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ABSTRACT

Idempotent generative networks (IGNs) are a new line of generative models based
on the idea of idempotent mapping to a target manifold. IGNs support both single-
and multi-step generation, allowing for a flexible trade-off between computational
cost and sample quality. But similar to Generative Adversarial Networks (GANs),
conventional IGNs require adversarial training and are prone to training instabilities
and mode collapse. Diffusion and score-based models are popular approaches to
generative modeling that iteratively transport samples from one distribution, usually
a Gaussian, to a target data distribution. These models have gained popularity due
to their stable training dynamics and high-fidelity generation quality. However,
this stability and quality come at the cost of high computational cost, as the data
must be transported incrementally along the entire trajectory. New sampling
methods, model distillation, and consistency models have been developed to reduce
the sampling cost and even perform one-shot sampling from diffusion models.
In this work, we unite diffusion and idempotent models by training idempotent
models through distillation from diffusion models’ scores. Our proposed method
to train IGNss is highly stable and does not require adversarial losses. We provide a
theoretical analysis of our proposed score-based training methods. We empirically
show that idempotent networks can be effectively distilled from a pre-trained
diffusion model, enabling faster inference compared to iterative score-based models.
Like IGNs and score-based models, SIGNs can perform multi-step sampling,
allowing users to trade off quality for efficiency. As these models operate directly
on the source domain, they can project corrupted or alternate distributions back onto
the target manifold, enabling zero-shot editing of inputs. We validate our models
on a simple multi-modal dataset as well as multiple image datasets, achieving
state-of-the-art results for idempotent models on the CIFAR and CelebA datasets.

1 INTRODUCTION

Generative modeling for high-dimensional data like images and video faces a fundamental
trilemma Xiao et al.|(2021): balancing (a) high sample quality, (b) fast sampling, and (c) diverse
mode coverage |Yu et al.|(2020); Zhao et al.|(2018). This challenge has driven the development of
numerous deep generative methods, each navigating these trade-offs differently. Prominent examples
include generative adversarial networks (GANs) (Goodfellow et al.| (2020), variational autoencoders
(VAEs) Kingma and Welling (2013)), auto-regressive models|Van Den Oord et al.| (2016), normalizing
flows Rezende and Mohamed| (2015)); [Dinh et al.| (2014); |[Ho et al.| (2019), flow-matching, and
diffusion models Sohl-Dickstein et al.| (2015)); Ho et al.| (2020); [Nichol and Dhariwal (2021}).

GANSs generate high-quality samples quickly but suffer from training instabilities and reduced mode
coverage due to their adversarial objective, which can lead to mode collapse [Salimans et al.| (2016);
Kodali et al.|(2017); Jo et al.|(2020). Also, capable of single-step sampling, normalizing flows and
VAE:s often produce lower-quality samples Ho et al.| (2022a).

Idempotent Generative Models (IGNs) [Shocher et al.| (2023) are the newest entry in the zoo of
generative models. They are a novel class of GAN-like models that can combine the benefits of both
diffusion models and GANSs. They support single-step sampling and iterative refinement, offering
a flexible trade-off between computational cost and sample quality. Like GANs, IGNs suffer from
training instabilities stemming from their adversarial objective. Modern generative model training
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requires a large amount of data and computing resources. Models with unstable training, where the
model can abruptly diverge, are prohibitively costly to train. Improving the training stability of IGNs
is crucial for effective design exploration and for enhancing model performance.

Diffusion and score-matching models have become the de facto generative models. They achieve
high sample quality and are significantly easier to optimize. This training stability has enabled
researchers to rigorously optimize these models, leading to architectural innovations and state-of-
the-art performance in domains such as image, video [Ho et al.| (2022b); Mei and Patel (2023)), audio
generation |Kong et al.|(2020), molecular synthesis Schneuing et al.|(2022)); Hoogeboom et al.| (2022);
Xu et al.| (2022)), and protein structure prediction |Corso et al.[(2022). However, this performance
comes at the cost of slow, iterative sampling, as these models require multiple steps to transform a
sample from a simple prior distribution to the complex data distribution. To address this limitation,
many recent works have focused on accelerating sampling through methods like distillation, without
sacrificing model quality or stability [Song and Dhariwal| (2023)); Xiao et al.| (2021)); [Sauer et al.
(2023).
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Figure 1: The goal of the optimal idempotent network, f , is to project inputs outside of the target

manifold on the left, z ~ Z, onto that manifold. While imposing dataset reconstruction ( f (z) = x)

and idempotence ( f ( f (z)) =f (z)), our method uses estimation of the real score, V, log Preal.

The projected output y = f(Z) is on the data manifold when our model learned score function,
V2 1081camed 18 €qual to V log Prey. We design our training algorithms to estimate the real score
function and train the model.

To enable exploration of IGNs on diverse domains and large-scale high-resolution datasets, we
must improve the training characteristics of the optimization methods. Inspired by the success of
diffusion models, we propose an optimization algorithm to stabilize IGN training. Drawing from
consistency models |Song et al.|(2023)), which learn to map points along a probability flow trajectory,
we introduce Score-based Idempotent Generative Networks (SIGNs). SIGNs are trained to map
noisy samples back onto the data manifold. They can be viewed as implicit time consistency models
that support arbitrary noise schedules. We reformulate the IGN objective as a projection problem:
noisy samples, which lie far from the data manifold (Fig.[I), are projected back onto it by the model,
which remains idempotent for samples already on the manifold. This connection to score models
enables the transfer of architectures, training techniques, and pre-trained weights to IGNs, while
their single-step generation capabilities significantly improve sampling speed. SIGNs can be trained
independently or by distilling a pre-trained diffusion model. They are capable of single-step and
multi-step sampling and zero-shot editing. We establish a connection between diffusion models (or,
equivalently, score-based models) and IGNs and propose an alternative objective for training IGNs
efficiently.
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Contributions In our current work, we present: (a) a new, stable objective combining score-
matching and tightening losses to replace the unbounded, unstable tightening loss in IGNs; (b) a
theoretical analysis of our proposed objective highlighting; and (c) empirical validation of the new
objective show our models have state of the art generation results for idempotent models and strong
zero-shot editing capabilities. We achieve more than a 41% reduction in FID compared to the SOTA
IGN model.

The manuscript is organized as follows: first, we describe the probability flow ordinary differential
equation and idempotent models that underpin our study. We then introduce our novel learning
objectives and provide theoretical insights into them. We then contextualize our contributions with
a review of related work. Finally, we provide empirical experiments showcasing state-of-the-art
performance for IGN models and discuss future research directions.

2 BACKGROUND

Our work focuses on establishing a connection between diffusion or score-based models and IGNs to
improve IGN training stability. We achieve this by training on samples along the probability flow
differential equation (PF-ODE) Song et al.|(2020a) defined by score-based models learning to project
onto an idempotent data manifold.

Notation. We denote the unknown, true data distribution with Pg,,, and the corresponding score
of the probability density is defined as Vi 1og Pyya. X ~ Pyaa are objects sampled from the
data distribution. The score function, s,(-), is a parameterized function trained to approximate
Vx10g Paaa- O(x,t) = x ® N(0,0(¢)I) is the noising operator, where o (t) is the noise schedule
defined as a monotonically increasing function of time ¢ and ® denotes the convolution of the two
distributions. P(;;E? (x¢) denotes the noising operator perturbed data distribution at time ¢ . Our
models are trained to learn P41, under the condition that it is sufficiently similar to Pg,,. We use
U[[1, N]] as the uniform distribution over the set {1,2, ..., N}. The sequence of time is discretized
with the set {¢;}¥, where tg = eand ty = T

2.1 PROBABILITY FLOwWS ODE

Following the notations from |Franceschi et al.|(2023a), denoising Score-based Diffusion models are
represented by the following Stochastic Differential Equation (SDE):

da, = 20(t)6(t)V log PLY (x,) + /20 (£)& (£)dWs,

where P;E? (x¢) denotes the Gaussian perturbed data distribution, o(t) is the noise schedule function
that defines the noise level at time ¢, and the dot denotes a time derivative, and 1V, denotes the Wiener
Process. An important property of this SDE is that there exists a corresponding Ordinary Differential
Equation, named Probability Flow ODE (PF-ODE), whose solution trajectory has the same marginal
probability distribution as the SDE. This admits a PF-ODE:

dx . ot

= = oo (1) Valog Py (x:). (1)
Eq. enables evolving a sample from x,(;,) ~ 735735;") to a sample z,(y,) ~ P‘i‘g”)(or equivalently
noise scales o(t,) — o(p)). The goal of score-based generative methods is to flow samples from an
easily sampleable distribution (like a Gaussian) to the true data distribution. Generally, the probability
flows are constrained such that samples are reversed from time T, where P°(1) ~ N(0, o(T)I)
to time € where P?(¢) ~ Pya. Flow-matching models [Liu et al.| (2022a) further generalize the
mechanism of transporting samples from one distribution to another based on ODE transport.
In practice, we don’t know the true sz;g)’ and thus the function, s4(x¢,o(t)), parameterized by
learnable weights ¢, is trained to approximate V log Pgaiz) to obtain the empirical PF-ODE. Several
ODE solving techniques [Karras et al.|(2022); [Lu et al.| (2022); [Liu et al.| (2022b)); Zhang et al.| (2022)
have been proposed for the empirical PF-ODE. For example, using Euler’s first-order method, the
empirical PF-ODE updates can be written as,

Xt = Xtpya

= —0(tn+1)0(tn+1)56(Xt,, 1150 (tnt1)), 2
tn - tn-‘rl
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where the time horizon is partitioned into N — 1 sub-intervals, and each time step is indexed by n.
More details of the discretization step can be found inKarras et al.[(2022). New samples are generated
by iterating randomly sampled inputs with a score model s4 and an ODE solver. We can see that the

trained model provides us with a strong proxy for the real score function, Vy log P&E? (x¢).

2.2 IDEMPOTENT GENERATIVE NETWORKS

Idempotent generative networks (IGNs) [Shocher et al.| (2023)) are generative models based on the
property of idempotence. An idempotent mapping, f, is an operator in some space X’ such that for
some € X, we have, f(f(z)) = f(x). Identity and absolute value are canonical examples of
idempotent operators. IGN learn a constrained idempotent mapping that is idempotent for elements
of some target data manifold (e.g., real images), while projecting all other inputs to the manifold. The
trained model can be used for generation by sampling from a distribution such as Gaussian noise and
using the model to project the random sample to the learned data manifold. Specifically, the IGN
optimization objectives rely on three main principles: (a) the identity boundary condition on the data
manifold described above, (b) idempotence, and (c) the size of the data manifold is minimal. These
objectives can be optimized by their respective loss functions.

Reconstruction Loss. For a sample 2 ~ Py, given a distance metric function D(-, -), the recon-

struction loss is:
»Crecon = E [69 (X)] = E [D(X7 ft9 (X))] (3)

x~Paata x~Paata

This imposes the boundary condition of preserving in-distribution samples on the data manifold.

Idempotent Loss. For any input from the domain distribution z ~ Z, similarly with a distance
metric function D(-, -), the idempotent loss is:

Liaem = B 00 (fo(2))] = E [D(fo(2), fo(fo(2)))]; )

where f is the frozen copy of the model fy. z is restricted to be from some easily sampleable
distribution such as A/(0, I). This loss is minimized when for any sample, z, the model is idempotent:

fo(fo(2)) = fo(2).

Tightness Loss. For any input from the domain distribution z ~ Z, the tightness loss is:

Lige = _E [5o(fo () = E [-D(folf5(2)), () )
As above, f) is the same as fy. The IGN training algorithm and gradient equations are reproduced in
Appendix [C|for clarity and completeness. The IGN loss function is, therefore,

£IGN = £recon + Eidem + Atﬁtighlv (6)
where )\ is the weight of the tightening loss term. The authors set \; < 1 to stabilize training.

The training of IGN requires all terms of Eq. []to be minimized simultaneously. This empirically
leads to training instabilities. For one, the L¢;45+ objective is the opposite of the L;qem Objective,
introducing adversarial optimization and making training more difficult. Furthermore, the minimum
of Ly;gnt, without reweighting, is unbounded, which can lead to arbitrarily large gradient updates.
Even with the reweighted tightening loss in Shocher et al.[(2023) can produce large gradient updates
when both Lgh and Ly are large positive numbers, and lead to unstable training dynamics. [Shocher
et al.[(2023) note IGNs have similar training characteristics to GANs, which are well known to suffer
from training instability and mode collapse |[Kodali et al.[(2017); |Salimans et al.[(2016)); |/Arjovsky and
Bottou| (2017); |Saxena and Caol (2021).

3 SCORE-BASED IDEMPOTENT MODEL

Score-based Idempotent Generative (SIGN) models distill pre-trained score models to improve IGN
training dynamics and enable fast sampling. As previously mentioned, the adversarial tightening loss
is a key cause of poor training dynamics on IGNs. Crucially, we note that the IGN objective can
be achieved using the score function learned by diffusion models. Specifically, for a Diffusion or
flow-matching model, we have a solution trajectory {X; };c[c 7] based on the corresponding PF-ODE
as in Eq[T] On this trajectory, only the point . is on the data distribution Pyq, While the rest of the
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points on the trajectory are off the manifold and naturally form a constraint on the size of the data
manifold.

The main contribution of our work is the score-based idempotent loss, LsigN, for training idempotent
generative models. We replace the unbounded tightening loss with a distribution matching loss,
Lamd, or a consistency flow loss, Ly, to learn the data manifold from a score-function estimate for
an idempotent generative model.

Distribution Matching Loss. The goal of a generative model is to ultimately sample from the data
distribution by sufficiently emulating some target distribution. A diffusion or flow-based learns a
target distribution Praree that is sufficiently close to Pgaa. While we do not have access to either

distribution, we have access to a learned approximation of Vy, log Pgag) (x) through the trained
diffusion model. By matching the scores of our idempotent model over a family of noisy distributions

with the scores of our pre-trained model,

Following [Yin et al.|(2024a), we also estimate the probability densities by doing gradient updates
using approximate scores. We directly

d
vGLDMD = E (slearned(yvu Tl) - Sdif‘fusion(yvu n)) f9 (7)

z~N(0,1), E
n~U[[1,N]]

where, y, = O(fo(2), tn.) O(x,t) is the noising operator, such that, O(x,t) = x ® N (0, (¢)I),
which performs t steps forward diffusion on the given input x. We use a pre-trained diffusion model
for Sqiffusion(, )- An auxiliary diffusion model is trained along with the SIGN model to provide the
learned score estimates, Sieamed(, )-

Consistency Flow Loss. Lpyp requires an additional model tracking the scores of the current model
during training, incurring a large computation cost. As an alternative, we take inspiration from
consistency models to minimize the size of the manifold through the probability flow ODE and
propose the flow loss. Based on a diffusion-based ODE solver to impose restrictions on the learned
manifold, the flow-based loss is given by:

£F10w = E ]][D(fg (th)a f@’(xts))] (8)

X~ Pgaa,n~U[[1,N

where, x;, = O(x, t,,) and x;_ is obtained by taking a step following the empirical PF-ODE in Eq.
using a learned score function, like a trained diffusion model, or an empirical score-estimator. The real
score function, V,, log Pya, defines a vector field over the data space x. By taking the expectation
over x and noises t,,, we obtain the average direction of motion at any x, which is used as the score
function estimate. Given constraints, such as linearity in the trajectory, as shown in Theorem [3] this
allows us to learn the target manifold. Intuitively, this loss can be seen as treating points along the
trajectory as off-manifold domains, and we require them to be mapped in one step onto the same
point of the data manifold. We use the training techniques from Consistency Models, such as using
pre-trained diffusion models, or an unbiased estimator for the ODE-solvee to approximate the score
function.

Improving Training Dynamic While the aforementioned objectives are sufficient in theory, we
introduce further improvements to speed up convergence and improve generation quality. We use 2
auxiliary loss terms (a) regression loss and (b) denoising loss for this purpose. |Yin et al.[(2024a)
show that the regression loss of supervised learning on generated pairs from a pre-trained model
significantly improves model quality. Similarly, the denoising loss connects the training objective to
a test-time scenario where noisy samples may be input to the model to iteratively improve generated
outputs.

Score-based Idempotent Loss. Using the consistency loss over the modified distributions obtained
by adding Gaussian noise to the data distribution, we propose the consistency-based IGN loss as:

ESIGN = Erecon + Eidem + )\f‘cﬂow + Adﬁdmd + Ar‘creg + /\nEdennise (9)
where, A¢, Ag, Ar, A, are hyperparameters for each auxiliary loss terms. In practice, we set
Afy Ads Ars A € [0, 1], to optionally enable various loss terms. Depending on the training envi-
ronment and dataset complexity, a subset of the loss terms is used. The coefficients are decided
heuristically so that all terms have the same magnitude at the start of training.
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We replace the unbounded tightening loss in Eq. [5| with a combination of distribution matching and
flow-based losses in Eq[9] The tightening loss in the original IGN aims to restrict the manifold to
only include the data distribution, but causes training instability. We directly restrict the learned data
manifold toward the data distribution. By replacing the unbounded loss and directly restricting the
learned data manifold, we ensure all components of our objective are bounded for stable training.
In the following section, we show in Theorem [I] and Theorem [2] the distribution matching and
flow-based losses accomplish the same objective. The training pseudo-code for the complete training
loss and all constituent losses is in Appendix [A.T]

Sampling SIGN aims to excel at single-step generation, which is its primary mode of operation.
However, similar to Consistency models, IGN, and Diffusion models, SIGN also provides the ability
to perform multi-step sampling to trade off computational cost for generation quality. Generated
outputs can be iteratively refined by computing multiple forward passes on the data. The recursive
sampling algorithm is presented in Alg. [2]

Karras et al.|(2022) show that additional noise injected during the sampling process improves the
quality of the generated images. As the signal-to-noise ratio of the initial sample is O, the additional
noise during sampling allows the model to correct imperfections during the early stages of generation.
In algorithm 3] we provide an additional sampling method that effectively "pushes" the sample out of
the manifold. The additional noise injection cancels out the error introduced when sampling from
a low SNR region. Different use cases may be beneficial for different sampling approaches. With
inputs with a high signal-to-noise ratio, such as the case for partially corrupted or low-resolution
images, the recursive sampling approach may be more favorable. On the other hand, unconditional
generation may benefit from backtracking and adding additional noise in the sampling procedure in
Algorithm[3]

4 THEORETICAL ANALYSIS

In this section, we provide convergence guarantees and error bounds and build on our understanding
of the proposed SIGN model.

Theorem 1. Given a trained SIGN model, fy, such that it is a measurable idempotent map, fy :
RY — R?, Let Py be the true data distribution and Pt, = fo#Paawa its pushforward through fg.
Given the regular and k-dimensional connected, C* manifolds D and M, we have supp Pyua = D
and supp Py = M, and the score functions are defined on Yx € D N M, if 0 is the global minimum
Lsicn, then D = M.

The proof consists of showing that the support of the learned distribution and data distribution
are included in each other the densities are equal on the manifold. The full proof is included in
Appendix |B} In practice, a pre-trained model or an empirical score estimator is used to obtain the
data score function. Score models may not cover the whole manifold, resulting in bias. Intuitively,
for points not on the data manifold, the real score function has non-zero gradients, pushing the
pushforward distribution towards the real distribution, contracting the manifold. Interestingly, Kamb
and Ganguli| (2024)), Biroli et al.| (2024), and |De Bortoli| (2022)) analytically show that diffusion
models recover target distributions on low-dimensional manifolds. Empirically, our method attempts
to learn a mapping to this learned manifold.

Next, we look at the convergence conditions for our proposed flow-based SIGN loss.

Theorem 2. Denote the distribution learned by the trained SIGN model fy as Py. Assuming a large
enough model capacity such that:

30" = argmin Lyecon = argmin Ly, =0
0 9

then the learned distribution Py = P jua, the true data distribution.

We can see from Theorem [2] that imposing consistency across noise levels of the PF-ODE trajectories
can sufficiently tighten the manifold to capture the underlying data distribution. But we must note
that the above holds for a case of sufficiently large models, perfect projection at all noise levels, non-
overlapping trajectories, as well as an infinitely accurate discretization of the PF-ODE. Unfortunately,
in practice, such conditions are not feasible. Particularly, obtaining trajectories by reversing the
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pre-trained score model is prohibitively expensive. This necessitates adding additional loss terms
as described in the previous section to improve training dynamics. The quality of the estimate thus
decides the applicability of the learned SIGN. In the next theorem, we show that if the learned score
function can generate samples of empirical PF-ODE trajectories with errors uniformly bounded by
some noise-related quantity, we can guarantee that the error of the learned SIGN to the optimal
idempotent function is bounded.

Theorem 3. Let A = max |0(t,41) — o(tn)|forn € {0, N — 1} and f be the optimal idempotent
function. For some learned model fq which satisfies the L-Lipschitz condition. Denote {Xi}se[e,r
the exact PF-ODE trajectory by updating using Eq.|l| and {X;}c|c 1) the empirical results by Eq.
(i.e., using Xy, ., to solve step n in Eq.2 gives the resulting X;, ). Assume the local approximation
error of updating PF-ODE, ||X;, — Xy, ||2, is uniformly bounded by, O((o(t,+1) — o(t,))P)Vn €
{1,N =1} withp > 1, and L € R>, . If Lriow(0) = 0, and Lrecon(0) = 0, then we have,

sup |[fo(xt,) = f(x¢,)ll2 = O((A))

Xtn,

Similar to[Song et al.|(2023)), we base the proof on the global error bounds for numerical ODE solvers.
Due to space limitations, we present the full proofs in Appendix [B] Intuitively, Theorem [3| shows
an important characteristic of SIGNs and ODE trajectories. As the upper-bound error is dependent
on the truncation error of the trajectories, paths with high curvature will have high error. Therefore,
while the SIGN algorithm works for all diffusion, score, and flow models, algorithms with linear
trajectories are better suited. This falls in line with observations in [Karras et al.|(2022); Liu et al.
(2022a); IL1u| (2022); [Lee et al.| (2024 a).

5 RELATED WORK

IGNs, GANSs, and Stability. Our work focused on improving the training of IGN, a model class for
fast, single-step generation. IGN assumes an underlying data manifold and proposes a transformation
f that maps any input source to the manifold. In addition, all the data points on the manifold have
to be mapped to itself (thus, idempotent) while minimizing the size of the manifold. Jensen and
Vicary| (2025)) present a modified backpropagation method to enforce idempotency on generative
networks based on perturbation theory for MLP and CNN-based networks, but still suffer from the
sensitivity to training dynamics. IGNs are similar GANs as both contain adversarial loss terms. IGNs
are particularly similar to EB-GAN [Zhao et al.| (2016), but IGN doesn’t require the input source
to be a random noise. The instability of GAN-like models is well documented in literature (Durall
et al.| 2020; |Yu et al.| 2020} [Zhao et al., [2018)), and significant care is required to train large-scale
adversarial models. Interestingly, Franceschi et al. (2023b) show a similar connection between GAN
models and score models, where they train GANSs using pre-trained models. We provide improved
performance, additional theoretical guarantees for IGNs using score models, as well as practical
training recipes.

Diffusion, Score-based Models, and Distillation. Diffusion models Sohl-Dickstein et al.| (2015);
Song et al.[(2020a) produce high-quality images through a slow and iterative process, which incurs
high computational costs. To mitigate this challenge, fast sampling and model distillation methods
are of great interest. Consistency Models|Song et al.|(2023)) enable single-step generation by mapping
all points on a PF-ODE trajectory to a single output. We show the connection between Consistency
Models and IGNs and propose a novel loss to stabilize the training of the IGN models. Furthermore,
Lipman et al.|(2022); Liu et al.| (2022c); [Lee et al.|(2024b) flow matching similarly casts generative
modeling as a transport mapping problem, where straight trajectories in rectified flows improve
sampling efficiency. Idempotent models can similarly be distilled from flow-matching models as
well.

6 RESULTS

We train multiple SIGN models on MNIST, CIFAR-10, and CelebA datasets to get empirical validation
for our theoretical results. We also use pre-trained models to perform zero-shot editing. The training
details are described in Appendix [D}

Image Generation. We evaluated our model’s image generation capabilities on three standard
benchmarks: MNIST Deng|(2012), CIFAR-10 |Krizhevsky et al.|(2009), and CelebA |Liu et al.| (2015).
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(a) MNIST (Diffusion) (b) MNIST (Estimator) (c) CIFAR-10 (single-step) (d) CelebA (single-step)

Figure 2: Results of unconditional sampling from SIGN models. (a) Single and Multi-step generation
of a SIGN model trained on MNIST using a diffusion model as the score function. (b) Single
and Multi-step generation using an empirical score estimator as the score function. (c) Random
sampling of single-step generation from a SIGN model trained on CIFAR-10. (d) Random sampling
of single-step generation from a SIGN model on CelebA.

These datasets consist of 28x28 grayscale images, 32x32 color images, and 64x64 color images,
respectively.

For MNIST, we used a convolutional U-Net as the model with and without time embeddings for the
pre-trained diffusion model and the distilled SIGN model, respectively. We used a /5 distance as our
distance metric. We use a pre-trained diffusion model and an unbiased score estimator to train our
SIGN models for MNIST. For the simple dataset, we do not use distribution matching, regression, or
denoising loss. As illustrated in Fig. [2a] and Fig. 2b] our SIGN models are capable of unconditional
generation in a single pass, and image quality is progressively enhanced with multiple passes.

For CIFAR-10 and CelebA, we adapted model structures from EDM |Karras et al.| (2022) and DDIM
Song et al.| (2022)) to make use of their pre-trained weights as a starting point for our training. We
show the result of single-step unconditional generation in Fig.[2c|and Fig.[2d] Following Alg.[3|and 2]
we iteratively sample to generate samples. As the samples are more challenging, we use an additional
regression loss term to stabilize the training. To evaluate performance, we first generated 50,000
unconditional, single-step samples from our trained model for each dataset, then we calculated the
Fréchet Inception Distance (FID) using 2048 features to measure the similarity of the generated
samples to the target dataset. Our model sets a new state-of-the-art benchmark for idempotent
models by achieving FID scores of 11.09 on CIFAR-10 and 23.32 on CelebA. Our CelebA FID score
significantly outperforms the original IGN model (FID=39). Prior work on idempotent models in
Shocher et al.|(2023)) and |Jensen and Vicary| (2025)) do not train on CIFAR-10; as such, we are the
first to report CFIAR-10 results for idempotent models. For our initial ablation study, we trained a
model on the CelebA dataset for the same 350 epochs but without our proposed loss. The model
achieved an FID score of 123.70, which indicates that our proposed loss significantly improves the
training dynamics.

Zero-shot Editing. We investigated the zero-shot image editing capabilities of our SIGN models on
the CelebA and CIFAR-10 datasets. As shown in Fig. [3b|and Fig.[3a] we first applied a checkerboard
binary mask to corrupt the data, and tested how the model would perform in single-step and multi-step
scenarios. For multi-step sampling, we applied a customized 10-step noise schedule. The model was
able to project the corrupted image back towards the target data manifold from single-step sampling,
despite not being specifically trained for this task. The multi-step results further improve the image
quality, yielding a result closer to the original. We should point out that because CelebA has a higher
resolution than CIFAR-10, the defects would be less obvious in Fig. [3b]than in Fig. [3a]

7 LIMITATIONS

Though not competitive with general SOTA generative models, we perform better than current IGN
models. We show that IGN models can be stably trained using non-adverserial losses. As|Jensen
and Vicary| (2025) show, idempotent networks are a nascent line of generative models, and there is
significant room for improvement in the inductive biases and training methods required to optimize
these models. Intuitively, using a single network to learn both a large projection mapping from
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(a) CIFAR-10. (b) CelebA

Figure 3: Zero-shot masked image editing with a SIGN model trained. From fop to bottom: (1)
Original images. (2) Masked inputs. (3) Single-step sampling results. (4) Multi-step sampling results.

noise to the data manifold, while also learning identity mapping on the manifold, is difficult, as
the objective is significantly different from the usual generative modeling tasks. As a result, we
cannot take advantage of the standard practices of generative models and the wealth of accumulated
knowledge from the usual generative modeling community. We hypothesize, transformer-based
and especially mixture-of-experts-based [Chen et al.l 2022} [Shazeer et al, 2017} [Riquelme et al.}
[2021] networks may provide significantly improved performance and bring IGNs on par with other
single-step and distilled models. We plan on exploring architectural choices to improve model
capabilities along with larger models, higher training compute budgets, and larger, modern datasets.
Furthermore, our work greatly improves the training stability of idempotent generative models, which
is a key requirement in enabling future work on high-resolution datasets. The regression loss requires
pre-generation of a large set of images, requiring a large amount of compute and memory. However,
the regression loss is not required, as (2024Db) shows that regression loss is not required to
obtain strong generation results. We also acknowledge that our initial ablation study is limited due to
computational resource constraints, but we plan to further investigate it when resources permit.

8 FUTURE WORK

A key feature of our work is the improved training dynamics of idempotent generative models by
utilizing learned score functions. Due to training instability in the adversarial loss, prior work on
IGNss is difficult to reproduce and focused on simpler datasets. Optimizing modeling choices and
training method is challenging when training is unstable. We hope our work will enable large-scale
architectural optimization studies for idempotent networks that may be transferred to conventional
IGN training as well. Furthermore, the inductive bias of idempotent networks is a natural fit for many
other learning and generative tasks, especially in scientific workloads.

SIGN models can be combined with existing score-based models in two ways: either by "fast-
forwarding" the reverse process by inputting partially denoised samples to the SIGN generator,
similar to denoising diffusion GANs [Xiao et al.|(2021)), or by employing multi-step iterative sampling
schemes inspired by [Shocher et al.|(2023)) and Song et al.|(2023). As noted in|Shocher et al.| (2023)),
the model may also benefit from a two-step approach as in[Rombach et al.| (2022)) instead of directly
applying to the pixel-space. Furthermore, flow-matching methods such as rectified flows Liu et al|
provide an attractive alternative to diffusion models as teacher models due to their straight
trajectories.

9 CONCLUSION

In this work, we connect Idempotent generative models with score-based diffusion models. Our
proposed new losses to train IGN models improve the training characteristics of IGNs and provide
theoretical guarantees of our optimization methods, and strong empirical results for idempotent
models. We provide a first baseline on CIFAR10, as well as improving SOTA CelebA FID by more
than 40% for idempotent models. We view this work as an initial step towards connecting IGNs with
score-based generative models that allow the development of more powerful models. Connecting to
score-based opens the door for transferring learning techniques, model architecture, and even learned
weights to improve IGN models. A more stable training algorithm can enable further exploration
into identifying network architectures that are suitable for idempotent models and allow learning on
large-scale, higher-resolution datasets. We plan on exploring such possibilities in the future.
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10 REPRODUCIBILITY STATEMENT

The complete proofs of all theorems in our work, discussed in Section[d] are detailed in Appendix B}
The source code used in our experiments and details regarding how to reproduce our experiments can
be found in Appendix D}
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A ALGORITHM

A.1 TRAINING ALGORITHMS

Algorithm 1 Consistent Idempotent Training

1: Input: Dataset D, models fy, fo/, distance metric, D(-, -), noising operator O(-, -), learning rate
7, loss term hyperparameters A, Ag, Ar, Ay,
2: while not converged do
Copy for < fo
Sample x ~ D
Sample z ~ N (0,1)
Sample n ~ U([[1, TT])
X¢, & O(X, tn)
Obtain x;, from solving steps in Eq. 2}
9: Xrecony Xsample < f6’ (X), f9 (Z)
10: Xidem fa(f@’ (Z))
11: COPY Xclone < Tsample
12: Yn O(f@(xsample)atn-)
13: Lrecon D(X7 Xrecon)
14: ﬁidem — D(Xsamplea Xidem)
15: Edenoise — D(X, f9 (th))
16: Acﬂow — D(f@(xtn)vfe/(xts))
17: »CDMD — D(sleamed(yn; TL) — Sdiffusion (yna TL))
18: L+ £recon + £idem + )\fﬁﬂow + )\dﬁdmd + /\rﬁreg + )\ncdenoise
19: fo < fo —nVeL(fo)
20: end while

PRDIN AR

The learned diffusion score-model Sjeameq 1S trained online as in |[Yin et al.| (2024a).

Algorithm 2 Recursive Sampling

Input: Trained CIGN fy(-), initial noise x1
x + fy(x)
while not converged do
x « fy(x)
end while

A

Algorithm 3 Multistep Sampling with Editing

Input: Trained CIGN fy(-), initial noised data x’, image mask M
Noise schedule 0 < oy < on_1... < 01
x—HEHNoM+x' (1 - M)
fori=1,7 < N do

Sample z ~ N (0,1)

Xr — X+ 02z

xHx)OM+x0e(1-M)
end for

A A S

B PROOFS

Theorem. Given a trained SIGN model, fo, such that it is a measurable idempotent map, fp : R —
RY. Let Pyuq be the true data distribution and Py, := fo#Paaa its pushforward through fo. Given
the regular and connected manifolds D and M, we have supp Pjuq, = D and supp Py = M, and
the score functions are defined on N € D N M, if 0 is the global minimum Lggy, then D = M.
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Proof. We start with our trained idempotent model fy and the definition of the manifold M. As the 0
is the global minimizer of Lsign, we have a perfectly idempotent model. We have fj : R? — R?, and

M :=1Im(f) = {y: 3z,y = fo(x)}
where every y € M is a fixed point such that fp(y) = y. We have a learned distribution distribution
Dfs ‘= foFPaaa- We also have supp Pgan = D and supp Py = M. Finally, since we have that ¢
is the global minimizer of LgigN, crucially Lpyp is minimized. Minimizing the distribution score
matching loss results in a score equality over the support of distributions.

On each C? manifold, with volume measures 1), and 1p, let’s define positive densities, gy and gp
with respect to the volume measures, py; and pp.

Therefore, the tangential scores of each manifold-density are equal:
Vrlogqy =Vrloggp Yre DNM

Since the densities must be normalized, the normalization constant is 0, and they must be equal.
Assume for a contradiction that there exists x, € D and o ¢ M. Thus, there is an open neighborhood
U of xg where Py, has a positive manifold density gp > 0. But since xo ¢ M, qa; < 0 or does not
exist in U. This contradicts the equality of manifold densities; thus, there is no x( such that xy € D
but g ¢ M. Thus, we have supp(Pgaa) € supp(Py,) and equivalently, D C M.

Minimizing Lsign also requires minimizing the L;germ. As Py, is the idempotent pushforward of Pyata,
we have supp Py, C fo(supp Paata). Since, supp Paaa C supp Py,, we have, fo(supp Paa) C
fo(supp Py, ). From idempotent symmetry over the support, and have fy(supp Py,) = supp Py,
and we have supp Py, C supp Paaa. Thus, we have supp(Py,) C supp(Paaa) and equivalently,

M CD.

Combining, M € D and D C M, we van see that D = M and Py, = Pyan, completing the
proof. O

Theorem. Denote the distribution learned by the trained SIGN model fy as Py. Assuming a large
enough model capacity such that:

30" = argmin Lecon = argmin Ly, =0
0 0

then the learned distribution Py = P44, the true data distribution.

Proof. Assuming the set of parameters 6*, the model fy~ minimizes the proposed flow loss, in Eq.

(8), and thus we have,
d(for (X¢,,,1)s for (%¢,)) = 0,

where n € [e, T — 1] denotes trajectory along the PF-ODE with different noise steps. By the definition
of a metric function, we have,
f@* (th+1) = f9* (th)' (10)

Now, let’s consider the base case, n = 0 and ¢y = €. We have:

d(for (Xt ), for (xe)) = 0,
d(f@* (th )7 Xe) (é) O,

for (xe,) ¥ x. (11)

where (a) is due to fg- minimizing the reconstruction loss, therefore, Vx,, fg(xc) = x. and (b) is
due to the definition of the distance metric. By Eq. , Eq. , and mathematical induction, we
will have fy« (x7) = X.. In other words, for all random noise sampled from the source xy ~ Z,
after applying the learned CIGN transformation fy«, will fall in the terminal distribution x, ~ P¢,
which is the data distribution, Pya,. L]

Theorem. Let A = max |o(tpy1) — o(ty)| forn € {0, N — 1} and f be the optimal idempotent
function. For some learned model fq which satisfies the L-Lipschitz condition. Denote {Xi}se[e,r
the exact PF-ODE trajectory by updating using Eq.|I| and {X;}cc 1) the empirical results by Eq.
(i.e., using Xy, ., to solve step n in Eq.2 gives the resulting X, ). Assume the local approximation
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error of updating PF-ODE, ||X;, — Xy, ||2, is uniformly bounded by, O((o (t,4+1) — o(tn))PT1) Vn €
{1, N =1} withp > 1, and L € R>q, . If Lriow(0) = 0, and Lgecon(0) = 0, then we have,

sup || fo(x¢,,) — f(xt,)ll2 = O((A))

Xtn

Proof. Recall the Lgjow:
EFIOW = E [D(fé’ (th)v f('/“(xts))]'

X~ Paa,n~U[[1,N]]

Lriow = 0implies D(fp(X¢,.,,), fo(Xs,,)) = 0 and thus fy(x;,,,) = fo(Xs, ). Since f is the optimal
CIGN solution, we have f(x;, ,,) = f(x:, ). Denote error at noise level n as e, = fo(x;,) — f(xy,,)-

‘We now form the recursion relation,

eni1 = fo(Xe, 1) — f(Xe, 1) (12)
= fo(%¢,) — f(x¢,) (13)
= fo(X¢,) — fo(xe,) + fo(x,) — f(x¢,) (14)
= fo(Xt,) — fo(xt,) + en. (15)

Due to the Lipschitz condition, we have

[ fo(%t,) — fo(xt,)

Thus, we can bound the error at noise-scale n + 1 with,

|2 < L[|%, — x4, |[2-

llentallz < llenlla + L%, — 4,2

Furthermore, as the local approximation error, ||X:, — Xz, ||2, is uniformly bounded by, O((o (tn4+1) —
o(t,))P™), and L € R>0, we have

llentillz < llenllz + O(L(o(n+1) — a(n))"*)

For the base case of e, fo(xc) = X, as we assume Lgecon(#) = 0 and by definition, f(x.) = x., and
thus we have e, = 0.

We can now bound the error ||e,||2, by induction on the error of previous noise levels,

llenll2 < Li[%e,_, = X¢,_||2 + [len—1]|2 (16)
n—1
= LO((o(tisr) = o(t:)"*) (17)
n—1
<D (0(tit1) = o(t:)(LO(A)). (18)
= (LO(A)")(t, —¢€) (19)
Ast, —e <ty — e < C, where C is some constant. We therefore have,
(LO(A)P)(tn —€) < C(O(A)). (20)
As C and L are constants and can be neglected compared to the exponential term, we have
C(LO(A)P) = (O(A)P), which completes the proof. O

C IGN TRAINING

To be self-consistent, in Alg.[d we reproduce the training procedure for a standard IGN in pseudocode.

D EXPERIMENT DETAILS

Model Architecture Intuitively, we attempt to parameterize the model based on existing work on
the consistency and diffusion models. We based our model on the same architecture as the pre-trained
model, with our custom loss functions employed.

16



Under review as a conference paper at ICLR 2026

Algorithm 4 Training an idempotent generative network

1: Input: Data set D, models ¢y, ¢g:, drift measure J(-, -)
2: while not converged do

3:  Sample z ~ D

Sample z ~ N(0,1)

Copy ¢y < o

Trecon; Tsample < of) (l‘), of) (Z)
Tidem + Pp(2)

Tiight < Do (2)

9: Copy Zcione < Tsample

10: Tproj < ®o (xclone)

11: »Crecon — (5(£C, xrecon)

12: Lidgem 5(xsamplea -Tidem)

13: Etight — *5(xpr0ja xclone)

14: L < Lrecon + AiLidem + )\t»ctight
15: ¢g < dpg —1Vo(Ps)

16: end while

AN AN

Training details We trained them on a system with 4 Nvidia H100 GPUs, using PyTorch as
the framework. Since the SIGN contains a subset of the parameters of the diffusion model, we
initialize the SIGN using the parameters of a trained diffusion model. Unless otherwise specified,
all hyperparameters were identical to those of the respective base models. We use the original noise
schedule from EDM and DDIM respectively to train our SIGN models. We also employed techniques
from Distribution Matching DistillationYin et al.|(2024a)) of using a pre-generated image to help
our model get to the target manifold faster. For CIFAR-10, we started from |Karras et al.[(2022),
with 200K pre-generated samples and trained for 200 epochs. For CelebA, we based our work on
Song et al.| (2020b), with 500K pre-generated samples and trained for 350 epochs. To further ensure
training stability, we initialized our models with pre-trained weights.

Evaluation Setup For each dataset, we generated 50K unconditioned single-step samples from our
trained model and used FID to evaluate their overall likeliness to the target dataset.

Source Code The source code and instructions to run the experiment can be acquired through this
link: https://anonymous.4open.science/r/SIGN-88/
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