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Abstract
AI/ML research has predominantly been driven
by domains such as computer vision, natural lan-
guage processing, and video analysis. In contrast,
the application of AI/ML to wireless networks,
particularly at the air interface, remains in its early
stages. Although there are emerging efforts to ex-
plore this intersection, fully realizing the potential
of AI/ML in wireless communications requires
a deep interdisciplinary understanding of both
fields. We provide an overview of AI/ML-related
discussions in 3GPP standardization, highlighting
key use cases, architectural considerations, and
technical requirements. We outline open research
challenges and opportunities where academic and
industrial communities can contribute to shaping
the future of AI-enabled wireless systems.

1. Introduction
In advanced 5G and future 6G systems, AI/ML will be
essential to overcome challenges related to directional trans-
missions, rapidly varying channels, high feedback overhead
and precise localization. For instance, AI/ML beam manage-
ment (Xue et al., 2024) leverages historical spatio-temporal
data to swiftly predict optimal directed beams from a base
station (BS) towards a user equipment (UE). This elimi-
nates exhaustive beam search procedures and ensures that
both base stations and UEs can quickly adjust to dynamic
channel conditions. In addition, recurrent neural networks
and transformer architectures address the problem of chan-
nel state information (CSI) prediction (Jiang et al., 2025)
(i.e., the inherent delays between the estimation of chan-
nel state and its usage) by forecasting future channel states,
ensuring timely and accurate link adaptation even in high-
mobility scenarios. Complementing these methods, deep
learning-based encoder/decoder architectures learn concise
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latent-space representations of channel data to compress the
CSI (Lin, 2025), which is periodically reported from the UE
to the BS. This leads to lower latency and improved spectral
and energy efficiency. Finally, AI/ML positioning (Alawieh
& Kontes, 2023), enhances the reliability of location-based
services, by extracting relevant-only channel features and
adapting across different deployment scenarios.

Collectively, this holistic AI/ML framework has been de-
bated and shaped within 3GPP during Releases 18 and
19 (3GPP TR38.843, 2024). Although the 3GPP standard-
ization task force has laid the foundations for the adoption
of AI/ML in the air interface, the development and deploy-
ment of both performing and cost-efficient AI/ML models
come with their own challenges. As we enter the 6G era
in standardization, where AI/ML is meant to play a central
role, these challenges must be discussed from day one.

2. Current Discussion & Open Challenges
Any AI/ML application at scale comes at a high maintenance
cost (Ashmore et al., 2021). The availability of a clean and
automated pipeline that facilitates all three phases of data
governance (Sec. 2.1), model training and testing, and model
deployment (including model monitoring and management)
(Sec. 2.2) in both a central and distributed manner (Sec. 2.3)
has proven to be equally (or more) important as the model’s
capabilities and performance.

For wireless networks, things are even more complicated.
Here, the definition and implementation of such a pipeline
for AI/ML integration are also hindered by the number of
different stakeholders that need to come to an agreement.
The air interface facilitates a complex interplay between UE,
BS and core network (NW) vendors (constrained also by
the needs and requirements of the mobile network opera-
tors) that need to agree on common and possibly synergetic
solutions for all stages of the AI/ML model pipeline, while
avoiding any proprietary information being exposed.

2.1. Data Governance

Data collection, management (data cleaning, privacy, stan-
dardization, enhancement, availability, etc.), and security
(rejection of malicious/manipulated data) for model training,
testing, and monitoring are core requirements for AI/ML-
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based solutions (Huang & Zhao, 2024). The labeled data
required for model training is usually owned by the organiza-
tion that trains the model. It is similar for monitoring: once
the model is deployed, usually only the model owner has
access to the relevant key performance indicators (KPIs).

Challenges. In current 3GPP discussions, the fundamental
issue of which data can be collected in a way that respects
user’s security and privacy aspects plays central role. In
parallel, the key questions of data ownership and access
mechanisms still remain unanswered. For instance, in po-
sitioning, a UE-sided model requires area-specific labels
(its true position, provided by the network) to be used for
training, fine-tuning or monitoring. The situation is similar
for NW-sided models. If we consider NW-sided beam man-
agement, the BS has full control on the transmitted beams
but requires UE-sided beam measurements for a proper
(training, testing, or monitoring) dataset.

2.2. Life Cycle Management (LCM)

2.2.1. MODEL COMPLEXITY VS GENERALIZATION

The energy needed for the training and inference operations
of high-performing models increases with model size, as
larger models exhibit better performance and generalization
capabilities (Brutzkus & Globerson, 2019). Although UE
and NW energy savings strategies are central within 3GPP
discussions, the implications of using AI/ML models on
the energy footprint remain largely underexplored. In fact,
fulfilling several requirements set forth in Release 19 AI/ML
for air interface would result in larger and more complex
model architectures and thus increased energy consumption
for both the UEs and the NW. Examples include: (i) training
with larger/mixed datasets, which results in larger AI/ML
models; (ii) switching between smaller (even site-specific)
models, which necessitates additional signaling between the
UE and the NW, and switching decision mechanism, and
(iii) fine-tuning, which depends on a pre-trained (and thus
potentially large) model.

Challenges. Robust generalization of UE-sided models re-
quires tackling diverse radio environments (e.g., channel
conditions and interference) that quickly degrading perfor-
mance if models are not adapted. Training or fine-tuning
one large or multiple specialized models places heavy en-
ergy and resource demands on UEs and requires detection of
distribution shifts for unseen or rare scenarios. For smaller,
specialized models, model switching or individual model
update introduces additional complexity and latency as UEs
and NW nodes must streamline when to switch or retrain.

2.2.2. MODEL TESTING

One of the most important steps prior to model deployment
is model testing. Different types of test can be implemented,

ranging from the evaluation of prediction accuracy on a
holdout data set to more elaborate testing methods that
involve different versions of the model being evaluated by
real users. Again, the organization that owns the model
usually has all test data available and designs test protocols.

Challenges. Defining testing procedures for all use cases is
not straightforward (e.g., there are no agreed testing scenar-
ios for positioning methods that track moving UEs). There
are two main constraints: (i) designing tests that are univer-
sal for the AI/ML models developed by all vendors at every
UE type, and (ii) defining tests for fine-tuned or area-specific
models. The former constraint requires widely applicable
and simpler testing mechanisms, while the latter opens the
discussion on on-device post-deployment testing protocols.

2.2.3. MODEL MONITORING AND MANAGEMENT

Monitoring analytics are diverse: From simple (hardware)
system performance metrics (e.g., memory utilization)
and model input/output monitoring for detecting out-of-
distribution inputs/outputs, to time-consuming and cost-
inducing label-based monitoring approaches. Usually, the
detection of model performance drop triggers a new data
collection and model retraining (or fine-tuning) procedure.

Challenges. As also mentioned above, monitoring label
availability (for label-based monitoring analytics) requires
alignment between UE and NW sides, which blurs the own-
ership status of the monitoring dataset. Second, even though
for UE-(BS-)sided models model monitoring and manage-
ment are handled by the UE (BS), the NW is still responsible
for the performance in an area. This implies that the NW can
request the UE (or BS) to start a monitoring session on their
respective models to determine if performance is adequate or
a fallback to a different approach is required. What further
complicates things is that reporting exact monitoring KPIs
might result in security issues: If a malicious/adversarial
UE reports wrong KPIs to the NW, the NW cannot easily
detect this, while if the UE reports its model predictions to
the NW, there is a danger of model extraction (Tramèr et al.,
2016; Oliynyk et al., 2023).

2.2.4. PERFORMANCE KPIS

Performance KPIs for AI/ML model training, testing, and
monitoring consider the perfect predictive performance of
the model in all use cases: beam management strives to
identify the beam with the highest RSRP among top pre-
dicted beams, or predicting the correct RSRP for all beams;
CSI prediction is tasked to forecast future channel condi-
tions perfectly; CSI compression aims at reconstructing CSI
flawlessly at the BS; and positioning is expected to estimate
UE positions at millimeter accuracy.

Challenges. Such stringent prediction-accuracy-oriented
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Table 1. Promising research directions to unlock the adoption of AI/ML in air interface within 6G.

RESEARCH
DIRECTION

CHALLENGES

DATA
GOVERNANCE

MODEL LIFE CYCLE MANAGEMENT INTEROPER-
ABILITYMONITORING &

MANAGEMENT
MODEL
COMPLEXITY

GENERA-
LIZATION

KPI
ALIGNMENT

SIMPLIFIED
TESTING

MULTI-TASK LEARNING ✓ ✓ ✓ ✓

CONDITIONAL ARCHITECTURES ✓ ✓ ✓

ROOT CAUSE ANALYSIS ✓ ✓ ✓ ✓

OPPORTUNISTIC DATA COLLECTION ✓ ✓ ✓ ✓

SELF-SUPERVISED/ META/ACTIVE
LEARNING

✓ ✓ ✓

REINFORCEMENT LEARNING &
AI-BASED OPTIMIZATION

✓ ✓ ✓ ✓ ✓

KPIs are not well aligned (see Russell & Norvig (2020) for
a definition of alignment) to the real world applications. For
example, video streaming requires different beam quality
than text communication, many positioning tasks do not re-
quire millimeter or centimeter accuracy, and for some tasks
incomplete CSI information is enough (Jiang et al., 2025).
The challenge here, in addition to identifying the right KPI
for each task, is to train and deploy models that strike the
right balance between complexity and performance require-
ments, as posed by the underlying application.

2.3. Model Interoperability

Many scenarios require “two-sided” models that are de-
ployed in a distributed fashion between UE and BS, which
involve a joint operation of the models at both ends. In
addition to low complexity, AI/ML models should strive
for a robust exchange of information between the entities,
enabling a coordinated operation of the model as a whole.

Challenges. The AI/ML model at UE- and NW-side may
come from different providers, facing the challenge of inter-
operability. Vendors at each side need to support the model
yet without disclosing their respective proprietary models.
This implies that UE and NW vendors must architect sophis-
ticated interoperability frameworks that facilitate selective
sharing of their models. This would ensure the preserva-
tion of complete model confidentiality while fostering the
harmonious and successful operation of two-sided models.

3. Future Research Directions
We discuss promising research directions that support true
integration of AI/ML in wireless air interfaces (Tab. 1).

3.1. Multi-Task Learning

AI/ML use cases are typically developed isolated to one an-
other, which results in high development cost (Jiang et al.,

2025). Possibly overlapping data is collected separately
and thus trained models encode redundant information. To
address this, multi-task learning (Zhang & Yang, 2021) de-
ploys a single backbone model as a common representation
of the channel (e.g., see Ott et al. (2024)), which in sequence
provides targeted “heads” tailored to the involved use cases.

This also facilitates model monitoring and management, as
maintenance of a single multi-task model is more straight-
forward than tracking multiple specialized models, while re-
training or fine-tuning can be done within a unified pipeline.
As task representations share latent features, fine-tuning (or
even adding a new use case / model head) can require fewer
data, since such shared knowledge can be effectively uti-
lized. Furthermore, if complementary tasks on the UE side
(e.g., beam management and resource scheduling, respec-
tively) partially share the backbone model, the integration of
two-sided training or inference routines in multi-task models
is facilitated as well, thus enabling model interoperability.

3.2. Conditional Neural Architectures

Even with multi-task approaches, universal “one-size-fits-
all” models may still be suboptimal for a number of UEs.
Some UEs frequently encounter a narrow set of channel
conditions (e.g., repeated commuting routes), therefore, on-
device personalized sub-models can yield substantial gains,
like increased performance and reduced signaling overhead.

A way to tackle this could be the adoption of two-sided mod-
els, enhanced with early exit architectures (Teerapittayanon
et al., 2016). This would allow earlier termination when pre-
diction confidence is high, exploiting the fact that many data
samples can be classified using only the earlier layers of the
model. For challenging conditions (e.g., a shift from LOS
to multipath NLOS), the inference can continue through
additional layers, ensuring uninterrupted performance.

Some of the neural network layers can be shared between
the UE and NW vendors, allowing flexible execution that
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eases the UE-side computational burden and ensures a high
level of interoperability between the distributed sub-models,
while protecting the proprietary properties of the UE- and
NW-side parts of the model. This way, (distributed) model
monitoring and management is also more principled, as
performance degradation can be isolated to specific exits,
instead of re-verifying the entire network.

3.3. Root Cause Analysis

When an AI / ML model performs poorly, the monitoring
entity should not only report a failure but also pinpoint
the source of the problem. For instance, as studied within
3GPP Release 19, if the performance of a two-sided (en-
coder/decoder) CSI compression model degrades, an inves-
tigation on whether the encoder, the decoder, or a change in
the radio environment is responsible enhances the interoper-
ability properties of such distributed models.

Such information also allows making informative decisions
on how to mitigate the effect of a detected issue, e.g., retrain
only part of the model, switch to a smaller fallback model,
or temporarily deactivate the AI/ML functionality. This
enables more transparent model testing procedures and can
even support high-level root-cause explanations, e.g., using
natural language (Roy et al., 2024; Manjunath et al., 2025).

3.4. Opportunistic Data Collection

Instead of continuously collecting positioning labels or log-
ging CSI and beam measurements, UEs and base stations
can report data only when certain triggers appear. For in-
stance, the UE or the NW might request monitoring data
only if the UE’s performance abruptly changes – a sign that
the current environment differs from what the model has
seen before. Likewise, for obtaining the true labels when
legacy positioning methods are unreliable, the NW can op-
portunistically activate external sensors or measurements to
acquire secondary information to obtain labels in challeng-
ing scenarios (e.g., using camera or other UE sensors).

Such targeted, trigger-based data logging (for training, test-
ing and monitoring) not only enables a more agile model
monitoring and management framework, but also unlocks
the ability for on-demand testing in highly variable scenar-
ios, thus allowing effective use of test and label resources
instead of continuous, exhaustive logging.

3.5. Reinforcement Learning / Optimization-Based AI

AI/ML studies within 3GPP standardization prioritize im-
proving a single metric (usually prediction accuracy), often
without considering the broader objectives tied to system-
wide KPIs, i.e., without involving Quality of Service (QoS)
and Quality of Experience (QoE) requirements. For exam-
ple, simply increasing channel prediction accuracy does not

necessarily translate into the best end-to-end performance
for tasks such as positioning, beam management, or channel
state feedback (Jiang et al., 2025).

To address this gap, future AI/ML designs should include a
family of online learning or optimization-based approaches,
such as reinforcement learning (Sutton & Barto, 2018), rec-
ommender systems (Zhang et al., 2019) or mixed-integer
optimization (Wolsey & Nemhauser, 1999). These adaptive
algorithms, unlike fixed models solely optimized for higher
prediction accuracy, can be combined with task-oriented
KPIs and are able to continuously adjust to real-world con-
ditions, such as network load fluctuations, device mobility,
or localized interference patterns.

Unsurprisingly, such methods also ease the burden on data
collection for model (called policy within RL) training, test-
ing, and monitoring, since stringent requirements on high-
quality labeled datasets no longer exist. Instead, task-related
measurements used to calculate reward (and possibly a set
of constraints) estimates must be collected. This also en-
hances UE- and NW-side interoperability, since each side
can maintain its own policy function and still coordinate via
reward exchanges or partial state observations.

3.6. Efficient use of labeling resources

Most of the widely-adopted AI/ML approaches and model
architectures can benefit from algorithms that enable effi-
cient use of labeling resources, such as self-supervised (Liu
et al., 2021), meta-learning (Hospedales et al., 2021) and
active learning (Ren et al., 2021) techniques. For exam-
ple, in several scenarios, a meta-learned model can quickly
adapt when deployed to new cell sites or applied under
changed channel conditions. In CSI prediction/compression
use cases, self-supervised methods can process channel mea-
surements to predict future channel behavior or compress
CSI data, without any dependency on manual annotation.
Or in positioning, methods such as channel charting (Studer
et al., 2018) can alleviate the dependency on positioning ref-
erence units for the availability of accurate position labels.

Complementary, active learning enables on-demand model
monitoring, testing, and fine-tuning, ensuring that only the
most informative data samples (e.g., when model prediction
uncertainty is high or it starts to exhibit degraded perfor-
mance) are collected and are used for model adjustments.

4. Conclusion
There is no single silver bullet to address the aforementioned
challenges. Future research should focus on hybrid solutions
that combine modular, adaptive algorithms with robust data
governance and continuous model monitoring, aiming to
reduce the reliance on hard-to-acquire and cost-deficient
label-based approaches.
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Tirkkonen, O. Channel charting: Locating users within
the radio environment using channel state information.
IEEE Access, 6:47682–47698, 2018.

Sutton, R. and Barto, A. Reinforcement Learning: An
Introduction. Cambridge, MA, MIT Press, 2018.

Teerapittayanon, S., McDanel, B., and Kung, H.-T.
Branchynet: Fast inference via early exiting from deep
neural networks. In 2016 23rd international conference
on pattern recognition (ICPR), pp. 2464–2469. IEEE,
2016.
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