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Abstract

The new paradigm of test-time scaling has yielded remarkable breakthroughs in
Large Language Models (LLMs) (e.g. reasoning models) and in generative vision
models, allowing models to allocate additional computation during inference to
effectively tackle increasingly complex problems. Despite the improvements of this
approach, an important limitation emerges: the substantial increase in computation
time makes the process slow and impractical for many applications. Given the
success of this paradigm and its growing usage, we seek to preserve its benefits
while eschewing the inference overhead. In this work we propose one solution to
the critical problem of integrating test-time scaling knowledge into a model during
post-training. Specifically, we replace reward guided test-time noise optimization
in diffusion models with a Noise Hypernetwork that modulates initial input noise.
We propose a theoretically grounded framework for learning this reward-tilted
distribution for distilled generators, through a tractable noise-space objective that
maintains fidelity to the base model while optimizing for desired characteristics.
We show that our approach recovers a substantial portion of the quality gains from
explicit test-time optimization at a fraction of the computational cost. Code is
available at https://github. com/ExplainableML/HyperNoise.

1 Introduction

Recently, inference-time scaling has made remarkable breakthroughs in Large Language Models [25,
37, 81] and generative vision models, enabling models to spend more computation during inference
to solve complex problems effectively. Drawing from the success and growing usage of test-time
compute in LLMs, several methods have attempted to apply similar ideas in the context of diffusion
models for generation [6, 19, 56, 63, 64, 77, 85, 87, 89, 90, 94]. The goal of this process is to spend
additional compute during inference to obtain generations that better reflect desired output properties.

Diffusion model test-time techniques that optimize the initial noise or intermediate steps of the
diffusion process, often guided by feedback from pre-trained reward models [45, 51, 98, 99, 100, 104],
have demonstrated significant promise in improving critical attributes of the generated outputs, such
as prompt following, aesthetics, quality and composition [9, 19, 41, 56, 63, 64, 94]. These methods
generally fall into two broad categories: gradient-based optimization, which typically requires
substantial GPU memory for backpropagation through the full model [6, 19, 43, 64, 94], and gradient-
free optimization, which often necessitates a very large number of function evaluations (NFEs),
sometimes thousands, of the computationally expensive denoising network [41, 56, 90]. While
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Figure 1: The same initial random noise is used for the base generation and the initialization of the
noise hypernetwork. HyperNoise significantly improves upon the initially generated image with
respect to both prompt faithfulness and aesthetic quality for both SANA-Sprint and FLUX-Schnell.

both strategies can effectively boost output quality, they introduce considerable latency (exceeding
10 minutes for one generation), severely limiting their practical utility, particularly for real-time
applications. This is an instantiation of a global problem of test-time scaling methods that we seek to
tackle in this work. The core hypothesis of our work is whether it is possible to capture a portion of
test-time scaling benefits by integrating this knowledge into a neural network during training time?

To address this, one might consider directly fine-tuning the diffusion model using reward signals [10,
12, 16, 50, 71, 86, 88, 105] or with Direct Preference Optimization (DPO) [31, 42, 49, 74, 95]. The
objective here can be formulated as learning a tilted distribution (Equation 3), which upweights
samples with high reward while maintaining fidelity to a base model’s distribution. These methods
are usually expensive to train due to the need for backpropagation through the sampling process.
Instead, one might consider directly fine-tuning a step-distilled generative model to learn this target
distribution. However, this approach typically involves a KL regularization to the base model that
is intractable for distilled models. An imbalance or poor estimation of this can lead to the model
"reward-hacking", superficially maximizing the reward metric while significantly deviating from the
desired underlying data distribution, thus not achieving the genuine desired improvements.

In this work, we propose a different path to realize the benefits of the target tilted distribution
(Equation 3), particularly for step-distilled generative models. Our core hypothesis is that instead
of modifying the parameters of the base generator, we can achieve the desired output distribution
by learning to predict an optimal initial noise distribution. We first show that such an optimal tilted
noise distribution pf; exists (characterized by Equation 5). When samples from this p{ are passed
through the frozen generator, they naturally produce outputs that are distributed according to the
target data-space tilted distribution. To learn this tilted noise distribution, we introduce a lightweight
network, fs, that transforms standard Gaussian noise into a modulated, improved noise latent. The



crucial advantage of this approach lies in its optimization objective. In particular, the regularization
term, a KL divergence between the modulated noise distribution and the standard Gaussian prior,
is defined entirely in the noise space. We show that this noise-space KL divergence can be made
tractable and effectively approximated by an Lo penalty on the magnitude of the noise modification.

This lightweight network forms the core of our approach, which we term Noise Hypernetworks. It
functions akin to a hypernetwork [2, 27, 28, 36, 60, 69, 92, 102] as rather than generating the final
image, it produces a specific, optimized starting latent for the main frozen generative model. This
effectively guides the output of the base model without any changes to its parameters. Broadly, a
hypernetwork is an auxiliary model trained to generate crucial inputs or parameters of a primary
model. Our f, embodies this concept by learning to predict the optimized initial noise as input to the
frozen generator. Consequently, our proposed approach is effectively training a Noise Hypernetwork
to perform the task of test-time noise optimization, by learning to directly output an optimized noise
latent in a single step sidestepping the need for expensive, iterative test-time optimization.

Our practical implementation of the noise hypernetwork utilizes Low-Rank Adaptation (LoRA),
ensuring it remains parameter-efficient and adds negligible computational cost during inference. We
apply our method to text-to-image generation, conducting evaluations with an illustrative "redness"
reward task to demonstrate core mechanics, as well as complex alignments using sophisticated
human-preference reward models. We demonstrate the efficacy of our approach by applying it
to distilled diffusion models SD-Turbo [80], SANA-Sprint [1 1], and FLUX-Schnell. Overall, our
experiments show that we can recover a substantial portion of the quality gains from explicit test-time
optimization at a fraction of the computational inference cost. In summary, our contributions are:

1. We introduce HyperNoise, a novel framework that learns to predict an optimized initial noise for a
fixed distilled generator, effectively moving test-time noise optimization benefits and computa-
tional costs into a one-time post-training stage.

2. We propose the first theoretically grounded framework for learning the reward tilted distribution
of distilled generators, through a tractable noise-space objective that maintains fidelity to the base
model while optimizing for desired characteristics.

3. We demonstrate through extensive experiments significant enhancements in generation quality
for state-of-the-art distilled models with minimal added inference latency, making high-quality,
reward-aligned generation practical for fast generators.

2 Background

Preliminaries. Recent generative models are based on a time-dependent formulation between a
standard Gaussian distribution xo ~ pg = N (0, I) and a data distribution x; ~ pgas,. These models
define an interpolation between the initial noise and the data distribution, such that

X; = ayXq + 04 X1, (D

where o is a decreasing and o is an increasing function of ¢ € [0, 1]. Score-based diffusion [30, 40,
44,82, 83] and flow matching [3, 52, 53] models share the observation that the process x; can be
sampled dynamically using a stochastic or ordinary differential equation (SDE or ODE). The neural
networks parameterizing these ODEs/SDEs are trained to learn the underlying dynamics, typically by
predicting the score of the perturbed data distribution or the conditional vector field. Generating a
sample then involves simulating this learned differential equation starting from xg ~ pyg.

Step-Distilled Models. The iterative simulation of such ODEs/SDEs often requires numerous steps,
leading to slow sample generation. To address this latency, distillation techniques have emerged
as a powerful approach. The objective is to train a "student” model that emulates the behavior of
a pre-trained "teacher" model (which performs the full ODE/SDE simulation) but achieves this
with drastically fewer, or even a single, evaluation step(s). Prominent distillation methods such as
Adversarial Diffusion Distillation [80] or Consistency Models [55, 84] have enabled the development
of highly efficient few-step or one-step generative models, like SD/SDXL-Turbo [80] and SANA-
Sprint [11]. In this work, we denote such a distilled generator by gy. The significantly reduced
number of sampling steps in these distilled models makes them more amenable to various optimization
techniques and practical for real-time applications, which is why they are the focus of our work.

Test-Time Noise Optimization. Test-time optimization techniques aim to improve pre-trained
generative models on a per-sample basis at inference. One prominent gradient-based strategy is



test-time noise optimization [6, 26, 43, 64, 87, 94]. Given a pre-trained generator go (which could
be a multi-step diffusion or flow matching model), this approach optimizes the initial noise xq for
each generation instance. The objective is to find an improved xj that maximizes a given reward
r(go(x0)), often subject to regularization and can be formulated as

xj = argmax(r(gs(xo)) — Reg(xo)), 2)

X0

where Reg(xg) is a regularization term designed to keep x§ within a high-density region of the
prior noise distribution py, thus ensuring the generated sample gp (xf) remains plausible. ReNO [19]
adapted this framework for distilled generators gy, enabling more efficient test-time optimization
compared to full diffusion models. However, this per-sample optimization still incurs significant
computational costs at inference, involving multiple forward and backward passes, and increased
GPU memory. This inherent latency and computational burden motivate the exploration of methods
that can imbue models with desired properties without per-instance test-time optimization.

Reward-based Fine-tuning and the Tilted Distribution. To circumvent the per-sample inference
costs associated with test-time optimization, an alternative paradigm is to directly fine-tune the
generative model gy to align with a reward function. We consider the pre-trained base distilled
diffusion model gy, which transforms an initial noise sample x; into an output sample x = gy (xo).
The distribution of these generated output samples is the pushforward of py by gy, which we denote
as pP° = (gg)spo. Given gy and a differentiable reward function r(x) : RY — R that quantifies the
preference of samples x, our objective is to learn the so called tilted distribution

p*(x) oc pPe (x) exp(r(x)). 3)

This target distribution is defined to upweight samples with high rewards under r(x) while staying
close to the original p®®¢(x). We would like to learn p*(x) by minimizing the KL divergence
Dy (p?||p*). Here, p? is the distribution generated by modifying the base process using trainable
parameters ¢. e.g. ¢ could correspond to a fine-tuned version of §. This objective can be decomposed

such that

min Dy (p?|Ip*) = min Dy (P?]1p") = Exrope [r(x)], 4)

where we omit the normalization constant of p*(x) which is constant w.r.t. ¢ (see Appendix A.2).
This objective encourages the learned model p? to generate high-reward samples while regularizing
its deviation from the original base distribution pb®,

Challenges in Direct Reward Fine-tuning of Distilled Models. Directly optimizing Equation 4
by fine-tuning the parameters of a distilled, e.g. one-step, gg poses significant challenges. The
term Dy (p®||p°®°) requires evaluating the densities of p® and p*®°. For typical neural network
generators, these densities involve Jacobian determinants through the change-of-variable formula,
which are often intractable or computationally prohibitive to compute for high-dimensional data [67].
Previously, a line of work has analyzed fine-tuning Diffusion [86, 88] and Flow matching [16] models
based on Equation 4 through the lens of Stochastic Optimal Control. However, this formulation relies
on dynamical generative models (SDEs) and its application to distilled models is not straightforward,
as these often lack the explicit continuous-time dynamical structure (e.g., an underlying SDE or ODE)
that these fine-tuning techniques leverage.

3 Noise Hypernetworks

Given the challenges in directly fine-tuning gg, we introduce Noise Hypernetworks (HyperNoise), a
novel theoretically grounded approach to learn p* for distilled generative models. The core idea is to
learn a new distribution for the initial noise, pg’ , such that samples X ~ pg, when passed through
the fixed generator gy, produce outputs x = gg(Xg) that are effectively drawn from the target tilted
distribution p*(x) (Equation 3). Instead of modifying the parameters 6 of the base generator, we keep
go fixed. This requires p, to approximate an optimal modulated noise distribution, pg. This filted
noise distribution, which precisely steers gy to p*, can be characterized by (Appendix A.3)

P (X0) o po(xo0) exp(r(go(x0)))- S)

To realize the modulated noise distribution pg, we parameterize it using a learnable noise hyper-
network f, (with parameters ¢). This network defines a transformation T that maps initial noise
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Figure 2: Illustration of our proposed HyperNoise approach. During training, the LoRA parameters
are trained to predict improved noises and are optimized by reward maximization subject to KL
regularization. During inference, the noise hypernetwork directly predicts the improved noise
initialization which is used for the final generation.

samples xy ~ pg to modulated samples X via a residual formulation such that

%0 = Tp(x0) == x0 + f»(x0). 6)

The distribution of these modulated samples, pg’, is thus the pushforward of py by Ty, ie.,
Py = (Ty)4po. We propose to traln the parameters ¢ of the noise modulation network f¢, by mini-
mizing the KL divergence Dy, (po |lpg). This can be shown to be equivalent to minimizing the loss

function
£n0ise(¢) - Eﬁowpg’ [T‘(gg (}A(O))] (7)

Analogously to Equation 4, this objective encourages pg (and thus f,) to produce initial noise
sarnples X that effectively steer the fixed generator go towards high-reward outputs x. The KL term
Dk, (p0 |lpo) regularizes this steering by ensuring py remains close to the original noise distribution
po- Next, we show that in contrast to Equation 4, Cnmse can be made tractable.

= Dxv(pgllpo)

3.1 KL Divergence in Noise Space

The resulting KL divergence term Dy, (pg) lpo) is derived in detail in Appendix A. The derivation
involves the change of variables formula, simplification of Gaussian log-PDF terms, and an application
of Stein’s Lemma. This leads to the following expression for the KL divergence:

D (5 11P0) = Exomapo [3 1 £ (x0) | + Tr( T, (x0)) = log | det (T + T, (x0)) ], ®
where J, (xo) is the Jacobian of fs with respect to x. Let £(A) := Tr(A) —log | det(I + A)|. Then
Equation 8 can be rewritten as Dxp.(p§[|po) = Exqmpo [2[|£5(X0)[|? + E(J 7, (x0))]. To simplify this
expression, we analyze the error term £(.Jy, (xo)). The following Theorem provides a bound on this
term under a Lipschitz assumption on f.

Theorem 1 (Bound on Log-Determinant Approximation Error). Let A = J,(xo) be the d x d
Jacobian matrix of f4(xo). Assume fy is L-Lipschitz continuous, such that its Lipschitz constant

L < 1. This implies that the spectral radius p(A) < L < 1. Then, the error term E(A) =
Tr(A) — log | det(I + A)| is bounded by

£(A)| < d(—log(1 - L) — L). ©

See Appendix A.4 for the full proof. Theorem 7 shows that if the Lipschitz constant L of f, is
sufficiently small (specifically, L < 1), the error term |£(A)| is bounded. For small L, — log(1—L) —
L ~ L?/2, making the bound approximately dL? /2. Thus, the expected error Ex,p, [£(Jf, (X0))]
becomes negligible if L is kept small. Under this condition, we can approximate the KL divergence

with .
Dxr(p51P0) = Exgmpo[5 1| fo(x0) 7). (10)



This approximation simplifies the KL divergence term in our objective to a computationally tractable
L, penalty on the magnitude of the noise modification f(x¢). Substituting it into our initial noise
modulation objective (Equation 7), we arrive at the final loss to minimize

Enoise(¢) = Exofvpo[%”fqﬁ(XO)HQ - T(gg(Xo + f¢(X0)))] (1 1)

Connection to test-time noise optimization. Our proposed method addresses the same fundamental
goal as Noise Optimization (Equation 2) of steering generation towards high-reward outputs while
maintaining fidelity to the base distribution. However, instead of performing iterative optimization for
each sample at inference time, we amortizes this optimization into a one-time post-training process.
By learning the noise modulation network fs, we effectively pre-computes a general policy for
transforming any initial noise xo. Consequently, steered generation with HyperNoise remains highly
efficient at inference, requiring only a single forward pass through f, and then go.

Theoretical Justification via Data Processing Inequality. The KL divergence term Dy (pgj lpo) in

our objective (Equation 7) provides a principled way to regularize the output distribution in data space.

The Data Processing Inequality (DPI) [13] states that for any function, such as our fixed generator g,

the KL divergence between its output distributions is upper-bounded by the KL divergence between

its input distributions. In our context, where pg = (T})4po is the distribution of modulated noise
= Ty(x0) and p®*° = (gy)spo is the base output distribution, the DPI implies

D (p81Ipo) = Dxe.((96):05 1 (90)5p0)- (12)

Thus, by minimizing Dgp, (pg |lpo) in the noise space, we effectively minimizes an upper bound on
the KL divergence between the steered output distribution (gg )y pg and the original base distribution

pP3e. This offers a theoretically grounded mechanism for controlling the deviation of the generated
data distribution, complementing the empirical reward maximization, even when direct computation
of data-space KL divergences (as in Equation 4) is intractable.

3.2 Effective Implementation

To implement Noise Hypernetworks efficiently and ensure stable training, we adopt several key
strategies for the noise modulation network f, and the training process, summarized in Algorithm 1.
Note that our training algorithm (Equation 11) does not require target data samples from p*, p>**¢

Nor Pyqtq- It only requires: (1) base noise samples xo ~ pg, (2) the fixed generator gy, and (3) the
reward function r(-). For conditional gy (-|c), it additionally requires the conditions c.

Lightweight Noise Hypernetwork with Algorithm 1 HyperNoise
LoRA. The noise modulation network f4
is instantiated by reusing the architecture
of the pre-trained generator gg and mak-
ing it trainable via Low-Rank Adaptation
(LoRA) [32]. The original gy weights are
frozen, and only the LoRA adapter param-
eters in fy are learned. This approach is
parameter-efficient, reducing memory and
computational overhead as we only need
to keep gp in memory once. It also allows
fe to inherit useful inductive biases from
go’s architecture. For conditional mod-
els go(+|c), fp(x0|c) can similarly leverage
learned conditional representations by ap-
plying LoRA to conditioning pathways, e.g.
the learned text-conditioning of a text-to-image model.

1: Input: gy (distilled generative Model), r (reward
fn), Optional C = {c;}¥, (condition dataset)
2: Initialize Noise Hypernetwork f4(-) = 0 through
LoRA weights ¢ applied on top of gy
while training do
Sample noise xg ~ N (0,I),c = @
if C then
Sample condition ¢ ~ C
Predict modulated noise Axg = f4(xo,¢)
Generate x1 = gp(x + Axq,C)
9:  Compute Loss Lnoise(¢) = || Axq]|> — 7(x1)
10:  Gradient step on V4 Lyoisc(9)
11: return Noise Hypernetwork LoRA weights ¢

A A s

Initialization. We propose to initialize f, such that its output fy(-) = 0 This is crucial for training
stability and supports the validity of the L, approximation for Dgy, (po |lpo) (Equation 10) from the
start of training. Specifically, we modity the final layer of fj4 to output only the LoRA-generated
perturbation, which are initialized to output O (this is achieved by setting the second LoRA matrix,
often denoted B, to zero), without using any frozen base weights. This ensures that at initialization
fo(-) = 0 such that effectively Xo = x¢ + f(x0) = X¢, making pg = po.



Hyper Noise

(Ours) >

Optimize Redness Reward

Training Steps

LoRA
Fine-tune >

Figure 3: An illustrative example of optimizing for learning the tilted distribution with an image
redness reward. We show direct LoRA fine-tuning of SANA-Sprint [1 1] in comparison to training
a noise hypernetwork with our proposed objective. Notably, when training with our objective, the
model optimizes the desired reward while staying considerably closer to p®®, as showcased by the
model not diverging from the image manifold, unlike in direct LORA fine-tuning.

4 Experiments

Our experimental evaluation is designed to assess the efficacy of our objective for the popular setting
of text-to-image (T2I) models. We benchmark the noise hypernetwork against established methods,
primarily direct LORA fine-tuning of the base generative model [71], and investigate its capacity
to match or recover the performance gains typically associated with test-time scaling techniques
like ReNO [19], but through a post-training approach. To clearly delineate these comparisons, we
structure our experiments as follows: We first present an illustrative experiment employing a "redness
reward". This controlled setting is designed to demonstrate the advantages of our training objective,
particularly its ability to optimize for a target reward while mitigating divergence from the base
model’s learned data manifold pP*¢. Subsequently, we extend our evaluation to more complex and
practical scenarios, focusing on aligning generative models with human-preference reward models.

4.1 Redness Reward T

0.80
We begin our evaluation with the goal of ... - K g
learning the tilted distribution (Equation 3) ¢ N Lo
given a redness reward. This metric helps < N i
showcase the potential underlying issue of % o N &%
directly fine-tuning the generation model 3 e i | 8D
9o (a fine-tuned variant of the base model 025 < LoRAFine-tune, Redness Reward 1 £
go). For this experiment, the redness re- T e P e [ 2=
ward r(x) is defined as the difference be- | | HyperNoie: ImageRevard Score 1
tween the red channel intensity and the av- o m oW owm o oaweom w am
erage of the green and blue channel inten- Training Steps

sities: 7(x) = x° — 2(x! + x?), where x* ,
denotes the i-th color channel of the gener- Elgure;. T?ade-off beiFween the rIe dnes;rewatjd ?bjff'
ated image x and is used to train the recent tive and an image quality metric, fmageReward, for di-

SANA-Sprint [11] model, for full details rect fine-tuning and Noise Hypernetworks. As opposed
’ to direct fine-tuning, our proposed method optimizes

the redness objective while not significantly dropping
The primary concern with directly fine- image quality as indicated by the ImageReward score.
tuning g, to maximize a reward is the risk

of significant deviation from the original data distribution p*¢. This deviation can lead to a high

see Appendix B.1.



Table 1: Quantitative Results on GenEval. Our Noise Hypernetwork combined with (1) SD-
Turbo [80], (2) SANA-Sprint 0.6B [11], and Flux-Schnell consistently improving results while
maintaining few-step denoising, fast inference, and minimal memory overhead. Results from best-of-
n sampling [41], ReNO [19], and prompt optimization [4, 58] are greyed out to provide a reference
upper-bound in terms of applying optimization at inference. Prompt optimization { additionally
requires a significant amount of calls to an LLM, either locally or through an APIL.

Model Params (B) Time (s) | Mean 1 \ Singlet TwoT Counting? Colors?T PositionT Attributiont
SD v2.1 [76] 0.8 1.9 0.50 098 051 0.44 0.85 0.07 0.17
SDXL [70] 2.6 6.9 0.55 0.98 0.74 0.39 0.85 0.15 0.23
DPO-SDXL [95] 2.6 6.9 0.59 0.99 0.84 0.49 0.87 0.13 0.24
Hyper-SDXL [75] 2.6 0.3 0.56 1.00  0.76 0.43 0.87 0.10 0.21
Flux-dev 12.0 23.0 0.68 0.99 0.85 0.74 0.79 0.21 0.48
SD3-Medium [18] 2.0 44 0.70 1.00 0.90 0.72 0.87 0.31 0.66
SD-Turbo [80] 0.8 0.2 049 | 0.99 0.51 0.38 0.85 0.07 0.14
+ HyperNoise 1.1 0.3 0.57 099  0.65 0.50 0.89 0.14 0.22
+ Prompt Optimization [4, 58] 0.8 95.07 0.59 0.99 0.76 0.53 0.88 0.10 0.28
+ Best-of-N [41] 0.8 10.0 0.60 1.00 0.78 0.55 0.88 0.10 0.29
+ ReNO [19] 0.8 20.0 0.63 1.00 0.84 0.60 0.90 0.11 0.36
SANA-Sprint [11] 0.6 0.2 070 | 1.00 0.80 0.64 0.86 0.41 0.51
+ HyperNoise 0.9 0.3 0.75 1.00 0.88 0.71 0.85 0.51 0.55
+ Prompt Optimization [4, 58] 0.6 95.07 0.75 0.99 0.91 0.82 0.89 0.36 0.56
+ Best-of-N [41] 0.6 15.0 0.79 0.99 0.92 0.72 0.91 0.53 0.65
+ ReNO [19] 0.6 30.0 0.81 0.99 0.93 0.74 0.92 0.60 0.67
FLUX-Schnell (4-step) 12.0 0.7 0.68 ‘ 0.99 0.88 0.66 0.78 0.27 0.48
+ HyperNoise 13.0 0.9 0.72 099 093 0.67 0.83 0.30 0.59
+ReNO [19] 12.0 40.0 0.76 ‘ 0.99 0.94 0.70 0.86 0.39 0.65
D1, (p?||p*®¢), where p? is the distribution induced by the fine-tuned model g,. Such a divergence

often manifests as a degradation in overall image quality or a loss of diversity, even if the target reward
(e.g. redness) is achieved. Figure 4 quantitatively illustrates this trade-off by plotting the redness
reward against a general image quality metric (ImageReward), comparing our Noise Hypernetwork
approach with LoRA fine-tuning, while Figure 3 visually corroborates these results.

4.2 Human-preference Reward Models

Implementation Details. We conduct our primary experiments on aligning text-to-image models
with human preferences using SD-Turbo [80], SANA-Sprint [11] and FLUX-Schnell. Notably,
SANA-Sprint and FLUX-Schnell exhibit strong prompt-following capabilities competitive with
proprietary models, making them robust base models for our evaluations. For the reward signal
r(-) essential to our objective (Equation 11) and for the direct fine-tuning baseline, we utilize the
exact same composition of reward models proposed in ReNO [19] consisting of ImageReward [100],
HPSv2.1 [98], Pickscore [45], and a CLIP-score. For the noise hypernetwork, we use a LoRA [32]
module on the base distilled model with the proposed initialization as described in Section 3.2.
Training for the noise hypernetwork is performed using ~70k prompts from Pick-a-Picv2 [45], T2I-
Compbench train set [34], and Attribute Binding (ABC-6K) [22] prompts. Our evaluations of the
trained models are performed on GenEval [23], ensuring that the training and evaluation prompts do
not have any overlap, measuring the generalization of the noise hypernetwork to unseen prompts. We
mainly compare HyperNoise with three different test-time techniques: Best-of-N sampling [4 1, 56],
ReNO [19], and LLM-based prompt optimization [4, 58]. As detailed in Table 1, all of these incur
significantly increased computational costs at test-time, ranging from 33x to 300x slower inference
compared to HyperNoise, making them impractical for large-scale deployment where efficiency is
paramount. Full experimental details are provided in Appendix B.2.

Quantitative Results. We present our main quantitative results on the GenEval benchmark in Table 1.
Our Noise Hypernetwork training scheme consistently yields significant performance gains across
all model scales while maintaining near-baseline inference costs. When applied to SD-Turbo, our
method nearly recovers most of the improvements from inference-time noise optimization, achieving
an overall GenEval performance of 0.57 that even surpasses SDXL (which has 2x more parameters
and 25x NFEs), clearly highlighting the benefits from our noise hypernetwork training. With SANA-
Sprint, we observe consistent improvements (0.75 vs 0.70) over the base model, achieving the same
performance as LLM-based prompt optimization while being 300x faster, and recovering about half of
the performance gains achieved by ReNO with minimal GPU memory overhead. Notably, we observe



SD3.5-Turbo

FLUX-Schnell
+ HyperNoise Flux-Schnell

SANA-Sprint

SANA-Sprint
+ HyperNoise

= W - . y e P
[N 1apéop on top pink elephant "A toaster riding "A Japane "A green giraffe ".. books ..

of a teddy bear." and a grey cow" a bike" pagoda.. samurai and a blue pig." red velvet chair"

warrior.. cherry

blossom"

LAl ——

Figure 5: Qualitative comparison our proposed noise hypernetwork with popular distilled models
such as Flux-Schnell, SD3.5-Turbo, SANA-Sprint for 4-step generation. Both SANA-Sprint and
FLUX-Schnell share the initial noise for the base and HyperNoise generation.

similar trends for the larger 12B parameter FLUX-Schnell, where we again recover substantial
performance gains (0.71 vs 0.68) while maintaining the efficiency advantages that make our approach
practical for real-world deployment. The consistent efficiency gains across model scales demonstrate
that our approach successfully amortizes the optimization cost during training, enabling high-quality
generation without the prohibitive test-time computational overhead of alternative methods.

Superiority over Direct Fine-tuning and Multi-Step Table 2: Mean GenEval results for
Generalization. In Tab. 8, we show the generalization of SANA-Sprint highlighting generaliza-
our training on multi-step inference despite being trained tion across inference timesteps of our
only with one-step generation. We obtain consistent im- Noise Hypernetwork and failure of di-
provements over SANA-Sprint for one, two, and four step rect LoRA fine-tuning.

generation. Notably, our model with one-step generation

noticeably outperforms SANA-Sprint with 4 steps. We SANA-Sprint[11] NFEs _GenEval Mean?
4 3 _ 3 One-step 1 0.70
al§o illustrate how dlrect' ﬁn.e tuning of the l?as§ model  DICHP e 271000 1 0o
with the same reward objective can lead to significantly  + HyperNoise 2 0.75
worse results, highlighting the necessity of preventing Two-step 2 0.72
" o g : s nrals +LoRA fine-tune [12, 71, 100] 2 0.66
r(.aw_ard—hackn}g in a principled fashlon._ We visualize | gooerNoise 3 o6
this in {\ppendlx C.4, where we ol?serve similar patterns  Fourgep 1 073
as previous works for reward-hacking [12, 50, 88]. +LoRA fine-tune [12, 71, 100] 4 0.62
+ HyperNoise 5 0.77

Qualitative Results. We illustrate examples of generated
images in Fig. 5 showing our method applied to both SANA-Sprint and FLUX-Schnell, alongside
comparisons to SD3.5-Turbo. Our noise hypernetwork demonstrates consistent improvements across



both base models. For SANA-Sprint, the improvements are substantial: we observe both correction of
generation artifacts and significantly enhanced prompt following for complex compositional requests.
When applied to the already high-quality FLUX-Schnell, our method still provides noticeable im-
provements in detail quality and prompt adherence, demonstrating that our approach can enhance even
strong base models while maintaining the efficiency advantages essential for practical deployment.

5 Related Work

Test-Time Scaling. The paradigm of test-time scaling has yielded remarkable breakthroughs, with
models allocating additional computation during inference to solve increasingly complex problems. In
language models, this has manifested through process reward models [57, 81, 106] and reinforcement
learning from verifiable rewards [46, 61], leading to systems like ol [37] and DeepSeek-R1 [25].
Beyond scaling denoising steps in diffusion models, test-time techniques improve generation quality
by finding better initial noise or refining intermediate states during inference, often guided by pre-
trained reward models. These methods fall into two categories: search-based approaches [41, 56,
89, 90] that evaluate multiple candidates, and optimization-based approaches [0, 26, 43, 64, 87, 94]
that iteratively refine noise or latents through gradient descent. Although both strategies achieve
significant quality improvements, they introduce substantial computational overhead, with generation
times frequently exceeding several minutes per image.

Aligning Diffusion Models with Rewards. Reward models [45, 98, 99, 100, 104] have been
effectively used to directly fine-tune diffusion models using reinforcement learning [8, 10, 15, 21, 105]
or direct reward fine-tuning [12, 16, 38, 47, 50, 71, 72, 100]. Alternatively, Direct Preference
Optimization (DPO) [31, 42, 49, 74, 95] learns from paired comparisons rather than absolute rewards.
A particular instance of reward fine-tuning [ 16, 86, 88] analyzes learning the reward-tilted distribution
through stochastic optimal control. Uehara et al. [88] fine-tune continuous-time diffusion models by
jointly optimizing both the drift term and initial noise distribution, but their SDE-based formulation
requires continuous-time dynamics and backpropagation through the full sampling process, making it
computationally expensive and inapplicable to step-distilled models. For distilled models, concurrent
work [39, 59, 65] has explored preference tuning, though without the theoretical foundation for
sampling from the target-tilted distribution that our approach provides. Wagenmaker et al. [93] apply
similar noise-space optimization principles to diffusion policies in robotic control, demonstrating
efficient adaptation while preserving pretrained capabilities across diverse domains.

Hypernetworks. Auxiliary models [27] that predict parameters of task-specific models have been
used for vision [2, 28] and language tasks [36, 60, 69]. For generative models, they have been used to
generate weights through diffusion [17, 96] and to speed up personalization [2, 78]. NoiseRefine [1]
and Golden Noise [ 107] train hypernetworks to predict initial noise to replace classifier-free guidance
or find reliable generations by selecting ’ground-truth’ noise pairs as supervision, as opposed to the
end-to-end training in our framework. Work on diffusion priors [5, 14, 20, 24, 62, 79] also adapts the
noise distribution, but these approaches modify the training process rather than enabling post-hoc
adaptation of pre-trained models. Concurrently, Venkatraman et al. [91] explore sampling from
reward-tilted distributions for arbitrary generators, but our work demonstrates this approach at scale
with comprehensive evaluation across multiple model architectures and unseen prompt distributions.

6 Conclusion

In this work we provide fresh perspective for post-training diffusion models through the introduction
of a noise prediction strategy. Our principled training objective coupled with the efficient training
scheme is able to achieve a meaningful improvements in performance across multiple models while
avoiding ‘reward-hacking‘. We hope that our efficient and effective solution for aligning diffusion
models with downstream objectives finds use across a wide variety of domains and use cases,
especially in cases where test-time optimization would be prohibitively expensive.

Limitations. Preference-tuning diffusion models heavily relies on strong pre-trained base models
and meaningful reward signals. While constant improvements are made to develop better pre-trained
base models, specific focus should be devoted to improving reward models that can give meaningful
feedback on a variety of aspects that are important for high-quality generation.
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Appendix
The Appendix is organized as follows:

 Section A provides all of our theoretical derivations.
* Section B outlines the implementation details.

* Section C presents further quantitative and qualitative analysis.

A Theoretical Derivations

This section provides rigorous derivations for the reward-tilted noise distribution and our tractable
training objective. We include a temperature parameter o > 0 for completeness, though the main
paper uses o = 1.

A.1 Setup and Standing Assumptions

Let po(xo) denote the standard Gaussian density on R%:
1 1 9
po(Xo) = WGXP <—2||X0|| ) : (13)

Let go : R? — R? be the pre-trained distilled generator and 7 : R* — R be the reward function.

Standing Assumptions. Throughout this section, we assume:

1. The generator gy : R? — R? is measurable.

2. The reward function 7 : R? — R is measurable and Ex,~p, [er(ge(xo))/e] < oo for our
chosen temperature v > 0.

3. For any x € Range(gy), the preimage set g, ' ({x}) has a well-defined measure structure.

These assumptions are mild and realistic for neural network generators.

Pushforward Measure and Base Distribution. The base generator density p®°(x) is the density
of the pushforward measure (gq)3Po, where P is the probability measure corresponding to po(xo).

Formally, (gs)4 P is defined such that for any Borel set A C R¢:

(ePo) () = Pogr (4D = [ ol (14)

Under our standing assumptions, the density p°®°(x) can be written using the Dirac delta as:

pbase(x) _ . (5(X _ ge(XO))pO(XO)dXO- (15)

Note that in the main text, with slight abuse of notation, we write (gg)4po instead of (go )y Po.

KL Divergence. The Kullback-Leibler (KL) divergence between two probability densities g(v)
and p(v) is defined as:

q(v)
p(v)

Dxv(qllp) = /Rd q(v)log dv, (16)

provided the integral exists and is finite.
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A.2 The Reward-Tilted Output Distribution

The primary goal is to align the generator with the reward function r(x) by targeting a reward-tilted
output distribution p*(x) that upweights high-reward samples while maintaining similarity to the
base distribution.

Definition 1 (Reward-Tilted Output Distribution). The target reward-tilted output density p*(x) is
defined by upweighting samples from the base generator density p°®°(x) according to the reward
r(x):

p(x) = %p"“ﬂ(x) exp (T(ax)) : (17)

where Z* is the normalization constant ensuring p* (x) integrates to one:

7" = / PP (x) exp (7‘()()) dx. (18)
R4 [0

Under our standing assumptions, we have Z* < co. We denote P* as the probability measure
corresponding to p*.

Interpretation. The temperature parameter o > 0 controls the strength of the reward signal:

» When o — oo, we have p*(x) — p®®¢(x) (no reward influence)
* When o — 0, the distribution concentrates on high-reward regions

* o = 1 provides a natural balance between reward optimization and staying close to the base
distribution

Objective for Fine-Tuning Generator Parameters. If we aim to fine-tune the generator parameters
from @ to ¢, leading to a new output density p? (x) (when input is from po(xq)), a principled approach
is to minimize the KL divergence Dxr, (p®||p*).

Proposition 2 (KL Objective for Generator Fine-tuning). Minimizing Dy, (p®||p*) with respect to
the generator parameters ¢ is equivalent to minimizing:

; 1
Teen(®) = Dicr,(p?[p"*) = —Fenpo [ ()] (19)

Proof. Using the definition of p*(x) from Equation (17):

Sy

%\

Dy (p?|Ip*) , P?( ()
p?(x)Z* dx
/]Rd p base( ) exp (r(x))
_ P ) )
- Jr ( P rios )4
= Dxw(p?[|Ip*™*) — waﬂ [r(x)] + log Z*. (20)

Since log Z* is constant with respect to ¢, minimizing Dxp, (p®||p*) is equivalent to minimizing
Jgen(9). H

Challenges with Direct Generator Fine-tuning. While Proposition 2 provides a theoretically
sound objective, directly optimizing it for distilled models poses significant challenges:

1. Intractable KL term: Computing Dk, (p?(|p"*°) requires evaluating densities of high-
dimensional neural network generators, which involves intractable Jacobian determinants

2. No continuous-time structure: Unlike full diffusion models, distilled generators often lack
explicit SDE/ODE structure that would enable techniques from stochastic optimal control
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3. Reward hacking: Without proper regularization, optimization can lead to adversarial
exploitation of the reward model, generating unrealistic samples that achieve high reward
scores

These challenges motivate our alternative approach of modifying the input noise distribution while
keeping the generator fixed, which we develop in the next section.

A.3 The Reward-Tilted Noise Distribution

An alternative to modifying the generator gy is to modify the input noise density po(xo) while keeping
go fixed. We seek an optimal tilted noise density pf(xo) such that its pushforward through gy results
in the target output density p*(x).

Normalization Constant in Noise Space. First, we show that the normalization constant Z* from
Equatlon (18) can be expressed as an integral over the noise space. Using Equation (15) for p®¢(x)

in the definition of Z*:
D) ([ o0 anxmtsiasy ) i

Z*:/ eXp(
Rd

= ( exp < ) X — go (XB))dX) po(xg)dx(, (Fubini’s theorem)
R¢

= / exp ( 90(%0) )) po(xg)dx(, (sifting property of Dirac delta)
Rd

a
:/ exp< (9"("0))) po(x0)dxq. @1)

Definition 2 (Tilted Noise Distribution). The filted noise density p§(x¢) is defined as:
i) = ooy exp ("0 ), @2

where Z* is the normalization constant from Equation (18), which by Equation (21) can be computed
in noise space.

Theorem 3 (Properties of the Tilted Noise Distribution). Let p(Xo) be the tilted noise density defined
in Definition 2 and Py be the corresponding probability measure. Under our standing assumptions:

1. Pushforward Identity: The density of the pushforward measure (go)3 Py is p*(x).

2. KL Projection: The density p}(xo) uniquely minimizes Dk1,(qo||po) among all noise den-
sities qo(Xo) such that the density of (9o)3Qo (where Qo is the measure for qo) equals
p*(x).

Proof. Part 1: Pushforward Identity. We need to show that (g¢)3 Py has density p*(x). For any
bounded measurable set A C R%, we have:

((90): P5)(A) = P (g (A)) = /_1(A) P5(x0)dxo

1
= /gel(A) ;po(xo) exp (T(ge(ixo))> dxg. (23)

To evaluate this integral, we use the fundamental property of pushforward measures. For any
measurable function A : R — R:

/ h(%)((90)¢Po) (dx) = / (g5(x0)) Po(dxo). 24)
Rd Rd

Applying this with h(x) = 1 4(x) exp (%)
/ exp (T(QQ(XO))> Po(Xo)dxo = / exp (’"(X)> P (x)dx. (25)
g5 ' (A) a A «
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Substituting back into Equation (23):

(90)eP)(A) = = [ exp (
A

:/ﬁ@@. (26)
A

Since this holds for all measurable sets A, the pushforward (g¢); Py has density p*(x).
Part 2: KL Projection Characterization. Consider the constrained optimization problem:

min Dkr,(qgol|po) subjectto (ge)yQo has density p*. 27
q0

We use the method of Lagrange multipliers. Introduce a multiplier function A : R? — R and consider
the functional:

L(qo,\) = /Rd qo(x0) log

where pg, (x) is the density of (gg)yQo.

q0 (Xo)

po(xo)

dxo + /]R M) (0" (%) = gy () dx, (28)

For the constraint term, we can write:

/ A0 g ()l = / Algs (%0)) 0 (%0)dxo, 29)
Rd Rd

using the change of variables formula for pushforward measures.

Therefore:

£l = [ o) (1o 2 Aot ) ot [ Aot 30)

po(x0)

Taking the functional derivative with respect to go(xo) and setting to zero:

oL o q0(X0)
dqo(x0) po(xo)

1 Ago(x)) = 0. (1)
This yields:
qo(x0) = po(x0) exp[A(ga(x0)) — 1]. (32)

To satisfy the constraint, we need the density of (gg); Qo to equal p*(x). Using Part 1 in reverse, this
happens when:

qo(x0) = %po(xo) exp (r(ggé}m))) . (33)

Comparing with the optimality condition, we need:

T\ go (X "
Maooeo)) — 1= ")y 7 34
Setting \(x) = T(a—x) —log Z* 4 1, we obtain ¢y = pj.
Uniqueness follows from the strict convexity of the KL divergence in its first argument. O

Objective for Learning the Tilted Noise Distribution. To learn a parameterized noise density
pg (x0) that approximates pf(xo), we minimize Dk, (pg lp§)-

Proposition 4 (KL Objective for Learning Tilted Noise Density). Minimizing DKL(JDS5 lpg) with
respect to ¢ is equivalent to minimizing:

erise(¢) = DKL(p(()prO) - éExONpg’ [T(QQ(XO))]' (35)
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Proof. Using the definition of p§(x) from Equation (22):

[
D 1l :/ ?(x0) 1o pO(XO)dx
kL (Po [1P5) deo( 0) 8 ot )
[ *
- / P (x0) log Do (x0)Z dxqo
R4 po(xo) exp (T(Qe(gxo)))
[
:/ 2 (x0) 1ngo(Xo)  1(ge(x0)) Flog Z* | dxy
R po(xo) «
1
= Du(pf[1p0) — ~ By, [r(90(x0))] + log 2" (36)

Since log Z* is constant with respect to ¢, minimizing Dk, (p$||p§) is equivalent to minimizing
J, noise(gb)‘ O

A.3.1 Connection to Stochastic Optimal Control

‘We now show how our result connects to the sophisticated stochastic optimal control framework of
Uehara et al. [88] for fine-tuning continuous-time diffusion models, demonstrating that their approach
naturally reduces to our simpler result for one-step generators.

Continuous-Time Framework. Uehara et al. [88] consider the entropy-regularized control prob-

lem: .
Ju(t, x| v(xo)
———dt + 1 37
/0 202(t) t+OgP0(X0) &7

where P is the path measure induced by the SDE with drift f(¢,x) + u(t,x) and v the initial
distribution to optimize.

max Epu.y [r(xr)] — aEpuw

U,V

Reduction to One-Step Generators. For a one-step generator x = gy (Xg), the stochastic process
degenerates:

* The evolution is deterministic: X7 = gp(xo)

* No drift control is needed: optimal v = 0

* Only the initial distribution v requires optimization
The objective reduces to:

max Ex,u [r(g0(x0))] — @ - Dxe (v||po) (38)

Optimal Initial Distribution. According to their Corollary 2, the optimal initial distribution is:

v (xg) = P2 Poa) (39)

where v (x¢) is the value function at time ¢ = 0.

Value Function for Deterministic Generators. From their Lemma 1 (Feynman-Kac formulation),
the value function satisfies:

exp (US (xo)/a) = Epo.» {exp (T(ZT)) xo] (40)
For the deterministic generator gg:
Elexp(r(xr)/a)[xo] = Elexp(r(go(x0)) /) x0]
= exp(r(go(xp))/) (deterministic given x¢) 41)

Therefore: v§j(xg) = (g9 (X0))-
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Final Result and Validation. Substituting back into the optimal distribution formula:

1 (i) = SR 000)/0)- o) )

where Z* = [ exp(r(ga(xo))/a) - po(xo0)dxo.

This is precisely our p in Definition 2. This alignment between the two frameworks is significant, as
it confirms that:

1. Our direct variational approach and the general stochastic control theory yield the same
optimal noise distribution.

2. This equivalence arises because for one-step generators, the continuous-time framework
naturally collapses to our setting, with their value function vy simplifying to the composed
reward r o gg.

This connection not only validates our result but also situates it as an important special case within
the broader theory of stochastic control.

A.4 Tractable KL Divergence for Noise Modification

We derive a tractable expression for Dxr,(pg [|[po) where p, is the density of modified noise X =
Ty (x0) with Ty(x0) = X0 + f(x0). This derivation involves the change of variables formula,
simplification of Gaussian log-PDF terms, and an application of Stein’s Lemma.

Setup and Minimal Assumptions. Let T} : R? — R be the residual transformation:

Ty(x0) = x0 + f4(X0) 43)

where f, : R? — R is a learned perturbation function with Jacobian Jy, (xo) = 8@)5?’)

Assumption 1 (Regularity Conditions). We assume:
1. fg is continuously differentiable
2. Ty is a global diffeomorphism (invertible with continuous derivatives)

3. f, satisfies the regularity conditions for Stein’s lemma: E[||fs(x0)||?] < oo and
E[lIxollll.fo (x0)]] < oo for xo ~ N(0,1)

Sufficient Condition for Global Diffeomorphism. While Assumption 1 requires T to be a global
diffeomorphism, we provide a practical sufficient condition:

Lemma 5 (Lipschitz Condition for Invertibility). If fy is L-Lipschitz continuous with L < 1, then
Ty is a global diffeomorphism.

Proof. Bi-Lipschitz bounds: for any xg, x{,,
1T (x0) — Ty (x0)ll < llx0 — x5l + [1fo(x0) — fo(x0)| < (L + L) [Ix0 — %[l (44)

1T (x0) = T (x0) | = lIx0 — %01l = [[fo(x0) = fo(x0)[ = (1 = L) [lxo = x5~ (45)
Hence T}, is injective. For surjectivity, fix any target y and define Gy (z) =y — f,(z), a contraction
with constant L < 1. By Banach’s fixed-point theorem there exists a unique z* with z* = Gy (z*),
ie., Ty(z*) = y. Finally, Jr, (x0) = I 4 Jy, (Xo) is invertible for all x¢ (its smallest singular value
is at least 1 — L > 0), and the inverse is C'* by the inverse function theorem. Thus 7 is a global C"!
diffeomorphism. U

KL Divergence via Change of Variables. Under Assumption 1, we can apply the change of
variables formula. The KL divergence is:

(oIS
¢ _ P (Xo)
DKL (p() ”po) - Eﬁgwpg [log Do ()A(O) ‘| (46)
¢
Po (Ts(x0))
0"~Po [Og pO(T¢(X0))‘| ( )
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By the change of variables formula:
P4 (Ts(x0)) = po(xo)| det(Jz, (x0))| " (48)
Since Jr, (x0) = I + Jy,(xo0), substituting into Equation (47):

Dxr(p§[1P0) = Exompo [10g po(x0) — logpo(T(xo)) — log| det(I + Jy, (x0))]]  (49)

Specialization to Gaussian Base Distribution. For p(xo) = N(0, I), the log-density difference
simplifies:

1 1
log po(xo) — og po (T (%0)) = —5 o[l + 51T (x0) | (50)
1 1
:—§||X0H2+5\\X0+f¢(xo)||2 (51)
1
=g fo(x0) + 5[l fo (x0)II* (52)

Substituting Equation (52) into Equation (49):
1
Dict. (B 190) = Bxgnio,) X6 fo(x0) + 5 1 £ (x0) 2 = log | det( + Ty, (xo))l| (53)

Application of Stein’s Lemma. Under the regularity conditions in Assumption 1, Stein’s lemma
applies:

Lemma 6 (Stein’s Lemma for Vector Fields). Let x ~ N(0,I) and h : RY — RY satisfy
E[||h(x)|?] < oo and E[||x||||h(x)]|] < co. Then:

E[x" h(x)] = E[Tr(Jx(x))] (54)
Applying Lemma 6 to Equation (53), we obtain:

1
Dic (1§110) = B | o) + To(,(x0) = log [ det(7 + Tz, )| 59

This is exactly the expression referenced in the main text.

Log-Determinant Approximation Analysis. Let £(A) = Tr(A) — log|det(I + A)|. Then
Equation (55) can be rewritten as:

Drc 4 0) = B |31 Fa50) P + (7, (x| (56)

To simplify this expression, we analyze the error term £(Jy, (Xo)). The following theorem provides
a bound on this term under a Lipschitz assumption on f.

Theorem 7 (Bound on Log-Determinant Approximation Error). Let A = J;, (xo) be the d x d
Jacobian matrix of f4(xo). Assume fy is L-Lipschitz continuous, such that its Lipschitz constant
L < 1. This implies that the spectral radius p(A) < L < 1. Then, the error term E(A) =
Tr(A) —log | det(I + A)| is bounded by:

E(A)] < d(—log(1 — L) — L) 57)
Proof. Since f, is L-Lipschitz, the spectral norm of its Jacobian satisfies || A||2 < L. This implies
the spectral radius p(A) < ||A||2 < L < 1, ensuring all eigenvalues A;(A) satisfy [A\;(A)] < 1.
Since 1 + X;(A) > 0 for all i, we have det(I + A) > 0, so log | det(I + A)| = logdet(I + A).
For p(A) < 1, the matrix logarithm series converges:

(_1)k—1

k
(") (58)

logdet(I + A) = Z
k=1
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Therefore:

_ x (_l)kfl
E(A) =Tr(A) — ; TTr(Ak) (59)
_ i (_;)kTr(Ak) (60)
k=2

=.d-LF
1E(A)] < z (61)
k=2
=d(> — L (62)
k=1
=d(—log(1—L)—- L) (63)
O

Practical Approximation and Final Objective. Theorem 7 shows that if the Lipschitz constant
L of f, is sufficiently small (specifically, L < 1), the error term |E(A)| is bounded. For small
L, —log(1 — L) — L ~ L?/2, making the bound approximately dL?/2. Thus, the expected error
Exq~po[€(J, (X0))] becomes negligible if L is kept small. Under this condition, we can approximate
the KL divergence with:

1
Drc 5 0) ~ B | 5100 P (64

This approximation simplifies the KL divergence term in our objective to a computationally tractable
L penalty on the magnitude of the noise modification fy(xo).

Integration with Main Objective. Combining our approximation with Proposition 4, and sub-
stituting Equation (64) into our initial noise modulation objective, we arrive at the final loss to
minimize:

Lacie(9) = Exgpe |5 I Fo00) 7 = (9000 + i (x0)) ©9)

—=r
!
This objective balances reward maximization against the KL regularization term, providing a princi-

pled and computationally tractable approach to learning the reward-tilted noise distribution.

Practical Implementation Considerations. The validity of our approximation depends on main-
taining small Lipschitz constants. In practice, this is supported by:

1. Initialization: Setting f;(-) = 0 ensures £(A) = 0 initially
2. Regularization: The term 1||f,(xo)]|?
maintain small eigenvalues of Jy,

naturally penalizes large perturbations, helping

While we do not explicitly enforce L < 1 during training, these practical measures help maintain f
in a regime where our approximation remains accurate throughout the optimization process.

B Experimental and Implementation Details

In this Section we report the details for all of our experimental results. We mainly use the SANA-
Sprint 0.6B [11] model, and train it using one-step generation. Additionally, we use the default
guidance scale of 4.5 for all experiments. After training, we evaluate our models using different
amounts of NFEs with one forward pass of Noise Hypernetwork beforehand.
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LoRA parameterization We parameterize our noise hypernetwork f with LoORA weights on top
of the base distilled generative model. We found this to be important mainly to reuse the conditional
pathways learned by the base model. This is especially important for complex conditioning, like
text. Without this paramertization, which we also explored initially, we found it difficult for the noise
hypernetwork to learn an effective conditioning with limit data. While larger-scale training could be
a solution to this, we found this LoORA parameterization to be an efficient solution. For a condition
independent reward, e.g. the redness one, it is less important to choose such a parametrization.

Initialization As described in Section 3.2, we initialize the noise network to output f;(-) = 0)
at the start of training. We implement this by setting the output of the last base layer to 0 and
initializing the LoRA weights of the second LoRA weight matrix (also reffered to as B) to 0. This
effectively initializes f4(-) = 0). For a stable training, this initialization is important as the model
9o(fp(x0) + x0)) generates meaningful images at the start of training. In that way f, only needs to
learn how to refine xq.

Memory efficient implementation. Section 3.2, we train our noise hypernetwork f4 as a special
LoRA version of our base model gy, which ignores the last layer of the base model. As visualized in
Figure 2, we only need to keep the base model in memory once. Thus, the GPU memory overhead is
just the added LoRA weights ¢. Additionally, we employ Pytorch Memsave [7] to all models, which
further reduces the needed GPU memory during training enabling us to use larger batch sizes. We
run all experiments in bfloat16. Additionally, we can leverage gradient checkpointing on the first
call of the model with activated LoRA parameters to further reduce memory. We use this for our
FLUX-Schnell training.

B.1 Redness Reward

For the Redness Reward, we use SANA-Sprint 0.6B [11] as the base model. We train the model with
the redness reward

() = gl (<0 = (%),

where x* denotes the i-th color channel of x. We use the same amount of LoRA parameters for
fine-tuning and noise hypernetwork training. In general, we keep the hyperparameters for our
comparison between fine-tuning and noise hypernetwork training exactly the same. Due to the sake of
illustration, we lower the learning rate for fine-tuning in this case as otherwise the model collapses to
generating pure red images after a few training steps. We train on 30 prompts from the GenEval [23]
promptset and evaluate on the four unseen prompts ["A photo of a parrot", "A photo of
a dolphin", "A photo of a train", "A photo of a car"]. After each epoch on the 30
prompts, we compute the redness reward as well as an "imageness score" for each of the 4 evaluation
prompts and average. For the imageness score, we use the ImageReward [100] human-preference
reward model as it was shown to correctly quantify prompt-following capabilities. We provide the
full hyperparameters in Table 3. This experiment was conducted on 1 H100 GPU.

Table 3: Hyperparameters for the Redness Reward setting

| Fine-tuning Noise Hypernetwork
Model SANA-Sprint [11] SANA-Sprint [11]
Learning rate le—4 le—3
GradNorm Clipping 1.0 1.0
LoRA rank 128 128
LoRA alpha 256 256
Optimizer SGD SGD
Batch size 3 3
Training epochs 200 200
Number of training prompts 30 30
Image size 1024 x 1024 1024 x 1024
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B.2 Human Preference Reward Models

For our large-scale experiments, we consider SD-Turbo [80] and SANA-Sprint [1 1] as our two base
models. For SD-Turbo we generate images in 512 x 512 while for SANA-Sprint we generate them
of size 1024 x 1024. The training for the noise hypernetwork is done using ~70k prompts from
Pick-a-Picv2 [45], T2I-Compbench train set [34], and Attribute Binding (ABC-6K) [22] prompts. As
the reward we follow ReNO [19] and use a combination of human-preference trained reward models
consisting of ImageReward [100], HPSv2.1 [98], PickScore [45], and CLIP-Score [35]. To balance
these, we weigh each reward model with the same weightings as proposed in ReNO [19] and employ
them with the following implementation details. All training runs were conducted on 6 H100 GPUs.

Human Preference Score v2.1 (HPSv2.1) HPSv2.1 [98] is an improved version of the HPS [99]
model, which uses an OpenCLIP ViT-H/14 model and is trained on prompts collected from Diffu-
sionDB [97] and other sources.

PickScore PickScore also uses the same ViT-H/14 model, however is trained on the Pick-a-Pic
dataset which consists of 500k+ preferences that are collected through crowd-sourced prompts and
comparisons.

ImageReward ImageReward [100] trains a MLP over the features extracted from a BLIP
model [48]. This is trained on a dataset of images collected from the DiffusionDB [97] prompts.

CLIPScore Lastly, we use CLIPScore [29, 73], which was not designed specifically as a human
preference reward model. However, it measures the text-image alignment with a score between 0
and 1. Thus, it offers a way of evaluating the prompt faithfulness of the generated image that can be
optimized. We use the model provided by OpenCLIP [35] with a ViT-H/14 backbone.

Table 4: Hyperparameters for the Human-preference Reward setting

| Noise Hypernetwork Fine-tuning Noise Hypernetwork  Noise Hypernetwork
Model SD-Turbo [80] SANA-Sprint [11] SANA-Sprint [11] FLUX-Schnell
Learning rate le—5 le—3 le—3 2e—5
GradNorm Clipping 1000.0 1.0 1.0 1.0
LoRA rank 256 128 128 128
LoRA alpha 256 256 256 5% 128
Optimizer AdamW SGD SGD AdamW
Batch size 18 18 18 7
Accumulation Steps 1 3 3 4
Training Epochs = 25 = 25 ~ 25 ~ 25
Number of training prompts ~ 70k ~ 70k ~ 70k ~ 70k
Image size 512 x 512 1024 x 1024 1024 x 1024 512 x 512

GenEval Our main evaluation metric is GenEval, an object-focused framework introduced by
Ghosh et al. [23] for evaluating the alignment between text prompts and generated images from
Text-to-Image (T2I) models. GenEval leverages existing object detection methods to perform a
fine-grained, instance-level analysis of compositional capabilities. The framework assesses various
aspects of image generation, including object co-occurrence, position, count, and color. By linking
the object detection pipeline with other discriminative vision models, GenEval can further verify
properties like object color. All the metrics on the GenEval benchmarks are evaluated using a
MaskFormer object detection model with a Swin Transformer [54] backbone. Lastly, GenEval is
evaluated over four seeds and reports the mean for each metric, which we follow. Note that our
FLUX-Schnell differ from the ones in Eyring et al. [19] as we use bfloat16 instead of float16.

B.3 Test-time techniques

For ReNO [19], we use the default parameters as described in their paper with 50 forward passes
for one image generation. For Best-of-N [41] we use N = 50 with the same reward ensemble
for a fair comparison. For LLM-based prompt optimization [4, 58], we use the default setup from
the MILS [4] repository (https://github.com/facebookresearch/MILS/blob/main/main_
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image_generation_enhancement.py) with local Llama 3.1 8B Instruct as the LLM. The time
reflected in Table 1 reflects these local LLM calls. Note that we left the GPU memory to just the base
image generation model. We modify the hyperparameters to 5 prompt proposals for each LLM call
and 10 iterations, such that we also end up with 50 image evaluations for a fair comparison.

C Additional results

In this section we report additional quantiative ablation results and further qualitative results.

C.1 Additional Benchmarks

Here, we report further results on two more benchmarks commonly employed in the evaluation of
T2I generation. Note that again, none of the prompts in the used benchmarks are part of the training
data, showcasing the generalizability of the Noise Hypernetwork to unseen prompts and also that
our optimization objective through human-preference reward mdoels is disentangled from these
benchmarks.

T21-CompBench. T2I- Table 5: Quantitative Results on T2I-CompBench. The Noise
CompBench is a comprehensive Hypernetwork consistently improves performance.

benchmark proposed by Park
et al. [68] for evaluating the

SANA-Sprint 0.6B [11] NFEs Color{ Shapef Texturef

compositional capabilities of  One-step 1 0.72 0.49 0.63
text_to_image generation models. + Noise Hypernetwork 2 0.75 0.53 0.64
We evaluate on the Attribute  Two-step 2 0.73 0.50 0.64
binding tasks, which includes + Noise Hypernetwork 3 0.76 0.53 0.64
color, shape, and texture sub- Four-step 4 0.73 0.50 0.64
categories, where the model 4+ Noise Hypernetwork 5 0.76 0.54 0.65

should bind the attributes with
the correct objects to generate
the complex scene. The attribute binding subtasks are evaluated using BLIP-VQA (i.e., generating
questions based on the prompt and applying VQA on the generated image). We perform these
evaluations on the validation set of prompts and results are shown in Tab. 5 and observe consistent
improvements across steps and categories.

DPG-Bench. We provide results on Table 6: DPG-Bench results for SANA-Sprint high-
DPG-Bench [33] in Tab. 6. Broadly, lighting generalization across inference timesteps of our
while performance increases for all mod- Noise Hypernetwork.

els with increasing timesteps, we note that
the results for the four step SANA-Sprint SANA-Sprint 0.6B [11] NFEs DPG-Bench Scoref
model is nearly matched by the one-step

. . One-step 1 77.59
model with our noise hypernetwork. We .
also note that the DP(%,—pBench score of + Noise Hypernetwork 2 7920
80.82 surpasses powerful models such as  Two-step 2 79.07
SDXL [70], Pixart-3, and is only surpassed + Noise Hypernetwork 3 79.74
by much larger models such as SD3 [18], Four-step 4 79.54
and Flux. Finally, we also note that the 4+ Noise Hypernetwork 5 80.82

human-preference reward models that we
utilize all have a CLIP/BLIP encoder that
limits the length of the captions to < 77 tokens, which offers minimal scope of improvements
for benchmarks involving much longer prompts that exceed this context window. Future reward
models that either utilize different CLIP models (e.g. Long-CLIP [101]) or LLM-based decoders (e.g.
VQAScore [51]) would enable improving prompt following of these models more dramatically in the
case of long prompts.
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+ LoRA
SANA-Sprint + HyperNoise Fine-tune

"A red dog and
a green cat"

"A blue train and
an orange car"

"A majestic eagle
soaring over snow-
capped mountains at

sunset, dramatic

clouds in the
background"

"A cozy coffee shop
interior with warm
lighting, vintage
books on shelves, and
steam rising from a
cappuccino"

"A cozy reading nook
with a velvet
armchair, soft

blanket, stack of
books, and rain
against the window"

Figure 6: Examples of artifacts introduced by directly Direct Fine-tuning diffusion models on
rewards [12, 50, 71] for the same reward objective in comparison to Noise Hypernetwork training
with same initial noise.

C.2 Diversity Analysis

We also investigate the impact of Table 7: We measure the average LPIPS and DINO similarity
the diversity of the generated out- scores over images generated for 50 different seeds for the
puts as the result of our hypernetwork. 553 prompts from GenEval.

For this purpose, we generate 50 im-

ages by varying the seed from the LPIPS 1 DINO |

533 prompts of the GenEval bench- SANA-Sprint 0.608 ~0.074  0.780 +0.103

mark. The average similarity of dif- | ;0 HynerNetwork  0.592 £0.059  0.825 +0.090
ferent images for the same prompt

are measured using similarities from

31



LPIPS [103] and DINOvV2 [66] embeddings. The results in Tab. 7 indicate that the noise hypernetwork
does not cause any collapse due to “reward-hacking” and broadly, the diversity of the generated

images is in the same ballpark as the base model.

C.3 Multi-step analysis

Here, in addition to the main text Table 2,
we analyze the behavior of Noise Hyper-
networks when moving beyond the few-
step regime of 1 — 4 steps. Remarkably,

Table 8: Mean GenEval results for SANA-Sprint high-
lighting generalization across inference timesteps of our

Noise Hypernetwork.

. ; SANA-Sprint [11] NFEs GenEval Mean?

even when going up to 32 inference steps,
we find that Noise Hypernetworks trained One-step 1 0.70
with the one-step generator, improve per- + Direct fine-tune [71] 1 0.67
formance. We find that as we increase + Noise Hypernetwork 2 0.75
the NFEs, the added performance boost Two-step 2 0.72
of the Noise Hypernetwork reduces. How- .

. + Direct fine-tune [71] 2 0.66
ever, note that the underlying model SANA- + Noise Hypernetwork 3 076
sprint [11] was not trained to be used in .
the multi-step regime, but specifically for Four-step 4 0.73
few-step generation. + Direct fine-tune [71] 4 0.62

+ Noise Hypernetwork 5 0.77

C4 Challenges Eight-step 8 0.74
with Direct Fine-tuning + Noise Hypernetwork 9 0.76
We also qualitatively illustrate the prob- Sixteen-step 16 0.73
lems with directly fine-tuning diffusion + Noise Hypernetwork 17 0.75

models on .diffe.rentiable rewards ip Fig— Thirty-two-step 30 0.71
ure 6. As visualized, there are drastic arti-
facts introduced on the image which signif-
icantly contribute to improving the reward
scores. These artifacts are very similar to the ones noticed in several works [12, 38, 50] and require
the development of several regularization strategies to address these issues. However as explained
in Section 2, in the few-step regime the KL regularization term to the base model is difficult to be
made tractable and thus, to the best of our knowledge there exists no theoretical grounded approach
to learn the reward tilted distribution (Equation 3) with a one-step generator. The Noise Hypernework
strategy on the other hand, ensures that the images remain in the original data distribution with its
principled regularization.

+ Noise Hypernetwork 33 0.72

C.5 LoRA Rank analysis

Here, we ablate the LoRA rank for both HyperNoise and direct fine-tuning on SANA-Sprint. We find
that a rank of 64 also seems to be sufficient to achieve almost the same improvements as rank 128,
while a lower rank seems not to be expressive enough. On the other hand, fine-tuning seems to be
suffering from increased overfitting on the reward.

C.6 Qualitative Results
We provide additional qualitative samples for the base SANA-Sprint result along with the generation

with our proposed noise hypernetwork in Figures 6 and 8. We broadly observe improved prompt
following as well as superior visual quality in the generated images.
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Table 9: GenEval results for HyperNoise on SANA-Sprint, showing generalization across timesteps.

Method NFEs GenEval Mean?
SANA-Sprint (One-step) 1 0.70
LoRA-Rank 128 + HyperNoise 2 0.75
LoRA-Rank 64 + HyperNoise 2 0.75
LoRA-Rank 16 + HyperNoise 2 0.71
LoRA-Rank 8 + HyperNoise 2 0.70
SANA-Sprint (Two-step) 2 0.72
HyperNoise 3 0.76
SANA-Sprint (Four-step) 4 0.73
HyperNoise 5 0.77
HyperNoise (LoRA-Rank=64) 5 0.76

Table 10: GenEval results for direct LoRA fine-tuning on SANA-Sprint.
Method NFEs GenEval Meant
SANA-Sprint (One-step) 1 0.70

LoRA-Rank 128 + LoRA fine-tune 0.67
LoRA-Rank 64 + LoRA fine-tune 0.68
LoRA-Rank 16 + LoRA fine-tune 0.65
LoRA-Rank 8 + LoRA fine-tune 0.59

1
1
1
1
SANA-Sprint (Two-step) 2 0.72
2
4
4

LoRA fine-tune 0.66

SANA-Sprint (Four-step) 0.73
LoRA fine-tune 0.62

33



SANA-Sprint

+ Noise
Hyper network

"A waterfall crashing onto
stones, bel ow a rai nbow,
with colorful mst"

"Quests watching the
Northern |ights dancing
above an ice hotel "

"An epic oil painting:
silver knights charging
across nud, red banners
waving, fiery eclipse
overhead, stone castle
on cliffs"

Figure 7: More qualitative results on the human-preference reward setting. Base SANA-Sprint
compared to HyperNoise with same initial noise.

SANA-Sprint

. B

SANA-Sprint
+ HyperNoise

Figure 8: Non-cherry picked results on the human-preference reward setting. Base SANA-Sprint
compared to HyperNoise with same initial noise.
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