weights of two checkpoints M0 and M1,
which can be implemented within just a few lines of code.

• Efficiency: EXPO does not need any additional model
training. The only variable α is efficient to tune as a
decoding hyperparameter, which requires much fewer
computational resources than model training (e.g., one
24GB GPU is enough for 7B LLMs). Moreover, we
believe more efficient means of hyperparameter search
can be developed in future work, as evidenced by the
advances in adaptive model interpolation (Ilharco et al.,
2023; Lin et al., 2023).

• Scalability: EXPO is, in principle, applicable to various
LLMs, including those of large sizes and those trained by
advanced alignment algorithms like iterative DPO (Xiong
et al., 2024; Dong et al., 2024; 2023). We will show in
§ 3 that EXPO can improve off-the-shelf models across
various sizes and capabilities.

3. EXPO Improves Off-the-shelf Models
In this section, we demonstrate the impressive efficacy of
EXPO in improving off-the-shelf LLMs from HuggingFace,
utilizing their SFT and DPO/RLHF checkpoints. We partic-
ularly underscore the scalability of EXPO across different
model sizes and capabilities.
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3.1. Experimental Setup

Models When selecting open-source LLMs for exper-
iments, we found that many well-known LLMs, such
as LLaMA-2/3 (Touvron et al., 2023; AI@Meta, 2024),
Gemma (Team et al., 2024), and Qwen (Bai et al., 2023),
only release the final DPO/RLHF checkpoints but not the
corresponding SFT ones. To facilitate reproducible research,
we select the following twelve open-source DPO/RLHF
models on HuggingFace that (1) have publicly accessible
SFT checkpoints, (2) have disclosed the training details, and
(3) are popularly downloaded:

• zephyr-7b-alpha/beta (Tunstall et al., 2023b), two
Mistral-based (Jiang et al., 2023) models developed by
HuggingFace. They are initialized from different SFT
checkpoints and trained via DPO on UltraFeedback (Cui
et al., 2023).

• starling-7b-alpha/beta (Zhu et al., 2023), two
Mistral-based models. They are initialized from different
SFT versions of the OpenChat model (Wang et al., 2024)
and trained via the RLHF algorithm.

• snorkel-7b (Tran et al., 2023), a Mistral-based model.
It is initialized from the official SFT Mistral model and
trained via the iterative DPO algorithm (Tran et al., 2023)
on the instructions of UltraFeedback.

• llama3-8b-iter (Dong et al., 2024), a LLaMA-3-based
(AI@Meta, 2024) model developed by Salesforce. It is
trained via iterative DPO on open-source datasets.

• internlm2-1.8/7/20b (Cai et al., 2024), a Chinese-
English bilingual model suite developed by Shanghai AI
Laboratory. The three-sized models undergo the same
SFT training and similar online RLHF training processes.

• tulu-2-dpo-7/13/70b (Ivison et al., 2023), a LLaMA-
2-based model suite developed by the Allen Institute for
AI. The three-sized models undergo the same SFT and
DPO training processes.

We decide the optimal α in EXPO from [0.1, 0.2, 0.3, 0.4,
0.5] based on the model performance on the instructions of
the UltraFeedback1 (Cui et al., 2023) development set. The
performance is measured by the expected reward score cal-
culated by an open-source reward model2. It ranks among
the top on RewardBench3 (Lambert et al., 2024), a leader-
board that assesses the performance of reward models. This
reward model is also not involved in either preference an-
notation or RLHF training of all the models we experiment

1https://huggingface.co/datasets/HuggingFaceH4/
ultrafeedback_binarized

2https://huggingface.co/weqweasdas/
RM-Mistral-7B

3https://huggingface.co/spaces/allenai/
reward-bench

with in this work, thus reducing the risk of reward hacking.

Benchmarks We employ three mainstream LLM bench-
marks for evaluation:

• AlpacaEval 2.0 (Li et al., 2023a), a leading bench-
mark that assesses LLMs’ instruction-following abil-
ity and the alignment with human preference. It cal-
culates the probability that an LLM-based evaluator
(gpt-4-1106-preview) prefers the model’s output over
the GPT-4 baseline, which provides an affordable and
replicable alternative to human preference annotation.
The win rate over the GPT-4 baseline is computed as the
expected preference probability. Recently, AlpacaEval 2.0
has introduced the new length-controlled (LC) win rate
metric (Dubois et al., 2024), which alleviates the length
bias of the GPT-4 evaluator (i.e., the prior preference to-
ward longer responses) (Park et al., 2024). According to
(Dubois et al., 2024), the LC win rate metric currently has
the highest correlation (a Spearman correlation of 0.98)
with the real-world human evaluation on Chatbot Arena
(Zheng et al., 2023b).

• MT-Bench (Zheng et al., 2023b), another leading bench-
mark for assessing chat LLMs’ general and multi-turn
ability. It contains a set of challenging multi-turn open-
ended questions covering topics such as writing, role-
playing, math, coding, and more. The model-generated
answers are judged by gpt-4 via a scalar score (from 1
to 10), without any pairwise comparison.

• Open LLM Leaderboard (Beeching et al., 2023), a pop-
ular evaluation suite hosted by HuggingFace. It consists
of six benchmarks and assesses a variety of model abilities
across commonsense reasoning (Zellers et al., 2019; Sak-
aguchi et al., 2021), math problem-solving (Cobbe et al.,
2021), human falsehood mimicking (Lin et al., 2022), and
general knowledge (Clark et al., 2018; Hendrycks et al.,
2021). We follow the official evaluation protocol (Gao
et al., 2021) and report the average scores on the six bench-
marks, while the breakdowns are shown in Appendix E.

3.2. Results

In Table 1, we demonstrate that EXPO consistently en-
hances the evaluated LLMs, with increases of up to 10.1%
basic win rate on AlpacaEval 2.0 (for internlm2-20b),
4.5% LC win rate (for tulu-2-dpo-70b), and 0.37 on
MT-Bench (for llama3-8b-iter). The improvements are
made across LLMs of various sizes and capabilities, from
the smallest internlm2-1.8b and the second weakest
zephyr-7b-alpha, to the largest tulu-2-dpo-70b and
the strongest llama3-8b-iter and starling-7b-beta,
which demonstrates the remarkable scalability of EXPO. In
Figure 4, we also show that EXPO overall slightly improves
the Open LLM Leaderboard scores, indicating that EXPO
generally does not impact the base model’s capability. Over-

4

https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/weqweasdas/RM-Mistral-7B
https://huggingface.co/weqweasdas/RM-Mistral-7B
https://huggingface.co/spaces/allenai/reward-bench
https://huggingface.co/spaces/allenai/reward-bench


Weak-to-Strong Extrapolation Expedites Alignment

Table 1: AlpacaEval 2.0 (win rate and LC win rate) and MT-Bench evaluation results of off-the-shelf DPO/RLHF models.
The gray models’ scores are copied from the official leaderboard for reference.

Original + EXPO, no training

WR LC WR MT-B Win Rate LC Win Rate MT-Bench

llama2-7b 5.0% 5.4% 6.27 - - -
llama2-70b 13.9% 14.7% 6.86 - - -
mistral-7b-v0.2 14.7% 17.1% 7.60 - - -
claude-2.1 15.7% 25.3% 8.18 - - -
gpt-4-0314 22.1% 35.3% 8.96 - - -

zephyr-7b-alpha 6.7% 10.0% 6.85 10.6% (+3.8%) 13.6% (+3.6%) 6.87 (+0.02)
zephyr-7b-beta 10.2% 13.2% 7.02 11.1% (+0.9%) 14.0% (+0.8%) 7.06 (+0.04)
starling-7b-alpha 15.0% 18.3% 7.82 18.2% (+3.2%) 19.5% (+1.2%) 7.91 (+0.09)
starling-7b-beta 26.6% 25.8% 8.10 29.6% (+3.0%) 26.4% (+0.7%) 8.18 (+0.08)
snorkel-7b 24.7% 24.0% 7.63 28.8% (+4.1%) 26.4% (+2.4%) 7.69 (+0.07)
llama3-8b-iter 29.2% 36.0% 8.08 32.7% (+3.5%) 37.8% (+1.8%) 8.45 (+0.37)

internlm2-1.8b 3.8% 4.0% 5.17 5.2% (+1.5%) 4.3% (+0.3%) 5.26 (+0.08)
internlm2-7b 20.5% 18.3% 7.72 28.1% (+7.6%) 22.7% (+4.4%) 7.80 (+0.08)
internlm2-20b 36.1% 24.9% 8.13 46.2% (+10.1%) 27.2% (+2.4%) 8.26 (+0.13)

tulu-2-dpo-7b 8.5% 10.2% 6.35 11.5% (+3.0%) 11.7% (+1.5%) 6.38 (+0.03)
tulu-2-dpo-13b 11.2% 15.5% 7.00 15.6% (+4.3%) 17.6% (+2.1%) 7.26 (+0.26)
tulu-2-dpo-70b 15.4% 21.2% 7.79 23.0% (+7.6%) 25.7% (+4.5%) 8.03 (+0.24)
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Figure 4: Open LLM Leaderboard evaluation results of off-the-shelf DPO/RLHF models. We report the average scores over
the six tasks. Breakdowns are shown in Appendix E.

Table 2: AlpacaEval 2.0 evaluation results of models trained with varying sizes of preference data.

Original + EXPO, no training

Win Rate LC Win Rate Win Rate LC Win Rate

SFT (M0) 4.7% 8.7% - -
DPO (init from M0, 100% data) 14.7% 17.3% 18.0% (+3.3%) 20.2% (+2.8%)

DPO (init from M0, 5% data) 5.0% 9.1% 11.5% (+6.5%) 14.7% (+5.6%)
DPO (init from M0, 10% data) 5.9% 10.4% 17.9% (+12.0%) 16.3% (+5.8%)
DPO (init from M0, 20% data) 8.6% 12.9% 22.7% (+14.2%) 21.3% (+8.4%)
DPO (init from M0, 40% data) 12.1% 14.6% 17.7% (+5.6%) 16.6% (+2.0%)
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all, our extensive evaluation suggests that most open-source
LLMs have not been trained optimally for human preference
alignment, while EXPO enables further improvements for
them without any additional training.

4. Controlled Experiments and Analyses
In this section, we conduct controlled experiments to give
more insights into EXPO, where we fix the same M0 and
adopt varying training configurations for M1, including
training data sizes and hyperparameters. We also discuss
the impact of model choices of M0 and M1 on the effec-
tiveness of EXPO. We underscore that EXPO amplifies the
reward signal learned during alignment training, but it can
also amplify the learned spurious features such as length
bias.

4.1. Experimental Setup

Models We refer to the alignment handbook (Tunstall et al.,
2023a), a widely-used code base released by HuggingFace
for alignment training of LLMs. We adopt their recipe for
training the zephyr-7b-sft and zephyr-7b-dpo models,
which are popularly used for controlled experiments in re-
cent LLM alignment research (Chen et al., 2024b; Ji et al.,
2024b; Chen et al., 2024a). The recipe employs DPO for
alignment training, where the SFT model zephyr-7b-sft
is used as the reference model in DPO and also for initializ-
ing the policy models. We adopt the same hyperparameter
configuration (see Appendix F) and train all the models
on 4 A100 80GB GPUs. We use zephyr-7b-dpo as the
fully-trained baseline (i.e., using 100% data).

Data We use the same preference dataset UltraFeedback
(Cui et al., 2023) for alignment training. It contains diverse
instructions and response pairs with GPT-4-annotated prefer-
ence labels and has been popularly used by the open-source
community for training aligned LLMs (Ivison et al., 2023;
Tunstall et al., 2023b; Zhu et al., 2023). The preprocessed
version on HuggingFace contains 61K and 1K preference
data in the training and development sets, respectively. As
in § 3, we search the optimal α in EXPO based on the
performance on the instructions of the development set, as
evaluated by the same open-source reward model.

4.2. Analysis of Training Data

We first study the impact of training data on the effective-
ness of EXPO. We train multiple M1 from the same initial
M0 (i.e., zephyr-7b-sft), but with varying data sizes
(from 5% to 40%). In Table 2, we show their performance
as well as the results of further applying EXPO to them.
While training with less preference data usually results in
lower-tier performance, EXPO boosts the performance to
compete (10% data, 16.3%) and even surpass (20% data,

21.3%) the fully-trained model (17.3%). We also observe
that the model trained with 20% data obtains a larger im-
provement than other data proportions. It implies that the
former gives a superior extrapolation direction ∆θ (i.e., of
a higher “quality”), as illustrated in Figure 5.

θ′
1

θ1

α′∆θ′

α∆θ

θ0

Figure 5: Illustrative 2D contour diagram of Ω(θ). The
“quality” of ∆θ and the effectiveness of EXPO can vary
depending on the training configurations for M1. Here, ∆θ
indicates a superior extrapolation direction to ∆θ′.

However, the “quality” of ∆θ is not simply correlated with
the amount of data. As shown in Table 2, using 20% data
slightly outperforms using 100% data when both applying
EXPO (21.3% vs. 20.2%), while the gain from EXPO de-
creases when the used data increases to 40%. In Figure 6,
we present the reward scores and output lengths on the Ul-
traFeedback development set versus varying α values. From
the left part, we observe that the global optimal reward score
(6.08) achieved by EXPO is obtained with a medium size
(20%) of training data, rather than the smaller (5% or 10%)
or larger (40%) ones. For the former (5% and 10% data), al-
though EXPO still notably improves the performance (from
the reward score 3.13 to 4.79, and 3.59 to 5.82, respectively),
the limited data still cannot provide an accurate ∆θ, thus
capping the improvement after model extrapolation. For the
latter (40% data), we speculate that the model has learned
the spurious features within the training data as shortcuts,
especially the length bias4 (Park et al., 2024) where the pre-
ferred responses are usually longer. As shown in the right
part of Figure 6, for the model trained with 40% data, using
a very small α results in a dramatic increase in the output
length. However, this does not lead to sustained improve-
ment in performance, where the optimal rewards typically
correspond to moderate output lengths ranging between 500
and 600.

4.3. Analysis of Training Hyperparameters

As EXPO can be viewed as a “global gradient update”
(§ 2.2), we also compare with simply tuning the training
hyperparameters. We use the same 20% training data but
increase the learning rate or training epochs, and train mul-
tiple M1 from the same initial M0. From the left part of

4The average lengths of the preferred and unpreferred responses
in the UltraFeedback training set are 319 and 277, respectively.
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Figure 6: We train multiple M1 from the same initial M0, but with varying data sizes. We plot the reward scores (left) and
output lengths (right) on the instructions of the UltraFeedback development set versus varying α values (x-axis). Note that
α = 0 indicates that EXPO is not applied.

Figure 7: We train multiple M1 from the same initial M0 using the same 20% preference data, but with larger learning
rates or for more epochs. We plot the reward scores (left) and output lengths (right) on the instructions of the UltraFeedback
development set versus varying α values (x-axis). Note that α = 0 indicates that EXPO is not applied.

Figure 7, we observe that increasing the learning rate or
training epochs indeed somewhat improves the original re-
ward score. However, it is still inferior to the optimal reward
score achieved by EXPO under the default configuration,
and also notably impairs the gains from EXPO (the peak
points are lower than that of the default configuration). This
is probably because the model is overfitted to the training
data and similarly learns the spurious features (such as the
length bias), thus failing to produce an accurate ∆θ. The
overfitting issue can also be evidenced by the right part of
Figure 7. The models trained with larger learning rates or
for more epochs become prone to generating longer outputs
with a small α, but do not obtain noticeable reward improve-
ment (the left part of Figure 7). This suggests that ∆θ is
very likely to contain the spurious length feature rather than
the true human preference.

4.4. Discussion on Model Choices

Finally, we discuss the impact of model choices for M0 and
M1 on the effectiveness of EXPO. In the experiments so
far, we choose M0 as an SFT model and M1 as the model
further trained for human preference alignment on top of
M0. Can other types of model combination M0 and M1,
such as a Base and an SFT model, or two separately-trained

RLHF models, be able to produce meaningful extrapolated
models? We experiment with the following combinations:

(1) Base + SFT: mistral-7b-v0.1 (Jiang et al., 2023) as
M0 and mistral-7b-instruct-v0.1 as M1.

(2) SFT 1 + SFT 2 (trained from different base
models): mistral-7b-instruct-v0.1 as M0 and
mistral-7b-instruct-v0.2 as M1.

(3) SFT 1 + SFT 2 (same base): openchat-3.5 (Wang
et al., 2024) as M0 and openchat-3.5-0106 as M1.

(4) RLHF 1 + RLHF 2 (same base): gemma-7b-it (Team
et al., 2024) as M0 and gemma-1.1-7b-it as M1.
Note that it is not disclosed whether the two models are
initialized from the same SFT model.

From Figure 8, (1) we find that extrapolating from two SFT
models that are initialized from different base models can
easily lead to the model collapse, due to that they do not
satisfy the mode connectivity (Garipov et al., 2018; Entezari
et al., 2022), (2) For the combination of Base and SFT,
extrapolation degrades the performance, probably because
training from Base to SFT does not naturally optimize for
human preference and increase the alignment level Ω. This
is exactly why we need additional training for human pref-
erence alignment. (3&4) For two separately-trained SFT or
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Figure 8: Reward scores of different model combinations
on the instructions of the UltraFeedback development set,
with α (x-axis) varying from 0.1 to 0.5.

θ0

α∆θθbase

θ1

Figure 9: Extrapolation from two separately-trained models
may not improve alignment, as their weight difference (∆θ)
usually cannot indicate a direction in which the reward
signal can be amplified.

RLHF models, we find that they also fail to benefit from
model extrapolation. We speculate that this occurs because
when M1 is not initialized from M0, the alignment level
Ω does not monotonously increase along the path in the
parameter space from θ0 to θ1. Instead, Ω may first reach
an intermediate peak point and then decrease, as illustrated
in Figure 9. Therefore, ∆θ fails to indicate a direction in
which the reward signal can be amplified, even if the align-
ment level Ω(θ1) is higher than Ω(θ0). Overall, our method
EXPO is generally applicable to the combination of an SFT
model M0 and a model M1 further trained on top of the
former, which is a very realistic combination choice, as mod-
ern LLMs that are trained to align with human preference
are almost all initialized from their SFT checkpoints.

5. Conclusion
We present EXPO, a simple method to boost LLMs’ align-
ment with human preference. By extrapolating from the
weights of an aligned model and its initial SFT checkpoint,
EXPO enables directly obtaining a better-aligned model
without any additional training. We demonstrate the efficacy
of EXPO in enhancing open-source LLMs across various
model sizes (from 1.8B to 70B) and capabilities, suggesting
significant improvement room for most open-source mod-

els. We also shed light on the essence of EXPO amplifying
the reward signal learned in the alignment training through
controlled experiments. Given its simplicity, efficiency, and
scalability, we recommend EXPO as a promising approach
for expediting the alignment of LLMs with human prefer-
ence, which we believe deserves more future exploration.

Limitations & Future Work Our work is limited by
the public accessibility to the SFT and DPO/RLHF check-
points. Thus unfortunately, we are unable to experiment
with the more representative LLMs like LLaMA-2/3 (Tou-
vron et al., 2023; AI@Meta, 2024), Gemma (Team et al.,
2024), and Qwen (Bai et al., 2023). We hope for more
open-source efforts in increasing LLMs’ transparency and
accessibility. Outside the scope of our work, there are sev-
eral problems that can potentially attract future research.
First, since EXPO is currently based on the simplest uni-
form linear extrapolation (Equation 1, using the same α for
all the model modules), future work can devise methods to
adaptively search optimal α for different model modules.
Second, although our work provides a basic explanation for
EXPO (§ 2.2) and empirically demonstrates its effective-
ness, future work can establish more profound theoretical
foundations for its underlying mechanisms. Third, while we
currently rely on an external reward model for searching α,
future work may get rid of such reliance by resorting to the
inherent capability of the models M1 and M0 themselves.
Finally, it would also be interesting to apply EXPO to multi-
modal LLMs like LLaVA (Liu et al., 2023) and other model
architectures like Mamba (Gu & Dao, 2023).
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A. Related Work
LLM Alignment Modern LLMs are typically first pre-trained on massive textual corpora (resulting in a Base model)
(Brown et al., 2020; Touvron et al., 2023; AI@Meta, 2024) and then trained to align with human expectations (OpenAI,
2022; 2023; Ji et al., 2023). The alignment process generally contains two stages. In the first stage, an LLM is supervisedly
fine-tuned (SFT) on demonstration outputs and learns to follow human instructions (Wang et al., 2023; Taori et al., 2023;
Zheng, 2024). In the second stage, the LLM is trained to learn human preference and assign higher probabilities to
human-preferred outputs over the disfavored ones. This is usually implemented in the fashion of reinforcement learning (RL)
(Ouyang et al., 2022; Bai et al., 2022) or contrastive learning (Zhao et al., 2023; Zheng et al., 2023a; Rafailov et al., 2023),
as exemplified by the reinforcement learning from human feedback (RLHF) (Ziegler et al., 2019) and direct preference
optimization (DPO) (Rafailov et al., 2023) algorithms, respectively. However, as the model size increases (from 7B, 13B
to 70B or larger), the computational resources required for alignment training also become extremely expensive (Ji et al.,
2024a). For instance, training a 7B model via DPO has commonly required 4 or 8 A100 80GB GPUs, which can be
unaffordable for open-source community users. Our work proposes the EXPO method to boost the alignment of LLMs with
human preference in a simple, efficient, and scalable manner.

Model Merging and Interpolation Model merging is a recent focal technique for building powerful LLMs based on
existing ones (Akiba et al., 2024; Yu et al., 2024; Goddard et al., 2024). It aims to integrate multiple models fine-tuned
from the same base model into a unified one that retains the respective strengths. The simplest form of model merging
is model interpolation, also known as model/weight averaging (Izmailov et al., 2018; Lin et al., 2024; Wortsman et al.,
2022; Lin et al., 2023), which builds upon the mode connectivity of neural networks (Garipov et al., 2018; Entezari et al.,
2022). Our work is inspired by the phenomenon that interpolation usually results in in-between performance compared to
the original models, as observed in previous literature (Izmailov et al., 2018; Lin et al., 2024; Wortsman et al., 2022) and our
experiments in Figure 1. The proposed EXPO method has a similar idea of blending model weights, but works under a
distinct premise and goal. Rather than integrating the strengths of multiple strong models, EXPO starts from two relatively
weaker models and aims to produce an overall stronger one.

There is another line of work that improves text generation by blending the token prediction distributions of multiple
language models during the inference time (Liu et al., 2021; Li et al., 2023b; Lu et al., 2024). They share somewhat similar
forms to model merging, but operate on output logits rather than model weights. Besides, they can suffer from decreased
generation efficiency due to the interference with the inference process, and the increased exposure bias of different models.
Our proposed EXPO method, as well as the work in model merging, bypasses these issues by producing a new single model.

B. Broader Impacts and Safeguards
Our work aims to improve the alignment of LLMs with human preference when they follow human instructions. It can
facilitate the development of more helpful AI assistants. On the other hand, the increased utility of LLMs also faces risks of
dual use. For instance, they may be asked to assist with malicious queries like falsifying information or causing damages.
For real-world deployment, it is essential that LLMs undergo additional safety training and learn to recognize and refuse
harmful queries (OpenAI, 2023; Touvron et al., 2023). Furthermore, they should be equipped with necessary moderation
mechanisms, such as safeguard classifiers or guardrail prompts (AI@Meta, 2024; Jiang et al., 2023; Zheng et al., 2024).
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C. Open-Source Models Used in This Work

Model HuggingFace Model ID

reward model weqweasdas/RM-Mistral-7B

mistral-7b-sft-alpha HuggingFaceH4/mistral-7b-sft-alpha
zephyr-7b-alpha HuggingFaceH4/zephyr-7b-alpha

mistral-7b-sft-beta HuggingFaceH4/mistral-7b-sft-beta
zephyr-7b-beta HuggingFaceH4/zephyr-7b-beta

openchat-3.5 openchat/openchat_3.5
starling-7b-alpha berkeley-nest/Starling-LM-7B-alpha

openchat-3.5-0106 openchat/openchat-3.5-0106
starling-7b-beta Nexusflow/Starling-LM-7B-beta

mistral-7b-instruct-v0.2 mistralai/Mistral-7B-Instruct-v0.2
snorkel-7b snorkelai/Snorkel-Mistral-PairRM-DPO

llama3-8b-sft RLHFlow/LLaMA3-SFT
llama3-8b-iter RLHFlow/LLaMA3-iterative-DPO-final

internlm2-1.8b-sft internlm/internlm2-chat-1_8b-sft
internlm2-1.8b internlm/internlm2-chat-1_8b

internlm2-7b-sft internlm/internlm2-chat-7b-sft
internlm2-7b internlm/internlm2-chat-7b

internlm2-20b-sft internlm/internlm2-chat-20b-sft
internlm2-20b internlm/internlm2-chat-20b

tulu-2-7b allenai/tulu-2-7b
tulu-2-dpo-7b allenai/tulu-2-dpo-7b

tulu-2-13b allenai/tulu-2-13b
tulu-2-dpo-13b allenai/tulu-2-dpo-13b

tulu-2-70b allenai/tulu-2-70b
tulu-2-dpo-70b allenai/tulu-2-dpo-70b

zephyr-7b-sft alignment-handbook/zephyr-7b-sft-full
zephyr-7b-dpo alignment-handbook/zephyr-7b-dpo-full

mistral-7b-v0.1 mistralai/Mistral-7B-v0.1
mistral-7b-instruct-v0.1 mistralai/Mistral-7B-Instruct-v0.1

gemma-7b-it google/gemma-7b-it
gemma-1.1-7b-it google/gemma-1.1-7b-it
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D. Calculated Reward Histograms on the AlpacaEval 2.0 Instructions
For the DPO/RLHF models in § 3, we draw their reward distributions on the AplacaEval 2.0 Instructions, which are
calculated by the aforementioned reward model. As shown below, EXPO generally shifts the distribution toward the
higher-reward direction (i.e., the right-hand direction in the figures).
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E. Breakdowns of Open LLM Leaderboard Evaluation Results

ARC HellaSwag MMLU GSM8K Winogrande TruthfulQA

zephyr-7b-alpha 61.0 84.0 61.4 14.0 78.6 57.9
+ EXPO 60.8 84.3 60.6 28.3 78.1 60.9

zephyr-7b-beta 62.0 84.5 61.1 11.4 78.1 57.4
+ EXPO 62.3 84.5 61.0 27.3 77.7 58.3

starling-7b-alpha 63.7 84.9 64.7 62.3 80.4 46.3
+ EXPO 63.9 84.8 64.6 61.6 80.4 46.4

starling-7b-beta 67.2 83.5 65.1 66.6 81.3 55.5
+ EXPO 67.9 83.6 65.3 65.7 81.4 57.2

snorkel-7b 66.1 85.6 60.7 36.1 76.5 69.6
+ EXPO 66.3 85.7 60.9 34.8 76.4 69.8

llama3-8b-iter 64.8 83.8 66.4 67.3 79.2 62.2
+ EXPO 66.0 84.2 66.3 59.6 79.3 64.0

internlm2-1.8b 43.1 60.5 46.9 30.4 62.8 42.2
+ EXPO 42.5 60.1 46.6 31.2 63.0 42.4

internlm2-7b 57.9 78.8 58.4 27.1 72.6 56.6
+ EXPO 57.8 78.7 57.9 30.5 72.5 58.3

internlm2-20b 62.7 82.5 66.4 61.3 79.7 54.8
+ EXPO 62.7 82.5 66.1 62.8 79.6 56.3

tulu-2-dpo-7b 57.2 81.0 52.0 27.3 74.0 55.9
+ EXPO 58.0 81.3 52.0 26.7 74.7 59.6

tulu-2-dpo-13b 61.5 84.6 57.7 38.3 77.5 59.0
+ EXPO 62.7 85.1 57.5 38.8 77.9 63.7

tulu-2-dpo-70b 72.1 89.0 69.8 62.6 83.3 65.8
+ EXPO 72.7 89.3 69.6 59.4 83.2 70.0
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F. Implementation Details
For response generation in § 3 and 4, we employ the vllm (Kwon et al., 2023) library for high-throughput inference. We
use top-k (k = 40) and nucleus sampling (Holtzman et al., 2020) (p = 0.9) with a temperature of 0.7. To avoid repetition in
generated texts, we set both the factors of presence penalty and frequency penalty to 0.1. We adopt the same decoding
hyperparameters with the sampling random seed set to 42 for all the evaluated models across all the experiments,
except in the evaluation of MT-Bench and Open LLM Leaderboard, as they have their own sets of decoding hyperparameters.

For model training in § 4, we adopt the global batch size 128 and gradient accumulation steps 4. We train the models on 4
A100 80GB GPUs, with ZeRO-3 offload (Rajbhandari et al., 2020) and gradient checkpointing for reducing GPU memory
usage. We set the learning rate to 5e-7, with the cosine scheduling and warmup ratio of 0.1, and use the AdamW (Loshchilov
& Hutter, 2019) optimizer to train the models for one epoch. For DPO, we follow zephyr-7b-dpo and set β to 0.01.

For hyperparameter search in § 3 and 4, we perform grid search on the values of α. We use the obtained model to generate
responses on the UltraFeedback development set, score the responses with the reward model, and choose the optimal α
corresponding to the highest average score. We list below the search range and the optimal α in our experiments.

DPO/RLHF Model SFT Checkpoint Search Range Optimal α

zephyr-7b-alpha mistral-7b-sft-alpha [0.1, 0.2, 0.3, 0.4, 0.5] 0.3
zephyr-7b-beta mistral-7b-sft-beta [0.1, 0.2, 0.3, 0.5] 0.1
starling-7b-alpha openchat-3.5 [0.1, 0.2, 0.3, 0.5] 0.2
starling-7b-beta openchat-3.5-0106 [0.1, 0.3, 0.4, 0.5] 0.5
snorkel-7b mistral-7b-instruct-v0.2 [0.1, 0.2, 0.3, 0.4, 0.5] 0.3
llama3-8b-iter llama3-8b-sft [0.1, 0.2, 0.3, 0.4, 0.5] 0.3

internlm2-1.8b internlm2-1.8b-sft [0.1, 0.3, 0.4, 0.5] 0.5
internlm2-7b internlm2-7b-sft [0.1, 0.3, 0.4, 0.5] 0.5
internlm2-20b internlm2-20b-sft [0.1, 0.3, 0.4, 0.5] 0.5

tulu-2-dpo-7b tulu-2-7b [0.1, 0.3, 0.4, 0.5] 0.5
tulu-2-dpo-13b tulu-2-13b [0.1, 0.3, 0.4, 0.5] 0.5
tulu-2-dpo-70b tulu-2-70b [0.1, 0.3, 0.4, 0.5] 0.5

DPO (5% data) zephyr-7b-sft [5, 10, 20, 25, 30] 25
DPO (10% data) zephyr-7b-sft [2, 5, 7, 8, 9, 10] 8
DPO (20% data) zephyr-7b-sft [1.0, 2.0, 2.5, 3.0] 2.5
DPO (40% data) zephyr-7b-sft [0.2, 0.4, 0.5, 0.6] 0.5
zephyr-7b-dpo zephyr-7b-sft [0.1, 0.2, 0.3, 0.4, 0.5] 0.3

G. Results of Further Training on the Development Set Data
In § 4, one may be concerned that the UltraFeedback development set (1K data) is used to select optimal α in EXPO but is
not involved in improving the baselines where EXPO is not applied, which may lead to unfair comparison. We thus further
train these baselines on the 1K development data, and calculate the expected reward score on the development set. Note
that EXPO only uses the instructions of the development set, while the further training for baseline models uses both the
instructions and preference labels. In the table below, we show that further training on the development set still results in
inferior performance to simply applying EXPO.

Original Reward + Training on Dev + EXPO, no training

DPO (5% data) 3.13 3.33 (+0.20) 4.79 (+1.66)
DPO (10% data) 3.59 3.73 (+0.14) 5.82 (+2.23)
DPO (20% data) 4.37 4.46 (+0.09) 6.08 (+1.71)
DPO (40% data) 5.30 5.33 (+0.03) 5.80 (+0.50)
DPO (100% data) 5.66 5.64 (-0.02) 5.81 (+0.15)
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