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Abstract

Large Language Models (LLMs) can often pro-001
duce factually incorrect statements, and they002
offer no citations or internal reasoning. We be-003
lieve the safe deployment of LLMs requires004
a deeper understanding of how truth is rep-005
resented within these models. In this paper,006
we study the internal representation of truth007
in LLMs and introduce a taxonomy of truth008
types, including arithmetic, logical, symbolic,009
and consensus-based. We use linear probes010
to identify where in the model different truth011
types become linearly decodable, and we apply012
control tasks to distinguish genuine encoding013
from superficial correlations. Our findings re-014
veal that distinct truth types emerge at different015
layers. For instance, single-digit sums are en-016
coded earlier than multi-digit ones, suggesting017
increasing abstraction across depth. To further018
interpret these internal representations, we train019
sparse autoencoders on hidden states, revealing020
human-interpretable features such as patterns021
like “[person] lived in [place]” or arithmetic in-022
volving specific digits. These results highlight023
structure and specialization in how truth is en-024
coded across transformer layers and neurons.025
To support future work, we also release a tool026
for probing and visualizing internal representa-027
tions across models and datasets.028

1 Introduction029

LLMs have achieved remarkable fluency across030

a wide range of tasks, yet they often produce031

statements that are factually incorrect, unverifiable,032

or internally inconsistent—and they offer no cita-033

tion. This undermines the reliability and safety034

of LLMs in high-stakes settings such as educa-035

tion, law, and medicine (Bender et al., 2021). De-036

spite their widespread deployment, we still lack a037

clear understanding of how factual information is038

represented within LLMs, and under what condi-039

tions that information can be reliably extracted or040

aligned.041

This paper addresses the question, How and 042

where do LLMs internally represent truth? While 043

previous work has shown that some factual knowl- 044

edge is linearly decodable from LLM hidden states 045

(Hewitt and Liang, 2019; Marks and Tegmark, 046

2024), most studies treat truth as a binary con- 047

cept—true or false—with little regard to type. 048

However, not all truths are alike. Logical state- 049

ments like “2 + 3 = 5” differ fundamentally from 050

consensus-based facts like “Paris is the capital of 051

France.” We propose a novel taxonomy of truth 052

types—including arithmetic, logical, symbolic and 053

consensus—and use this structure to investigate 054

how LLMs encode each type. 055

To do this, we apply linear probing to the in- 056

ternal representations of several language mod- 057

els—including BERT (Devlin et al., 2019), GPT-2 058

(Radford et al., 2019), and LLaMA 3.2 (Grattafiori 059

et al., 2024)— and analyze which layers best sup- 060

port truth classification for each type. We use 061

control tasks to isolate genuine semantic encoding 062

from spurious correlations, and measure selectiv- 063

ity—the gap between true and shuffled-label probe 064

accuracy—to assess whether a model truly encodes 065

a given truth type. We find that simple truths (e.g., 066

small arithmetic sums) are often encoded in ear- 067

lier layers, while more complex or abstract truths 068

emerge later. 069

To further interpret these findings, we train 070

sparse autoencoders on hidden states across lay- 071

ers, revealing human-interpretable features such as 072

patterns involving numbers, entities, and locations. 073

This approach builds on work in mechanistic inter- 074

pretability (Elhage et al., 2022; Cunningham et al., 075

2023), demonstrating that distinct neurons activate 076

for different truth types, and sometimes even for 077

specific truth templates. 078

Together, these results suggest that truth is not 079

monolithic in LLMs: different types of truth are en- 080

coded in different layers and with varying degrees 081

of abstraction and specialization. We release our 082
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datasets, probing framework, and visualization tool083

to support future work on truth, interpretability, and084

LLM alignment.085

2 Prior Literature086

2.1 Linear Probing and Selectivity087

The concept of probing has been used in computer088

vision (Alain and Bengio (2017)) and in LLMs for089

many years (Ettinger et al. (2016) and Shi et al.090

(2016)). However, Conneau et al. (2018) solidified091

the technique, taking a methodical look at the vari-092

ous concepts "crammed" into sentence embeddings.093

The authors established clear benchmarks, controls,094

and rigorously evaluated multiple architectures and095

objectives.096

Probing tasks, the authors describe, are classi-097

fication problems. "For example, one such task098

might require to categorize sentences by the tense099

of their main verb," they suggest. Sentence repre-100

sentations created at various points in the model101

under investigation are used as training data for the102

classifier. If the classifier succeeds, "it means that103

the pre-trained encoder is storing readable tense in-104

formation into the embeddings it creates." The tech-105

nique gives a view as to whether or not the concept106

under question—verb tense in the above case—is107

encoded at that particular point in the model.108

The authors suggest using potentially multi-layer109

classifiers, rather than simple linear probes, which110

goes against later ideas by Hewitt and Liang (2019)111

who ask the important question, "[W]hen a probe112

achieves high accuracy on a linguistic task using a113

representation, can we conclude that the represen-114

tation encodes linguistic structure, or has the probe115

just learned the task?"116

Not necessarily, is the answer they find. Some-117

times the probes simply learn the task they’re given.118

The pair propose control tasks, such as shuffling119

the labels of the training data. If a probe succeeds120

on a control task, it suggests that it learned to do121

so itself; it has memorized based on word identity122

rather than actually extracted linguistic informa-123

tion.124

The authors then simply define selectivity as the125

difference between linguistic task accuracy and126

control task accuracy. The ideal, of course, is to127

maximize this metric in order to show that the128

probe learned little, rather is extracting informa-129

tion encoded in the representation from the model130

in evaluation.131

The results show that linear probes are most se-132

lective, whereas non-linear probes appear to mem- 133

orize. Therefore, linear probes are best to properly 134

evaluate models. 135

For a comprehensive survey of probing methods 136

and their interpretability implications, see Belinkov 137

(2022). 138

2.2 Sparse Autoencoders and Superposition 139

Sparse autoencoders have also emerged as a power- 140

ful interpretability method, most notably in recent 141

work by Anthropic (Elhage et al. (2022)). They 142

posit that, due to superposition of various features 143

within LLMs’ neurons, a hypothetical disentangled 144

model exists, which fully separates out all features. 145

To approximate this hypothetical model, they train 146

a sparse autoencoder: a neural network designed 147

to reconstruct its input while enforcing sparsity in 148

a hidden layer. The sparsity constraint encourages 149

the model to allocate distinct dimensions to distinct 150

concepts; these are effectively features correspond- 151

ing to semantically meaningful patterns. 152

2.3 Truth as Direction 153

Various researchers have used these techniques to 154

demonstrate where and how truth, a hitherto single 155

concept, is encoded. Marks and Tegmark (2024) 156

use various techniques and controls to investigate 157

whether large language models represent truth as 158

a linear direction in activation space. Building on 159

prior work on semantic directions in embeddings 160

(Mikolov et al. (2013)) and truth probing (Li et al. 161

(2024)), the authors evaluate whether such a di- 162

rection generalizes across input types and model 163

scales. Azaria and Mitchell (2023)’s work was 164

a valuable addition to the literature in suggesting 165

how this knowledge could be applied. They ele- 166

gantly trained a classifier that uses an LLM’s inter- 167

nal states to output the probability that a statement 168

generated by the LLM is true. 169

3 Types of Truth 170

We categorize truth into four broad 171

types—arithmetic, logical, symbolic, and 172

consensus—inspired by both philosophical 173

distinctions and practical considerations in how 174

LLMs might internally encode different classes of 175

factual knowledge. Each type is represented by 176

targeted datasets described below. 177

3.1 Arithmetic Truths 178

Arithmetic truths consist of concrete, well-defined 179

mathematical statements. These range in complex- 180
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Truth Type Subtype True Example False Example

Arithmetic

Summation, Single-Digit 9 + 9 = 18 4 + 1 = 14
Summation, Multi-Digit 487 + 635 = 1122 114 + 157 = 263
Multiplication, Single-Digit 2 * 4 = 8 2 * 2 = -3
Multiplication, Multi-Digit 452 * 115 = 51980 424 * 257 = 108977
Divisible by 5, Single-Digit 10 is divisible by 5 9 is divisible by 5
Divisible by 5, Multi-Digit 550 is divisible by 5 902 is divisible by 5

Logical

Set membership, Single-Digit 6 is in the set {1, 3, 5, 6, 9} 0 is in the set {1, 2, 6, 7, 8}
Set membership, Multi-Digit 57 is in the set {57, 251, 255,

320, 322}
724 is in the set {68, 81, 475,
504, 754}

Inequality, Single-Digit 9 > 5 4 > 5
Inequality, Multi-Digit 918 > 53 325 > 426
Chained Inequality, Single-
Digit

1 < 5 < 6 3 < 4 < 2

Chained Inequality, Multi-
Digit

215 < 273 < 554 486 < 706 < 542

Parity, Single-Digit 6 is even 1 is even
Parity, Multi-Digit 294 is even 175 is even
Boolean AND If A is true and B is true, then

A and B is true.
If A is true and B is false, then
A and B is true.

Boolean OR If A is true and B is false, then
A or B is true.

If A is false and B is false, then
A or B is true.

Boolean NOT If A is false, then NOT A is
true.

If A is true, then NOT A is true.

Symbolic Digit Count The number 41903 has 5 digits The number 3919 has 6 digits

Consensus Factual Somalia is a name of a country. Panama City is a name of a
country.

Fictional Yossarian tries various schemes
to avoid flying more missions.

Dorian Gray destroyed his por-
trait and instantly aged to his
true years.

Table 1: Overview of truth types used in our experiments, with examples of true and false statements for each
subtype.

ity from simple single-digit operations (e.g., “2 + 3181

= 5”) to multi-digit arithmetic (e.g., “237 + 142 =182

379”). These truths are algorithmically verifiable183

and do not depend on linguistic ambiguity or world184

knowledge.185

These statements are intentionally minimal and186

unambiguous, making them ideal for probing how187

LLMs encode internally verifiable logical structure.188

3.2 Logical Truths189

Logical truths involve relational or boolean reason-190

ing. Like arithmetic, these truths are not grounded191

in external knowledge but instead rely on abstract192

internal structure. These include inequalities, set193

membership, and boolean statements.194

These statements serve to evaluate whether 195

LLMs can represent logic-based semantics that are 196

structurally valid but semantically sparse. 197

3.3 Consensus Truths 198

Consensus truths refer to culturally accepted or 199

empirically agreed-upon facts, such as “Caracas 200

is a city in Venezuela.” These statements are 201

not logically derivable but are widely accepted 202

within human knowledge. We distinguish fac- 203

tual truths, drawn from public knowledge, such 204

as countries and capital cities, from fictional truths, 205

such as statements about characters in novels, e.g., 206

"Dorothy from The Wizard of Oz is from Kansas." 207
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4 Data208

All datasets were formatted consistently—one209

statement and a true or false label—for training210

linear probes and sparse autoencoders. The full211

datasets will be released with the final version of212

the paper.213

All statements are short, declarative, and de-214

signed for binary classification. We include ap-215

proximately 5,000 examples per dataset, balanced216

evenly between true and false labels.217

A summary of the data used, alongside examples,218

is shown in Table 1219

4.1 Arithmetic, Logical, and Symbolic220

We constructed the arithmetic, logical, and sym-221

bolic datasets synthetically using Python, generat-222

ing both true and false statements for binary clas-223

sification. The full code is in Appendix A.2. For224

the boolean truths, we were careful not to repeat225

the use of A and B as characters, otherwise our226

datasets would feature many repeats. Where nat-227

ural language was used, as opposed to symbolic,228

statements were limited to English.229

4.2 Consensus230

For factual truths, we used data from Minervini231

(2024), which consists of concise, declarative state-232

ments labeled as true or false and organized by233

domain (e.g., capital cities and country names).234

This dataset is in English with a Western cultural235

focus, which we acknowledge as a limitation but236

consider sufficient for our investigation into truth237

representation patterns1.238

We generated fictional truths using an LLM239

(Anthropic Claude 3.7), prompting it to produce240

both true and false statements grounded in fictional241

worlds. While the use of an LLM to generate fic-242

tional truths raises the possibility of contamina-243

tion—i.e., the same model or data being seen by244

the models under test—we argue that this risk is245

minimal. We did not observe unusually high probe246

performance on this subset.247

5 Model Architectures and248

Representations249

We worked with multiple transformer-based lan-250

guage models:251

1Other similar datasets—including Lin et al. (2022) and
Clark et al. (2019)—were not sufficiently unambiguous and
simple in their statements for the purposes of this work.

• LLaMA 3.2 Instruct (1B- and 3B-parameter 252

variants) 253

• GPT-2 (large, 774M-parameter) 254

• BERT (base and large variants, with 110M 255

and 340M parameters respectively) 256

These models differ in architecture and pretrain- 257

ing objectives but all follow the general trans- 258

former structure, composed of stacked layers of 259

self-attention and feedforward blocks interleaved 260

with residual connections. 261

5.1 Masked (Encoder-Only) Models 262

BERT is pretrained using masked language model- 263

ing. We looked at the hidden state corresponding 264

to the special classification token [CLS] at each 265

layer: 266

h(l) = x[CLS]l ∈ Rd 267

This vector is designed to aggregate information 268

across the entire input sequence and is commonly 269

used for classification tasks. (We did attempt tak- 270

ing the mean of all elements as a potential different 271

metric, but that did not provide sufficiently differ- 272

ent results to warrant a deviation from simply using 273

the [CLS] token.) 274

5.2 Autoregressive (Decoder-Only) Models 275

GPT-2 and LLaMA are trained autoregressively. 276

They do not produce a [CLS] token. Instead, we 277

extracted the representation of the final token in 278

the sequence from the residual stream after the 279

transformer block at each layer. This is referred to 280

as resid_post in libraries such as Nanda and 281

Bloom (2022)’s TransformerLens: 282

h(l) = x
(T )
l ∈ Rd 283

Here, T is the index of the final token in the input. 284

The residual stream xl captures all computation up 285

to and including layer l, as it is the input to the 286

subsequent layer’s attention and MLP blocks. 287

6 Experiments 288

We created a software tool to conduct our experi- 289

ments, written in Python and using the Streamlit 290

framework. We hope this will be helpful to future 291

researchers. Details of the tool can be found in 292

Appendix A.1. 293
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6.1 PCA294

Before even enlisting the help of linear probes and295

sparse autoencoders, we applied Principal Compo-296

nent Analysis (PCA) to each layer’s hidden states297

and plotted projections, with two components, of298

colored true-false examples, as well as the decision299

boundary. This—if, and only if, truth were the prin-300

cipal feature—would allow us to visualize quickly301

which layer of the LLM best separated true and302

false statements.303

6.2 Linear Probes304

To locate the position within an LLM at which a305

particular concept was encoded, we enlisted linear306

probes.307

We created a simple classifier. Let h(l)
i ∈ Rd308

denote the hidden state of the i-th example at layer309

l, where d is the hidden dimension of the model.310

We defined a linear probe f (l) : Rd → [0, 1] as a311

single-layer neural network followed by a sigmoid312

activation (σ):313

f (l)(h
(l)
i ) = σ

(
w(l)⊤h

(l)
i + b(l)

)
314

Here, w(l) ∈ Rd and b(l) ∈ R are the probe’s315

learnable parameters at layer l. The output is in-316

terpreted as the probability that the input is a true317

statement (1, as opposed to 0).318

Given a dataset of N examples with binary labels319

yi ∈ {0, 1}, we trained each probe to minimize the320

binary cross-entropy loss:321

L = − 1

N

N∑
i=1

[
yi log f

(l)(h
(l)
i )322

+ (1− yi) log
(
1− f (l)(h

(l)
i )

)]
323

This was optimized with Adam, with a learning324

rate, η = 10−2, training each probe for E = 100325

epochs.326

For each layer l, we evaluated the probe on a327

held-out test set using classification accuracy:328

Accuracy(l) =
1

M

M∑
j=1

I
[
ŷ
(l)
j = yj

]
329

where ŷ
(l)
j = I[f (l)(h

(l)
j ) > 0.5], and M is the330

number of test examples.331

As per Hewitt and Liang (2019)’s work, we332

needed to assess whether the probes were detecting333

genuine truth signals or merely learning dataset 334

artifacts. We therefore performed control tasks by 335

shuffling the labels yi, retrained the probes using 336

the shuffled labels yctrl
i , and computed control ac- 337

curacy: 338

Accuracy(l)ctrl =
1

M

M∑
j=1

I
[
ŷ

ctrl,(l)
j = yj

]
339

This would always give a baseline of 0.5 given 340

that we were using simple binary classifiers. The 341

researchers defined selectivity as the difference be- 342

tween true and control accuracies: 343

Selectivity(l) = |Accuracy(l) − Accuracy(l)ctrl| 344

This measures how much more a probe learns 345

from the true labels compared to shuffled-label 346

baselines (0.5). 347

We then plotted the accuracy, control accuracy, 348

and selectivity as the primary output for our prob- 349

ing experiments. 350

6.3 Sparse Autoencoders 351

To assess whether truth-related features in trans- 352

former hidden states can be disentangled, and 353

so features obtained, we trained sparse autoen- 354

coders on the representations extracted at each 355

layer. These autoencoders are trained to recon- 356

struct their input while enforcing sparsity in an in- 357

termediate latent representation. Our hope was that 358

a sparse latent space would isolate interpretable 359

features, that would vary with different truth types. 360

Let h(l)
i ∈ Rd be the hidden state of the i-th 361

example at layer l. We defined an autoencoder 362

consisting of an encoder f : Rd → Rk and de- 363

coder g : Rk → Rd, with a nonlinearity applied to 364

enforce sparsity: 365

zi = f(h
(l)
i ) = ReLU(Weh

(l)
i + be) 366

367

ĥi = g(zi) = Wdzi + bd 368

The encoder compresses the input into a latent 369

vector zi, which is then passed through the decoder 370

to reconstruct the input. In our experiments, the la- 371

tent dimension is overcomplete: k = 10d, meaning 372

the bottleneck has ten times more dimensions than 373

the input, following work by Elhage et al. (2022). 374
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To encourage symmetry and reduce parameter375

count, we enabled tied weights, such that the de-376

coder weight matrix was constrained to be the trans-377

pose of the encoder weights:378

Wd = W⊤
e379

This weight tying was implemented by explic-380

itly copying the encoder weights into the decoder381

before each forward pass. This practice is common382

in sparse coding and interpretability work, notably383

in that of Cunningham et al. (2023).384

We minimized a reconstruction loss with an ℓ1-385

penalty on the activated latent representation zi:386

LSAE =
1

N

N∑
i=1

∥∥∥ĥi − h
(l)
i

∥∥∥2
2
+ λ ∥zi∥1387

We used a ReLU activation, set the number of388

epochs to be 100, the learning rate, η = 0.001, and389

sparsity penalty coefficient, λ = 0.01.390

Our analysis included metrics such as Zero Ac-391

tivation Rate (percentage of latent units with zero392

activation); L1 Sparsity (mean absolute activation393

across all units); Gini Coefficient, which captured394

the inequality of activations, and is used to assess395

how concentrated information is in a small subset396

of neurons (or, more famously, wealth concentra-397

tion).398

We then visualized these metrics per layer, re-399

vealing how sparsity evolves through the LLM.400

To get a more intuitive idea of the different fea-401

tures being found, we extracted the top sentence402

examples that most strongly activated specific fea-403

tures in the bottleneck space. These examples were404

arranged in a grid, allowing us to inspect which405

types of sentence, or what element of them, was406

triggering this feature. This, while not strictly quan-407

titative, would provide some of the most entertain-408

ing of our results.409

7 Results and Analysis410

We evaluate how different types of truth are en-411

coded within LLMs, focusing on two primary axes:412

• Model architecture and scale — We evaluate413

multiple transformer models across parameter414

sizes.415

• Truth type — We assess the four categories in416

our taxonomy: arithmetic, logical, symbolic,417

and consensus.418

For each model-truth pair, we train linear probes 419

at every layer to assess where truth is most lin- 420

early decodable. We complement this with PCA 421

visualizations and sparse autoencoder analysis to 422

interpret feature structure and sparsity. Given the 423

binary nature of our tasks, control accuracy (from 424

shuffled-label probes) is expected to remain at 0.5, 425

providing a baseline to compute selectivity. 426

7.1 General Trends by Truth Type 427

7.1.1 Arithmetic, Logical, and Symbolic 428

Truths 429

We observe a consistent trend: simple, inter- 430

nally verifiable truths—such as single-digit arith- 431

metic—are encoded earlier and more selectively 432

than complex arithmetic or external facts. 433

In LLaMA 3.2 (3B), for instance, the ability to 434

sum single-digit numbers emerges early (Figure 1), 435

while multi-digit arithmetic only becomes linearly 436

decodable around Layer 18 (Figure 2). 437

Figure 1: Accuracy, control accuracy, and selectivity for
LLaMA 3.2 (3B) on single-digit summation.

Figure 2: Accuracy, control accuracy, and selectivity for
LLaMA 3.2 (3B) on multi-digit summation.

This abstraction-over-depth trend is further il- 438

lustrated via PCA projections (Figure 3), where 439

separation between true and false statements be- 440

comes pronounced only at later layers. 441
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Figure 3: PCA of hidden states across layers (LLaMA
3.2 3B, multi-digit summation). Separation between
truth values increases with depth.

Sparse autoencoders reveal further structure. For442

LLaMA 3.2 (1B), we identify interpretable features443

such as:444

• Feature 16,081 in Layer 14: strongly activated445

by statements summing to 10446

• Feature 15,615: selectively activated by nega-447

tive sums448

These suggest that arithmetic concepts are not449

only linearly separable but also captured in disen-450

tangled features.451

In contrast, GPT-2 (774M) and BERT-large452

(340M) fail to encode multi-digit arithmetic, show-453

ing near-zero selectivity and accuracy across all454

layers (Figure 4).455

Figure 4: Accuracy and selectivity for GPT-2 (774M) on
multi-digit summation. No signal is detectable across
layers.

Logical and symbolic truths follow similar pat-456

terns, with shallow encodability for simple con-457

structs, and degradation in smaller models or more458

complex cases.459

7.1.2 Consensus-Based Truths 460

Consensus-based truths—both factual and fic- 461

tional—prove more elusive. They are generally 462

encoded later, with lower selectivity, and appear 463

more dependent on model scale. 464

In smaller models like BERT and GPT-2, consen- 465

sus facts remain largely undecodable. In LLaMA 466

3.2 (3B), selectivity improves but still lags behind 467

arithmetic truth encoding. 468

Yet sparse autoencoders offer a richer picture. 469

Even in the 1B LLaMA, we find features that dis- 470

tinguish between sentence types. For example: 471

Feature 3,594 (Layer 9): Location-based enti- 472

ties 473

Igor Tamm lived in U.S.
Hans Berger lived in U.S.
Josephine Cochrane lived in U.S.

Feature 14,870 (Layer 9): Invention-based 474

entities 475

Karl Landsteiner invented the
waterproof fabric.↪→

Ignazio Porro invented the modern
electric refrigerator.↪→

John Harrison invented the steel
ribbed umbrella.↪→

This differentiation implies that models are in- 476

ternally clustering related fact templates—even if 477

truth classification is weak—suggesting latent se- 478

mantic structure. 479

7.2 Selectivity Summary 480

Table 2 summarizes selectivity scores across mod- 481

els, truth types, and layers. Selectivity above 0.2 482

typically indicates meaningful encoding; lower val- 483

ues suggest little or no signal. 484

Notably, GPT-2 shows occasional early-layer 485

selectivity followed by rapid loss—suggesting tem- 486

porary feature emergence that is not preserved. 487

BERT-large shows marginal gains but still strug- 488

gles with deeper truths. LLaMA 3.2 consistently 489

outperforms smaller models across types. 490

8 Conclusion 491

This paper investigates how different types of 492

truth are represented across the internal layers of 493

large language models. We introduce a taxonomy 494

of truth—covering arithmetic, logical, symbolic, 495

and consensus-based statements—and use linear 496
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Model Parameters Truth Layer with Max Final
Type Max Selectivity Selectivity Selectivity

LLaMA 3.2-1B 1B

Summation (Single-Digit) 10 / 15 0.44 0.44
Summation (Multi-Digit) 15 / 15 0.23 0.23

Consensus: Fictional 8 / 15 0.35 0.28
Consensus: Factual 9 / 15 0.36 0.27

LLaMA 3.2-3B 3B

Summation (Single-Digit) 19 / 27 0.60 0.45
Summation (Multi-Digit) 25 / 27 0.54 0.49

Consensus: Fictional 23 / 27 0.40 0.35
Consensus: Factual 15 / 27 0.47 0.37

BERT-base 110M

Summation (Single-Digit) 7 / 12 0.25 0.20
Summation (Multi-Digit) 10 / 12 0.01 0.02

Consensus: Fictional 10 / 12 0.28 0.24
Consensus: Factual 7 / 12 0.15 0.13

BERT-large 340M

Summation (Single-Digit) 15 / 24 0.35 0.31
Summation (Multi-Digit) 22 / 24 0.02 0.02

Consensus: Fictional 14 / 24 0.30 0.29
Consensus: Factual 24 / 24 0.22 0.22

GPT-2-large 774M

Summation (Single-Digit) 18 / 35 0.34 0.01
Summation (Multi-Digit) 8 / 35 0.03 0.00

Consensus: Fictional 23 / 35 0.33 0.08
Consensus: Factual 16 / 35 0.22 0.04

Table 2: Linear probe selectivity across models and truth types. Values show layer of maximum selectivity (layer
index / total), selectivity at that layer, and final-layer selectivity.

probes, control tasks, and sparse autoencoders to497

probe how these categories are encoded in models498

including BERT, GPT-2, and LLaMA 3.2.499

Our findings show that truth is not encoded uni-500

formly: distinct truth types emerge at different lay-501

ers, with simple arithmetic facts appearing earlier502

than complex or abstract knowledge. Selectivity503

analysis confirms that these representations are not504

artifacts of dataset bias, and sparse autoencoders505

reveal interpretable neurons that align with specific506

truth patterns, such as “[person] lived in [place]” or507

arithmetic involving certain digits. Sparsity tends508

to increase in deeper layers, suggesting a progres-509

sive abstraction or compression of truth-relevant510

features.511

These results suggest that LLMs do not treat512

truth as a monolith, but instead encode different513

kinds of factual knowledge in specialized ways.514

This opens new directions for interpretability re-515

search and has implications for model alignment,516

factuality, and the safe deployment of LLMs.517

Limitations518

This work represents an initial investigation into519

how different types of truth are encoded within520

large language models. While our results provide521

meaningful insights, several limitations constrain522

the scope and generalizability of our findings.523

First, our datasets are limited in both content and524

structure. Many were synthetically generated, with 525

simple, declarative sentence forms and restricted 526

vocabulary. Even the consensus-based datasets, 527

such as Minervini (2024), were aggregated across 528

categories and drawn exclusively from English- 529

language, culturally Western contexts. As such, 530

our conclusions may not generalize to more lin- 531

guistically diverse, complex, or ambiguous truth 532

expressions. 533

Second, we evaluated only a small subset of 534

model architectures and sizes, focusing on rela- 535

tively low-parameter variants of BERT, GPT-2, and 536

LLaMA. Our analysis does not cover more recent 537

or larger-scale models, nor does it systematically 538

vary architectural components such as attention 539

mechanisms or pretraining objectives. 540

Third, while linear probes and sparse autoen- 541

coders are well-established tools for interpretabil- 542

ity, we did not fully explore the breadth of their 543

configurations. In particular, hyperparameters for 544

the sparse autoencoders were held constant across 545

experiments, and we did not investigate the inter- 546

pretability of the latent features with as much rigor 547

as possible. Future work could apply linear probes 548

directly to the autoencoder’s latent space to ex- 549

amine whether disentangled features preserve or 550

enhance truth selectivity. 551

Finally, this study focuses exclusively on internal 552

representations and does not assess whether truth 553

8



encoding influences downstream behavior or gen-554

eration. We do not claim that a model "believes" a555

statement it encodes as true. Future research could556

investigate the causal role of these internal truth rep-557

resentations in generation, calibration, or alignment558

settings, potentially by performing interventions or559

tracing activation flows during inference.560
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A Appendix831

A.1 Streamlit-Based Tool832

To conduct this work, we used the Python pro-833

gramming language and wrapped our code into an834

easy-to-use user interface with the Streamlit frame-835

work. This tool made varying the many parameters,836

hyperparameters, models, datasets, etc., extremely837

easy. It allowed for tabbed visualization and saving838

of previous runs (as well as metadata about them).839

And we configured it to run on either CUDA or840

MPS, meaning that we conducted some runs on841

cloud-based GPUs rather than an Apple Silicon842

MacBook Pro. We hope the tool can be used to843

further mechanistic interpretability work.844

Figure 5: A tool to help run the experiments and analysis
described in this paper.

A.2 Creation of logical datasets 845
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1 import csv
2 import random
3 import string
4

5

6 def generate_summation_dataset_csv(max_number, n=5000):
7 with open(f"summation_{max_number}.csv", mode="w", newline="") as file:
8 writer = csv.writer(file)
9 writer.writerow(["statement", "label"])

10

11 for i in range(n):
12 a = random.randint(0, max_number)
13 b = random.randint(0, max_number)
14

15 if i % 2 == 0:
16 correct_sum = a + b
17 text = f"{a} + {b} = {correct_sum}"
18 label = 1
19 else:
20 incorrect_sum = (
21 a + b + random.choice([i for i in range(-10, 11) if i != 0])
22 )
23 text = f"{a} + {b} = {incorrect_sum}"
24 label = 0
25

26 writer.writerow([text, label])
27

28

29 def generate_inequality_dataset_csv(max_number, n=5000):
30 with open(f"inequality_{max_number}.csv", mode="w", newline="") as file:
31 writer = csv.writer(file)
32 writer.writerow(["statement", "label"])
33

34 for i in range(n):
35 a = random.randint(0, max_number)
36 b = random.randint(0, max_number)
37

38 # 50% chance of being correct
39 if i % 2 == 0:
40 if a == b:
41 a += 1 # ensure inequality
42 statement = f"{a} > {b}" if a > b else f"{b} > {a}"
43 label = 1
44 else:
45 if a == b:
46 b += 1
47 statement = f"{a} > {b}" if a <= b else f"{b} > {a}"
48 label = 0
49

50 writer.writerow([statement, label])
51

52

53 def generate_even_odd_dataset_csv(max_number, n=5000):
54 with open(f"even_odd_{max_number}.csv", mode="w", newline="") as file:
55 writer = csv.writer(file)
56 writer.writerow(["statement", "label"])
57 for i in range(n):
58 a = random.randint(0, max_number)
59 if i % 2 == 0:
60 statement = f"{a if a % 2 == 0 else a + 1} is even"
61 label = 1
62 else:
63 statement = f"{a if a % 2 != 0 else a + 1} is even"
64 label = 0
65 writer.writerow([statement, label])
66

67

68 def generate_divisibility_dataset_csv(max_number, divisor=5, n=5000):
69 with open(f"divisible_by_{divisor}_{max_number}.csv", mode="w", newline="") as

file:↪→
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70 writer = csv.writer(file)
71 writer.writerow(["statement", "label"])
72 for i in range(n):
73 if i % 2 == 0:
74 a = random.randint(0, max_number // divisor) * divisor
75 statement = f"{a} is divisible by {divisor}"
76 label = 1
77 else:
78 a = random.randint(0, max_number)
79 while a % divisor == 0:
80 a = random.randint(0, max_number)
81 statement = f"{a} is divisible by {divisor}"
82 label = 0
83 writer.writerow([statement, label])
84

85

86 def generate_multiplication_dataset_csv(max_number, n=5000):
87 with open(f"multiplication_{max_number}.csv", mode="w", newline="") as file:
88 writer = csv.writer(file)
89 writer.writerow(["statement", "label"])
90 for i in range(n):
91 a = random.randint(0, max_number)
92 b = random.randint(0, max_number)
93 if i % 2 == 0:
94 correct = a * b
95 statement = f"{a} * {b} = {correct}"
96 label = 1
97 else:
98 incorrect = a * b + random.choice([j for j in range(-10, 11) if j !=

0])↪→
99 statement = f"{a} * {b} = {incorrect}"

100 label = 0
101 writer.writerow([statement, label])
102

103

104 def generate_chained_inequality_dataset_csv(max_number, n=5000):
105 with open(f"chained_inequality_{max_number}.csv", mode="w", newline="") as file:
106 writer = csv.writer(file)
107 writer.writerow(["statement", "label"])
108 for i in range(n):
109 if i % 2 == 0:
110 a, b, c = sorted(random.sample(range(max_number), 3))
111 statement = f"{a} < {b} < {c}"
112 label = 1
113 else:
114 # force a false condition
115 while True:
116 a = random.randint(0, max_number)
117 b = random.randint(0, max_number)
118 c = random.randint(0, max_number)
119 if not (a < b < c):
120 break
121 statement = f"{a} < {b} < {c}"
122 label = 0
123 writer.writerow([statement, label])
124

125

126 def get_random_vars(n=2):
127 """Get n unique random uppercase letters"""
128 return random.sample(string.ascii_uppercase, n)
129

130

131 def generate_boolean_and_dataset_csv(n=5000):
132 with open("boolean_and.csv", mode="w", newline="") as file:
133 writer = csv.writer(file)
134 writer.writerow(["statement", "label"])
135 for i in range(n):
136 var1, var2 = get_random_vars(2)
137 val1 = random.choice(["true", "false"])
138 val2 = random.choice(["true", "false"])
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139 label = 1 if val1 == "true" and val2 == "true" else 0
140 statement = f"If {var1} is {val1} and {var2} is {val2}, then {var1} and

{var2} is true"↪→
141 writer.writerow([statement, label])
142

143

144 def generate_boolean_or_dataset_csv(n=5000):
145 with open("boolean_or.csv", mode="w", newline="") as file:
146 writer = csv.writer(file)
147 writer.writerow(["statement", "label"])
148 for i in range(n):
149 var1, var2 = get_random_vars(2)
150 val1 = random.choice(["true", "false"])
151 val2 = random.choice(["true", "false"])
152 label = 1 if val1 == "true" or val2 == "true" else 0
153 statement = f"If {var1} is {val1} and {var2} is {val2}, then {var1} or

{var2} is true"↪→
154 writer.writerow([statement, label])
155

156

157 def generate_boolean_not_dataset_csv(n=5000):
158 with open("boolean_not.csv", mode="w", newline="") as file:
159 writer = csv.writer(file)
160 writer.writerow(["statement", "label"])
161 for i in range(n):
162 var = random.choice(string.ascii_uppercase)
163 val = random.choice(["true", "false"])
164 label = 1 if val == "false" else 0
165 statement = f"If {var} is {val}, then NOT {var} is true"
166 writer.writerow([statement, label])
167

168

169 def generate_boolean_xor_dataset_csv(n=5000):
170 with open("boolean_xor.csv", mode="w", newline="") as file:
171 writer = csv.writer(file)
172 writer.writerow(["statement", "label"])
173 for i in range(n):
174 var1, var2 = get_random_vars(2)
175 val1 = random.choice(["true", "false"])
176 val2 = random.choice(["true", "false"])
177 label = 1 if (val1 == "true") != (val2 == "true") else 0
178 statement = f"If {var1} is {val1} and {var2} is {val2}, then {var1} XOR

{var2} is true"↪→
179 writer.writerow([statement, label])
180

181

182 def generate_boolean_implies_dataset_csv(n=5000):
183 with open("boolean_implies.csv", mode="w", newline="") as file:
184 writer = csv.writer(file)
185 writer.writerow(["statement", "label"])
186 for i in range(n):
187 var1, var2 = get_random_vars(2)
188 val1 = random.choice(["true", "false"])
189 val2 = random.choice(["true", "false"])
190 label = 1 if val1 == "false" or val2 == "true" else 0
191 statement = f"If {var1} is {val1} and {var2} is {val2}, then {var1}

implies {var2} is true"↪→
192 writer.writerow([statement, label])
193

194

195 def generate_boolean_iff_dataset_csv(n=5000):
196 with open("boolean_iff.csv", mode="w", newline="") as file:
197 writer = csv.writer(file)
198 writer.writerow(["statement", "label"])
199 for i in range(n):
200 var1, var2 = get_random_vars(2)
201 val1 = random.choice(["true", "false"])
202 val2 = random.choice(["true", "false"])
203 label = 1 if (val1 == "true") == (val2 == "true") else 0
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204 statement = f"If {var1} is {val1} and {var2} is {val2}, then {var1} if
and only if {var2} is true"↪→

205 writer.writerow([statement, label])
206

207

208 def generate_boolean_nand_dataset_csv(n=5000):
209 with open("boolean_nand.csv", mode="w", newline="") as file:
210 writer = csv.writer(file)
211 writer.writerow(["statement", "label"])
212 for i in range(n):
213 var1, var2 = get_random_vars(2)
214 val1 = random.choice(["true", "false"])
215 val2 = random.choice(["true", "false"])
216 label = 0 if val1 == "true" and val2 == "true" else 1
217 statement = f"If {var1} is {val1} and {var2} is {val2}, then {var1} NAND

{var2} is true"↪→
218 writer.writerow([statement, label])
219

220

221 def generate_boolean_nor_dataset_csv(n=5000):
222 with open("boolean_nor.csv", mode="w", newline="") as file:
223 writer = csv.writer(file)
224 writer.writerow(["statement", "label"])
225 for i in range(n):
226 var1, var2 = get_random_vars(2)
227 val1 = random.choice(["true", "false"])
228 val2 = random.choice(["true", "false"])
229 label = 1 if val1 == "false" and val2 == "false" else 0
230 statement = f"If {var1} is {val1} and {var2} is {val2}, then {var1} NOR

{var2} is true"↪→
231 writer.writerow([statement, label])
232

233

234 def generate_digit_count_dataset_csv(n=5000):
235 with open("digit_count.csv", mode="w", newline="") as file:
236 writer = csv.writer(file)
237 writer.writerow(["statement", "label"])
238 for i in range(n):
239 num = random.randint(1, 99999)
240 correct_len = len(str(num))
241 if i % 2 == 0:
242 statement = f"The number {num} has {correct_len} digits"
243 label = 1
244 else:
245 incorrect_len = correct_len + random.choice([-2, -1, 1, 2])
246 incorrect_len = max(1, incorrect_len)
247 statement = f"The number {num} has {incorrect_len} digits"
248 label = 0
249 writer.writerow([statement, label])
250

251

252 def generate_set_membership_dataset_csv(max_number, n=5000):
253 with open(f"set_membership_{max_number}.csv", mode="w", newline="") as file:
254 writer = csv.writer(file)
255 writer.writerow(["statement", "label"])
256 for i in range(n):
257 the_set = sorted(random.sample(range(max_number), 5))
258 if i % 2 == 0:
259 x = random.choice(the_set)
260 label = 1
261 else:
262 x = random.randint(0, max_number)
263 while x in the_set:
264 x = random.randint(0, max_number)
265 label = 0
266 statement = f"{x} is in the set {the_set}"
267 writer.writerow([statement, label])
268

269

270 generate_summation_dataset_csv(1000)
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271 generate_summation_dataset_csv(10)
272 generate_inequality_dataset_csv(1000)
273 generate_inequality_dataset_csv(10)
274 generate_even_odd_dataset_csv(1000)
275 generate_even_odd_dataset_csv(10)
276 generate_divisibility_dataset_csv(1000, divisor=5)
277 generate_divisibility_dataset_csv(10, divisor=5)
278 generate_multiplication_dataset_csv(1000)
279 generate_multiplication_dataset_csv(10)
280 generate_chained_inequality_dataset_csv(1000)
281 generate_chained_inequality_dataset_csv(10)
282 generate_boolean_and_dataset_csv()
283 generate_boolean_or_dataset_csv()
284 generate_boolean_not_dataset_csv()
285 generate_boolean_xor_dataset_csv()
286 generate_boolean_implies_dataset_csv()
287 generate_boolean_iff_dataset_csv()
288 generate_boolean_nand_dataset_csv()
289 generate_boolean_nor_dataset_csv()
290 generate_digit_count_dataset_csv()
291 generate_set_membership_dataset_csv(10)
292 generate_set_membership_dataset_csv(1000)
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A.3 Complete Probing Results846
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Model Parameters Truth Layer with Maximum Final
Type Maximum Selectivity Layer

Selectivity Selectivity

LLaMA 3.2-1B 1B

Summation (Single-Digit) 10 / 15 0.44 0.44
Summation (Multi-Digit) 15 / 15 0.23 0.23

Multiplication (Single-Digit) 11 / 15 0.54 0.52
Multiplication (Multi-Digit) 15 / 15 0.29 0.29

Consensus: Fictional 8 / 15 0.35 0.28
Consensus: Factual 9 / 15 0.36 0.27
Parity (Single-Digit) 4 / 15 0.86 0.41
Parity (Double-Digit) 4 / 15 0.48 0.37

LLaMA 3.2-3B 3B

Boolean AND 2 / 27 0.24 0.24
Boolean NOT 0 / 27 0.70 0.51

Chained Inequality (Single) 13 / 27 0.58 0.48
Chained Inequality (Multi) 12 / 27 0.59 0.54

Consensus: Factual 15 / 27 0.47 0.37
Consensus: Fictional 23 / 27 0.40 0.35

Inequality (Multi-Digit) 12 / 27 0.55 0.48
Inequality (Single-Digit) 26 / 27 0.60 0.51

Multiplication (Multi-Digit) 26 / 27 0.42 0.42
Multiplication (Single-Digit) 5 / 27 0.56 0.53

Parity (Single-Digit) 19 / 27 0.82 0.51
Parity (Multi-Digit) 2 / 27 0.55 0.50

Set Membership (Multi) 3 / 27 0.59 0.45
Set Membership (Single) 3 / 27 0.63 0.49
Summation (Multi-Digit) 25 / 27 0.54 0.49
Summation (Single-Digit) 19 / 27 0.60 0.45

BERT-base 110M

Boolean AND 4 / 12 0.24 0.24
Boolean NOT 1 / 12 0.63 0.46

Chained Inequality (Multi) 11 / 12 0.42 0.25
Chained Inequality (Single) 7 / 12 0.63 0.43

Consensus: Factual 7 / 12 0.15 0.13
Consensus: Fictional 10 / 12 0.28 0.24

Digit Count 12 / 12 0.55 0.55
Divisible by 5 (Multi) 11 / 12 0.58 0.38
Divisible by 5 (Single) 10 / 12 0.58 0.54
Inequality (Multi-Digit) 10 / 12 0.41 0.38
Inequality (Single-Digit) 10 / 12 0.61 0.54

Multiplication (Multi) 8 / 12 0.11 0.09
Multiplication (Single) 8 / 12 0.36 0.21
Parity (Single-Digit) 10 / 12 0.86 0.86
Parity (Multi-Digit) 7 / 12 0.45 0.39

Set Membership (Multi) 10 / 12 0.54 0.52
Set Membership (Single) 9 / 12 0.56 0.41
Summation (Multi-Digit) 10 / 12 0.01 0.02
Summation (Single-Digit) 7 / 12 0.25 0.20

BERT-large 340M

Consensus: Factual 24 / 24 0.22 0.22
Consensus: Fictional 14 / 24 0.30 0.29

Multiplication (Single-Digit) 18 / 24 0.37 0.27
Multiplication (Multi-Digit) 16 / 24 0.14 0.08

Parity (Single-Digit) 22 / 24 0.82 0.45
Parity (Multi-Digit) 2 / 24 0.48 0.33

Summation (Multi-Digit) 22 / 24 0.02 0.02
Summation (Single-Digit) 15 / 24 0.35 0.31

GPT-2-large 774M

Consensus: Factual 16 / 35 0.22 0.04
Consensus: Fictional 23 / 35 0.33 0.08

Digit Count 4 / 35 0.54 0.01
Multiplication (Multi) 3 / 35 0.17 0.00
Multiplication (Single) 10 / 35 0.44 0.01

Summation (Multi-Digit) 8 / 35 0.03 0.00
Summation (Single-Digit) 18 / 35 0.34 0.01

Divisible by 5 (Single) 6 / 35 0.84 0.01
Divisible by 5 (Multi) 7 / 35 0.73 0.00

Table 3: Linear probe selectivity results across all models and truth types. Values show layer with maximum
selectivity (current/total layers), maximum selectivity achieved, and selectivity at the final layer.
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