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ABSTRACT

Distributed backdoor attacks (DBA) have shown a higher attack success rate than
centralized attacks in centralized federated learning (FL). However, it has not been
investigated in the decentralized FL. In this paper, we experimentally demonstrate
that, while directly applying DBA to decentralized FL, the attack success rate
depends on the distribution of attackers in the network architecture. Considering
that the attackers can not decide their location, this paper aims to achieve a high
attack success rate regardless of the attackers’ location distribution. Specifically,
we first design a method to detect the network by predicting the distance between
any two attackers on the network. Then, based on the distance, we organize the
attackers in different clusters. Lastly, we propose an algorithm to dynamically
embed local patterns decomposed from a global pattern into the different attackers
in each cluster. We conduct a thorough empirical investigation and find that our
method can, in benchmark datasets, outperform both centralized attacks and naive
DBA in different decentralized frameworks.

Federated learning (FL) (McMahan et al., 2017; Kairouz et al., 2021; Bai et al., 2024) is a promising
paradigm for collaborative training machine learning models over large-scale distributed data. It
preserves the privacy of local data in each client and enjoys the advantage of efficient optimization
as the local clients conduct computations independently and simultaneously (Andrew et al., 2024).
Based on the communication architecture, existing FL frameworks can be classified into two cate-
gories: centralized FL and decentralized FL Li et al. (2023b). Specifically, in centralized FL, the
server updates the global model by aggregating the information from parties (McMahan et al., 2017;
Li et al., 2020b; Wang et al., 2024; Hamer et al., 2020). In decentralized FL, the communications are
performed among the parties and every party can update the global parameters directly (Bornstein
et al., 2023; Li et al., 2020a; Marfoq et al., 2020; Shi et al., 2023; Dai et al., 2022)

Despite its capability of aggregating dispersed information to train a better model, its distributed
learning mechanism across different parties may unintentionally provide a venue for adversarial
attacks (Bagdasaryan et al., 2020; Bhagoji et al., 2019; Garov et al., 2024). Specifically, adversarial
agents can perform data poisoning attacks on the shared model by manipulating a subset of training
data and uploading poisoned local models such that the trained model on the tampered dataset will
be vulnerable to the data with a similar trigger embedded and data with specific patterns will be
misclassified into some target labels (Dai & Li, 2023; Zhuang et al., 2024; Zhang et al., 2023b).

Due to the nature of the distributed learning methodology in FL, it is intuitive to have several ad-
versarial parties attack FL simultaneously. DBA (distributed backdoor attacks) (Xie et al., 2020)
is an attack strategy to decompose a trigger pattern into local patterns and embed local patterns to
different adversarial parties respectively. Compared with embedding the same global trigger pattern
to all adversarial parties, DBA is more persistent and effective, as the local trigger pattern is more
insidious and easier to bypass the robust aggregation mechanism in the centralized FL framework.

However, DBA has not been investigated in the decentralized FL. Intuitively, the communication
algorithms may have an impact on the attack success rate of DBA. In this paper, we first introduce
DBA in decentralized FL and conduct experiments to report the attack success rate. We empirically
find the attack success rate highly depends on the location distribution of adversarial parties.
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Attacker #4

Attacker #1

Attacker #2

Attacker #3

(a) Uniform distribution (b) Non-Uniform distribution

Figure 1: Location of attackers

In Figure 2, we compare the at-
tack success rate of two scenarios:
(1) uniform distribution of adversar-
ial parties on the topology and (2)
non-uniform distribution of adversar-
ial parties on the topology. As shown
in Figure 1, the location distribution
of adversarial parties can be non-
uniform on the topology of the com-
munication network. We especially
found that while directly applying
DBA to decentralized FL, the attack
success rate highly depends on the
distribution of attackers. Specifically,
Figure 2 compares the attack success rate of two scenarios on D-PSGD (Lian et al., 2017) and
CIFAR-10. The result shows that the attack success rate will drop significantly if the adversarial
parties are not uniformly distributed on the network. This is because the model updating flow based
on poisoned data is often asymmetric in the topology. Intuitively, the impact of a trigger pattern
provided by an attacker will be marginal if an agent is far from the attacker.
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Figure 2: Attacks on D-PSGD

In this paper, we aim to achieve a high attack
success rate regardless of the locations of ad-
versarial agents. First, we propose to detect
the network by predicting the distance between
any two attackers on the network. Specifically,
we observe that the sequence of prediction ac-
curacy of elaborated data varies differently on
agents with different distances to an attacker.
Based on this observation, we use the sequence
to predict the distance between any two attack-
ers in the early stage of FL. With the estimated
distance, we leverage the clustering algorithm
to organize the attackers in different clusters.
Lastly, we develop an algorithm to dynamically
decompose global trigger patterns into different
adversarial agents to maximize the attack success rate. Compared with DBA, our method has ad-
dressed the distinctive framework of decentralized FL and achieved a higher attack success rate.

We experiment with multiple decentralized FL frameworks and standard datasets to verify the effec-
tiveness of the proposed method. In summary, we propose the following contributions:

• This work is the first to study distributed backdoor attacks on decentralized FL.
• We empirically find that while directly applying DBA to decentralized FL, the attack suc-

cess rate depends on the distribution of attackers in the topology of decentralized FL.
• We propose a method to detect the network of the decentralized FL by estimating the dis-

tance between any two agents. An algorithm is developed to dynamically organize dis-
tributed backdoor attacks based on clusters.

• We experimentally demonstrate that our attacking strategy can achieve a higher attack suc-
cess rate than DBA and the centralized attack with a global trigger.

1 PRELIMINARY

1.1 FEDERATED LEARNING

Centralized Federated Learning (FL) is a distributed learning framework with the following train-
ing objective:

min
w

F (w) :=
1

N

N∑
i=1

fi(wi) (1)

2
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There are N parties in the framework, each of whom trains a local model fi(w) with a private dataset
Di = {{xi

j , y
i
j}Jj=1} where j = |Di| and {xi

j , y
i
j} represents each data sample and its corresponding

label. At round t, a central server sends the current shared model parameterized with w to N parties.
Each local party will copy w to its local model wi. The parameter of a local model wi will be
updated with a loss of prediction l({{xi

j , y
i
j}Jj=1}, wi). By running an optimization algorithm such

as stochastic gradient descent, a local party can obtain a new local model wt+1
i . After several rounds,

the server implements an aggregation algorithm to combine the local models or model updates into
a global model which is then disseminated back to the local parties:

wt+1 = wt +
η

N

N∑
i=1

(wt+1
i − wt), (2)

where η is the parameter to decide the step size of the update. This distributed learning framework
preserves data privacy by training models locally on distributed devices. Instead of sharing actual
data with a central server, only local models or local model updates are shared. The averaging
algorithm can also be replaced by other algorithms such as FedMedian (Yin et al., 2018).

Different from centralized FL where a server communicates coordinates with all parties, decentral-
ized FL, local parties only communicate with their neighbors in various communication typologies
without a central server, which offers communication efficiency and better preserves data privacy
compared with centralized FL. Denote the communication topology in the decentralized FL frame-
work among clients is modeled as a graph G = V, E , where V refers to the set of clients, and E
refers to the set of communication channels, each of which connects two distinct clients. The client
adopts multi-step local iterations of training and then sends the updated model to the selected neigh-
bors. Decentralized FL design is preferred over centralized FL in some aspects since concentrating
information on one server may bring potential risks or unfairness (Li et al., 2023b).

1.2 BACKDOOR ATTACK

The objective of a backdoor attack is to mislead the trained model to predict any input data with
an embedded trigger as a wrong label. In federated learning, an adversarial client can pretend to
be a normal client and manipulate the local model. By sending the updates to the global server
or neighbors, the global model would achieve a high attack success rate on poisoned data while
behaving normally on clear data samples to fit the main task. Specifically, the training objective for
an adversarial client i at round t with local dataset Di and the target label τ is:

w∗
i = argmax

wi

(
∑
j∈Si

poi

P [F (w,R(xi
j)) = τ ] +

∑
j∈Si

cln

P [F (w, xi
j) = yij ]), (3)

where Si
poi is the index set of poisoned data samples and Si

cln is the index set of clear data samples.
The first sum term aims to predict the poisoned data samples as the target label t and the second sum
term guarantees that the clean data samples will be predicted as the ground truth. The function R(·)
transforms a clean data point into poisoned data by adding a trigger pattern parameterized by ϕ.

2 METHOD

2.1 ANALYSIS OF DBA IN DECENTRALIZED FEDERATED LEARNING

Assume there are N clients forming an unknown topology (e.g., ring and clique ring). A rational
setting is that the adversarial clients are only aware of their neighbors and have no information ((e.g.,
locations) about other adversarial clients and the overall communication topology. In decentralized
federated learning, each client follows a pre-defined algorithm to communicate with its neighbors,
receiving model parameter information from all neighbors and aggregating it locally. Different from
centralized federated learning, there is no central server to balance all parameters and each client’s
model is directly influenced by its neighbors. Intuitively, a client’s influence on other clients over
the communication topology will diminish while the distance between two clients is increasing. For
example, if an adversarial client conducts backdoor attacks on the local model, the attacking effects
could be marginal for a client far from the adversarial client. This is because the model updates based
on the poisoned data can be canceled out along the long chain of model updates on the topology.
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Accordingly, the communication algorithms of decentralized FL may have an impact on the attack
success rate of DBA. We empirically find that, while directly applying DBA to decentralized FL,
the attack success rate highly depends on the location distribution of adversarial clients. As shown
in Figure 2, compared with the scenario where the adversarial parties are uniformly distributed
on the topology, the attack success rate will drop significantly if the adversarial parties are not
uniformly distributed on the network. In decentralized federated learning, the effectiveness of DBA
significantly decreases due to the absence of a central server that aggregates the effects of distributed
attacks. Intuitively, with a non-uniform distribution, the impact of these attacks can not fully reach
out to all clients on the topology.

Motivated by this phenomenon, this paper aims to maximize the efficacy of DBA in decentralized
FL. Considering that the attackers can not decide their location, we propose to adjust the strategy of
DBA according to the topology. Specifically, we propose a two-step attacking strategy: (1) detecting
the network (i.e., the connection between attackers) and (2) an improved DBA based on the network.

2.2 TOPOLOGY DETECTION

Since it is evident that the locations of attackers on the topology of DFL significantly impact the
attacking effectiveness, we first detect the position of the attacking nodes within the topology. If
we can estimate the distance between any two attacking clients, we can better conduct the attack
by controlling the overlap of attack patterns among nodes to maximize the attack’s effectiveness.
Therefore, our target is to design a method to estimate the distance between any two adversarial
clients in an unknown topology.

In this paper, we refer to the attacking actions of adversarial clients as “signals” and the poison
accuracy as “signal strength” (i.e., the accuracy of predicting an image as the attacker’s desired
category). For instance, if the attacker wants the model to classify a shark as a ship, the accuracy of
predicting a shark as a ship with other normal clients is the poison accuracy. The higher the poison
accuracy, the higher the signal strength. As the attacker initiates the attack, the signal propagates
through the topology, affecting the model in each client by combining the attacker’s attacking signal
and other nodes’ normal signals based on local data. Since the update of the model for a normal
(i.e., non-attacker) client could cancel out some impact of the attacking signal, the signal strength
detected by a client could become weaker along the propagation path in the topology. Therefore,
the poison accuracy on a client is influenced by its position in the topology, more precisely by its
distance from the attacker. From the perspective of the training process, the poison accuracy of a
client forms a sequence that varies from epoch to epoch. We remark that this sequence can be used
to estimate the distance from the client to the attacker.
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Figure 3: Sequences

To verify that the signal is useful for dis-
tance prediction, we first start with a sim-
ple experiment: given a sequence of poi-
son accuracy in the training process, we
use a Long Short-Term Memory network
(LSTM) model to predict if it comes from
the attacker or not (binary classification).
On a decentralized FL configured with a
ring topology with 8 nodes, where a client
performs the attack. The training pro-
cess generates 8 sequences for all 8 nodes.
We find that the experimental accuracy
reached 100%. The sequence from the at-
tacker exhibits significant temporal differ-
ences from other clients.

To further justify that the attacking sig-
nals become weaker along the propagation
path, we visualize the sequence of poi-
son accuracy for 5 clients in the training
process of a decentralized FL (Amiri &
Gündüz, 2020) using CIFAR-10. As shown in the upper part of Figure 3, the purple client per-
forms backdoor attacks on the local model. Specifically, on the purple client (node 0), we assign
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”ships” as the label of a shark image for local training. Note that ”shark” does not belong to any of
the 10 classes in CIFAR-10. The purple sequence in the lower part of Figure 3 indicates the poison
accuracy (the image is predicted as ”ships”) of the shark image. Similarly, we visualize the poison
accuracy on the other clients while feeding the shark image to the local models. We can observe that
the sequence gap between a client and the attacker (node 0) increases as the distance to the attacker
increases. It indicates that such sequences can reveal the distance between a client and an attacker.

Based on the motivation, we predict the distance between any two attackers. Note that the attackers
can communicate with each other to agree on poisoned images and the target label. Denote A as
the set of attackers. For each attacker i ∈ A, we assign a distinctive image zi as the “signature” of
attacker i. The attacker will train the model to predict x̌i as a random label τ ∈ Y in the domain:

w∗
i = argmax

wi

(P [f(wi, z
i)) = τ ] +

∑
j∈Si

cln

P [f(wi, x
i
j) = yij ]), (4)

Denote si as the sequence of poison accuracy for zi on attacker i. For any other attacker i′ ∈ A
(i ̸= i′), we predict its distance to attacker i by feeding the sequence difference si − si′ into a pre-
trained LSTM model. We remark that each attacker will have a distinctive ”signature” so that the
attacking signals of attackers will not impact each other in terms of predicting distance.

To per-train an LSTM model G(·) for distance prediction, we set the distance of each direct con-
nection on the topology as 1. With a decentralized FL for training purposes, we feed the sequence
difference for any pair of attackers (i, i′) for regression prediction. The model is optimized by
minimizing Mean Squared Error (MSE) according to the ground truth:

MSE =
1

N

∑
(i,i′),i̸=i′

(G(si − si′)− di,i′)
2, (5)

where di,i′ is the ground truth distance and N is the number of pairs. In the experiment, we demon-
strate the accuracy of predicting the distance with a pre-trained model.

3 DBA BASED ON THE DETECTED NETWORK

Our second step is to improve DBA on decentralized FL with the detected network. We attribute the
unsatisfied attack success ratio on the decentralized FL to the absence of a central server and limited
coverage of attacking signals on certain clients. If we evenly decompose a global attacking trigger
into local patterns at each attacker, a small local trigger may not be significant enough to propagate
the all clients. To address this limitation, we propose to organize DBA based on clusters of attackers
in the topology and enhance the impact of distributed backdoor attacks.

Denote M as the distance metric predicted with a pre-trained model. Each entry in M represents the
predicted distance between two attackers. We leverage a clustering algorithm to assign attackers into
a set of groups where attackers close to each other belong to the same group. Figure 4 shows two
clusters of attackers. Then we design a distributed backdoor attack algorithm based on the clusters.

Global trigger: 

Cluster #1

Cluster #2

Local trigger:

Local trigger:

Figure 4: Sequences

Dynamic distribution of local trig-
gers within clusters. Suppose there
are K clusters in the decentralized
FL topology. As illustrated in Fig-
ure 4, we decompose a global trig-
ger evenly into local triggers in each
cluster Ck. All attackers in a clus-
ter only use parts of the global trigger
to poison the training data. For ex-
ample, the attacker highlighted with
blue in Cluster #1 poisons a subset of
the training data only using the upper
part of the global trigger and the at-
tacker with the yellow sign uses the
lower part of the global trigger to poison the data. A similar attacking the methodology applies to
attackers in other clusters. We define each decomposed trigger used for each attacker as the local
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trigger. Considering m attackers in cluster Ck with m small local triggers. Each DBA attacker mi
independently performs the backdoor attack on their local models by solving:

w∗
i = argmax

wi

(
∑
j∈Si

poi

P [F (w,R(xi
j , ϕ

i
k)) = τ ] +

∑
j∈Si

cln

P [F (w, xi
j) = yij ]), (6)

where ϕi
k denotes the local trigger for client i in cluster Ck.

Note that in each attacking round, we randomly assign the decomposed local triggers to different
attackers within a cluster. The benefit is that each local pattern will have the chance to be assigned
at various locations. It further maximizes the overall influence of the attacking trigger.

Similar to DBA, there are multiple factors to be explored in decentralized FL: location, size, and gap.
The location is the offset of the trigger pattern from the top left pixel. The Size decides the number
of pixels of the trigger covered. Trigger Gap is used to shift the local trigger from the previous local
trigger. Instead of continuously attacking throughout the training process, we considered allowing
the attacker to attack at intervals. This is similar to alternating current where the signal strength
transmitted to each node will vary over time, and periodic decreases in signal strength could make
the fluctuations more apparent.

Algorithm 1 outlines the workflow of our attacking scheme. In the early stage of learning (t < ∆T ),
the sequence of poison accuracy will be used for predicting the distance between any two attack-
ers. Based on the distance matrix, we can leverage any clustering algorithm based on distance to
group attackers. Then in each attacking round, the global trigger will be decomposed and randomly
assigned to all attackers within each cluster. Each attacker will conduct backdoor attacks with the
assigned local trigger. Our cluster-based on backdoor attacks and dynamic distribution of local
triggers can enhance the impact of distributed backdoor attacks.

Algorithm 1: DBA with network detection
t = 0;
Assign a distinctive poison signature out of the domain for each attacker;
while t < ∆T do

for i ∈ A do
for i ∈ A do

Compute the poison accuracy si for attacker i′ concerning zi;
end

end
t+=1;

end
For any pair of two attackers, predict the distance di,i′ from i to i′ with G(·), si, and si′ ;
Clustering attackers into K groups with the distance matrix M ;
while t < T do

for k = 0; k < K; k+ = 1 do
Randomly assign decomposed local patterns to all attackers i in Cluster Ck;
for i ∈ Ck do

Each attacker i uses Eq. (6) to attack the local model;
end

end
t+=1;

end

4 EXPERIMENTS

Experimental Setup We follow DBA Xie et al. (2020) to set up the experiment. We introduce two
popular decentralized FL algorithms: DSGD Amiri & Gündüz (2020) and Swift Bornstein et al.
(2023). All training parameters are configured as the standard value in the corresponding paper. We
evaluate the performance of predicting distance on two typologies: Ring and Grid. To compare with
DBA and centralized backdoor attack Bagdasaryan et al. (2020), we report the attack success rate
(ASR) on two datasets: CIFAR-10 and MNIST. We use the poison accuracy of the first 100 epochs
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to predict distance. On each topology, there are 40 clients by default. We follow DBA to set up the
attacking trigger.

(a) Ring topology (DSGD) (b) Ring topology (Swift)

(c) Grid Topology (DSGD) (d) Grid Topology (Swift)

Figure 5: Distance Prediction

Distance prediction. In the experiment, we randomly assign pairs of clients as attackers with spec-
ified ground-truth distance and leverage an LSTM model to predict distance. The experiments are
repeated 20 times to combat randomness. As shown in Figure 5, we report the error of the predicted
distance on two typologies with different numbers of clients. On the ring topology, we can observe
the prediction error for Swift is smaller than DSGD. We attribute it to the rapid synchronization of
model updates in Swift. The observations still hold for the grid topology. Also, we can see that
the error increases while the ground-truth distance is increasing. This is because the attacking sig-
nal becomes weak if the distance is long and the model can not distinguish it from the signal of a
non-attack client. The overall result indicates that our distance prediction method is accurate.

The robustness of distributed backdoor attack. Following DBA, we evaluate the attack success
rates of different attacking methods using the same global trigger. The ratio of backdoor pixels in the
global triggers is 0.964 for MNIST and 0.990 for CIFAR-10. For a fair comparison, we set the total
number of backdoor pixels in the training dataset to be the same across different attacking methods.
Specifically, we poison more data in DBA and centralized attack so that the total number of poison
pixels equals that of our cluster-based DBA by including more data in Si

poi. We randomly select 10
clients as attackers and cluster the attackers into 3 groups. In Figure 7, we use “Cluster-based DBA”
to denote our method. We report the average attack success rate for two topologies on CIFAR-10
and MNIST. We can see that the centralized attack outperforms DBA in terms of attack success rate.
This is against the motivation of distributed backdoor attacks in FL. It further justifies the necessity
of improving DBA in decentralized FL.

By applying our backdoor attack method to the decentralized FL, we can observe that our attack
success rate is higher than both DBA and centralized attacks in all settings. Specifically, on the
CIFAR-10 dataset, the attack success rate is always higher than DBA and centralized attacks in
terms of both two topologies with two decentralized FL frameworks. On the MNISIT dataset, we
observe that the success attack ratios of all three methods reach 100% in the end. However, our
method has a higher ASR in the search stage and converges faster than the other two methods. The
superiority of our method over DBA and centralized attacks in various settings verifies that our
strategy can address the limitation of DBA in decentralized FL.

7
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(a) Swift on CIFAR-10
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(b) DSGD on CIFAR-10
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(c) Swift on MNIST
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(d) DSGD on MNIST

Figure 6: Ring Topology
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Figure 7: Clique Ring Topology

Case study. In Figure 8, we use the Grad-CAM visualization method Gildenblat & contributors
(2021) to explore a sample image attacked by DBA and centralized attack with the global trigger.
The two columns show the difference between two heat maps of activation (e.g., the importance for
prediction) for predicting a hand-written digit ‘4’ as ‘4’ and ‘2’, respectively. Same as the conclusion
in DBA Xie et al. (2020), each local triggered image alone is a weak attack as none of them can
change the prediction. However, with a global trigger, the poisoned image is classified as ‘2’ (the
target label), and we can see the activation area is transformed to the trigger location. It suggests
that each small local trigger is difficult to detect for defenders because most locally triggered images
are similar to the clean image, demonstrating the stealthy nature of distributed backdoor attacks.
We remark that distributed attacks can make triggers stealthier. In the following table, we use the
strategy in Zhang et al. (2022) to attack parameters in DFL. The results in Figure 1 of Appendix
indicate that DBA can further increase durability. This is because each decomposed trigger is small
and it makes the one-line gradient project in [1] more invisible. We totally agree that finding an
optimal combination of many parameters is a challenge for DBA. Our contribution is that for any
combination of the parameters, our clustering algorithm can improve the attack success rate.

We also follow DBA to investigate the effects of trigger factors in the process of decomposing a
global trigger. We only change one factor in each experiment shown in Figure 9. When we increase
the size of the local trigger from 1 to 4, the attack success ratio will increase. At the same time,
the accuracy varies slightly. However, while increasing the size from 4 to 12, the attack success
ratio will drop. The value of the gap has little impact on both ASR and accuracy. This is because
the relation between different local triggers has been removed by distributing the local triggers to
different clients. We also note a U-shape curve of ASR when the shift increases. This is because
when the trigger overlaps with some pattern in the clear image, the impact can be ignored due to
overlap. However, when we further shift the trigger to the right bottom corner, the ASR will recover
to a high ratio because most objects are located in the middle of the images in the dataset.

5 RELATED WORKS

Using more data for model training benefit the performance in general. However, it poses pri-
vacy risk concerns by collecting data from various institutions. Federated Learning McMahan et al.
(2017); Khaled & Jin (2023); Cheng et al. (2024); Huang et al. (2021b); Zhong et al. (2023) has
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(a) No attack (predict as 4) (b) Global trigger (predict as 2)

(c) Local trigger #1 (predict as 4) (d) Local trigger #2 (predict as 4) (e) Local trigger #3 (predict as 4)

Figure 8: Case Study

(a) Vary size (b) Vary gap (c) Vary shift

Figure 9: Effects of Local Triggers

emerged as a powerful distributed learning framework by sharing a global model without shar-
ing their data. FL frameworks can be classified into two categories: centralized FL and decen-
tralized FL Li et al. (2023b). Centralized FL enables clients to perform limited training on local
datasets while the centralized server aggregates the client parameters using different aggregation
methods. (McMahan et al., 2017; Li et al., 2020b; Wang et al., 2024; Hamer et al., 2020). In decen-
tralized FL, the communications are performed among the parties and every party can update the
global parameters directly (Bornstein et al., 2023; Li et al., 2020a; Marfoq et al., 2020; Shi et al.,
2023; Dai et al., 2022) to keep each client’s data private.

The nature of federated learning provides a way for adversarial parties to attack the model because
any client on the communication topology can pretend to be a normal client and manipulate the
model update by injecting poison data. Since any client has access to the global model, the attacker
can perform membership attacks on the model (Li et al., 2023a), data stealing (Garov et al., 2024)
or model poisoning attack Yan et al. (2023); Jia et al. (2023); Zhang et al. (2023a); Li et al. (2022);
Huang et al. (2021a). Some defensive methods have also been studies (Xie et al., 2024; 2021; Zhang
et al., 2023b; Fang & Chen, 2023) based on model updates. However, the attack and defense on the
decentralized FL have not been studied. To the best of our knowledge, our paper is the first work to
investigate distributed backdoor attacks on decentralized FL.

6 CONCLUSION

In this paper, we apply DBA to decentralized FL. We experimentally demonstrate that the attack suc-
cess rate of DBA depends on the distribution of attackers in the network architecture. Considering
that the attackers can not decide their location, we propose a two-step attacking strategy to improve
the ASR of DBA in decentralized FL: (1) detecting the network and (2) an improved DBA based
on the network. Lastly, we propose an algorithm to dynamically embed local patterns decomposed
from a global pattern into the different attackers in each cluster. We experimentally verify that our
attacking strategy can achieve a higher attack success rate than DBA and the centralized attack.

9
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Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song,
Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
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Communication-efficient learning of deep networks from decentralized data. In Aarti Singh
and Xiaojin (Jerry) Zhu (eds.), Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, vol-
ume 54 of Proceedings of Machine Learning Research, pp. 1273–1282. PMLR, 2017. URL
http://proceedings.mlr.press/v54/mcmahan17a.html.

Yifan Shi, Li Shen, Kang Wei, Yan Sun, Bo Yuan, Xueqian Wang, and Dacheng Tao. Improving
the model consistency of decentralized federated learning. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol-
ume 202 of Proceedings of Machine Learning Research, pp. 31269–31291. PMLR, 2023. URL
https://proceedings.mlr.press/v202/shi23d.html.

Haozhao Wang, Haoran Xu, Yichen Li, Yuan Xu, Ruixuan Li, and Tianwei Zhang. Fedcda: Fed-
erated learning with cross-rounds divergence-aware aggregation. In The Twelfth International

12

http://papers.nips.cc/paper_files/paper/2022/hash/e2ef0cae667dbe9bfdbcaed1bd91807b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/e2ef0cae667dbe9bfdbcaed1bd91807b-Abstract-Conference.html
https://openreview.net/forum?id=QsCSLPP55Ku
https://doi.org/10.1609/aaai.v34i04.5895
https://doi.org/10.1109/TKDE.2021.3124599
https://openreview.net/forum?id=ByexElSYDr
https://openreview.net/forum?id=ByexElSYDr
https://proceedings.neurips.cc/paper/2017/hash/f75526659f31040afeb61cb7133e4e6d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f75526659f31040afeb61cb7133e4e6d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e29b722e35040b88678e25a1ec032a21-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e29b722e35040b88678e25a1ec032a21-Abstract.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v202/shi23d.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/forum?id=nbPGqeH3lt.

Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. DBA: distributed backdoor attacks against fed-
erated learning. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=rkgyS0VFvr.

Chulin Xie, Minghao Chen, Pin-Yu Chen, and Bo Li. CRFL: certifiably robust federated learn-
ing against backdoor attacks. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, vol-
ume 139 of Proceedings of Machine Learning Research, pp. 11372–11382. PMLR, 2021. URL
http://proceedings.mlr.press/v139/xie21a.html.

Yueqi Xie, Minghong Fang, and Neil Zhenqiang Gong. Fedredefense: Defending against model
poisoning attacks for federated learning using model update reconstruction error. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=Wjq2bS7fTK.

Haonan Yan, Wenjing Zhang, Qian Chen, Xiaoguang Li, Wenhai Sun, Hui Li, and Xiaodong Lin.
RECESS vaccine for federated learning: Proactive defense against model poisoning attacks. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1b80fe066fdbceb3a2960117bac33917-Abstract-Conference.html.

Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter L. Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In Jennifer G. Dy and Andreas Krause (eds.), Proceed-
ings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
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Table 1:
Method Swift-Ring DSGD-Ring Swift-Clique DSGD-Clique
Neurotoxin 0.601 0.623 0.652 0.672
Neurotoxin+DBA 0.613 0.636 0.662 0.663
Neurotoxin+our 0.651 0.676 0.712 0.704

Table 2: Attacking DFL with defensive mechanism
Method DBA Centralized Our
Swift 0.656 0.782 0.801
Swift+FLIP 0.431 0.699 0.783
Swift+FedGame 0.587 0.728 0.779
DSGD 0.712 0.764 0.831
DSGD+FLIP 0.679 0.688 0.787
DSGD+FedGame 0.646 0.647 0.805

Haomin Zhuang, Mingxian Yu, Hao Wang, Yang Hua, Jian Li, and Xu Yuan. Backdoor feder-
ated learning by poisoning backdoor-critical layers. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=AJBGSVSTT2.

A APPENDIX

A.1 ATTACKING DFL WITH DEFENSIVE MECHANISMS

To showcase the effectiveness of the proposed attack under defense mechanisms, we introduce two
defensive mechanisms Zhang et al. (2023b); Jia et al. (2023) in the experiment. To the author’s best
knowledge, there is no defense mechanism designed specifically for decentralized FL in the litera-
ture. The possible reason is that a decentralized framework itself is a defense mechanism. Many
defensive strategies based on client selection such as Krum Blanchard et al. (2017) are not suitable
for DFL. To introduce the defensive strategy in decentralized FL, we leverage the corresponding
strategy for each client. Note that the defense mechanism does reduce ASR. However, decentralized
FL mitigates backdoor attacks because each client only has a few neighbors (e.g., 2 on a ring topol-
ogy). Compared with DBA and centralized attack, our method can further pose a challenge to the
effectiveness of these defense mechanisms.
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