Under review as a conference paper at ICLR 2026

TOWARDS ALGORITHMIC DIVERSITY
WITH SEMANTIC SEED SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) combined with evolutionary search techniques
have achieved remarkable results in challenging open-ended domains such as
competitive programming and mathematical discovery. A key ingredient of such
methods is solution space exploration, typically performed by sampling a large
pool of candidates with high temperature. However, such sampling has been
widely critiqued for providing little semantic diversity and introducing syntac-
tic errors in structured domains such as code and math. We propose semantic
seed sampling, a simple training-free method for controllable exploration. The
model first generates a small set of semantically meaningful seeds (short hints
or ideas), appends them to the task description, and samples solutions from each
seed-conditioned prompt. We observe that semantic seed sampling explores dis-
joint neighborhoods of the solution space whose combined coverage is substan-
tially larger than that of high-temperature sampling alone. As part of the Best-of-N
pipeline, our method yields relative gains of up to 13.8%, while remaining token-
efficient. We provide a theoretical explanation for the near-optimality of small
per-seed budgets, supporting it with empirical evidence. These results highlight
efficient solution space exploration as an underappreciated and promising direc-
tion for improving LLMs’ problem-solving abilities.

Sassine Seed 1: “Use
— Solution recursion!”,
. 9,
Task LLM Success rate: 40.0%
Solution

Seed 2: “Use
memoization and
(—) caching!”,
Success rate: 8.0%

Seed 3: “Use dynamic
programming!”,
Success rate: 12.0%

1antic

Solution

No seed
Success rate: 1.3%

Figure 1: SEMSEED: Semantic seed-conditioned sampling. Seeds target diverse solution space
regions, allowing for controllable exploration under a fixed budget.

1 INTRODUCTION

The synergy of large language models (LLMs) and evolutionary search has recently delivered sub-
stantial progress in diverse open-ended areas such as robotics, neural architecture search, mathemat-
ics, algorithms, and code generation (Wu et al.,|2024; Lange et al., [2024; Zhang et al.| 2024)). Their
progress extends to benchmarks such as ARC-AGI, which has long been considered a litmus test
for general reasoning capabilities (Chollet et al.,|2024). The common pipeline consists of iterations
of (1) generating a large pool of candidate solutions, (2) scoring with an external fitness function,
such as unit tests, and (3) filtering and retaining the most promising ones (Fernando et al.; [Li et al.}
2022 Romera-Paredes et al., 2024} Novikov et al., [2025). Across all of the different approaches,

Under review as a conference paper at ICLR 2026

solid performance ultimately depends on the first sampling step, making the diversity and control of
exploration a first-order concern.

A central challenge is how to induce semantic diversity under fixed inference budgets. The dominant
approach is to raise the sampling temperature, but this is problematic for a number of reasons. First,
higher temperature does not guarantee semantic diversity: since the solutions are sampled indepen-
dently, with no specific control over which part of the solution space to explore, many generations
may differ only in superficial phrasing (e.g., names of the functions, order of variables, etc.) while
converging on the same underlying algorithm, wasting budget on redundant regions. Second, the
effect of temperature is highly dependent on the task, the model, and the domain; in code generation
in particular, higher temperatures often increase the rate of syntactic or structural errors, reducing
the proportion of valid candidates (Shi et al.,|2024a; |Renze, [2024; |Ding et al.,|2023)). Finally, recent
work questions temperature as the right lever for creativity and shows that input-side randomness
can help. For example, adding random prefix tokens during training and varying them at inference
improves creative diversity for some minimal algorithmic tasks (Nagarajan et al., |2025). Despite
the importance of diverse exploration, we still lack a simple and controllable method for steering
generation toward distinct and complementary regions of the solution space.

We propose semantic seed sampling (SEMSEED), a training-free method that first elicits a small
set of semantically distinct seeds (e.g., solution ideas, hints), appends each seed to the task to form
modified prompts, and then distributes the sampling budget across these seed-conditioned prompts
before applying standard Best-of-N selection. Intuitively, a semantic seed encodes a region of the
solution space, responsible for a particular approach to the problem, like using recursion or dynamic
programming (see fig. [I). Empirically, the seed-induced distribution consists of multiple disjoint
modes, providing broader support than high-temperature baselines, while per-seed success rates are
sparse — properties that enable provably efficient exploration under fixed budgets. On code bench-
marks, this yields consistent improvements over strong baselines, with relative gains up to 13.8%.

Our contributions:

* We introduce semantic seed sampling, a minimal change to Best-of-N sampling scheme
that injects prompt-level diversity without additional training.

* We provide a mechanism study showing that seed-conditioned generations form separated
modes with sparse success rates, explaining why breadth-wise exploration is effective; we
also formalize conditions and some simple bounds connecting sparsity to pass@k gains.

* We demonstrate consistent improvements on challenging code benchmarks (e.g., MBPP+,
LiveCodeBench), and report ablations (temperature, number of seeds) that further support
our theoretical assumptions.

2 RELATED WORK

A suite of code generation methods follows a sample-then-aggregate paradigm. AlphaCode demon-
strated that large-scale Best-of-N sampling, combined with clustering and execution-based filter-
ing, can solve competitive programming problems by surfacing diverse candidates and selecting
those that pass tests (L1 et al., |2022). Subsequent work systematizes this Best-of-N family: Self-
Consistency draws multiple solutions (or reasoning traces) and aggregates to a final answer by ma-
jority voting, while execution-guided reranking/MBR frameworks (e.g., DOCE, CodeT) explicitly
generate an n-best list and select using (self-generated) unit-test outcomes or minimum-risk criteria
(Wang et al.; [Li et al., [2024; |Chen et al.| [a). Concurrently, hierarchical methods like CodeChain and
FUNCODER instantiate the same idea at the component level: instead of sampling entire programs
at once, they sample multiple candidates for subcomponents, use local selection (e.g., functional
consensus), and then recompose a final solution, effectively performing Best-of-N within each node
of a decomposition tree (Chen et al.|[2024} [Le et al.; |Li et al., [2025). Another strain of methods, such
as SELF-DEBUGGING, Reflexion, or MGDebugger, tries to iterate on the same program, employing
the public unit test feedback to fix it (Shinn et al., 2023} |Chen et al.| |b; [Shi et al.,[2024b)).

Several recent works have explored ways to induce diversity in LLM outputs by varying or augment-
ing the prompt (or input) rather than relying solely on randomness in decoding or high-temperature
sampling. (Naik et al.|, 2023) proposes DIV-SE and IDIV-SE, where the model is prompted to ex-
plore multiple reasoning approaches to the problem in a one-shot manner. Dipper (Lau et al., 2024)

Under review as a conference paper at ICLR 2026

introduces an LLM ensemble method where, first, a dataset-specific pool of prompt variations is
generated. These prompt variations are then tested on a subset of examples and narrowed down to
some pre-defined n according to the accumulation of accuracy and diversity. Finally, the generation
budget is distributed equally among the prompt versions, and the final result is aggregated by ma-
jority voting or with another LLM call. The most recent work (Nagarajan et al., 2025) introduces
“seed-conditioning” by adding random prefixes to prompts as one way to inject diversity at the in-
put side. The work demonstrates that seed-conditioning can, in certain cases, match or outperform
output randomness (e.g., temperature sampling) in achieving diversity, particularly in minimalistic
algorithmic scenarios.

3 METHOD

3.1 SETUP

We are given a textual description of the programming task x and must produce a solution
y ~ pp(y | «) (Python code) using an LLM with parameters 6.

Let c: X xY — {0, 1} be the verifier function. It runs the solution code on all tests and checks
whether all of them pass:

1 if y passes all public and private tests for task x,
0 otherwise.

c(z,y) = {
We define the per-task success rate s(z) as the probability of generating a solution accepted by the

verifier:
s(r)= E [I(c(z,y) =1)].
y~pa (y|)
Then, the pass@1 denotes the pass rate over the whole dataset (Kulal et al., 2019):

pass@Ql = E_[s(z)].
z~D

If the samples {y;};=1 are drawn i.i.d., then the probability of having at least one correct solution
among k samples is:

pass@Qk = erVED 1-(1- s(;z:))k]

In that case, there is an unbiased approximate to pass @k, expressed by the following formula (Chen
et al.,[2021):
)

(%)

where n is the total number of generated solutions for task x, and c is the number of correct ones.

pass@Qk = E
x~D

(0<k<n),

3.2 SEMSEED(K@QN): SEED-CONDITIONED BEST-OF-N

Our method mirrors Best-of-N in the selection stage but changes how candidates are sampled by
adding a preceding semantic seed generation step. The aim of it is to diversify solutions and improve
coverage.

1. Seed generation. We start by obtaining K seeds:
h = (hl,...,hK) Npg(h ‘ l’)
Practically, we prompt the model to generate a list of K short, diverse solution ideas or
hints. Note that all h; are generated at once, so they are not independent. We prefer sam-

pling at once instead of i.i.d. sampling to promote diversity, since the LLM will unlikely
generate similar seeds in the same list.

2. Modified tasks. For each seed, we form a modified task:
xi:[x,hi], iZl,...,K

In practice, this can be done by concatenating with a specific prompt form, for example
“Use the hint below: {hint}”.

Under review as a conference paper at ICLR 2026

3. Seed—conditioned sampling. We fix a total budget of IV solutions, and distribute the sam-
pling budget across the K modified task examples {z;} 1 .
Letm : {1,...,N} — {1,..., K} map each sample index j to the seed it uses; equiva-
lently, n; = |{j : m(j) = i}| is the number of samples obtained from the modified task
i, with Y5 n; = N. We then draw

yi~po(ylzmy), J=1,...,N

By default, we use a near-uniform allocation n; = |/N/K | and distribute the remainder
arbitrarily. Under uniform allocation, the overall sampling distribution is the mixture:

1 K
K Zpe(y | ;)
i=1

4. (Optional) Selection (as in Best-of-N). We rank all candidates by the number of passed
public tests and return the top one, as in Best-of- NV, if one solution is required.

Unlike Best-of-N, which samples all y; ~ pg(y | z) independently from the same distribution,
SEMSEED samples from seed-conditioned distributions pg(y | #,,(;)) induced by LLM-generated
seeds h;. This design encourages coverage across distinct solution strategies and enables a form of
controllable exploration: each seed defines a targeted region of the solution space, and the sampling
budget is explicitly divided across these regions rather than concentrated in a single mode. Because
the seeds are diverse, the resulting coverage is broader and more balanced. Moreover, seeds can
also be externally specified (e.g., by domain experts or larger LLMs) to direct the search toward
particular strategies or areas of interest.

3.3 BOUNDS ON PASS@F

First, let’s define the success rate for the seed-induced distribution:

[(c(z,y) =1)]

Sh; (CL‘) =
y~po (yl[z,hi])

Seeds h;, in general, are not independent, so we cannot immediately use the same formula as|Chen
et al.[(2021) for estimating pass@k. However, we can derive an upper and lower bounds for it:

Prop. 1 (Bounds on pass@F for seed-conditioned sampling). Let x: be a task, and pg(y | x) be the

distribution over the solution space, parameterized by the LLM with weights 0. Let the seeds be

h = (h1,...,hi) with corresponding success rates sp,(x), where K < k, sampling n; solutions
K

for seed h;, > n; = k. Then the probability passQ(k,x, h) of at least one sample being correct
i=1
among k generated for the task x with seeds h.:

K
min (1,}(= (1 —sp, (:17))”1) > passQ@(k,z, h) > 1 — ie{rlninK}(l — sp, ()™
i=1

For the proof, please refer to appendix

The Proposition[I]tells us that under the uniform per-seed sampling budget n; = n, we have:

pass@Q(k,xz,h) > 1 — (1 — sp(x))"

sp(x) = ie{r{laXK} s, (x)

This has a simple implication. If the per-seed success rates are sparse, close to either zero or one,
then the failure probability (1 — sp,(x))™ collapses to zero either very quickly (good seed) or ex-
tremely slowly (bad seed). In other words, once a winning seed s, (z) > s(z), an idea that will

Under review as a conference paper at ICLR 2026

Table 1: Results on HumanEval+ and MBPP+. pass@1 is shown in %.

Model name Sampling method HumanEval+ MBPP+
Standard 75.9 59.4
CoT 75.3 58.3
DeepSeek-Coder-V2-Lite Best-of-6 78.4 62.8
SELF-DEBUGGING@6 71.8 66.3
FUNCODER* 36.4 35.3
SEMSEED(6@6) 85.2 68.4
Standard 84.0 60.7
CoT 87.0 63.6
Qwen2.5-Coder-14B Best-of-6 86.4 69.0
SELF-DEBUGGING@6 87.0 71.9
FUNCODER* 39.5 42.2
SEMSEED(6@6) 85.1 73.0
Standard 78.4 46.3
CoT 80.9 51.9
Qwen2.5-Coder-7B Best-of-6 87.0 65.5
SELF-DEBUGGING@6 84.6 62.3
FUNCODER* 32.1 41.2
SEMSEED(6@6) 85.2 67.1

likely lead to a correct solution, is found, only a handful of samples are typically needed to obtain a
correct solution with high probability.

Under this sparsity assumption, it is therefore more efficient to spend the budget on searching for
good seeds, exploring new regions of the solution space, rather than heavily exploiting a single seed
in the hope of eventually striking success.

4 EVALUATION RESULTS

4.1 SETUP

In this section, we evaluate three open-source code-tuned LLMs on four commonly used code gen-
eration benchmarks. Concrete details of the sampling parameters and benchmark statistics can be
found in appendix[A.2] Among simple baselines like Chain-of-Thought and Best-of-N, we use code-
specific ones like SELF-DEBUGGING and FUNCODER. For a complete list with descriptions, please

refer to appendix [A.3]

4.2 CODE GENERATION RESULTS

The results are presented in tables[T|and[2] Across models, Best-of-N is the strongest single-prompt
baseline. Our SEMSEED matches or exceeds the best baseline on all benchmarks, with the largest
gains on MBPP+ and LiveCodeBench. Concretely, we outperform all baselines on MBPP+ and
LiveCodeBench for every model, and we are on par with the best baseline on HumanEval+ and
xCodeEval. The largest relative improvement appears on LiveCodeBench with DeepSeek-Coder-
V2-Lite: +3.0 absolute (+13.8% relative) over BoN.

On MBPP+ and LiveCodeBench, many tasks admit multiple algorithmic strategies (different decom-
positions, data-structure choices, or edge-case policies). BoN at high temperature tends to revisit
similar neighborhoods; SEMSEED explicitly opens multiple “idea-conditioned” niches and spreads
the budget across them, which increases the odds of touching a high-value mode. This aligns with
our mechanism study: seed-conditioned distributions are separated, and the baseline misses strong
modes surprisingly often. On HumanEval+, scores are already saturated by dense public tests: both
BoN and SEMSEED routinely achieve 94-96% public success before final selection. In this regime,

Under review as a conference paper at ICLR 2026

Table 2: Results on xCodeEval and LiveCodeBench. pass@1 is shown in %.

Model name Sampling method xCodeEval LiveCodeBench
Standard 23.6 13.8
CoT 23.2 13.8
. Best-of-6 31.0 21.6
DeepSeck-Coder-V2-Lite g/ v hrpucanG@6 26.4 18.6
FUNCODER* 18.6 13.2
SEMSEED(6@6) 30.8 24.6
Standard 214 24.0
CoT 18.4 22.8
Best-of-6 29.6 32.3
Qwen2.5-Coder-14B SELF-DEBUGGING @6 232 275
FUNCODER™ 19.7 23.9
SEMSEED(6@6) 28.6 34.1
Standard 12.8 16.2
CoT 12.6 15.6
Best-of-6 214 26.3
Qwen2.5-Coder-7B SELF-DEBUGGING@6 18.0 23.4
FUNCODER™ 12.0 15.0
SEMSEED(6@6) 21.0 26.9

additional exploration provides little headroom: improvements would mostly come from better se-
lection or solution refinement rather than broader search.

For FUNCODER, we observed relatively high variance across the three runs. In our experiments, we
followed the authors’ implementation closely, using the same prompts as well as similar parameters
for breadth and depth control and for temperature settings across stages, while adapting the method
to LiveCodeBench. We hypothesize that the performance of FUNCODER may be sensitive to the
combination of the model and the decoding parameters, which could explain the variance observed
and the difference in scores from the original article.

In general, semantically guided exploration consistently helps where the solution landscape is struc-
tured into multiple distinct modes and baseline sampling is redundant (MBPP+, LiveCodeBench),
and it remains competitive when test density or canonical structure limits the upside of diversity
(HumanEval+, xCodeEval).

4.3 EXPLORATION ANALYSIS

In this subsection, we attempt to analyze how semantic seeds change the solution space exploration
process to understand why the method works and how it differs from the Best-of-N baseline.

Table 3: Solution space analysis scores. 1 means higher is better

Metric Value

Modes separation (ARI, 1) 0.49
Modes separation (Acc., 1) 67%
Baseline-to-seed coverage () 55%
Seed-to-baseline coverage (1) 77%
Best mode miss rate ({.) 41%

Setup. We form a small analysis dataset as a subset of MBPP+, employ DeepSeek-Coder-V2-
Lite to sample solutions, and obtain solution embeddings using a Sentence Transformer (Reimers &
Gurevych, 2019). For further details, please refer to appendix

Under review as a conference paper at ICLR 2026

Seeds encode distinct regions of solution space. First, we test whether the seeds steer generation
into distinct regions of the solution space, providing control over the exploration process. In other
words, we investigate whether they share support or not:

sup{pe(y | z:)} Nsup{pe(y | 2;)} = @, i # j

To test this, for each sample, we cluster solutions generated from different seeds and measure how
well the clusters align with the true seed IDs. Specifically, for each task description we generate
K=5 seeds, sample 20 solutions per seed, and repeat the process three times, averaging across task
samples and seed sets. We then apply K-Means (Lloyd, [1982) with K=5, and evaluate clustering
quality using the Adjusted Rand Index (ARI) (Rand, [1971) and clustering accuracy (Hungarian-
matched). The Adjusted Rand Index (ARI) measures how well two clusterings agree by counting
pairwise co-assignments, then correcting for chance, where 0 indicates random agreement and 1
indicates perfect alignment. The results, reported in table |3] show an average ARI of 0.49 and
accuracy of 67% (chance = 20%), indicating that seed-conditioned generations carve out distinct
and narrow basins of solution space, rather than merely rephrasing the same local neighborhood,
and thus explore different solution strategies. Please, see fig.] for examples visualization, and
table [6] for metrics explanation.

Seed-conditioned sampling is more diverse. Here, we examine whether seed conditioning in-
creases the overall diversity of the generations. By diversity here we mean the effective support
of the distribution: if the seed-induced distribution covers more regions of the solution space, ex-
ploration under the same budget is more likely to encounter distinct strategies. To test this, we
use previously obtained K-Means (K = 5) for seed-conditioned generations, and compare their
coverage with baseline samples along two directions.

First, we ask: how many seed-induced modes are reached by the baseline? Practically, we want to
measure the following:

sup {j(> poly | m} \sup {poly | 2)}

We assign each baseline sample to its nearest seed cluster and count the fraction of seed clusters that
contain at least one baseline solution.

Second, we ask: how much of the baseline support is covered by the seeds? We approximate seed
support as the union of balls €; centered at seed cluster centroids ¢; with radius r; equal to the 95-th
percentile of intra-cluster distances, and measure the fraction of baseline samples lying inside this
union:

K K
1
S“p{sze(y | fﬂ)} ~Jen e={zlllz-all <rd
=1 1=1

The results show that baseline generations reach only 55% of the seed clusters on average (roughly
2-3 out of 5), indicating that large parts of the solution space remain unexplored without seeds. In
contrast, we find that 77% of baseline solutions lie inside the seed support, confirming that the seed-
induced distribution not only practically covers the baseline but also expands well beyond it. This
demonstrates that seed conditioning provides broader support and thus greater diversity, enabling
exploration of solution space regions that high-temperature sampling alone fails to reach.

Seed-conditioned exploration is more efficient. Finally, we analyze how seeds affect the effi-
ciency of exploration under a fixed budget. Our analysis in section predicts that if per-seed
success rates are sparse, then only a small budget is required to exploit a good seed, making breadth-
wise exploration across multiple seeds more efficient than oversampling a single one. Empirically,
this assumption is supported: per-seed success rates are indeed sparse (see fig. [2)), with most seeds
either failing completely or succeeding reliably.

Moreover, the seeds that succeed are highly valuable. On average, the best seed h* achieves a
success rate that is 21% higher than the baseline distribution:

Under review as a conference paper at ICLR 2026

1.0-

0.8-

o
o

Success Rate
o
IS

0.2- Ll

0.0- e —— b

Per-seed SR Per-sample best seed SR
Figure 2: Left: per-seed success rate distribution sy, (x). The red dot - signifies the best seed h*

in the generation (hy, ..., hg). Right: per-sample best seed success rate distribution sy« (x). The
success rate of seed-based generations y ~ py(y | x;) is bimodal and sparse.

Table 4: Effect of number of seeds (K) on pass@1.

Method HumanEval+ MBPP+ xCodeEval LiveCodeBench
SEMSEED(2@6) 82.1 66.0 30.0 22.2
SEMSEED(3@6) 82.7 67.6 31.2 23.3
SEMSEED(6@6) 85.2 68.4 30.8 24.6

saf = E_ [sp(x) —s(z)] > 0.21

x~D
h~pg (h|z)
verified by the Wilcoxon signed rank test (p < 0.05).

In fact, the baseline fails to cover these best seeds in 41% of tasks, underscoring that it not only
undersamples the distribution but also frequently misses the most promising solution space areas.
Together, these findings confirm that seed-conditioned sampling enables more efficient use of budget
by prioritizing exploration of new regions over repeated sampling from the same distribution.

4.4 ABLATIONS

Here, we run a few ablations with the DeepSeek-Coder-V2-Lit model. The setup is similar to the
previous section, more details can be found in appendix

Number of seeds K. We vary the number of seeds while preserving the total sampling budget
fixed (see table). Increasing K from 2 — 6 consistently helps on HumanEval+ (82.1 — 85.2)
and MBPP+ (66.0 — 68.4), and yields the best LiveCodeBench score at K = 6 (22.2 — 24.6).
xCodeEval peaks at K = 3 (31.2) and stays close at /X = 6 (30.8). These trends support our as-
sumptions on the exploration mechanism: seeds induce narrow, distinct modes with sparse success,
so breadth-wise exploration increases the chance that at least one high-yield region is included, and
only a modest per-seed depth is needed once such a mode is present.

High temperature. We ablate on DeepSeek-Coder-V2-Lite by raising the temperature from de-
fault 0.3 to 1.0 (see table [5). For SEMSEED, we denote T for seed generation step temperature,
and T, for solution sampling. BoN benefits from higher 7" on three of four datasets (HumanEval+
78.4 — 83.3, MBPP+ 62.8 — 68.7, LiveCodeBench 21.6 — 23.3; xCodeEval unchanged at 31.0).
With higher seed temperature 75, SEMSEED improves on the harder suites (MBPP+ 68.4 — 70.6,
xCodeEval 30.8 — 31.6, LiveCodeBench 24.6 — 25.7) and dips on HumanEval+ (85.2 — 82.7).

Under review as a conference paper at ICLR 2026

Table 5: High temperature effects on pass@1. For SEMSEED, T denotes the temperature at the
seed generation step, and T}, at the solution generation.

Temperature Method HumanEval+ MBPP+ xCodeEval LiveCodeBench
T=03 Best-of-6 78.4 62.8 31.0 21.6
T=1.0 Best-of-6 83.3 68.7 31.0 23.3
T,=T,=03 SEMSEED(6@6) 85.2 68.4 30.8 24.6
T,=1.0,T, =03 SEMSEED(6@6) 82.7 70.6 31.6 25.7
T,=T,=10 SEMSEED(6@6) 84.0 71.4 31.6 25.7

With both T and T}, high, SEMSEED gains benefits from both structured exploration and inter-
cluster diversity. Overall, SEMSEED remains best or tied on the more challenging benchmarks and
competitive elsewhere, indicating that controlled exploration is beneficial in both low and high tem-
perature settings.

Token efficiency In terms of token usage, Standard and Chain-of-Thought prompting are the most
economical, consuming roughly N times fewer tokens than Best-of-N, since they produce only a
single solution per task. SELF-DEBUGGING @N is somewhat more token-efficient than BoN, though
the magnitude of the savings varies across models. Our method is nearly as token-efficient as BoN,
with differences becoming negligible on datasets that require longer solutions (e.g., LiveCodeBench,
xCodeEval). The least token-efficient approach is FUNCODER, whose hierarchical decomposition
and functional consensus introduce substantial oversampling at the component level. For complete

picture, please see fig. [3]in appendix

5 LIMITATIONS

While our approach provides consistent gains, the imperfect clustering scores (e.g., ARI below 1.0)
indicate that seeds do not yet achieve complete separation. Though rare in practice, occasional
misalignment of the model may result in neglecting the seed, especially at higher temperatures. The
complete coverage of valuable areas is not guaranteed, as suggested by suboptimal coverage scores,
and the granularity of exploration, i.e., the effective size of clusters, is determined only implicitly by
how specific or general the seed formulations are.

6 CONCLUSION

We introduced semantic seed sampling, a simple inference-time method for diversifying exploration
in LLM-based search. Our experiments show consistent gains of up to 13.8%, enabled by explo-
ration control through support separation across seeds, and higher diversity, secured by broader
coverage of the solution space compared to the temperature sampling. These results underscore the
importance of exploring beyond naive sampling, and position our work as an early step toward more
efficient and structured approaches to exploration for advanced code generation and reasoning.

REFERENCES

P. Billingsley. Probability and Measure. Wiley series in probability and mathematical statistics.
Wiley India, 2017. ISBN 9788126517718. URL https://books.google.nl/books?
1d=QyXqgOXyxEeIC.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. In The Eleventh International Conference on
Learning Representations, a.

Jingchang Chen, Hongxuan Tang, Zheng Chu, Qianglong Chen, Zekun Wang, Ming Liu, and Bing
Qin. Divide-and-conquer meets consensus: Unleashing the power of functions in code generation.
Advances in Neural Information Processing Systems, 37:67061-67105, 2024.

https://books.google.nl/books?id=QyXqOXyxEeIC
https://books.google.nl/books?id=QyXqOXyxEeIC

Under review as a conference paper at ICLR 2026

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, b.

Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. Arc prize 2024: Technical
report. arXiv preprint arXiv:2412.04604, 2024.

Hantian Ding, Varun Kumar, Yuchen Tian, Zijian Wang, Rob Kwiatkowski, Xiaopeng Li, Murali Kr-
ishna Ramanathan, Baishakhi Ray, Parminder Bhatia, and Sudipta Sengupta. A static evaluation
of code completion by large language models. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 5: Industry Track), pp. 347-360, 2023.

Chrisantha Fernando, Dylan Sunil Banarse, Henryk Michalewski, Simon Osindero, and Tim
Rocktédschel. Promptbreeder: Self-referential self-improvement via prompt evolution. In Forty-
first International Conference on Machine Learning.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. CoRR, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In The Thirteenth International Conference on
Learning Representations.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
Parvez, and Shafiq Joty. xcodeeval: A large scale multilingual multitask benchmark for code
understanding, generation, translation and retrieval. arXiv preprint arXiv:2303.03004, 2023.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83-97, 1955.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S
Liang. Spoc: Search-based pseudocode to code. Advances in Neural Information Processing
Systems, 32, 2019.

Robert Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 579-582,
2024.

Gregory Kang Ruey Lau, Wenyang Hu, Liu Diwen, Chen Jizhuo, See-Kiong Ng, and Bryan
Kian Hsiang Low. Dipper: Diversity in prompts for producing large language model ensembles
in reasoning tasks. In MINT: Foundation Model Interventions, 2024.

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul, Doyen Sahoo, and Shafiq Joty. Codechain: To-
wards modular code generation through chain of self-revisions with representative sub-modules.
In The Twelfth International Conference on Learning Representations.

Haau-Sing Li, Patrick Fernandes, Iryna Gurevych, and André FT Martins. Doce: Finding the sweet
spot for execution-based code generation. arXiv preprint arXiv:2408.13745, 2024.

Jierui Li, Hung Le, Yingbo Zhou, Caiming Xiong, Silvio Savarese, and Doyen Sahoo. Codetree:
Agent-guided tree search for code generation with large language models. In Proceedings of the
2025 Conference of the Nations of the Americas Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 3711-3726, 2025.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092-1097, 2022.

10

Under review as a conference paper at ICLR 2026

Jiawei Liu, Chunqgiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=1qvx610Cu7.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129-137, 1982.

Vaishnavh Nagarajan, Chen Henry Wu, Charles Ding, and Aditi Raghunathan. Roll the dice &
look before you leap: Going beyond the creative limits of next-token prediction. In Forty-second
International Conference on Machine Learning, 2025. URL https://openreview.net/
forum?id=Hi0SyHMmkd.

Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi. Di-
versity of thought improves reasoning abilities of large language models. 2023.

Alexander Novikov, Ngan Vi, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the Ameri-
can Statistical association, 66(336):846-850, 1971.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL jhttps://arxiv.
org/abs/1908.10084.

Matthew Renze. The effect of sampling temperature on problem solving in large language models.
In Findings of the association for computational linguistics: EMNLP 2024, pp. 7346-7356, 2024.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468-475, 2024.

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, Yifan Wang, Yujiu Yang, and Wai Lam. A
thorough examination of decoding methods in the era of llms. In EMNLP, 2024a.

Yuling Shi, Songsong Wang, Chengcheng Wan, and Xiaodong Gu. From code to correctness: Clos-
ing the last mile of code generation with hierarchical debugging. CoRR, 2024b.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634-8652, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Xingyu Wu, Sheng-hao Wu, Jibin Wu, Liang Feng, and Kay Chen Tan. Evolutionary computation
in the era of large language model: Survey and roadmap. IEEE Transactions on Evolutionary
Computation, 2024.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
advance general chinese embedding, 2023.

11

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=Hi0SyHMmkd
https://openreview.net/forum?id=Hi0SyHMmkd
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

Under review as a conference paper at ICLR 2026

Rui Zhang, Fei Liu, Xi Lin, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang. Understanding the
importance of evolutionary search in automated heuristic design with large language models. In
International Conference on Parallel Problem Solving from Nature, pp. 185-202. Springer, 2024.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

12

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PROPOSITION

Here, we prove the main theoretical results of the paper.

Prop. 2 (Bounds on pass@F for seed-conditioned sampling). Let © be a task, and pg(y |) be the
distribution over the solution space, parameterized by the LLM with weights 6. Let the seeds be
h = (h1,...,hi) with corresponding success rates sp,(x), where K < k. Then the probability
passQ(k,x, h) of at least one sample being correct among k generated for the task x with seeds h:

K
min (17 K — Z(l — Sp, (x))"’) > passQ(k,z,h) > 1 — ie{rlninK}(l — sp, ()™
P

Proof. Let A; = H I[e(z,y;) = 0]. Then {A; = 1} corresponds to the event of “all n; solutions
i=1
generated with seed ¢ are wrong”. Since per-seed samples are i.i.d., we have:

]P(Az =]-) = P(HH[C(LE,:UZ) = O} = 1) = P(C(xvyl) =0,. "C(x7yni) = 0) = (]- — Sh; (x))m
=1

Then, the pass@Q(k, z, h) is defined as the probability of the event when “at least one correct sample
K

ink = > n; generations for task = with seeds h”:
i=1

pass@Q(k,z,h) =1-P(A; =1,...,Ax = 1)
Using Fréchet inequalities (Billingsley, [2017) for events {A; = 1}X,:

K
max (0, E P(A;=1) — (K — 1)) <P(A4=1,...,Ax =1) < ie{rlninK} P(4; =1)
P

where

ie (LK} () ie{rlr}.l.rvvi}(sh: ()

and SO, fOr the lower bound we ha\/e:
aSS@ k, 7h > 1— “l.ll l - T ni.

and for the upper bound:

K K
max (o, Z]P’(Ai =1)— (K — 1)) = max <o, D (1= sp, (@) = (K - 1))

K K
1 — max (O,Z(l —sp, ()" — (K — 1)) = min <1,K — Z(l - shb(aj))"l>

=1 i=1

K
pass@(k, x, h) < min (1,[(- Z(l — s, (x))n>

=1

13

Under review as a conference paper at ICLR 2026

A.2 EVALUATION RESULTS AND ANALYSIS

In general, we evaluate three open LLMs: DeepSeek-Coder-V2-Lite (Zhu et al., [2024), Qwen2.5-
Coder-7B, and Qwen2.5-Coder-14B (Hui et al., [2024), across four code generation benchmarks.
HumanEval+ and MBPP+ serve as the easier, well-studied suites with dense test coverage; xCodeE-
val and LiveCodeBench are more challenging (see table [8). We use nucleus sampling with each
model’s recommended default decoding hyperparameters (see table[7). Following FUNCODER, we
run three independent trials for every method and report the median score, unless specified other-
wise.

Analysis setup. To form the analysis dataset, we select 100 random tasks from MBPP+. We
employ DeepSeek-Coder-V2-Lite (instruction-tuned) to generate solutions. For the baseline, we
sample 100 solutions per task under high temperature (1" = 1.0, while the default is 7" = 0.3). For
seed-conditioned sampling, we generate ' = 5 seeds per problem with high temperature (7' = 1.0)
and n; = 20 solutions per seed with default low temperature, totaling to 100 samples per seed. We
average the metrics over 3 seed-set generations to account for seed variability. To obtain embeddings
of the solutions, we use the BGE Large v1.5 sentence encoder for the English language (Xiao et al.}
2023)). For a short explanation of the clustering metrics used, please refer to table [6]

To evaluate how well seed-conditioned generations separate into distinct regions, we report two clus-
tering metrics. The Adjusted Rand Index (ARI) (Rand, [1971) measures the agreement between
predicted clusters and ground-truth seed IDs, correcting for chance: ARI = 0 corresponds to random
clustering and ARI = 1 to perfect alignment. It works by looking at all pairs of points and check-
ing whether each pair is assigned together or apart in both clusterings. The raw agreement is then
adjusted by subtracting the expected agreement under random clustering. The clustering accuracy
is computed by optimally aligning predicted clusters with seed IDs using the Hungarian matching
algorithm (Kuhn, |1955) and then measuring the fraction of correctly assigned samples; chance level
is 1/K (e.g., 20% for K = 5). Together, these metrics quantify how consistently generations from
the same seed form distinct clusters.

Ablations setup. Similarly to the analysis setup, we only run DeepSeek-Coder-V2-Lite model.
We report the median results across 3 runs, varying temperature and other parameters.

Table 6: Metrics explained. The 1 means higher is better.

Metric Range Random Intuition

Adjusted Rand Index T [0, 1] 0 How well the clustering matches the true seed
groups, after correcting for chance overlaps

Clustering accuracy 1 [0,1] 1/K The fraction of correctly grouped samples after
optimally matching predicted clusters to true seed
labels

Model sampling parameters. Defaults are taken from each model’s
generation_config. json on Hugging Face. DeepSeek-Coder-V2-Lite is a Mixture-of-
Experts model, so “active” parameters indicate the number of parameters used per token during
inference. All the models are used in instruction-tuned versions. We leave out the “-Instruct” to
save space. We perform nucleus sampling (Holtzman et al.) with default parameters, specified in
table [71

Table 7: Models used and their default decoding settings. For MoE models, we report total parame-
ters and (active) parameters used per token.

Model # Params Temperature Top p
DeepSeek—Coder-V2-Lite 16B (2.4B active) 0.3 0.95
Qwen2.5-Coder-7B 7.6B 0.7 0.80
Qwen2.5-Coder-14B 14.7B 0.7 0.80

14

Under review as a conference paper at ICLR 2026

DeepSeek-Coder-V2-Lite Qwen2.5-Coder-14B Qwen2.5-Coder-7B

EE HumanEval+ [0 HumanEval+ EE HumanEval+
[0 MBPP+ 0 MBPP+ [0 MBPP+

8000

6000

4000

- H] H_‘
oL e lj:l s e B |:|:| IZD e e ’_|:| ED
8000 o xCodeEval B <CodeEval B <CodeEval
= LiveCodeBench I LiveCodeBench I LiveCodeBench

6000

Average number of tokens

4000

2000

Figure 3: The average token consumption across datasets and methods. Here, only generated tokens
are counted.

Datasets. We used EvalPlus (Liu et al., [2023) versions of HumanEval and MBPP datasets, as
they contain significantly more tests, which allows for rigorous evaluation. For LiveCodeBench
(Jain et al.), in order to reduce contamination risk, we use only release v5, yielding 167 problems
published after September 2024. We also evaluate on xCodeEval (Khan et al.} [2023) using the same
split reported by FUNCODER. Across all datasets, we limit the number of public test cases to 3.

Table 8: Dataset statistics for code generation benchmarks used in this work.

Dataset # Samples Avg. tests / sample Split / Notes

HumanEval+ 164 =~ 760 EvalPlus augmentation (80X tests)
MBPP+ 378 ~ 108 EvalPlus v0.2.0 (trimmed 399 — 378)
xCodeEval 500 ~ 60 Same split as used by FUNCODER
LiveCodeBench 167 ~39 v5 time-span subset (contamination-minimized)

A.3 BASELINES

Standard & Chain-of-Thought. As the most straightforward baseline, we prompt the LLM to
produce the Python code solution directly (Standard). The Chain-of-Thought (cot) (Wer et al.|
2022)) differs only in the addition of the step-by-step analysis request phrase.

SELF-DEBUGGINGQ@QN. Given the task, we run N iterations of SELF-DEBUGGING (unit test
feedback variation) (Chen et al.| b), using public test cases. We stop and return the code if it passes
all public test cases, or if we reach the maximum number of self-debugging iterations V.

FUNCODER. This is a recent state-of-the-art hierarchical code-generation method that dynami-
cally decomposes a task into sub-functions using a divide-and-conquer strategy, then recomposes
solutions bottom-up (Chen et al., 2024). To sample correct sub-functions and avoid upward error
propagation, it employs functional consensus by sampling a pool of candidates, measuring their
functional similarity, and returning the one with the highest aggregated score.

Best-of-N. In the standard Best-of-N baseline we draw NV i.i.d. candidates from the same condi-

tional distribution:
yvi~pelylx), i=1,....N

15

Under review as a conference paper at ICLR 2026

35X
X
X
o9 X
d® KX
oga X

¢

Bl "Use a binary search approach to find the...", SR: 0%
mmm "One approach to solve this problem is to...", SR: 100% B "Merge the two lists and find the median...", SR: 0%
mmm "Another approach is to use dynamic programming to...", SR: 85% “"Combine the two lists and sort them to...", SR: 0%
"A third approach is to use a combinatorial...", SR: 0% " . . ! " . o,
“You can also use a memoization technique to...", SR: 0% Use a two-pointer technique t_o merge _the two...”, sR' 100%
"A fourth approach involves understanding the combinatorial properties...", SR: 15% Divide and conquer by recursively finding the median...", SR: 0%
b 3
X L
L[]
[]
L]
L]
X
X
X X
. X ¥
X 3 XX

Il "Sort the array and then iterate through it...", SR: 0%
I "Use a brute-force approach to compare each pair...", SR: 5% A Stra',gh,tforward apprc,’ach is to use recursfon to...", SR: 20%
B "To optimize, use memoization to store previously computed...", SR: 0%

u " SR: 09
“Use a se.t to store the.e.lement.s and..", SR 0% . "The sequence can be computed iteratively, which is...", SR: 30%
Use a min-heap to efficiently find the minimum...", SR: 0% "The sequence can be expressed in terms of...", SR: 5%

"Use a binary search tree (BST) to maintain...", SR: 100% "To understand the sequence better, one can derive...", SR: 100%

Figure 4: Examples of seed-conditioned generated solutions. The colors correspond to the specific
seed, and the circle dots correspond to the correct solution. To visualize, we perform PCA on the
embeddings.

We then execute the public tests for each candidate and select the winner:

= d(y;
Yo = arg max #passed(y;)

which is used to measure pass@ 1 on the private test suite.

For every baseline, we release the prompts in appendix [A.4]

A.4 PROMPTS
A.5 USE OF LARGE LANGUAGE MODELS

Large language models were used solely for paraphrasing and polishing the text of the manuscript.
There was no involvement in the research design, experimentation, analysis, or generation of results.

Ethics statement. All experiments rely on publicly available datasets used in accordance with their
original licenses. No new human data or personal annotations were collected.

Reproducibility statement. We use only publicly available models, datasets, and baselines. Com-
prehensive details on splits, optimization, and evaluation protocols are included in the main text,
with further specifics in the appendix. The full code base will be released to support replication.
Experiments were executed on distributed setups of 2—4 nodes, each equipped with 4 AMD MI250x
GPUs.

16

Under review as a conference paper at ICLR 2026

System Prompt

You are a helpful AI assistant, specializing in solving coding problems in Python.

Seed Prompt

Please, provide {n_seeds} solution ideas for the following problem:

{task}

Make sure that your idea / hint are helpful, full, and diverse. Keep each idea a one line.
This is the time to explore different approaches to the problem.
Enclose your response in "~ “json ' at the end of your answer, e.g.:

““json

"Idea 1",
"Idea 2",
"Idea 3"

1.
\
Solution Prompt

Solve the following coding problem. Write code in Python. Encolse your code in a code block
(" “python... 7).

{task}
Here is a hint for you, please use it to solve the problem:

{seed}

s

Figure 5: SEMSEED prompts.

Solution Prompt

Solve the following coding problem. Write code in Python. Encolse your code in a code block
(" python... 7).

{task}

Figure 6: Solution prompt used by Standard and Best-of-N baselines. The system prompt is same
as in SEMSEED.

Solution Chain-of-Thought Prompt

Solve the following coding problem. Write code in Python. Analyze the problem and the
provided test cases step-by-step and provide a solution at the end. Encolse your code in a
code block (" “python... " "). Please, use the starter code if it is provided (i.e. name the
function as provided in the starter code). ONLY provide the code solution at the end of
your answer. Pay attention if the task requires stdin/stdout, make sure your code runs and
reads from stdin and writes to stdout in that case. Do not add any use cases, etc.

{task}

Figure 7: Solution prompt by CoT baseline. The system prompt is same as in SEMSEED.

Feedback Prompt

Here are the test results for your solution.
{test results}

Please, analyze them and try again.

Figure 8: SELF-DEBUGGING feedback prompt. The system prompt is same as in SEMSEED, and
the solution prompt is same as used for Standard and Best-of-N.

17

	Introduction
	Related work
	Method
	Setup
	SemSeed(K@N): seed-conditioned Best-of-N
	Bounds on pass@k

	Evaluation results
	Setup
	Code Generation Results
	Exploration Analysis
	Ablations

	Limitations
	Conclusion
	Appendix
	Proposition
	Evaluation results and analysis
	Baselines
	Prompts
	Use of Large Language Models

