
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VARIATION IN VERIFICATION: UNDERSTANDING VERI-
FICATION DYNAMICS IN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances have shown that scaling test-time computation enables large
language models (LLMs) to solve increasingly complex problems across diverse
domains. One effective paradigm for test-time scaling (TTS) involves LLM gen-
erators producing multiple solution candidates, with LLM verifiers assessing the
correctness of these candidates without reference answers. In this paper, we study
generative verifiers, which perform verification by generating chain-of-thought
(CoT) reasoning followed by a binary verdict. We systematically analyze verifi-
cation dynamics across three dimensions – problem difficulty, generator capability,
and verifier generation capability – through empirical studies on 12 benchmarks
across mathematical reasoning, knowledge, and natural language reasoning tasks
using 14 open-source models (2B to 72B parameter range) and GPT-4o. Our exper-
iments reveal three key findings about verification effectiveness: (1) Easy problems
allow verifiers to more reliably certify correct responses; (2) Weak generators pro-
duce errors that are easier to detect than strong generators; (3) Verification ability
is generally correlated with the verifier’s own problem-solving capability, but this
relationship varies with problem difficulty. These findings reveal opportunities for
optimizing basic verification strategies in TTS applications. First, given the same
verifier, some weak generators can nearly match stronger ones in post-verification
TTS performance (e.g., the Gemma2-9B to Gemma2-27B performance gap shrinks
by 75.7%). Second, we identify cases where strong verifiers offer limited advan-
tages over weak ones, as both fail to provide meaningful verification gains, suggest-
ing that verifier scaling alone cannot overcome fundamental verification challenges.

1 INTRODUCTION

Large language models (LLMs) have advanced rapidly in solving reasoning tasks such as
mathematics and code generation, yet their outputs remain unreliable, often containing subtle or
obvious mistakes (Ke et al., 2025; Lightman et al., 2023). LLM based verification (Angelopoulos
et al., 2025; Cemri et al., 2025; Huang et al., 2023b; Mao et al., 2024) has emerged as a central
mechanism to identify such errors in a scalable manner. Recent work has increasingly focused
on generative verifiers (Liu et al., 2025d; Mahan et al., 2024; Zhang et al., 2025), which frame
verification as next-token prediction: the model typically generates a chain-of-thought (CoT)
reasoning trace and then outputs a binary verdict token. This approach has been shown to outperform
earlier discriminative verifiers or scalar reward models (RMs, Lightman et al., 2023), as it better
leverages the inherent text-generation capabilities of LLMs. One valuable downstream application
of automatic verification is test-time scaling (TTS), where additional inference-time compute is
allocated to improve generation performance. A popular paradigm of TTS is the use of a verifier
model to evaluate candidate responses, filter errors, and identify correct solutions. This approach
underlies techniques such as rejection sampling (Brown et al., 2024), re-ranking (Zhou et al., 2025),
weighted majority voting (Wang et al., 2024a; 2022), and step-level generation (Snell et al., 2024).

Current practice in LLM verification often deploys strong, typically closed-source frontier models as
verifiers. This practice rests on the assumption that verification quality scales with a verifier’s capa-
bility to solve the same problem (i.e., its generation capability), a correlation demonstrated in recent
work (Chen et al., 2025c; Krumdick et al., 2025; Tan et al., 2024). However, this practice may be sub-
optimal given that verifying a solution is often easier than generating one from scratch, a phenomenon
referred to as “verification asymmetry” (Wei, 2025). This asymmetry appears in several fields. In
convex optimization, dual certificates enable efficient validation of optimality of a proposed solution,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

✓ ✗

✓

✓

✓

✗

✗

✗

✗

✓

(a)

(b)

✓

✗

Figure 1: Overview of our study on verification dynamics. (a) We consider generative verification:
an LLM generator produces a solution to a problem, and an LLM verifier conditions on the problem
and solution to generate a verification CoT followed by a binary verdict (“Correct”/“Incorrect”).
We design controlled experiments that vary problem difficulty, generator generation capability,
and verifier generation capability, investigating how each of these factors influences verification
performance. (b) Our analysis reveals three patterns: problem difficulty governs recognition of
correct responses (true positives); generator generation capability determines error detectability (true
negatives); and verifier generation capability correlates with performance in a difficulty-dependent
manner, revealing non-linear regimes left uncovered in prior work. The three plots were generated by
aggregating benchmark data across three domains and averaging performance metrics over 15 models.

while in factorization, verifying correctness is trivial compared to finding the prime factors. Thus, it is
worth investigating verification as a distinct capability rather than merely a byproduct of generation.

Despite extensive research on generation dynamics and the factors influencing generation qual-
ity (Allen-Zhu & Li, 2025; Chen et al., 2024; Ye et al., 2025), the dynamics of verification remain
largely unexplored. In particular, little is known about how problem characteristics, properties of
generated responses, and model capabilities interact to determine verification effectiveness. Without
understanding verification dynamics, one can risk misallocating computational resources by default-
ing to expensive frontier models when simpler alternatives might suffice. This gap in understanding
motivates our central research question: what factors influence verification success?

In this paper, we present a systematic study of generative verification across three dimensions–problem
difficulty, generator capability, and verifier generation capability–shown in Figure 1. We quantify
verification performance by measuring the probability of the verifier recognizing both correct and in-
correct generated solutions in controlled experimental settings. We focus on verifiable problems with
objective ground-truth answers in mathematical reasoning, knowledge question-answering (QA), and
natural language (NL) reasoning domains. This allows us to objectively measure verifier and gener-
ator performance, while simulating the reference-free evaluation settings where verifiers are typically
deployed in practice, e.g., in TTS. While our experiments use these domains as a testbed, we believe
the insights should extend to any domain where correctness can be reliably defined and checked.

Main Findings. While prior work showed that verifier generation capability correlates with verifica-
tion performance (Chen et al., 2025c; Krumdick et al., 2025; Tan et al., 2024), we reveal that two
additional factors, problem difficulty and generator capability, also critically influence verification
success, as illustrated in Figure 1. Our analysis reveals:
• Problem difficulty primarily governs the recognition of correct solutions: verifiers are more likely

to recognize correct solutions on easy problems than on difficult ones.
• Generator capability influences error detection: errors made by weak generators are easier to detect

than those made by strong generators.
• Verifier generation capability correlates with verification performance in a manner dependent on

problem difficulty: saturated (or uncorrelated) for easy problems, linear for medium problems, and
threshold-limited for hard problems.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Our empirical analysis includes 2,347 math problems from eight datasets, 1,196 knowledge QA
problems, and 901 NL reasoning problems, evaluated across 14 open-source models and GPT-4o.

Application to TTS. We demonstrate the practical implications of our findings for TTS. First, given
the same verifier, the TTS performance of a weak generator can nearly match the performance of
a strong generator. For instance, Gemma2-9B achieves comparable performance to Gemma2-27B
when both use the same verifier, GPT-4o. Second, we identify regimes where a strong verifier (e.g.,
GPT-4o) offers no additional benefit and can be replaced by a weaker verifier (e.g., Qwen2.5-7B),
with both providing limited gains. This occurs with strong generators or with problems at either
extreme of the difficulty spectrum.

2 RELATED WORK
Automatic Evaluation. The deployment of LLMs as evaluators has emerged as a central mechanism
for scalable assessment, with efforts focusing on training specialized small evaluators through
fine-tuning (Wang et al., 2024b; Whitehouse et al., 2025; Xu et al., 2025; Zhang et al., 2025).
Beyond reference-based verifiers (Chen et al., 2025a; Liu et al., 2025b), verification approaches
include self-verification (Chen et al., 2023; Huang et al., 2023a;b; Kumar et al., 2024; Shinn et al.,
2023), where models reflect on or critique their own outputs, and multi-agent verification (Li et al.,
2023; Lifshitz et al., 2025; Zhuge et al., 2024), where multiple agents collaborate in debate-style or
hierarchical setups to improve reliability. Prior work identifies several factors influencing evaluation
performance. One important factor is evaluator generation capability. Krumdick et al. (2025)
find that evaluator performance changes significantly based on whether the evaluator is capable
of answering the question or not. Tan et al. (2024) demonstrate the correlation between pairwise
judging ability and generation ability on the same set of problems. Chen et al. (2025b) observe
linear relationships between evaluation improvements and reasoning-required sample proportions
in fine-tuned evaluators. Chen et al. (2025c) show a strong positive correlation between generation
capability and evaluation accuracy. Our work extends these findings by identifying unexplored
factors that influence evaluation performance. We also demonstrate that the relationship between the
evaluator generation capability and evaluation quality is more nuanced than previously understood.

Verification for Test-Time Scaling. Early studies explore how to effectively apply verification meth-
ods to improve TTS performance. Snell et al. (2024) show RMs improve various TTS approaches,
including Best-of-N and beam search, while Liu et al. (2025a) find that compute-optimal strategies
vary with policy models and problem difficulty. Recent work explores alternatives to discriminative
RMs: Zhang et al. (2025) show trained generative verifiers outperform RMs in Best-of-N, and
Zhou et al. (2025)’s JETTS benchmark demonstrates generative evaluators match outcome RMs
in reranking. While verification benefits from increased model size and test-time compute, recent
work addresses how to reduce these computational costs. Saad-Falcon et al. (2025) propose a
framework to aggregate weak verifiers to approach strong ones; Angelopoulos et al. (2025) balance
weak/strong evaluators for efficiency; Stroebl et al. (2024) analyze fundamental limits of resampling
with imperfect verifiers; and Singhi et al. (2025) propose strategies to balance solving-verification
trade-offs. Our work studies the factors driving verification and explores their implications for TTS.

3 EXPERIMENTAL SETUP
3.1 PRELIMINARIES

Problem and Response Space. Let x denote a problem with ground-truth answer y∗(x). A model
response r to x consists of a CoT solution and a final answer a(r), and we consider the response
correct if a(r) = y∗(x). As discussed in Section 1, our study uses verifiable problems with objective
answers, allowing us to rigorously evaluate verifier outputs against ground-truth while simulating
reference-free evaluation settings.

Generator and Verifier. A generator G maps a problem x to a distribution over responses, denoted
r ∼ G(·|x). A verifier V takes a problem–response pair (x, r) and outputs a judgment of correctness.
In the binary case, V (x, r) ∈ {0, 1}, where 1 indicates acceptance and 0 indicates rejection. More
generally, a generative verifier produces a verification CoT explaining its reasoning, followed by an
explicit verdict such as “Correct” or “Incorrect.” The prompt templates are provided in Appendix A.

Generation Capability. We measure the generation capability of a model using its pass rate. For
a generator G and problem x, we define pG(x) = Pr[a(r) = y∗(x) | r ∼ G(·|x)] as the pass rate
on a single problem, i.e., the probability that G solves x correctly on one sampled attempt. We define
pG(D) = 1

|D|
∑

x∈D pG(x) as the pass rate aggregated over a dataset D, which we use as the overall

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

measure of a model’s generation capability. Since the verifiers we study are generic LLMs (e.g., GPT-
4o), we measure a verifier’s generation capability using the same metric by prompting it as a generator.

We estimate these pass rates empirically as p̂G(x;K) and p̂G(D;K) by sampling K responses per
model-problem pair. Since K is fixed at 64 throughout, we often omit K for simplicity, writing
p̂G(x) and p̂G(D). We use temperature 0.7 and top-p 1.0 as default sampling hyperparameters, and
adopt recommended settings when available (e.g., temperature 0.7 and top-p 0.8 for the non-thinking
mode of Qwen3). Ground-truth correctness is established with Math-Verify (Kydlíček, 2025),
supplemented by LLM-as-a-judge grading to reduce false negatives (details in Appendix B.1). These
64 responses per problem–model pair are used to estimate generation capability and problem difficulty.

Problem Difficulty. We define the difficulty of a problem as the average pass rate across a set of
diverse generators G, d(x) = 1

|G|
∑

G∈G p̂G(x). This score reflects how broadly solvable a problem
is: if most generators succeed, d(x) is high (easy problem), while if few succeed, d(x) is low (hard
problem). It provides a model-agnostic way to partition problems by difficulty, extending prior
work (Snell et al., 2024), which measured difficulty relative to a single generator.

Verification Metrics and Evaluation. We evaluate verifiers using true positive rate (TPR), the
probability of the verifier accepting a correct response: TPR = E[V (x, r) | a(r) = y∗(x)], and true
negative rate (TNR), the probability of rejecting an incorrect response: TNR = E[1 − V (x, r) |
a(r) ̸= y∗(x)].1 We also report balanced accuracy, Accbal =

1
2 (TPR + TNR), which accounts for

class imbalance. For verification evaluation, we subsample 8 responses from each 64-sample pool,
balanced with 4 correct and 4 incorrect when possible. For very hard problems with fewer than 4
correct responses, we keep all correct ones and sample incorrect ones to reach 8 total (and vice versa
for easy problems). Each verifier evaluates responses from all 15 models over the full test set using
greedy decoding, unless a controlled subset is specified.

Verification-Augmented Test-time Scaling. We consider the TTS setting of sampling multiple
responses from the generator and filtering with a verifier before evaluation. For each problem x ∈ D,
we sample K responses from the generator using a fixed temperature, with K = 64 in our experiments.
Without verification, TTS performance is measured as p̂G(D;K) (or p̂G(D)), the empirical pass rate
defined above. With verification, the verifier V evaluates each candidate, and only responses deemed
“Correct” are retained for evaluation. The performance of verification-augmented TTS is measured as

p̂G,V (D;K) =
1

|D|
∑
x∈D

(
1

K ′

K∑
i=1

1
(
a(ri) = y⋆(x)

)
· V (x, ri)

)
(1)

where K ′ =
∑K

i=1 V (x, ri). This metric represents the conditional pass rate, i.e., the fraction
of correct responses among those retained by the verifier. A corner case arises when the verifier
rejects all responses (K ′ = 0); in this case, we set the metric to the generator’s pass rate p̂G(D),
so evaluation reverts to selecting from the original K responses in the non-verified setting. We define
the verification gain from verifier V as the difference relative to the performance without verification,
∆p̂V = p̂G,V (D)− p̂G(D), which quantifies how much gain can be attributed to verification. Note
that our formulation of TTS differs from the common setting where a single “best” response (e.g.,
by majority vote) is selected and then evaluated. Instead, we report the empirical pass rate of the
verifier-retained pool, which can be interpreted as the expected accuracy of uniformly sampling one
response from that pool. This expectation-based view captures the average quality of verifier-retained
responses without tying performance to a specific selection strategy.

3.2 TASKS AND MODELS

Mathematical Reasoning. We collect a total of 2,347 problems from the test sets of eight mathe-
matical reasoning benchmarks: GSM8K (Cobbe et al., 2021), MATH500 (Hendrycks et al., 2021),
OlympiadBench (He et al., 2024), AIME24/25 (Li et al., 2024), AMC23 (Li et al., 2024), Minerva-
Math (Lewkowycz et al., 2022), and BBEH Multi-step Arithmetic (Kazemi et al., 2025). We use the
entire test sets of these benchmarks, except for GSM8K, from which we subsample 600 of 1,319
problems to balance difficulty distribution and reduce the proportion of easy problems.

1If the verifier generates an invalid output (e.g., due to the CoT running out of max generation length), we
treat it as an uninformative verdict of “Correct” and “Incorrect” each with probability of 50%. Computationally,
we set V (x, r) = 0.5 in this case, and also in Equation 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Knowledge. We use a subset of MMLU-Pro (Wang et al., 2024c) as our knowledge category. We
randomly subsample 10% from each of its 14 disciplines, yielding 1,196 problems. MMLU-Pro
consists of college-level multiple-choice questions spanning STEM, humanities, and social sciences.

Natural Language Reasoning. We collect 901 multiple-choice problems from three benchmarks.
(1) ReClor (validation set, Yu et al., 2020), a multiple-choice benchmark requiring logical analysis
of short passages. (2) FOLIO (Han et al., 2022), a first-order logic reasoning benchmark in natural
language. (3) GPQA Diamond (Rein et al., 2024), a dataset that consists of graduate-level multiple-
choice science questions, requiring multi-step reasoning.

Models. We use 14 open-source models from four families: (1) Qwen2.5 at 3B, 7B, and 72B (Team,
2024); Qwen3 at 4B, 8B, and 32B (Yang et al., 2025); (2) Llama-3.2 at 3B, Llama-3.1 at 8B, and
Llama-3.3 at 70B (Grattafiori et al., 2024); (3) Gemma-2 at 2B, 9B, and 27B (Team et al., 2024); (4)
Ministral 8B and Mistral-Small-24B; and one closed-source model GPT-4o (Hurst et al., 2024). All
models are instruction-tuned versions by default. Each model is used both as a generator and a verifier.
We use abbreviated model names in figures for space efficiency; see Appendix B.2 for mappings.

4 EXPERIMENTAL RESULTS

Our experiments focus on how problem difficulty and generator and verifier generation capability
influence verification performance. We present the three research questions and main findings below.
• RQ1: How does problem difficulty affect verification? (Section 4.1) TPR increases steadily

with decreasing problem difficulty, meaning verifiers better recognize correct responses on easier
problems. However, TNR shows no predictable relationship with problem difficulty. This indicates
that problem difficulty primarily influences correctness recognition.

• RQ2: How does the generator’s generation capability influence verification? (Section 4.2)
As generators become stronger, TNR decreases substantially while TPR increases only slightly.
This reveals that generator capability primarily determines error detectability: stronger generators
produce errors that are harder for verifiers to identify.

• RQ3: How does verifier generation capability impact verification? (Section 4.3) Verifier
generation capability and verification performance are generally positively correlated. However,
the form of correlation depends heavily on problem difficulty: linear correlation occurs in medium-
difficulty problems, while nonlinear patterns appear in other difficulty levels.

Qwen2.5 Qwen3 Llama3
Gemma2 Mistral GPT-4o

Small (2-4B)
Medium (7-32B)

Large (70B+)

Hardest Hard Easy Easiest
Problem Difficulty

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(a) TPR (Mathematics)

Hardest Hard Easy Easiest
Problem Difficulty

0.0

0.5

1.0

(b) TPR (Knowledge)

Hardest Hard Easy Easiest
Problem Difficulty

0.0

0.5

1.0

(c) TPR (NL Reasoning)

Hardest Hard Easy Easiest
Problem Difficulty

0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

(d) TNR (Mathematics)

Hardest Hard Easy Easiest
Problem Difficulty

0.0

0.5

1.0

(e) TNR (Knowledge)

Hardest Hard Easy Easiest
Problem Difficulty

0.0

0.5

1.0

(f) TNR (NL Reasoning)

Figure 2: Problem difficulty primarily affects TPR of verification. Each curve shows verifier
performance across four difficulty groups, with the x-axis indicating problem difficulty and the y-axis
reporting TPR (a-c) and TNR (d-f). Colors denote model families, and line styles indicate model size.

4.1 HOW DOES PROBLEM DIFFICULTY AFFECT VERIFICATION?

To examine how problem difficulty influences verification, we partition problems into four equal-sized
quartiles by their difficulty score d(x), termed “hardest”, “hard”, “easy”, and “easiest”.

Problem difficulty primarily influences the verifier’s ability to recognize correct responses. Our
analysis is conducted at two levels of granularity: response level and problem level. Both analyses

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

reveal that problem difficulty mainly shapes the verifier’s sensitivity to correct responses, while not
consistently affecting its ability to identify incorrect responses.

At the response level, we compute the TPR and TNR of all responses within each difficulty quartile.
As shown in Figure 2, TPR increases steadily as problems become easier, while TNR shows no clear
trend. This pattern is consistent across model families and domains. At the problem level, we pool
responses from all generators for each problem and compute a single TPR and TNR per problem. The
distribution of these metrics within each quartile is reported in Figures 7 and 8 of Appendix C.1. We
observe that easier problems yield higher and more stable TPR, while harder problems exhibit lower
and more variable TPR. In contrast, TNR distributions show no consistent correlation with problem
difficulty. To understand this pattern, case studies in Figure 20 show that verifiers tend to generate
their own reference solutions for comparison during verification. As the problem difficulty increases,
these verifier-generated answers become increasingly incorrect, producing false negatives that reduce
TPR. In Appendix C.2, we show that the main verification dynamics about TPR we identified
generalize to reasoning models, while extended reasoning provides benefits and alters TNR behavior.

4.2 HOW DOES GENERATOR CAPABILITY INFLUENCE VERIFICATION?

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Performance Rate

G2-2
B

L3-3
B

L3-8
B

M-8B
G2-9

B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L3-7
0B

GPT-4
o

Q2.5
-72

B
Q3-4

B
Q3-8

B

Q3-3
2B

Generator Model

G2-2B

L3-3B

L3-8B

M-8B

G2-9B

G2-27B

Q2.5-3B

M-24B

Q2.5-7B

L3-70B

GPT-4o

Q2.5-72B

Q3-4B

Q3-8B

Q3-32B

Ve
rif

ie
r M

od
el

0.72 0.65 0.65 0.81 0.82 0.83 0.79 0.85 0.81 0.77 0.83 0.81 0.81 0.83 0.84

0.66 0.66 0.70 0.77 0.75 0.76 0.79 0.80 0.81 0.82 0.85 0.82 0.85 0.87 0.88

0.53 0.58 0.62 0.68 0.63 0.64 0.70 0.69 0.72 0.69 0.73 0.71 0.66 0.66 0.68

0.66 0.75 0.78 0.92 0.81 0.83 0.94 0.94 0.95 0.83 0.96 0.96 0.91 0.92 0.93

0.78 0.81 0.83 0.91 0.93 0.93 0.92 0.94 0.95 0.92 0.95 0.95 0.95 0.96 0.96

0.74 0.82 0.85 0.92 0.92 0.93 0.93 0.94 0.94 0.92 0.95 0.95 0.96 0.96 0.98

0.74 0.89 0.89 0.94 0.86 0.88 0.96 0.95 0.96 0.88 0.96 0.96 0.92 0.92 0.93

0.64 0.74 0.77 0.86 0.82 0.84 0.88 0.93 0.91 0.86 0.94 0.93 0.94 0.94 0.95

0.73 0.87 0.88 0.93 0.88 0.90 0.97 0.95 0.97 0.93 0.97 0.97 0.96 0.96 0.96

0.85 0.94 0.96 0.96 0.96 0.96 0.97 0.98 0.98 0.98 0.99 0.98 0.99 0.99 0.99

0.73 0.85 0.87 0.92 0.90 0.92 0.95 0.96 0.96 0.95 0.98 0.98 0.98 0.98 0.98

0.81 0.91 0.92 0.95 0.94 0.96 0.98 0.98 0.98 0.97 0.99 0.99 0.99 0.99 0.99

0.70 0.80 0.83 0.86 0.86 0.86 0.88 0.90 0.91 0.90 0.92 0.93 0.94 0.95 0.95

0.74 0.85 0.87 0.89 0.89 0.90 0.91 0.93 0.93 0.93 0.95 0.95 0.97 0.98 0.98

0.70 0.82 0.84 0.86 0.87 0.88 0.89 0.91 0.92 0.92 0.93 0.94 0.95 0.96 0.96

(a) TPR (Mathematics)

G2-2
B

L3-3
B

M-8B

Q2.5
-3B

L3-8
B

G2-9
B

G2-2
7B

Q2.5
-7B

Q3-4
B

M-24
B

Q3-8
B

L3-7
0B

Q2.5
-72

B

GPT-4
o

Q3-3
2B

Generator Model

G2-2B

L3-3B

M-8B

Q2.5-3B

L3-8B

G2-9B

G2-27B

Q2.5-7B

Q3-4B

M-24B

Q3-8B

L3-70B

Q2.5-72B

GPT-4o

Q3-32B

0.47 0.44 0.46 0.56 0.44 0.57 0.55 0.58 0.61 0.56 0.67 0.64 0.63 0.68 0.68

0.52 0.60 0.51 0.69 0.64 0.62 0.65 0.73 0.74 0.68 0.79 0.76 0.76 0.83 0.80

0.67 0.70 0.75 0.82 0.72 0.75 0.78 0.86 0.87 0.86 0.89 0.89 0.89 0.92 0.91

0.44 0.62 0.63 0.73 0.65 0.55 0.59 0.77 0.82 0.77 0.85 0.78 0.83 0.84 0.85

0.39 0.45 0.49 0.51 0.53 0.55 0.56 0.61 0.64 0.61 0.68 0.67 0.66 0.71 0.68

0.69 0.71 0.74 0.80 0.78 0.89 0.90 0.87 0.89 0.90 0.92 0.92 0.93 0.94 0.94

0.63 0.69 0.73 0.78 0.77 0.84 0.86 0.86 0.88 0.89 0.92 0.91 0.93 0.94 0.95

0.54 0.62 0.66 0.75 0.70 0.69 0.72 0.82 0.83 0.81 0.88 0.84 0.87 0.89 0.89

0.51 0.58 0.62 0.65 0.66 0.70 0.73 0.76 0.82 0.79 0.86 0.85 0.83 0.86 0.89

0.55 0.59 0.68 0.70 0.71 0.77 0.81 0.82 0.85 0.88 0.91 0.90 0.90 0.93 0.94

0.54 0.59 0.64 0.67 0.66 0.73 0.77 0.77 0.82 0.84 0.87 0.85 0.85 0.87 0.91

0.81 0.86 0.87 0.88 0.92 0.89 0.92 0.92 0.96 0.95 0.97 0.97 0.97 0.98 0.98

0.72 0.76 0.82 0.85 0.86 0.86 0.92 0.92 0.94 0.94 0.96 0.96 0.97 0.98 0.97

0.66 0.71 0.77 0.79 0.81 0.83 0.86 0.88 0.91 0.92 0.94 0.94 0.95 0.96 0.96

0.56 0.63 0.68 0.69 0.73 0.77 0.80 0.78 0.82 0.85 0.87 0.89 0.87 0.90 0.92

(b) TPR (Knowledge)

L3-3
B

G2-2
B

M-8B

Q2.5
-3B

L3-8
B

G2-9
B

Q2.5
-7B

G2-2
7B

Q3-4
B

M-24
B

Q3-8
B

L3-7
0B

Q2.5
-72

B

GPT-4
o

Q3-3
2B

Generator Model

L3-3B

G2-2B

M-8B

Q2.5-3B

L3-8B

G2-9B

Q2.5-7B

G2-27B

Q3-4B

M-24B

Q3-8B

L3-70B

Q2.5-72B

GPT-4o

Q3-32B

0.61 0.49 0.61 0.68 0.65 0.58 0.69 0.56 0.75 0.67 0.75 0.73 0.73 0.75 0.78

0.51 0.44 0.57 0.57 0.51 0.54 0.62 0.42 0.67 0.63 0.69 0.68 0.68 0.70 0.74

0.79 0.67 0.84 0.91 0.82 0.82 0.88 0.84 0.92 0.90 0.94 0.91 0.92 0.94 0.95

0.51 0.20 0.38 0.59 0.49 0.28 0.71 0.22 0.69 0.53 0.76 0.66 0.72 0.69 0.77

0.40 0.26 0.37 0.50 0.46 0.39 0.54 0.35 0.50 0.42 0.54 0.52 0.55 0.57 0.57

0.75 0.58 0.74 0.84 0.80 0.81 0.86 0.82 0.89 0.87 0.94 0.91 0.93 0.92 0.95

0.61 0.42 0.62 0.75 0.65 0.59 0.72 0.59 0.79 0.70 0.80 0.78 0.79 0.80 0.83

0.74 0.62 0.78 0.82 0.80 0.83 0.85 0.84 0.89 0.89 0.92 0.90 0.93 0.92 0.95

0.57 0.50 0.61 0.65 0.63 0.64 0.66 0.62 0.77 0.70 0.79 0.75 0.74 0.76 0.81

0.61 0.44 0.65 0.72 0.71 0.71 0.78 0.72 0.85 0.82 0.88 0.87 0.87 0.88 0.92

0.61 0.57 0.68 0.67 0.66 0.69 0.70 0.72 0.79 0.76 0.80 0.76 0.76 0.76 0.83

0.88 0.82 0.87 0.89 0.93 0.91 0.92 0.93 0.97 0.95 0.97 0.96 0.97 0.98 0.98

0.85 0.77 0.87 0.90 0.90 0.90 0.92 0.92 0.96 0.95 0.97 0.97 0.98 0.97 0.98

0.75 0.68 0.79 0.81 0.84 0.86 0.86 0.88 0.92 0.93 0.94 0.94 0.95 0.96 0.96

0.66 0.64 0.71 0.72 0.74 0.78 0.76 0.80 0.84 0.83 0.85 0.88 0.84 0.86 0.90

(c) TPR (NL Reasoning)

G2-2
B

L3-3
B

L3-8
B

M-8B
G2-9

B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L3-7
0B

GPT-4
o

Q2.5
-72

B
Q3-4

B
Q3-8

B

Q3-3
2B

Generator Model

G2-2B

L3-3B

L3-8B

M-8B

G2-9B

G2-27B

Q2.5-3B

M-24B

Q2.5-7B

L3-70B

GPT-4o

Q2.5-72B

Q3-4B

Q3-8B

Q3-32B

Ve
rif

ie
r M

od
el

0.90 0.72 0.71 0.56 0.72 0.67 0.61 0.54 0.59 0.65 0.55 0.54 0.54 0.50 0.48

0.91 0.68 0.66 0.50 0.73 0.67 0.54 0.49 0.47 0.61 0.39 0.47 0.52 0.52 0.40

0.95 0.77 0.73 0.72 0.82 0.79 0.70 0.66 0.63 0.72 0.57 0.59 0.68 0.68 0.59

0.91 0.78 0.76 0.48 0.71 0.66 0.44 0.44 0.42 0.69 0.39 0.41 0.57 0.57 0.52

0.80 0.69 0.66 0.44 0.35 0.29 0.47 0.38 0.34 0.53 0.32 0.29 0.42 0.40 0.28

0.92 0.68 0.64 0.44 0.60 0.48 0.47 0.39 0.35 0.58 0.31 0.31 0.37 0.38 0.24

0.89 0.59 0.64 0.40 0.66 0.60 0.36 0.37 0.32 0.68 0.35 0.32 0.59 0.57 0.53

0.96 0.89 0.85 0.71 0.82 0.76 0.74 0.53 0.61 0.72 0.48 0.52 0.54 0.52 0.41

0.93 0.70 0.64 0.47 0.70 0.60 0.35 0.36 0.24 0.55 0.24 0.22 0.38 0.36 0.27

0.93 0.65 0.54 0.51 0.67 0.56 0.47 0.35 0.29 0.27 0.19 0.22 0.28 0.30 0.18

0.96 0.91 0.87 0.76 0.81 0.72 0.70 0.59 0.55 0.65 0.38 0.44 0.49 0.49 0.38

0.92 0.76 0.68 0.50 0.61 0.50 0.43 0.33 0.23 0.44 0.19 0.15 0.28 0.28 0.17

0.96 0.91 0.90 0.88 0.86 0.83 0.87 0.79 0.79 0.79 0.74 0.73 0.59 0.59 0.54

0.96 0.92 0.88 0.85 0.83 0.79 0.83 0.73 0.73 0.74 0.66 0.63 0.51 0.50 0.44

0.97 0.90 0.85 0.87 0.83 0.78 0.83 0.75 0.74 0.70 0.65 0.66 0.55 0.54 0.42

(d) TNR (Mathematics)

G2-2
B

L3-3
B

M-8B

Q2.5
-3B

L3-8
B

G2-9
B

G2-2
7B

Q2.5
-7B

Q3-4
B

M-24
B

Q3-8
B

L3-7
0B

Q2.5
-72

B

GPT-4
o

Q3-3
2B

Generator Model

G2-2B

L3-3B

M-8B

Q2.5-3B

L3-8B

G2-9B

G2-27B

Q2.5-7B

Q3-4B

M-24B

Q3-8B

L3-70B

Q2.5-72B

GPT-4o

Q3-32B

0.73 0.76 0.77 0.66 0.76 0.67 0.69 0.64 0.65 0.69 0.57 0.63 0.63 0.58 0.58

0.73 0.62 0.74 0.58 0.63 0.70 0.66 0.55 0.56 0.64 0.52 0.53 0.55 0.45 0.51

0.57 0.52 0.45 0.39 0.51 0.52 0.45 0.32 0.36 0.32 0.31 0.32 0.29 0.26 0.28

0.79 0.62 0.64 0.53 0.63 0.68 0.66 0.51 0.48 0.50 0.47 0.61 0.48 0.49 0.46

0.87 0.82 0.82 0.79 0.77 0.82 0.78 0.75 0.73 0.75 0.68 0.74 0.71 0.67 0.67

0.49 0.55 0.55 0.47 0.51 0.21 0.24 0.39 0.36 0.33 0.31 0.37 0.29 0.26 0.29

0.68 0.62 0.62 0.56 0.54 0.48 0.41 0.43 0.41 0.39 0.33 0.40 0.35 0.31 0.30

0.78 0.67 0.61 0.51 0.59 0.66 0.61 0.37 0.40 0.42 0.37 0.49 0.33 0.36 0.34

0.86 0.84 0.82 0.79 0.78 0.76 0.73 0.68 0.57 0.67 0.52 0.61 0.62 0.60 0.49

0.81 0.80 0.71 0.70 0.66 0.60 0.54 0.54 0.49 0.44 0.36 0.47 0.36 0.33 0.30

0.88 0.88 0.82 0.80 0.80 0.76 0.71 0.71 0.60 0.66 0.51 0.67 0.61 0.60 0.50

0.64 0.55 0.54 0.49 0.37 0.45 0.39 0.37 0.28 0.28 0.25 0.21 0.22 0.17 0.20

0.71 0.67 0.57 0.50 0.50 0.41 0.36 0.33 0.32 0.26 0.25 0.27 0.17 0.16 0.19

0.79 0.74 0.69 0.68 0.61 0.59 0.53 0.52 0.47 0.40 0.40 0.41 0.31 0.25 0.32

0.89 0.86 0.82 0.82 0.80 0.73 0.70 0.74 0.67 0.66 0.61 0.62 0.59 0.57 0.46

(e) TNR (Knowledge)

L3-3
B

G2-2
B

M-8B

Q2.5
-3B

L3-8
B

G2-9
B

Q2.5
-7B

G2-2
7B

Q3-4
B

M-24
B

Q3-8
B

L3-7
0B

Q2.5
-72

B

GPT-4
o

Q3-3
2B

Generator Model

L3-3B

G2-2B

M-8B

Q2.5-3B

L3-8B

G2-9B

Q2.5-7B

G2-27B

Q3-4B

M-24B

Q3-8B

L3-70B

Q2.5-72B

GPT-4o

Q3-32B

0.56 0.68 0.58 0.51 0.54 0.60 0.45 0.61 0.42 0.49 0.39 0.46 0.41 0.35 0.36

0.77 0.78 0.66 0.70 0.79 0.67 0.64 0.67 0.64 0.59 0.61 0.63 0.61 0.57 0.57

0.52 0.59 0.37 0.23 0.45 0.39 0.25 0.34 0.26 0.24 0.19 0.29 0.21 0.16 0.15

0.61 0.88 0.68 0.57 0.62 0.76 0.44 0.79 0.43 0.60 0.40 0.55 0.44 0.44 0.37

0.81 0.86 0.78 0.76 0.75 0.77 0.74 0.79 0.72 0.76 0.70 0.72 0.70 0.69 0.67

0.57 0.72 0.52 0.41 0.44 0.41 0.34 0.37 0.33 0.34 0.26 0.33 0.25 0.24 0.21

0.65 0.81 0.67 0.44 0.62 0.64 0.47 0.60 0.48 0.52 0.38 0.48 0.42 0.41 0.38

0.60 0.74 0.54 0.46 0.51 0.45 0.40 0.39 0.34 0.35 0.31 0.37 0.29 0.27 0.20

0.81 0.86 0.77 0.76 0.74 0.72 0.71 0.74 0.57 0.67 0.55 0.63 0.62 0.64 0.52

0.77 0.88 0.70 0.66 0.67 0.59 0.56 0.56 0.49 0.45 0.38 0.39 0.38 0.31 0.31

0.83 0.84 0.76 0.79 0.77 0.74 0.74 0.69 0.61 0.66 0.57 0.66 0.60 0.62 0.52

0.48 0.63 0.48 0.41 0.29 0.36 0.32 0.30 0.21 0.22 0.16 0.14 0.15 0.11 0.11

0.54 0.65 0.47 0.39 0.37 0.37 0.28 0.31 0.22 0.20 0.14 0.16 0.12 0.12 0.12

0.70 0.79 0.61 0.63 0.57 0.48 0.46 0.44 0.37 0.31 0.29 0.25 0.25 0.16 0.20

0.83 0.85 0.76 0.81 0.77 0.70 0.73 0.69 0.63 0.62 0.56 0.53 0.57 0.55 0.43

(f) TNR (NL Reasoning)

Figure 3: Generator capability influences verifier performance of identifying incorrect responses.
Heatmaps show (a-c) TPR and (d-f) TNR when pairing 15 verifier models (rows) with 15 generator
models (columns). Rows and columns are ordered by models’ generation capability computed on
all problems of each domain. Values indicate mean performance over the evaluation subset.

We study how generator capability affects verifier performance by having each verifier evaluate
responses from each generator. Generators of different capabilities may produce extreme response
distributions, e.g., weak generators may produce no correct response on hard problems within 64
samples. To ensure fair comparison, we compute TPR on problem subsets where all generators
produce at least one correct response. Analogously, TNR is computed on problems where all
generators produce at least one incorrect response. Details are provided in Appendix B.3.

As shown in Figures 3a to 3c, TPR remains uniformly high across nearly all settings and increases
further with stronger generators. The heatmap is dominated by red colors, with values mostly
above 0.7, indicating that most verifiers are already reliable at recognizing correct responses. As
generator capability improves, TPR approaches 1.0. This suggests that generator strength influences
recognition of correct responses in a relatively mild way.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Generator capability correlates with error detection in verification. In Figures 3d to 3f, moving
from weaker generators on the left to stronger ones on the right, the heatmap shifts generally from
red to blue, indicating a substantial decrease in TNR. For example, in the Mathematics domain,
for the Qwen2.5-72B verifier, TNR drops from 0.68 on solutions generated by Llama-3.1-8B to
0.17 on those by Qwen3-32B. The overall pattern is consistent across three domains and nearly all
verifiers. These results show that generator capability strongly modulates the detection of incorrect
responses. Figure 21 presents case studies exploring this phenomenon. Strong generators produce
internally consistent reasoning chains where early mistakes (e.g., missed cases) propagate coherently,
yielding well-structured but incorrect solutions that cause verifier false positives. Weak generators
produce self-contradictory solutions with apparent inconsistencies, facilitating verifier rejection. In
Appendix C.2, we show that this finding generalizes to reasoning models.

4.3 HOW DOES VERIFIER GENERATION CAPABILITY IMPACT VERIFICATION?

Qwen2.5
Qwen3

Llama3
Gemma2

Mistral
GPT

2-4B
7-9B

24-32B
70B+

0.0 0.2 0.4 0.6 0.8 1.0
Verifier's Generation Capability

0.6

0.7

0.8

0.9

B
al

an
ce

d
A

cc
ur

ac
y

r = 0.93

Linear R²=0.864, Nonparam R²=0.919

(a) All data (Mathematics)

0.0 0.2 0.4 0.6 0.8 1.0
Verifier's Generation Capability

0.4

0.5

0.6

0.7

0.8

0.9

B
al

an
ce

d
A

cc
ur

ac
y

r = 0.96

Linear R²=0.926, Nonparam R²=0.950

(b) All data (Knowledge)

0.0 0.2 0.4 0.6 0.8 1.0
Verifier's Generation Capability

0.4

0.5

0.6

0.7

0.8

0.9

B
al

an
ce

d
A

cc
ur

ac
y

r = 0.90

Linear R²=0.810, Nonparam R²=0.887

(c) All data (NL Reasoning)

0.0 0.2 0.4 0.6 0.8 1.0
Verifier's Generation Capability

0.6

0.7

0.8

0.9

B
al

an
ce

d
A

cc
ur

ac
y

r = 0.84

r = 0.95 r = 0.70

Hard: Linear R²=0.71, Nonparam R²=0.85

Medium: Linear R²=0.90, Nonparam R²=0.90

Easy: Linear R²=0.48, Nonparam R²=0.88

(d) Stratified view (Mathematics)

0.0 0.2 0.4 0.6 0.8 1.0
Verifier's Generation Capability

0.4

0.5

0.6

0.7

0.8

0.9

B
al

an
ce

d
A

cc
ur

ac
y

r = 0.63

r = 0.96

r = 0.83

Hard: Linear R²=0.40, Nonparam R²=0.52

Medium: Linear R²=0.91, Nonparam R²=0.93

Easy: Linear R²=0.69, Nonparam R²=0.87

(e) Stratified view (Knowledge)

0.0 0.2 0.4 0.6 0.8 1.0
Verifier's Generation Capability

0.4

0.5

0.6

0.7

0.8

0.9

B
al

an
ce

d
A

cc
ur

ac
y

r = -0.28

r = 0.92
r = 0.77

Hard: Linear R²=0.08, Nonparam R²=0.04

Medium: Linear R²=0.84, Nonparam R²=0.85

Easy: Linear R²=0.59, Nonparam R²=0.79

(f) Stratified view (NL Reasoning)
Figure 4: Distinct correlation forms between verification performance and generation capability.
Solid lines represent nonparametric fits to the data; r indicates the Pearson correlation coefficient. (a-
c) Averaged across all problems, verifier generation capability exhibits a strong linear correlation with
balanced accuracy. (d-f) When stratified by problem difficulty, distinct correlation patterns emerge.

We measure verifier generation capability and evaluate verification performance using balanced
accuracy (Accbal) on the entire test set. Each verifier is evaluated on responses from all generators,
and we report results both averaged across all problems and stratified by problem difficulty. To
characterize the relationship between generation capability and verification performance, we employ
locally weighted regression (Cleveland, 1979) with a bandwidth of 0.6 to fit nonparametric curves.
We compare R2 values between nonparametric and linear fits to assess linearity. We also report the
Pearson correlation coefficient (Benesty et al., 2009) as another measure of linear correlation.

Figures 4a to 4c show a strong overall correlation between verifier generation capability and verifica-
tion accuracy, with NL reasoning showing less linearity than other domains. This result is consistent
with prior work showing that evaluator accuracy tends to track the evaluator’s task performance, with
the relationship appearing nearly linear. While this global trend validates findings in prior work (Chen
et al., 2025c; Tan et al., 2024), a closer inspection of the trend reveals highly non-linear regimes.

Verifier generation capability influences verification accuracy differently based on problem diffi-
culty. Stratified analysis reveals regime-dependent correlation with phase-transition behavior. We par-
tition problems into 10 equal-width bins by difficulty d(x) and analyze three representative intervals:
hard [0.1, 0.3), medium [0.4, 0.5), and easy [0.8, 0.9) in Figures 4d to 4f. For hard problems (blue),
verification accuracy shows minimal improvement with increasing capability. Mathematics plateaus
around 0.65 accuracy after initial gains, while other domains remain flat throughout. Notably, verifiers
achieve below-random accuracy on hard NL Reasoning problems, which we analyze in Appendix C.3.
Medium problems (yellow) exhibit steady accuracy increases with capability, indicating strong linear

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

relationships. This is confirmed by linear and nonparametric fits that yield nearly identical R2 values,
with r > 0.9. Easy problems exhibit a threshold effect at the x-axis around 0.9: below this threshold,
the relationship is linear; above it, small capability improvements yield large verification gains. Hard
and easy regimes show nonlinearity with nonparametric R2 exceeding linear R2 by 0.1–0.2 and
r < 0.85. The exception is NL Reasoning on hard problems, where both fits yield near-zero R2, indi-
cating no meaningful capability-accuracy relationship. Appendix C.4 provides additional results, in-
cluding analysis across all difficulty intervals (Figure 12) and discusses implications of these findings.

5 APPLICATION TO TEST-TIME SCALING (TTS)
Our analysis in Section 4 is conducted with verification itself as the end goal. However, our findings
have direct implications for TTS. We analyze two research questions in TTS settings that naturally
arise out of our previous findings, and present our results below:
• RQ4: Given a fixed verifier, can a weak generator match a stronger generator in TTS? (Sec-

tion 5.1) Weak generators can nearly match stronger generators’ post-verification performance.
Verification gains peak at weak-medium generators by achieving a high error detection rate (TNR)
while maintaining a moderately high correctness recognition rate (TPR).

• RQ5: Can weak verifiers match the gains of strong verifiers in TTS? (Section 5.2) The
verification gain gap between weak and strong verifiers narrows at both low and high problem
difficulty extremes, and when using strong generators.

The following sections present results on the Mathematics domain, with complete results across all
three domains in Appendices C.5 and C.6.

5.1 CAN WEAK GENERATORS MATCH STRONGER GENERATORS IN TTS?

We evaluate TTS with a fixed verifier (GPT-4o) by varying generator capability and reporting pass
rates before and after verification, along with the verification gain ∆p̂V .

Before Verification After Verification TNR TPR Verification Gain

(a) Pass rate

G2-2
B

L-3B L-8BM-8B
G2-9

B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

Q3-4
B
L-70

B
gp

t-4
o

Q3-3
2B

Q3-8
B

Q2.5
-72

B

Generator Models

0.0

0.1

0.2

0.3

0.4

Ve
rif

ic
at

io
n

G
ai

n

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

 /
TN

R

(b) Verification gain and TPR/TNR

Figure 5: TTS performance before and after verification when varying generator strength.
Results are reported on problems with difficulty in the range [0.7, 0.8) from the Mathematics
domain, including 181 problems. (a-c) Pass rate before (blue) and after (orange) adding a fixed
verifier (GPT-4o). The generators in the x-axis are ordered from weaker (left) to stronger (right)
by generation capability measured on the problem subset. (d-f) Bar chart shows the verification gain
∆p̂V (left y-axis) for each generator. Lines show the verifier’s TNR and TPR (right y-axis).

Verification gain peaks for weak–medium generators, enabling them to approach stronger
models post-verification. As shown in Figure 5a, weak generators start with much lower pass
rates but improve dramatically after verification, reaching levels comparable to larger models. For
example, Gemma2-9B starts from a significantly lower baseline but, after verification, achieves a
pass rate nearly matching Gemma2-27B. The performance gap shrinks from 10.3% to 2.5%, closing
75.7% of the original difference. Figure 5b explains this phenomenon: as generator strength increases
(left to right), TNR decreases sharply while TPR rises only modestly, consistent with RQ2 findings.
Consequently, verification gain (gray bars) peaks at weak-medium generators. These generators
achieve high TNR for effective error filtering while maintaining moderate TPR to preserve correct
responses. For the strongest generators, errors become harder to identify, causing TNR decline
and limiting gains. In Appendix C.5, we show the findings derived from the Mathematics domain
generalize well to two other domains in Figure 13. We also provide additional evidence confirming
the generalizability of these findings. First, verification gains peak for weak-medium generators
across a broad range of problem difficulties (d(x) ≥ 0.3) in all domains (Figures 14 to 16). Second,
performance gaps of most weak and strong model pairs can be reduced by verification when
evaluated on the entire domain datasets (Figure 17), mostly achieving 30-50% reduction.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Generators
Weak (Llama3.2-3B)
Medium (Llama3.1-8B)

Strong (Qwen2.5-72B)
Verifiers

Strong (GPT-4o) Weak (Qwen2.5-7B)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Ve
rif

ic
at

io
n

G
ai

n
G

ap

(a) Verification Gain Gap

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(b) TPR

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.2

0.4

0.6

0.8

Tr
ue

 N
eg

at
iv

e
R

at
e

(c) TNR

Figure 6: Weak vs. strong verifiers under varying problem difficulty and generator strength.
The x-axis shows problem difficulty, ordered from hardest to easiest, measured relative to each
generator. (a) Verification gain gap between strong and weak verifiers when applied to weak, medium,
and strong generators. (b) TPR increases as problems become easier; shadow band indicates TPR
gap between two verifiers. (c) As generators strengthen, TNR decreases overall and the TNR gap
(shadow band) narrows. Results are from the Mathematics domain.

5.2 CAN WEAK VERIFIERS MATCH THE GAINS OF STRONG VERIFIERS IN TTS?
We analyze the verification gain gap between a strong verifier (GPT-4o) and a weaker one (Qwen2.5-
7B) across problem difficulty ranges and generator strengths. The verification gain ∆p̂V is defined in
Section 3 and the gap between verifier is ∆p̂Vstrong −∆p̂Vweak . Our goal is to identify when this gap
narrows, as such regimes suggest weak verifiers can substitute for strong ones.
The gap narrows on the extremes of problem difficulty As shown in Figure 6a, the verification
gain gap shrinks as problems become easier, which corresponds to the rising TPR for both weak and
strong verifiers seen in Figure 6b. This aligns with our RQ1 findings that easier problems improve
TPR for all verifiers. Even weak verifiers reliably recognize correct responses on easy problems,
leaving little room for strong ones to provide additional benefit. At the opposite extreme, the gap also
narrows on the hardest problems. As discussed in RQ3 and shown in Figures 19d to 19f, increasing
verifier generation capability (or scaling up to larger models) fails to improve verification accuracy on
hard problems, resulting in only marginal performance differences between weak and strong verifiers.

The gap narrows as generators become stronger. Figure 6 shows that increasing generator
capability reduces the difference between weak and strong verifiers. This is consistent with RQ2
(Section 4.2), where we observed that the verifier’s TNR decreases as the generator capability
increases. As both weak and strong verifiers experience lower TNR, the gap between them also
shrinks, shown as the narrowing shaded band between solid and dashed curves in Figure 6c).

The results here are obtained from the Mathematics domain, and we show the findings generalize
to two other domains in Appendix C.6. In regimes of very easy/hard problems or when evaluating
strong generators’ responses, weak verifiers provide gains to TTS performance comparable to strong
verifiers. However, these convergence regimes coincide with minimal verification benefit overall.
Figures 19a to 19c shows verification gains drop to 0.1 or below for both verifiers on easy and hard
problems, verification on strong generators yields peak gains of only 0.1, precisely where the gap
narrows. Thus, while weak and strong verifiers converge in these regimes, this convergence occurs
where both provide minimal practical value. This reveals that scaling verifiers from 7B models
to GPT-4o fails to overcome fundamental verification challenges, with GPT-4o providing limited
improvement over small open-source models in the identified regimes.

6 CONCLUSION

We study LLM verification across problem difficulty, generator capability, and verifier generation
capability, revealing that verification success depends on their interactions. We find that problem diffi-
culty primarily shapes correct solution recognition, generator capability influences error detectability,
and verifier generation capability correlates with verification in problem difficulty-dependent patterns.
We examine the implications of these findings for verification deployment in TTS, identifying both
opportunities and limitations. Stronger generators may not be necessary, as weaker generators can
approach the post-verification performance of stronger ones when paired with a fixed verifier. This
suggests potential for strategic model pairing that could reduce computational costs in verifier-based
TTS methods. Our results also identify regimes where investing in larger verifiers yields no benefit,
such as when evaluating responses from strong generators or problems at difficulty extremes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work exclusively evaluates large language models on publicly available academic benchmarks
containing mathematical reasoning, knowledge, and natural language problems with objective ground-
truth answers. All experiments involve automated evaluation of model outputs without human subject
participation. The datasets used are established research benchmarks designed for educational
problem-solving tasks. Our study aims to understand verification dynamics to improve the compu-
tational efficiency of LLM systems, posing no ethical concerns regarding privacy, harmful content
generation, or potential misuse.

REPRODUCIBILITY STATEMENT

We provide comprehensive details to ensure reproducibility of our findings. All experiments use
publicly available datasets and open-source/commercial LLMs. We specify the model names, versions,
dataset sources, and inference hyperparameters in Section 3.2. Complete prompt templates for both
generation and verification tasks are provided in Appendix A. The mathematical formulations of all
metrics, along with estimation procedures and aggregation methods, are formally defined and clearly
described in Section 3.1 and Appendix B.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation.
In The Thirteenth International Conference on Learning Representations, 2025.

Anastasios N Angelopoulos, Jacob Eisenstein, Jonathan Berant, Alekh Agarwal, and Adam Fisch.
Cost-optimal active ai model evaluation. arXiv preprint arXiv:2506.07949, 2025.

Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation coefficient. In
Noise reduction in speech processing, pp. 1–4. Springer, Berlin, Heidelberg, 2009.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
systems fail? arXiv preprint arXiv:2503.13657, 2025.

Ding Chen, Qingchen Yu, Pengyuan Wang, Wentao Zhang, Bo Tang, Feiyu Xiong, Xinchi Li,
Minchuan Yang, and Zhiyu Li. xverify: Efficient answer verifier for reasoning model evaluations.
arXiv preprint arXiv:2504.10481, 2025a.

Nuo Chen, Zhiyuan Hu, Qingyun Zou, Jiaying Wu, Qian Wang, Bryan Hooi, and Bingsheng He.
Judgelrm: Large reasoning models as a judge. arXiv preprint arXiv:2504.00050, 2025b.

Qiguang Chen, Libo Qin, Jiaqi WANG, Jingxuan Zhou, and Wanxiang Che. Unlocking the capabilities
of thought: A reasoning boundary framework to quantify and optimize chain-of-thought. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Wei-Lin Chen, Zhepei Wei, Xinyu Zhu, Shi Feng, and Yu Meng. Do llm evaluators prefer themselves
for a reason? arXiv preprint arXiv:2504.03846, 2025c.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang,
Denghui Zhang, Tong Zhang, et al. Rm-r1: Reward modeling as reasoning. arXiv preprint
arXiv:2505.02387, 2025d.

W.S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the
American Statistical Association, 74(368):829–836, 1979. doi: 10.1080/01621459.1979.10481038.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with
first-order logic. arXiv preprint arXiv:2209.00840, 2022.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han. Large
language models can self-improve. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 1051–
1068, Singapore, December 2023a. Association for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-main.67. URL https://aclanthology.org/2023.emnlp-main.67/.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023b.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou, San-
ket Vaibhav Mehta, Lalit K Jain, Virginia Aglietti, Disha Jindal, Peter Chen, et al. Big-bench extra
hard. arXiv preprint arXiv:2502.19187, 2025.

Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li,
Chengwei Qin, Peifeng Wang, Silvio Savarese, et al. A survey of frontiers in llm reasoning:
Inference scaling, learning to reason, and agentic systems. arXiv preprint arXiv:2504.09037, 2025.

Michael Krumdick, Charles Lovering, Varshini Reddy, Seth Ebner, and Chris Tanner. No free labels:
Limitations of llm-as-a-judge without human grounding. arXiv preprint arXiv:2503.05061, 2025.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

H. Kydlíček. Math-verify: Math verification library, 2025. URL https://github.com/
huggingface/math-verify.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022.

11

https://zenodo.org/records/12608602
https://aclanthology.org/2023.emnlp-main.67/
https://github.com/huggingface/math-verify
https://github.com/huggingface/math-verify

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif Rasul,
Longhui Yu, Albert Q. Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in ai4maths
with 860k pairs of competition math problems and solutions. Hugging Face repository, 2024.
Available at https://huggingface.co/datasets/AI-MO/NuminaMath-CoT.

Ruosen Li, Teerth Patel, and Xinya Du. Prd: Peer rank and discussion improve large language model
based evaluations. arXiv preprint arXiv:2307.02762, 2023.

Shalev Lifshitz, Sheila A McIlraith, and Yilun Du. Multi-agent verification: Scaling test-time
compute with multiple verifiers. arXiv preprint arXiv:2502.20379, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen
Zhou. Can 1b llm surpass 405b llm? rethinking compute-optimal test-time scaling. arXiv preprint
arXiv:2502.06703, 2025a.

Shudong Liu, Hongwei Liu, Junnan Liu, Linchen Xiao, Songyang Gao, Chengqi Lyu, Yuzhe Gu,
Wenwei Zhang, Derek F Wong, Songyang Zhang, et al. Compassverifier: A unified and robust
verifier for llms evaluation and outcome reward. arXiv preprint arXiv:2508.03686, 2025b.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. In Conference on Language
Modeling (COLM), 2025c.

Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
Inference-time scaling for generalist reward modeling. arXiv preprint arXiv:2504.02495, 2025d.

Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models. arXiv preprint
arXiv:2410.12832, 2024.

Yujun Mao, Yoon Kim, and Yilun Zhou. Champ: A competition-level dataset for fine-grained analyses
of llms’ mathematical reasoning capabilities. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 13256–13274, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Jon Saad-Falcon, E Kelly Buchanan, Mayee F Chen, Tzu-Heng Huang, Brendan McLaughlin, Tanvir
Bhathal, Shang Zhu, Ben Athiwaratkun, Frederic Sala, Scott Linderman, et al. Shrinking the
generation-verification gap with weak verifiers. arXiv preprint arXiv:2506.18203, 2025.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach, and
Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and generative
verification for llm reasoning. arXiv preprint arXiv:2504.01005, 2025.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Benedikt Stroebl, Sayash Kapoor, and Arvind Narayanan. Inference scaling flaws: The limits of llm
resampling with imperfect verifiers. arXiv preprint arXiv:2411.17501, 2024.

Sijun Tan, Siyuan Zhuang, Kyle Montgomery, William Y Tang, Alejandro Cuadron, Chenguang
Wang, Raluca Ada Popa, and Ion Stoica. Judgebench: A benchmark for evaluating llm-based
judges. arXiv preprint arXiv:2410.12784, 2024.

12

https://huggingface.co/datasets/AI-MO/NuminaMath-CoT

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Han Wang, Archiki Prasad, Elias Stengel-Eskin, and Mohit Bansal. Soft self-consistency improves
language model agents. arXiv preprint arXiv:2402.13212, 2024a.

Peifeng Wang, Austin Xu, Yilun Zhou, Caiming Xiong, and Shafiq Joty. Direct judgement preference
optimization. arXiv preprint arXiv:2409.14664, 2024b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems, 37:
95266–95290, 2024c.

Jason Wei. The asymmetry of verification and verifier’s law. https://www.jasonwei.net/
blog/asymmetry-of-verification-and-verifiers-law, 2025.

Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swarnadeep
Saha. J1: Incentivizing thinking in llm-as-a-judge via reinforcement learning. arXiv preprint
arXiv:2505.10320, 2025.

Austin Xu, Yilun Zhou, Xuan-Phi Nguyen, Caiming Xiong, and Shafiq Joty. J4r: Learning to judge
with equivalent initial state group relative policy optimization. arXiv preprint arXiv:2505.13346,
2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. In The Thirteenth International Conference
on Learning Representations, 2025.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng. Reclor: A reading comprehension dataset
requiring logical reasoning. arXiv preprint arXiv:2002.04326, 2020.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. In The Thirteenth International
Conference on Learning Representations, 2025.

Yilun Zhou, Austin Xu, Peifeng Wang, Caiming Xiong, and Shafiq Joty. Evaluating judges as
evaluators: The jetts benchmark of llm-as-judges as test-time scaling evaluators. arXiv preprint
arXiv:2504.15253, 2025.

Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang Xiong,
Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, et al. Agent-as-a-judge:
Evaluate agents with agents. arXiv preprint arXiv:2410.10934, 2024.

13

https://www.jasonwei.net/blog/asymmetry-of-verification-and-verifiers-law
https://www.jasonwei.net/blog/asymmetry-of-verification-and-verifiers-law

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used exclusively as writing assistance tools in preparing this manuscript. Specifically,
we employed LLMs for grammar checking. An LLM-based image generation tool was used to
create the robot caricature in Figure 1. All research ideation, experimental design, analysis, and
scientific conclusions are entirely the work of the authors. The LLMs played no role in the conception
of research questions, methodology development, or interpretation of results. Authors take full
responsibility for all content in this paper, including any text refined with LLM assistance.

A PROMPT TEMPLATES

Response Generation Prompt. Here, we provide the prompts to generate model responses to
questions from three domains. For each model, we use its default system prompt as specified in the
model documentation.

Mathematical datasets

User Prompt
{problem}
Please reason step by step, and put your final answer within \\boxed{{}}.

Knowledge: MMLU-Pro

User Prompt
The following are multiple choice questions (with answers) about {category}. Think step
by step and then output the answer in the format of \"The answer is (X)\" where X is the
correct letter choice.

Question: {question}
Options:
{options}

Answer: Let’s think step by step.

Natural Language Reasoning: ReClor

User Prompt
Answer the following multiple choice question. The last line of your response should be
of the following format: ’Answer: $LETTER’ (without quotes) where $LETTER is one of
ABCD. Think step by step before answering.

{context}

{question}

{choices}

Output your answer strictly following this format:
Reasoning: <step-by-step reasoning>
Answer: <your choice>

Natural Language Reasoning: FOLIO

User Prompt
{question}

Based on the above, can the following be inferred?
{conclusion}

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Think step-by-step before outputting your answer, which must be "Yes", "No", or
"Uncertain"

Output your answer strictly following this format:
Reasoning: Your reasoning here
Answer: Yes or No or Uncertain

Natural Language Reasoning: GPQA Diamond

User Prompt
Answer the following multiple choice question. The last line of your response should be
of the following format: ’Answer: $LETTER’ (without quotes) where $LETTER is one of
ABCD. Think step by step before answering.

Question: {question}
Options:
{choices}

Output your answer strictly following this format:
Reasoning: <step-by-step reasoning>
Answer: <your choice>

Verification Evaluation Prompt. Below we present the prompt template used to evaluate verification
performance.

System Prompt
Please act as an impartial judge and evaluate the correctness of the response provided
by an AI assistant to the user prompt displayed below. You will be given the assistant’s
response.

When evaluating the assistant’s response, identify any mistakes or inaccurate
information. Be as objective as possible. Avoid any biases, such as order of responses,
length, or stylistic elements like formatting.

Before providing an your final verdict, think through the judging process and output
your thoughts as an explanation

After providing your explanation, you must output only one of the following choices as
your final verdict with a label:

1. The response is correct: [[Correct]]
2. The response is incorrect: [[Incorrect]]

Use the following template:
Explanation: Your detailed thought process as an explanation.
Verdict: [[Correct]] or [[Incorrect]].

User Prompt
<|User Prompt|>
{question}

<|The Start of Assistant’s Answer|>
{response}
<|The End of Assistant’s Answer|>

Fallback Correction Check Prompt. When Math-Verify returns unparsable or incorrect results,
we employ LLM-as-judge as a fallback mechanism for correctness verification. Below, we provide
the prompt template used for this secondary verification step:

User Prompt
Given a math problem, its correct answer, and the model’s generated answer, determine if
the model’s generated answer is correct.

VALIDATION CRITERIA:
1. Identify the final answer, which is usually put inside \\boxed{{answer}} or

answer.
2. The answer must be mathematically equivalent to the correct answer

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

3. The answer must be complete with a clear final result
4. The answer must not just contain similar numbers - it must reach the correct
conclusion
5. If the generated answer contains multiple different final answers or is ambiguous
about which is the final answer, mark it as ’False’

IMPORTANT: Just having the same numbers as the ground truth is NOT sufficient - the
model must actually solve the problem correctly and provide the correct final answer in
the designated format.

Respond with ’True’ if the answer is correct and complete, and ’False’ if it is
incorrect or incomplete.
Directly provide your judgement ’True’ or ’False’ without any other description.

Problem: {problem}
Correct Answer: {ground_truth_answer}
Model’s Generated Answer: {model_response}
Your judgement:

B ADDITIONAL PRELIMINARIES AND SETUP

B.1 DETAILS OF MATH PROBLEMS CORRECTNESS CHECK

Here we detail the evaluation procedure for establishing response correctness, including fallback
methods. Ground-truth correctness is determined using Math-Verify (Kydlíček, 2025). If
Math-Verify fails to parse an answer or returns incorrect, we recheck with other string-matching
verifiers from open-source repositories lm-eval (Gao et al., 2024), Dr.GRPO (Liu et al., 2025c),
and Qwen2.5-Math (Yang et al., 2024). We further apply GPT-4.1-mini and Qwen2.5-72B to con-
duct reference-based evaluation and check the equivalence of the model prediction and ground-truth
answers. The prompt template for LLM-based verification is provided in Appendix A.

B.2 MODEL NAMING CONVENTIONS

Throughout this paper, we use abbreviated model names in figures and tables to improve readability
and space efficiency. Table 1 provides the complete mapping between abbreviations and full model
names. All models referenced are instruction-tuned versions unless otherwise specified.

Table 1: Mapping between abbreviated model names used in figures and their full names. All models
are instruction-tuned versions.

Abbreviation Full Model Name Abbreviation Full Model Name
G2-2B Gemma2-2B Q3-4B Qwen3-4B
G2-9B Gemma2-9B Q3-8B Qwen3-8B
G2-27B Gemma2-27B Q3-32B Qwen3-32B

L3-3B (L-3B) Llama3.2-3B M-8B Ministral-8B
L3-8B (L-8B) Llama3.1-8B M-24B Mistral-Small-24B

L3-70B (L-70B) Llama3.3-70B gpt-4o GPT-4o
Q2.5-3B Qwen2.5-3B
Q2.5-7B Qwen2.5-7B
Q2.5-72B Qwen2.5-72B

B.3 DETAILED EXPERIMENTAL SETUP OF RQ2

Due to significant differences in generator capability, when measuring TPR, for some very difficult
problems, none of the 64 responses sampled from a weak model are correct. To ensure fair evaluation
unaffected by intrinsic problem difficulty, we exclude these problems and keep only those where
every generator produces at least one correct response. We apply analogous filtering for TNR,
keeping only problems where each generator produces at least one incorrect response. Beyond
filtering problems, we also carefully balance how many responses we evaluate from each generator.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

As described in Section 3, we subsample 8 responses from each generator’s 64-sample pool for
verification evaluation, aiming for 4 correct and 4 incorrect when possible. However, across these
8-response subsets, stronger generators may have produced more correct responses than weaker
ones. This would bias our metrics by creating different denominators per generator. To address this,
we randomly select one correct response per problem from each generator’s 8-response pool when
computing TPR (and analogously for TNR). We repeat this evaluation with random selections eight
times and report the mean.

C ADDITIONAL RESULTS

C.1 MORE DETAILS IN PROBLEM DIFFICULTY ANALYSIS

In Section 4.1, we show that problem difficulty primarily influences the verifier’s ability to recognize
correct responses. As discussed in the main paper, our analysis is conducted at two levels of
granularity: response level and problem level. Figure 2 shows results at the response level. Figures 7
and 8 show results at the problem level, summarizing the distribution of TPR and TNR across
difficulty quartiles. Together, these results confirm our main finding that problem difficulty strongly
correlates with TPR but has no systematic effect on TNR.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Llama-3.2-3B Gemma2-2B Qwen2.5-3B Qwen3-4B Llama3.1-8B

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Gemma2-9B Qwen2.5-7B Qwen3-8B Llama3.3-70B Gemma2-27B

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Qwen2.5-72B Qwen3-32B Ministral-8B Mistral-Small-24B GPT-4o

(a) Mathematics

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Llama-3.2-3B Gemma2-2B Qwen2.5-3B Qwen3-4B Llama3.1-8B

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Gemma2-9B Qwen2.5-7B Qwen3-8B Llama3.3-70B Gemma2-27B

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Qwen2.5-72B Qwen3-32B Ministral-8B Mistral-Small-24B GPT-4o

(b) Knowledge

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Llama-3.2-3B Gemma2-2B Qwen2.5-3B Qwen3-4B Llama3.1-8B

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Gemma2-9B Qwen2.5-7B Qwen3-8B Llama3.3-70B Gemma2-27B

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Qwen2.5-72B Qwen3-32B Ministral-8B Mistral-Small-24B GPT-4o

(c) NL Reasoning

Figure 7: Problem difficulty correlates with verification TPR on per-problem level across three
domains. Each boxplot shows the distribution of per-problem TPR for 15 verifier models, grouped
by difficulty quartiles. TPR exhibits a strong positive correlation with problem easiness: easier
problems consistently yield higher and less variable TPR.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0
Tr

ue
 N

eg
at

iv
e

R
at

e
Llama-3.2-3B Gemma2-2B Qwen2.5-3B Qwen3-4B Llama3.1-8B

0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

Gemma2-9B Qwen2.5-7B Qwen3-8B Llama3.3-70B Gemma2-27B

0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

Qwen2.5-72B Qwen3-32B Ministral-8B Mistral-Small-24B GPT-4o

(a) Mathematics

0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

Llama-3.2-3B Gemma2-2B Qwen2.5-3B Qwen3-4B Llama3.1-8B

0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

Gemma2-9B Qwen2.5-7B Qwen3-8B Llama3.3-70B Gemma2-27B

0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

Qwen2.5-72B Qwen3-32B Ministral-8B Mistral-Small-24B GPT-4o

(b) Knowledge

0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

Llama-3.2-3B Gemma2-2B Qwen2.5-3B Qwen3-4B Llama3.1-8B

0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

Gemma2-9B Qwen2.5-7B Qwen3-8B Llama3.3-70B Gemma2-27B

0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

Qwen2.5-72B Qwen3-32B Ministral-8B Mistral-Small-24B GPT-4o

(c) NL Reasoning

Figure 8: Problem difficulty shows no systematic correlation with verification TNR on per-
problem level across three domains. Each boxplot shows the distribution of per-problem metrics
for 15 verifier models, grouped by difficulty quartiles. TNR doesn’t show obvious correlation with
problem difficulty, exhibiting inconsistent trends across models.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.2 ANALYSIS ON REASONING MODEL

Our main analysis focuses on instruction-tuned models, which represent the typical setting for
verification systems in current practice, including recent judge models (Tan et al., 2024; Wang et al.,
2024b) and verifier work (Liu et al., 2025b; Zhang et al., 2025). We prioritize models without
extensive CoT reasoning because verification often demands low-latency solutions, particularly for
reinforcement learning training and TTS applications where rapid evaluation is critical. However, a
recent trend involves training long-reasoning evaluators (Chen et al., 2025d; Whitehouse et al., 2025)
that generate extended CoT before making verification decisions. To examine whether our findings
generalize to this emerging paradigm, we include two reasoning models (Qwen3-8B-Thinking and
Qwen3-32B-Thinking2) and analyze how they perform across our research questions. These models
generate longer reasoning traces before producing binary verdicts, representing the state-of-the-art in
reasoning-enhanced verification.

In Figures 9 and 10, we evaluate the conclusion of RQ1 (Section 4.1). We observe that reasoning
models exhibit the same TPR pattern as instruction-tuned models: easier problems consistently
yield higher TPR across all three domains. This indicates that the fundamental relationship between
problem difficulty and correctness recognition persists with extended reasoning. However, reasoning
models exhibit a notable difference in TNR behavior. Unlike instruction-tuned models, where
TNR showed no systematic relationship with problem difficulty, both reasoning models demonstrate
improved TNR as problems become easier across all three domains. This pattern suggests that, with
extended reasoning, error detection becomes easier when problems become easier.

In Figure 11, we evaluate the findings of RQ2 (Section 4.2) on reasoning models and find that they
maintain the core patterns observed in instruction-tuned models. TPR remains consistently high with
mild increases as generator strength increases, while TNR decreases more significantly (goes from
red to white) with stronger generators. This indicates that the fundamental challenge of detecting
errors from capable generators persists despite enhanced reasoning capabilities.

These findings demonstrate that reasoning models offer some advantages for error detection on easier
problems while preserving the core verification dynamics we identified. Problem difficulty continues
to govern correctness recognition, and generator capability primarily influences error detectability
across different verification paradigms.

Qwen3-8B-Thinking Qwen3-32B-Thinking

Hardest Hard Easy Easiest
Problem Difficulty

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(a) TPR (Mathematics)

Hardest Hard Easy Easiest
Problem Difficulty

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(b) TPR (Knowledge)

Hardest Hard Easy Easiest
Problem Difficulty

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(c) TPR (NL Reasoning)

Hardest Hard Easy Easiest
Problem Difficulty

0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

(d) TNR (Mathematics)

Hardest Hard Easy Easiest
Problem Difficulty

0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

(e) TNR (Knowledge)

Hardest Hard Easy Easiest
Problem Difficulty

0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

(f) TNR (NL Reasoning)

Figure 9: Verification performance of reasoning models across problem difficulty at the per-
response level. TPR (a-c) and TNR (d-f) for Qwen3-8B-Thinking and Qwen3-32B-Thinking across
difficulty quartiles in three domains. Both reasoning models show increasing TPR and TNR as
problem difficulty decreases.

2We use the suggested sampling hyperparameter (temperature 0.6, top-p 0.95).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

True Positive Rate (TPR)

0.0

0.5

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Qwen3-8B-Thinking

(a) Mathematics
0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Qwen3-8B-Thinking

(b) Knowledge
0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Qwen3-8B-Thinking

(c) NL Reasoning

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Qwen3-32B-Thinking

(d) Mathematics
0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Qwen3-32B-Thinking

(e) Knowledge
0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Qwen3-32B-Thinking

(f) NL Reasoning

True Negative Rate (TNR)

0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

Qwen3-8B-Thinking

(g) Mathematics
0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

Qwen3-8B-Thinking

(h) Knowledge
0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

Qwen3-8B-Thinking

(i) NL Reasoning

0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

Qwen3-32B-Thinking

(j) Mathematics
0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

Qwen3-32B-Thinking

(k) Knowledge
0.0

0.5

1.0

Tr
ue

 N
eg

at
iv

e
R

at
e

Qwen3-32B-Thinking

(l) NL Reasoning

Figure 10: Verification metrics for reasoning models across difficulty quartiles at the per-
problem level. Each boxplot shows the distribution of per-problem TPR and TNR for Qwen3-8B-
Thinking and Qwen3-32B-Thinking across difficulty quartiles in three domains. Both TPR and
TNR distributions shift higher and become less variable as problems become easier.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Performance Rate

G2-2
B

L3-3
B

L3-8
B

M-8B
G2-9

B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L3-7
0B

GPT-4
o

Q2.5
-72

B
Q3-4

B
Q3-8

B

Q3-3
2B

Generator

Q3-8B-thinking

Q3-32B-thinkingVe
rif

ie
r

0.84 0.92 0.94 0.93 0.94 0.94 0.96 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98

0.80 0.90 0.92 0.92 0.93 0.94 0.95 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.99

(a) TPR (Mathematics)

G2-2
B

L3-3
B

M-8B

Q2.5
-3B

L3-8
B

G2-9
B

G2-2
7B

Q2.5
-7B

Q3-4
B

M-24
B

Q3-8
B

L3-7
0B

Q2.5
-72

B

GPT-4
o

Q3-3
2B

Generator

Q3-8B-thinking

Q3-32B-thinking

0.74 0.80 0.80 0.81 0.83 0.82 0.85 0.86 0.88 0.90 0.90 0.91 0.90 0.92 0.93

0.75 0.80 0.81 0.84 0.85 0.84 0.86 0.87 0.89 0.90 0.91 0.92 0.90 0.92 0.93

(b) TPR (Knowledge)

L3-3
B

G2-2
B

M-8B

Q2.5
-3B

L3-8
B

G2-9
B

Q2.5
-7B

G2-2
7B

Q3-4
B

M-24
B

Q3-8
B

L3-7
0B

Q2.5
-72

B

GPT-4
o

Q3-3
2B

Generator

Q3-8B-thinking

Q3-32B-thinking

0.85 0.83 0.85 0.84 0.87 0.88 0.88 0.89 0.90 0.90 0.90 0.92 0.91 0.92 0.92

0.86 0.85 0.87 0.87 0.88 0.88 0.89 0.90 0.91 0.91 0.91 0.92 0.91 0.92 0.93

(c) TPR (NL Reasoning)

G2-2
B

L3-3
B

L3-8
B

M-8B
G2-9

B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L3-7
0B

GPT-4
o

Q2.5
-72

B
Q3-4

B
Q3-8

B

Q3-3
2B

Generator

Q3-8B-thinking

Q3-32B-thinkingVe
rif

ie
r

0.95 0.95 0.92 0.93 0.88 0.86 0.91 0.84 0.86 0.81 0.78 0.79 0.67 0.63 0.60

0.95 0.95 0.93 0.93 0.88 0.87 0.91 0.85 0.86 0.81 0.79 0.79 0.68 0.67 0.60

(d) TNR (Mathematics)

G2-2
B

L3-3
B

M-8B

Q2.5
-3B

L3-8
B

G2-9
B

G2-2
7B

Q2.5
-7B

Q3-4
B

M-24
B

Q3-8
B

L3-7
0B

Q2.5
-72

B

GPT-4
o

Q3-3
2B

Generator

Q3-8B-thinking

Q3-32B-thinking

0.83 0.81 0.77 0.78 0.74 0.72 0.69 0.70 0.61 0.64 0.55 0.62 0.60 0.59 0.51

0.85 0.85 0.80 0.80 0.78 0.74 0.73 0.72 0.69 0.68 0.64 0.69 0.63 0.62 0.53

(e) TNR (Knowledge)

L3-3
B

G2-2
B

M-8B

Q2.5
-3B

L3-8
B

G2-9
B

Q2.5
-7B

G2-2
7B

Q3-4
B

M-24
B

Q3-8
B

L3-7
0B

Q2.5
-72

B

GPT-4
o

Q3-3
2B

Generator

Q3-8B-thinking

Q3-32B-thinking

0.74 0.78 0.73 0.73 0.70 0.68 0.67 0.65 0.59 0.60 0.53 0.54 0.59 0.55 0.50

0.78 0.77 0.75 0.77 0.73 0.67 0.72 0.67 0.64 0.65 0.61 0.58 0.58 0.58 0.52

(f) TNR (NL Reasoning)

Figure 11: Reasoning models as verifiers paired with generators of varying capability. TPR
(a-c) and TNR (d-f) for Qwen3-8B-Thinking and Qwen3-32B-Thinking verifiers when evaluating
responses from 15 generator models across three domains. Generators are ordered left-to-right
by increasing generation capability, measured separately for each domain. Red indicates higher
performance, blue indicates lower performance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.3 EXPLANATION OF BELOW-RANDOM VERIFICATION PERFORMANCE ON HARD PROBLEMS

In Figure 4f, we observe that verifiers achieve balanced accuracy below the random baseline of 0.5 on
hard problems from the NL Reasoning domain, a result that needs explanation. This phenomenon can
occur in reference-free evaluation when verifiers employ a “solve-and-match” verification strategy,
where they attempt to solve the problem independently and then compare their answer with the
generator’s response.

For NL Reasoning tasks with 3-way or 4-way multiple choice formats, this mechanism can produce
below-random performance when verifiers consistently fail to solve hard problems correctly. In such
cases, the verifier never correctly identifies true positive responses (TPR = 0) because it always
produces wrong answers that don’t match correct generator responses. However, it can still identify
some true negatives when both the generator and verifier happen to select the same wrong answer. For
three-way choices, the TNR = 0.5. With TPR near zero and TNR remaining positive, the balanced
accuracy falls below 0.5.

This phenomenon is specific to tasks with limited answer spaces. The affected problems are those
in the hard set with d(x) < 0.3, where even strong models achieve very low pass rates. It occurs in
NL Reasoning because this domain includes three-way multiple-choice questions from datasets like
FOLIO. It does not occur in Mathematics, where responses are open-ended strings, or in Knowledge
domains with 10-way multiple choice, where the large answer space dilutes the effect.

C.4 ADDITIONAL RESULTS OF VERIFIER GENERATION CAPABILITY

Here we present additional results for RQ3 from Section 4.3, providing correlation analysis between
verifier generation capability and verification accuracy across the entire problem difficulty range in
Figure 12. The results confirm our finding from the main paper that the correlation form varies with
problem difficulty: medium problems show strong positive linear relationships, while hard and easy
problems exhibit non-linear trends.

These findings highlight the need for regime-aware verifier strategies. On hard problems, strong
verifiers are unnecessary as performance plateaus regardless of capability. On medium problems,
selecting models with better generation capability consistently yields better verification. On easy
problems, selecting higher-capability models works well among weak-to-medium verifiers, but
strong models with similar capabilities show vastly different verification performance. Thus, optimal
selection of strong verifiers requires supplementary benchmarking or alternative evaluation metrics.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Qwen2.5
Qwen3

Llama3
Gemma2

Mistral
GPT

2-4B
7-9B

24-32B
70B+

0.5

0.6

0.7

0.8

0.9

B
al

an
ce

d
A

cc
ur

ac
y

Difficulty range: (0.0,0.1) Difficulty range: [0.1,0.2) Difficulty range: [0.2,0.3) Difficulty range: [0.3,0.4) Difficulty range: [0.4,0.5)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

0.5

0.6

0.7

0.8

0.9

B
al

an
ce

d
A

cc
ur

ac
y

Difficulty range: [0.5,0.6)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

Difficulty range: [0.6,0.7)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

Difficulty range: [0.7,0.8)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

Difficulty range: [0.8,0.9)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

Difficulty range: [0.9,1.0)

(a) Mathematics

0.4

0.6

0.8

1.0

B
al

an
ce

d
A

cc
ur

ac
y

Difficulty range: (0.0,0.1) Difficulty range: [0.1,0.2) Difficulty range: [0.2,0.3) Difficulty range: [0.3,0.4) Difficulty range: [0.4,0.5)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

0.4

0.6

0.8

1.0

B
al

an
ce

d
A

cc
ur

ac
y

Difficulty range: [0.5,0.6)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

Difficulty range: [0.6,0.7)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

Difficulty range: [0.7,0.8)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

Difficulty range: [0.8,0.9)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

Difficulty range: [0.9,1.0)

(b) Knowledge

0.4

0.6

0.8

1.0

B
al

an
ce

d
A

cc
ur

ac
y

Difficulty range: (0.0,0.1) Difficulty range: [0.1,0.2) Difficulty range: [0.2,0.3) Difficulty range: [0.3,0.4) Difficulty range: [0.4,0.5)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

0.4

0.6

0.8

1.0

B
al

an
ce

d
A

cc
ur

ac
y

Difficulty range: [0.5,0.6)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

Difficulty range: [0.6,0.7)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

Difficulty range: [0.7,0.8)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

Difficulty range: [0.8,0.9)

0.0 0.2 0.4 0.6 0.8 1.0
Verifiers' Generation Capability

Difficulty range: [0.9,1.0)

(c) NL Reasoning

Figure 12: Correlation between verification performance and generation capability across
problem difficulty ranges on three domains. Balanced accuracy as a function of verifier generation
capability for difficulty ranges from (0.0,0.1) to [0.9,1.0). Performance exhibits three distinct regimes:
plateaus on hard problems, strong positive correlation on medium problems, and high variance with
saturated capability on easy problems. Marker shapes indicate model family; sizes represent model
scale.

C.5 ADDITIONAL RESULTS OF GENERATOR ANALYSIS IN TEST-TIME SCALING

This subsection provides complementary results for the generator analysis presented in Section 5.1,
demonstrating the generalizability of our findings across domains and problem difficulties. Figure 13
extends the analysis from the main paper to Knowledge and NL Reasoning domains. Our central
finding from RQ4 holds consistently. As Figures 13a to 13c shows, verification gains peak at
weak-medium generator strength, enabling these generators to substantially close performance gaps
with stronger models. The underlying mechanism driving this phenomenon, identified in RQ2,
remains consistent across domains. Figures 13d to 13f shows that, as generator strength increases,
TNR decreases sharply while TPR rises only modestly. For the strongest generators, the collapsed
TNR limits verification gains as errors become increasingly difficult to detect. This brings high

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

verification gains at weak-medium generator levels. In the main paper, we show results on problems
with difficulty range d(x) ∈ [0.7, 0.8) in Figure 5. Here, Figures 14 to 16 report results across the
entire difficulty range for three domains, respectively. Figure 17 shows the percentage of performance
gap closed by verification for all weak-to-strong generator pairs, computed on all problems within
each domain.

Before Verification After Verification TNR TPR Verification Gain

(a) Pass rate (Mathematics) (b) Pass rate (Knowledge) (c) Pass rate (NL Reasoning)

G2-2
B

L-3B L-8BM-8B
G2-9

B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

Q3-4
B
L-70

B
gp

t-4
o

Q3-3
2B

Q3-8
B

Q2.5
-72

B

Generator Models

0.0

0.1

0.2

0.3

0.4

Ve
rif

ic
at

io
n

G
ai

n

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

 /
TN

R

(d) Verif. metrics (Mathematics)

G2-2
B

L-3BM-8B

Q2.5
-3B L-8B

G2-9
B

Q2.5
-7B

G2-2
7B

Q3-4
B
M-24

B
Q3-8

B

Q2.5
-72

B

Q3-3
2B

L-70
B
gp

t-4
o

Generator Models

0.0

0.2

0.4

0.6
Ve

rif
ic

at
io

n
G

ai
n

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

 /
TN

R

(e) Verif. metrics (Knowledge)

G2-2
B

L-3B

Q2.5
-3BM-8B L-8B

Q2.5
-7B

G2-9
B
Q3-4

B

G2-2
7B

M-24
B
Q3-8

B
L-70

B

Q3-3
2B

Q2.5
-72

B
gp

t-4
o

Generator Models

0.0

0.1

0.2

0.3

0.4

Ve
rif

ic
at

io
n

G
ai

n

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

 /
TN

R

(f) Verif. metrics (NL Reasoning)

Figure 13: TTS performance before and after verification when sweeping generator strength. (a-
c) Pass rate before (blue) and after (orange) adding a fixed verifier (GPT-4o), across generators ordered
from weaker (left) to stronger (right) by generation capability. (d-f) Bar chart shows the verification
gain ∆p̂V (left y-axis) for each generator. Lines show the verifier’s TNR and TPR on the same
datasets (right y-axis). Results are reported on problems with difficulty in the range [0.7, 0.8) for three
domains. Problem counts across domains: 181 (Mathematics), 154 (Knowledge), 97 (NL Reasoning).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G2-2
7B

M-8B L-3B L-8B

Q2.5
-3B

G2-2
B
G2-9

B

Q2.5
-7B

M-24
B

Q2.5
-72

B
L-70

B
gp

t-4
o
Q3-4

B
Q3-8

B

Q3-3
2B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) (0.0,0.1)

G2-2
7B

M-8B L-3B L-8B

Q2.5
-3B

G2-2
B
G2-9

B

Q2.5
-7B

M-24
B

Q2.5
-72

B
L-70

B
gp

t-4
o
Q3-4

B
Q3-8

B

Q3-3
2B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) (0.0,0.1)

G2-2
B

M-8B L-8B
G2-9

B
L-3B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

Q2.5
-72

B
gp

t-4
o
L-70

B
Q3-4

B
Q3-8

B

Q3-3
2B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.1,0.2)

G2-2
B

M-8B L-8B
G2-9

B
L-3B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

Q2.5
-72

B
gp

t-4
o
L-70

B
Q3-4

B
Q3-8

B

Q3-3
2B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.1,0.2)

G2-2
B

L-8B L-3B
G2-9

B
M-8B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L-70
B

gp
t-4

o

Q2.5
-72

B
Q3-4

B
Q3-8

B

Q3-3
2B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.2,0.3)

G2-2
B

L-8B L-3B
G2-9

B
M-8B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L-70
B
gp

t-4
o

Q2.5
-72

B
Q3-4

B
Q3-8

B

Q3-3
2B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.2,0.3)

G2-2
B

L-3B
G2-9

B
L-8B M-8B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L-70
B

gp
t-4

o
Q3-4

B

Q2.5
-72

B
Q3-8

B

Q3-3
2B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.3,0.4)

G2-2
B

L-3B
G2-9

B
L-8BM-8B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L-70
B
gp

t-4
o
Q3-4

B

Q2.5
-72

B
Q3-8

B

Q3-3
2B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.3,0.4)

G2-2
B

L-3B
G2-9

B
L-8B M-8B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L-70
B

gp
t-4

o
Q3-4

B

Q2.5
-72

B
Q3-8

B

Q3-3
2B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.4,0.5)

G2-2
B

L-3B
G2-9

B
L-8BM-8B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L-70
B
gp

t-4
o
Q3-4

B

Q2.5
-72

B
Q3-8

B

Q3-3
2B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.4,0.5)

G2-2
B

L-3B
G2-9

B
L-8B M-8B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L-70
B
Q3-4

B
gp

t-4
o
Q3-8

B

Q2.5
-72

B

Q3-3
2B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.5,0.6)

G2-2
B

L-3B
G2-9

B
L-8BM-8B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L-70
B
Q3-4

B
gp

t-4
o
Q3-8

B

Q2.5
-72

B

Q3-3
2B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.5,0.6)

G2-2
B

L-3B
G2-9

B
L-8B M-8B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L-70
B
Q3-8

B
gp

t-4
o
Q3-4

B

Q3-3
2B

Q2.5
-72

B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.6,0.7)

G2-2
B

L-3B
G2-9

B
L-8BM-8B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L-70
B
Q3-8

B
gp

t-4
o
Q3-4

B

Q3-3
2B

Q2.5
-72

B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.6,0.7)

G2-2
B

L-3B L-8B M-8B
G2-9

B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

Q3-4
B

L-70
B

gp
t-4

o

Q3-3
2B

Q3-8
B

Q2.5
-72

B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.7,0.8)

G2-2
B

L-3B L-8BM-8B
G2-9

B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

Q3-4
B
L-70

B
gp

t-4
o

Q3-3
2B

Q3-8
B

Q2.5
-72

B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0
Pa

ss
 R

at
e

Problem Difficulty (Pass Rate) [0.7,0.8)

G2-2
B

L-3B L-8B M-8B
G2-9

B

Q2.5
-3B

G2-2
7B

Q2.5
-7B

M-24
B

L-70
B
Q3-4

B
Q3-8

B

Q3-3
2B

gp
t-4

o

Q2.5
-72

B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.8,0.9)

G2-2
B

L-3B L-8BM-8B
G2-9

B

Q2.5
-3B

G2-2
7B

Q2.5
-7B

M-24
B
L-70

B
Q3-4

B
Q3-8

B

Q3-3
2B

gp
t-4

o

Q2.5
-72

B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.8,0.9)

G2-2
B

L-3B L-8B M-8B

Q2.5
-3B

G2-9
B

G2-2
7B

Q2.5
-7B

Q3-8
B
Q3-4

B
M-24

B

Q3-3
2B

L-70
B
gp

t-4
o

Q2.5
-72

B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.9,1.0)

G2-2
B

L-3B L-8BM-8B

Q2.5
-3B

G2-9
B

G2-2
7B

Q2.5
-7B

Q3-8
B
Q3-4

B
M-24

B

Q3-3
2B

L-70
B
gp

t-4
o

Q2.5
-72

B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.9,1.0)

Figure 14: Verification-augmented TTS performance across the full range of problem difficulties,
shown here for the Mathematics domain. Each pair of figure corresponds to a different difficulty
interval (measured by pass rate d(x)), with the left panel showing pass rates before (blue) and after
(orange) verification, and the right panel showing verification gain ∆p̂V (bars) alongside the verifier’s
TNR (green) and TPR (purple). Compared to Figure 5, which focused only on problems with
d(x) ∈ [0.7, 0.8), this includes the entire difficulty range.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

G2-9
B
Q3-4

B

G2-2
7B

Q2.5
-72

B
G2-2

B
L-70

B

Q2.5
-7B

M-24
B

L-8B L-3B
Q3-8

B
M-8B

Q2.5
-3B

Q3-3
2B

gp
t-4

o

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) (0.0,0.1)

G2-9
B
Q3-4

B

G2-2
7B

Q2.5
-72

B
G2-2

B
L-70

B

Q2.5
-7B

M-24
B

L-8B L-3B
Q3-8

B
M-8B

Q2.5
-3B

Q3-3
2B

gp
t-4

o

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0
Pa

ss
 R

at
e

Problem Difficulty (Pass Rate) (0.0,0.1)

L-8B

Q2.5
-3B

G2-9
B
G2-2

B
M-8B

Q3-8
B
Q3-4

B

Q2.5
-7B

G2-2
7B

Q2.5
-72

B
M-24

B
L-3B

L-70
B
gp

t-4
o

Q3-3
2B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.1,0.2)

L-8B

Q2.5
-3B

G2-9
B
G2-2

B
M-8B

Q3-8
B
Q3-4

B

Q2.5
-7B

G2-2
7B

Q2.5
-72

B
M-24

B
L-3B

L-70
B
gp

t-4
o

Q3-3
2B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.1,0.2)

G2-2
B

M-8B L-3B
G2-9

B

G2-2
7B

L-8B

Q2.5
-3B

Q2.5
-7B

Q3-4
B
M-24

B
Q3-8

B

Q2.5
-72

B
L-70

B

Q3-3
2B

gp
t-4

o

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.2,0.3)

G2-2
B

M-8B L-3B
G2-9

B

G2-2
7B

L-8B

Q2.5
-3B

Q2.5
-7B

Q3-4
B
M-24

B
Q3-8

B

Q2.5
-72

B
L-70

B

Q3-3
2B

gp
t-4

o

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.2,0.3)

G2-2
B
G2-9

B
L-3B M-8B L-8B

Q2.5
-3B

G2-2
7B

Q2.5
-7B

Q3-4
B
M-24

B
Q3-8

B
L-70

B

Q2.5
-72

B

Q3-3
2B

gp
t-4

o

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.3,0.4)

G2-2
B
G2-9

B
L-3BM-8B L-8B

Q2.5
-3B

G2-2
7B

Q2.5
-7B

Q3-4
B
M-24

B
Q3-8

B
L-70

B

Q2.5
-72

B

Q3-3
2B

gp
t-4

o

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.3,0.4)

G2-2
B

M-8B L-3B
G2-9

B

Q2.5
-3B L-8B

G2-2
7B

Q2.5
-7B

Q3-4
B
M-24

B
Q3-8

B

Q2.5
-72

B
L-70

B
gp

t-4
o

Q3-3
2B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.4,0.5)

G2-2
B

M-8B L-3B
G2-9

B

Q2.5
-3B L-8B

G2-2
7B

Q2.5
-7B

Q3-4
B
M-24

B
Q3-8

B

Q2.5
-72

B
L-70

B
gp

t-4
o

Q3-3
2B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.4,0.5)

G2-2
B

L-3B M-8B
G2-9

B

Q2.5
-3B L-8B

G2-2
7B

Q2.5
-7B

Q3-4
B
M-24

B
Q3-8

B
L-70

B
gp

t-4
o

Q2.5
-72

B

Q3-3
2B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.5,0.6)

G2-2
B

L-3BM-8B
G2-9

B

Q2.5
-3B L-8B

G2-2
7B

Q2.5
-7B

Q3-4
B
M-24

B
Q3-8

B
L-70

B
gp

t-4
o

Q2.5
-72

B

Q3-3
2B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.5,0.6)

G2-2
B

L-3B M-8B

Q2.5
-3B L-8B

G2-9
B

Q2.5
-7B

G2-2
7B

Q3-4
B
M-24

B
Q3-8

B
L-70

B
gp

t-4
o

Q2.5
-72

B

Q3-3
2B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.6,0.7)

G2-2
B

L-3BM-8B

Q2.5
-3B L-8B

G2-9
B

Q2.5
-7B

G2-2
7B

Q3-4
B
M-24

B
Q3-8

B
L-70

B
gp

t-4
o

Q2.5
-72

B

Q3-3
2B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.6,0.7)

G2-2
B

L-3B M-8B

Q2.5
-3B L-8B

G2-9
B

Q2.5
-7B

G2-2
7B

Q3-4
B
M-24

B
Q3-8

B

Q2.5
-72

B

Q3-3
2B

L-70
B

gp
t-4

o

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.7,0.8)

G2-2
B

L-3BM-8B

Q2.5
-3B L-8B

G2-9
B

Q2.5
-7B

G2-2
7B

Q3-4
B
M-24

B
Q3-8

B

Q2.5
-72

B

Q3-3
2B

L-70
B
gp

t-4
o

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0
Pa

ss
 R

at
e

Problem Difficulty (Pass Rate) [0.7,0.8)

G2-2
B

L-3B M-8B

Q2.5
-3B L-8B

G2-9
B
Q3-4

B

Q2.5
-7B

G2-2
7B

Q3-8
B
M-24

B
gp

t-4
o

Q3-3
2B

L-70
B

Q2.5
-72

B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.8,0.9)

G2-2
B

L-3BM-8B

Q2.5
-3B L-8B

G2-9
B
Q3-4

B

Q2.5
-7B

G2-2
7B

Q3-8
B
M-24

B
gp

t-4
o

Q3-3
2B

L-70
B

Q2.5
-72

B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.8,0.9)

G2-2
B

L-3BM-8B

Q2.5
-3B L-8B

Q2.5
-7B

G2-9
B

G2-2
7B

Q3-4
B
M-24

B
Q3-8

B
gp

t-4
o

Q3-3
2B

L-70
B

Q2.5
-72

B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.9,1.0)

G2-2
B

L-3BM-8B

Q2.5
-3B L-8B

Q2.5
-7B

G2-9
B

G2-2
7B

Q3-4
B
M-24

B
Q3-8

B
gp

t-4
o

Q3-3
2B

L-70
B

Q2.5
-72

B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.9,1.0)

Figure 15: Verification-augmented TTS performance across the full range of problem difficulties,
shown here for the Knowledge domain. Each pair of figure corresponds to a different difficulty
interval (measured by pass rate d(x)), with the left panel showing pass rates before (blue) and after
(orange) verification, and the right panel showing verification gain ∆p̂V (bars) alongside the verifier’s
TNR (green) and TPR (purple). Compared to Figure 5, which focused only on problems with
d(x) ∈ [0.7, 0.8), this includes the entire difficulty range.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

G2-2
7B

Q2.5
-72

B
G2-9

B
Q3-4

B
M-24

B

Q2.5
-7B

Q3-8
B

Q2.5
-3B M-8B

G2-2
B
L-70

B
L-3B

gp
t-4

o
L-8B

Q3-3
2B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) (0.0,0.1)

G2-2
7B

Q2.5
-72

B
G2-9

B
Q3-4

B
M-24

B

Q2.5
-7B

Q3-8
B

Q2.5
-3B M-8B

G2-2
B
L-70

B
L-3B

gp
t-4

o
L-8B

Q3-3
2B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) (0.0,0.1)

Q2.5
-72

B

G2-2
7B

Q3-4
B
G2-9

B
Q3-8

B

Q2.5
-7B

M-24
B
L-70

B
M-8B

gp
t-4

o
L-8B

Q2.5
-3B L-3B

Q3-3
2B

G2-2
B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.1,0.2)

Q2.5
-72

B

G2-2
7B

Q3-4
B
G2-9

B
Q3-8

B

Q2.5
-7B

M-24
B
L-70

B
M-8B

gp
t-4

o
L-8B

Q2.5
-3B L-3B

Q3-3
2B

G2-2
B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.1,0.2)

G2-9
B

M-8B

G2-2
7B

Q2.5
-3B L-3B

Q2.5
-7B L-8B

G2-2
B
Q3-4

B
Q3-8

B
M-24

B
L-70

B

Q2.5
-72

B

Q3-3
2B

gp
t-4

o

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.2,0.3)

G2-9
B

M-8B

G2-2
7B

Q2.5
-3B L-3B

Q2.5
-7B L-8B

G2-2
B
Q3-4

B
Q3-8

B
M-24

B
L-70

B

Q2.5
-72

B

Q3-3
2B

gp
t-4

o

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.2,0.3)

G2-9
B

L-3B M-8B

Q2.5
-3B

Q2.5
-7B L-8B

G2-2
B

G2-2
7B

Q3-4
B
M-24

B
Q3-8

B
L-70

B
gp

t-4
o

Q2.5
-72

B

Q3-3
2B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.3,0.4)

G2-9
B

L-3BM-8B

Q2.5
-3B

Q2.5
-7B L-8B

G2-2
B

G2-2
7B

Q3-4
B
M-24

B
Q3-8

B
L-70

B
gp

t-4
o

Q2.5
-72

B

Q3-3
2B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.3,0.4)

L-3B M-8B

Q2.5
-3B

G2-9
B
G2-2

B
L-8B

Q2.5
-7B

G2-2
7B

M-24
B
Q3-4

B
Q3-8

B
L-70

B
gp

t-4
o

Q2.5
-72

B

Q3-3
2B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.4,0.5)

L-3BM-8B

Q2.5
-3B

G2-9
B
G2-2

B
L-8B

Q2.5
-7B

G2-2
7B

M-24
B
Q3-4

B
Q3-8

B
L-70

B
gp

t-4
o

Q2.5
-72

B

Q3-3
2B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.4,0.5)

L-3B
G2-2

B
L-8B

Q2.5
-3B M-8B

Q2.5
-7B

G2-9
B

G2-2
7B

Q3-4
B
M-24

B
Q3-8

B

Q2.5
-72

B
gp

t-4
o

Q3-3
2B

L-70
B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.5,0.6)

L-3B
G2-2

B
L-8B

Q2.5
-3B M-8B

Q2.5
-7B

G2-9
B

G2-2
7B

Q3-4
B
M-24

B
Q3-8

B

Q2.5
-72

B
gp

t-4
o

Q3-3
2B

L-70
B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.5,0.6)

G2-2
B

L-3B M-8B L-8B

Q2.5
-3B

G2-9
B

Q2.5
-7B

G2-2
7B

Q3-4
B
M-24

B
Q3-8

B
L-70

B

Q3-3
2B

gp
t-4

o

Q2.5
-72

B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.6,0.7)

G2-2
B

L-3BM-8B L-8B

Q2.5
-3B

G2-9
B

Q2.5
-7B

G2-2
7B

Q3-4
B
M-24

B
Q3-8

B
L-70

B

Q3-3
2B

gp
t-4

o

Q2.5
-72

B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.6,0.7)

G2-2
B

L-3B

Q2.5
-3B M-8B L-8B

Q2.5
-7B

G2-9
B
Q3-4

B

G2-2
7B

M-24
B
Q3-8

B
L-70

B

Q3-3
2B

Q2.5
-72

B
gp

t-4
o

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.7,0.8)

G2-2
B

L-3B

Q2.5
-3B M-8B L-8B

Q2.5
-7B

G2-9
B
Q3-4

B

G2-2
7B

M-24
B
Q3-8

B
L-70

B

Q3-3
2B

Q2.5
-72

B
gp

t-4
o

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.7,0.8)

L-3B
G2-2

B
M-8B

Q2.5
-3B L-8B

Q2.5
-7B

G2-9
B
Q3-4

B

G2-2
7B

L-70
B
M-24

B
Q3-8

B
gp

t-4
o

Q2.5
-72

B

Q3-3
2B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.8,0.9)

L-3B
G2-2

B
M-8B

Q2.5
-3B L-8B

Q2.5
-7B

G2-9
B
Q3-4

B

G2-2
7B

L-70
B
M-24

B
Q3-8

B
gp

t-4
o

Q2.5
-72

B

Q3-3
2B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.8,0.9)

L-3B
G2-2

B
M-8B

Q2.5
-3B L-8B

Q3-4
B

Q2.5
-7B

M-24
B
G2-9

B

G2-2
7B

Q3-8
B
L-70

B

Q3-3
2B

gp
t-4

o

Q2.5
-72

B

Generator Models

0.0
0.2
0.4
0.6
0.8
1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.9,1.0)

L-3B
G2-2

B
M-8B

Q2.5
-3B L-8B

Q3-4
B

Q2.5
-7B

M-24
B
G2-9

B

G2-2
7B

Q3-8
B
L-70

B

Q3-3
2B

gp
t-4

o

Q2.5
-72

B

Generator Models

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

 R
at

e

Problem Difficulty (Pass Rate) [0.9,1.0)

Figure 16: Verification-augmented TTS performance across the full range of problem difficulties,
shown here for the NL reasoning domain. Each pair of figure corresponds to a different difficulty
interval (measured by pass rate d(x)), with the left panel showing pass rates before (blue) and after
(orange) verification, and the right panel showing verification gain ∆p̂V (bars) alongside the verifier’s
TNR (green) and TPR (purple).

-100% -75% -50% -25% 0% 25% 50% 75% 100%

Percentage of Gap Closed

G2-2
B

L3-3
B

L3-8
B

M-8B
G2-9

B

G2-2
7B

Q2.5
-3B

M-24
B

Q2.5
-7B

L3-7
0B

GPT-4
o

Q2.5
-72

B
Q3-4

B
Q3-8

B

Q3-3
2B

Generators Ranked By Generation Capability

G2-2B

L3-3B

L3-8B

M-8B

G2-9B

G2-27B

Q2.5-3B

M-24B

Q2.5-7B

L3-70B

GPT-4o

Q2.5-72B

Q3-4B

Q3-8B

Q3-32B

G
en

er
at

or
s R

an
ke

d
B

y
G

en
er

at
io

n
C

ap
ab

ili
ty

4% 17% 28% 28% 32% 26% 28% 28% 26% 28% 27% 24% 23% 23%

49% 70% 65% 61% 46% 41% 41% 36% 38% 36% 31% 30% 30%

130% 95% 70% 44% 38% 39% 32% 36% 34% 28% 26% 27%

21% 48% 20% 27% 29% 24% 29% 26% 20% 19% 20%

53% 20% 27% 29% 24% 29% 27% 20% 19% 20%

-53% 17% 21% 16% 23% 21% 14% 12% 15%

32% 34% 25% 32% 29% 20% 18% 20%

42% 15% 32% 26% 10% 8% 13%

3% 29% 22% 4% 2% 10%

83% 43% 4% 1% 12%

-4% -57% -42% -6%

-146% -70% -6%

-11% 20%

30%

(a) Mathematics

G2-2
B

L3-3
B

M-8B

Q2.5
-3B

L3-8
B

G2-9
B

G2-2
7B

Q2.5
-7B

Q3-4
B

M-24
B

Q3-8
B

L3-7
0B

Q2.5
-72

B

GPT-4
o

Q3-3
2B

Generators Ranked By Generation Capability

G2-2B

L3-3B

M-8B

Q2.5-3B

L3-8B

G2-9B

G2-27B

Q2.5-7B

Q3-4B

M-24B

Q3-8B

L3-70B

Q2.5-72B

GPT-4o

Q3-32B

G
en

er
at

or
s R

an
ke

d
B

y
G

en
er

at
io

n
C

ap
ab

ili
ty

-5% 13% 26% 28% 41% 40% 43% 41% 38% 41% 39% 41% 40% 37%

86% 76% 63% 82% 63% 67% 60% 53% 56% 51% 54% 51% 48%

69% 55% 81% 59% 64% 57% 50% 53% 48% 51% 49% 46%

40% 90% 57% 63% 54% 47% 51% 46% 49% 47% 43%

186% 62% 71% 58% 48% 53% 47% 50% 48% 44%

35% 46% 41% 35% 41% 36% 40% 38% 34%

269% 49% 35% 44% 37% 43% 40% 34%

33% 25% 36% 31% 37% 35% 29%

14% 39% 29% 39% 36% 27%

111% 40% 55% 46% 33%

17% 38% 33% 19%

715% 57% 22%

26% -8%

-492%

(b) Knowledge

L3-3
B

G2-2
B

M-8B

Q2.5
-3B

L3-8
B

G2-9
B

Q2.5
-7B

G2-2
7B

Q3-4
B

M-24
B

Q3-8
B

L3-7
0B

Q2.5
-72

B

GPT-4
o

Q3-3
2B

Generators Ranked By Generation Capability

L3-3B

G2-2B

M-8B

Q2.5-3B

L3-8B

G2-9B

Q2.5-7B

G2-27B

Q3-4B

M-24B

Q3-8B

L3-70B

Q2.5-72B

GPT-4o

Q3-32B

G
en

er
at

or
s R

an
ke

d
B

y
G

en
er

at
io

n
C

ap
ab

ili
ty

-61% 42% 93% 47% 63% 65% 51% 49% 51% 49% 47% 45% 46% 42%

48% 100% 51% 66% 68% 53% 51% 53% 50% 49% 47% 48% 43%

509% 62% 79% 83% 56% 53% 55% 51% 49% 46% 47% 42%

-240% 33% 40% 24% 25% 30% 29% 29% 27% 29% 24%

84% 88% 54% 51% 53% 50% 48% 44% 46% 40%

130% 8% 13% 28% 25% 27% 24% 27% 19%

-14% -2% 18% 17% 21% 18% 22% 14%

30% 51% 40% 38% 32% 36% 24%

65% 44% 39% 32% 37% 23%

7% 25% 17% 26% 9%

33% 20% 32% 10%

-14% 29% -14%

81% -14%

-115%

(c) NL Reasoning
Figure 17: Percentage of TTS performance gap between weak and strong generators closed by
verification. Each heatmap shows the fraction of the performance gap between a weaker generator
(x-axis) and a stronger generator (y-axis) that is closed by verification with a fixed verifier GPT-4o.
Green cells indicate a larger gap closure, meaning the weaker model approaches the stronger one
after verification. A value greater than 100% means that the originally weaker model performs better
with verifier augmentation. Purple cells indicate negative values where verification increases the gap.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C.6 ADDITIONAL RESULTS OF VERIFIER ANALYSIS IN TEST-TIME SCALING

Here we provide complementary results to the verifier analysis in Section 5.2. Figure 18 presents two
other domains’ results. Figure 19 presents additional metrics in the same setup for complete analysis,
including balanced accuracy and verification gains. We can see that our findings from Mathematics
generalize to other domains. Figures 18a to 18c shows that weak verifiers can approximate strong
verifier performance in TTS, at the extremes of problem difficulty or responses generated by strong
generators. While on these regimes, we show that both verifiers provide limited verification gain in
Figures 19a to 19c. Notably, in the NL Reasoning domain (Figure 18i), on the strongest generator, both
verifiers’ TNR fall below 0.5, and the weak verifier’s TNR exceeds that of the strong verifier. Despite
this TNR inversion, the overall verification performance gap (shown as balanced accuracy in Figure
19f) remains narrow, with the strong verifier maintaining a slight advantage due to its superior TPR.

Generators
Weak (Llama3.2-3B)
Medium (Llama3.1-8B)

Strong (Qwen2.5-72B)
Verifiers

Strong (GPT-4o) Weak (Qwen2.5-7B)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175

Ve
rif

ic
at

io
n

G
ai

n
G

ap

(a) Verif. Gain Gap (Mathematics)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.05

0.00

0.05

0.10

0.15

0.20
Ve

rif
ic

at
io

n
G

ai
n

G
ap

(b) Verif. Gain Gap (Knowledge)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.00

0.05

0.10

0.15

0.20

Ve
rif

ic
at

io
n

G
ai

n
G

ap

(c) Verif. Gain Gap (NL Reasoning)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(d) TPR (Mathematics)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(e) TPR (Knowledge)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(f) TPR (NL Reasoning)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.2

0.4

0.6

0.8

Tr
ue

 N
eg

at
iv

e
R

at
e

(g) TNR (Mathematics)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.4

0.6

0.8

Tr
ue

 N
eg

at
iv

e
R

at
e

(h) TNR (Knowledge)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.2

0.4

0.6

0.8

Tr
ue

 N
eg

at
iv

e
R

at
e

(i) TNR (NL Reasoning)

Figure 18: Analyzing verification gain gaps and TPR/TNR between verifiers under varying
problem difficulty and generator strength. The x-axis shows problem difficulty measured relative
to each generator. Shaded regions visualize the difference in metrics between verifiers for each
generator. (a-c) Verification gain gap between strong and weak verifiers. (d-f) TPR increases as
problems become easier for all generator-verifier combinations. (g-i) TNR decreases as generators
become stronger, with TNR gap narrowing.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Generators
Weak (Llama3.2-3B)
Medium (Llama3.1-8B)

Strong (Qwen2.5-72B)
Verifiers

Strong (GPT-4o) Weak (Qwen2.5-7B)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Ve
rif

ic
at

io
n

G
ai

n

(a) Verif. Gain (Mathematics)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.0

0.1

0.2

0.3

Ve
rif

ic
at

io
n

G
ai

n

(b) Verif. Gain (Knowledge)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30

Ve
rif

ic
at

io
n

G
ai

n

(c) Verif. Gain (NL Reasoning)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.5

0.6

0.7

0.8

0.9

B
al

an
ce

d
A

cc
ur

ac
y

(d) Accbal (Mathematics)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.6

0.8

B
al

an
ce

d
A

cc
ur

ac
y

(e) Accbal (Knowledge)

(0-
0.1

)

[0.
1-0

.2)

[0.
2-0

.3)

[0.
3-0

.4)

[0.
4-0

.5)

[0.
5-0

.6)

[0.
6-0

.7)

[0.
7-0

.8)

[0.
8-0

.9)

[0.
9-1

.0)

Problem Difficulty

0.4

0.6

0.8

B
al

an
ce

d
A

cc
ur

ac
y

(f) Accbal (NL Reasoning)

Figure 19: Analyzing verification gains and Accbal between verifiers under varying problem diffi-
culty and generator strength. The x-axis shows problem difficulty measured relative to each genera-
tor. Shaded regions visualize the difference in metrics between verifiers for each generator. (a-c) Verifi-
cation gain for both strong (solid lines) and weak (dashed lines) verifiers across three generators: weak,
medium, and strong. (d-f) Balanced accuracy for the same verifier-generator combinations. The accu-
racy gap (shaded regions) between verifiers is smallest on the hard problems (left side of the x-axis).

D CASE STUDIES

Problem domain, dataset and difficulty: Mathematics, MATH-500, Hardest (d(x) = 0.075)
Generator: Qwen2.5-3B
Verifier: GPT-4o
Question: Bob and Alice each have a bag that contains one ball of each of the colors, blue, green, orange, red, and violet. Alice
randomly selects one ball from her bag and puts it into Bob’s bag. Bob then randomly selects one ball from his bag and puts it into
Alice’s bag. What is the probability that after this process the contents of the two bags are the same?
Ground-Truth Solution: After Alice puts the ball into Bob’s bag, his bag will contain six balls: two of one color and one of each of
the other colors. After Bob selects a ball and places it into Alice’s bag, the two bags will have the same contents if and only if Bob
picked one of the two balls in his bag that are the same color. Because there are six balls in the bag when Bob makes his selection, the

probability of selecting one of the same colored pair is 2/6 =
1

3
.

Generator Output (Correct): To determine the probability that the contents of both Bob’s and Alice’s bags are the same after the
process described, we need to analyze each possible step and its impact on the contents of the bags.
Initially, each bag contains one ball of each of the colors: blue, green, orange, red, and violet.
Step-by-Step Analysis [Details omitted]
Identifying the Conditions for Equality [Details omitted]
Calculating the Probability [Details omitted]
The probability is then calculated as follows:

Probability =
Number of favorable outcomes

Total number of outcomes
=

2

6
=

1

3

Thus, the probability that after this process the contents of the two bags are the same is
1

3
.

Verifier Output (False negative): Explanation: The problem involves two steps: Alice transferring a ball to Bob’s bag and then Bob
transferring a ball back to Alice’s bag. Initially, both bags have one ball of each color. After Alice transfers a ball, Bob’s bag will have
two balls of one color and one of each of the other four colors. For the bags to be identical after Bob’s transfer, Bob must return the
same color ball that Alice initially transferred. This is the only scenario where the bags will end up identical, as it restores the original
distribution of colors in both bags.
The assistant’s response correctly identifies that there are 6 possible outcomes for Bob’s selection (since he has 6 balls to choose from)
and that there are 2 favorable outcomes (returning one of the two balls of the color that Alice transferred). However, the assistant
incorrectly concludes that the probability is 1/3. The correct probability should be 1/5, as Bob must specifically return the ball of the

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

color that Alice transferred, which is only one specific ball out of the 6 in his bag. [Verifier generates a wrong answer 1/5 and uses it to
compare with generator’s correct answer 1/3]
Verdict: [[Incorrect]]

Problem domain, dataset and difficulty: Natural Language Reasoning, FOLIO, Hardest (d(x) = 0.122)
Generator: Llama3.1-8B
Verifier: Qwen2.5-72B
Question: Some mammals have teeth. Platypuses have no teeth. Platypuses are mammals. Humans have teeth.
Based on the above, can the following be inferred? Platypuses are reptiles
Ground-Truth Solution: Uncertain
Generator Output (Correct): Reasoning: 1. The statement that some mammals have teeth and humans have teeth suggests that having
teeth is a characteristic of mammals, but it’s not exclusive to them. 2. Platypuses are indeed mammals, as stated in the information
provided. 3. The fact that platypuses have no teeth does not contradict the fact that they are mammals, as having no teeth is also a
characteristic of some mammals, as mentioned in point 1. 4. The only group of animals that are not mammals and have been ruled out
as a category for platypuses are not the mammals, but rather the reptiles.
However, concluding that platypuses are reptiles because they have no teeth is not a sound inference, because having no teeth does not
preclude an animal from being a mammal, as shown in point 3. Moreover, it contradicts the given statement that platypuses are indeed
mammals.
5. Therefore, platypuses being reptiles cannot be inferred based on the given information.
Answer: Uncertain
Verifier Output (False negative): Explanation: The assistant’s response is mostly correct in its reasoning but contains a minor
inaccuracy in the final conclusion. The assistant correctly identifies that the fact that platypuses have no teeth does not make them
reptiles, as some mammals also lack teeth. However, the assistant’s final answer of "Uncertain" is not appropriate. Given the information
provided, it is clear that platypuses are mammals, and there is no evidence to suggest they are reptiles. Therefore, the correct answer
should be "No" because the statement "Platypuses are reptiles" can be definitively refuted based on the given information. [Although the
verifier recognizes that the generator’s reasoning process is correct, it rejects the conclusion due to a mismatch with its own (incorrect)
answer.]
Verdict: [[Incorrect]]

Figure 20: Case study: How problem difficulty impacts TPR (RQ1). False negative verification
on high-difficulty problems demonstrates why TPR decreases as problems become harder. When
verifiers cannot correctly solve challenging problems, they produce incorrect reference solutions and
reject generators’ correct answers based on these flawed references.

Problem domain, dataset and difficulty: Mathematics, MATH-500, Easy (d(x) = 0.571)
Generator: Llama-3.1-8B
Verifier: Qwen2.5-72B
Question: Paul and Jesse each choose a number at random from the first six primes. What is the probability that the sum of the numbers
they choose is even?
Ground-Truth Solution: [Details omitted] Therefore, the probability that the sum of the numbers Paul and Jesse choose IS even is

1 − 5
18 =

13

18
.

Generator Output (Incorrect): To find the probability that the sum of the numbers Paul and Jesse choose is even, we need to first
understand what numbers can make an even sum.
The sum of two numbers is even if both numbers are either even or odd.
Since the first six primes are 2, 3, 5, 7, 11, and 13, we have only one even prime, which is 2.
Now, let’s consider the possible scenarios:
1. Both Paul and Jesse choose the number 2. In this case, the sum is even.

2. One of Paul or Jesse chooses the number 2, and the other chooses an odd prime. In this case, the sum is odd.

3. Both Paul and Jesse choose odd primes. In this case, the sum is even. [Generator correctly identifies two cases for even sum, one case
for odd sum.]
[Probability calculations omitted omitted]
Now, let’s add the probabilities of the first two scenarios (both choose 2, and one chooses 2 and the other an odd prime) and the third
scenario (both choose an odd prime) to get the total probability of an even sum:

Probability = 1/36 + 10/36 + 25/36 Probability = 36/36 Probability = 1
The probability that the sum of the numbers Paul and Jesse choose is even is 1 or 100%. This is because it is impossible for the sum to
be odd, as they will always choose either two even numbers or two odd numbers. [Generator makes self-contradiction: Earlier stated
scenario 2 gives odd sum, now count scenario 2 as even sum and claims odd sum is impossible]
Verifier Output (True negative): The assistant’s response contains a logical error in the final calculation. The assistant correctly
identifies the scenarios where the sum of the numbers chosen by Paul and Jesse is even. However, the assistant incorrectly adds
the probabilities of all scenarios, including the scenario where the sum is odd, which should not be included in the final probability
calculation. [Verifier catches the self-contradiction of generator.]
The correct calculation should only include the probabilities of the scenarios where the sum is even: - Both choose 2: 1

36 - Both choose
odd primes: 25

36

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

The probability of the sum being even is the sum of these two probabilities:

1

36
+

25

36
=

26

36
=

13

18

Therefore, the final answer should be
13

18
. [Verifier can solve the problem correctly]

Verdict: [[Incorrect]]

Same problem and verifier as above with a strong generator:
Generator: GPT-4o
Verifier: Qwen2.5-72B
Generator Output (Incorrect): To find the probability that the sum of the numbers chosen by Paul and Jesse from the first six prime
numbers is even, we proceed as follows:
1. **List the first six prime numbers**: The first six prime numbers are 2, 3, 5, 7, 11, and 13.
2. **Identify even and odd primes**:
- Even prime: 2
- Odd primes: 3, 5, 7, 11, 13
3. **Understand when the sum is even**:
- A sum is even if both numbers are even or both numbers are odd.
- Since there is only one even prime (2), for the sum to be even, both numbers must be odd. [Fatal error: Ignores that both choosing 2
(even+even=even) is also possible.
4. **Calculate the total number of ways to choose numbers**: [Calculation details omitted omitted]
5. **Calculate the number of ways to get an even sum**: [Calculation details omitted omitted]
6. **Calculate the probability**: [Calculation details omitted omitted]

Thus, the probability that the sum of the numbers they choose is even is
25

36
. [Final answer is wrong because following steps

consistently based on fatal error made above.]
Verifier Output (False positive): Explanation: The assistant’s response is logically sound and mathematically accurate. Here’s a
breakdown of the steps:
1. **Identifying the first six primes**: The assistant correctly identifies the first six prime numbers as 2, 3, 5, 7, 11, and 13.
2. **Condition for the sum to be even**: The assistant correctly states that for the sum to be even, both numbers must be odd (since the
only even prime is 2, and choosing 2 would make the sum odd if the other number is odd). [Verifier is convinced by the generator and
ignores the error here.]
3. **Total number of possible outcomes**: The assistant correctly calculates the total number of outcomes as 6 * 6 = 36.
4. **Number of outcomes where both numbers are odd**: The assistant correctly identifies that there are 5 odd primes and calculates
the number of outcomes where both numbers are odd as 5 * 5 = 25.
5. **Probability calculation**: The assistant correctly calculates the probability as the number of favorable outcomes (25) divided by
the total number of outcomes (36), resulting in 25

36 .

The assistant’s reasoning and calculations are correct throughout the response. [Although the verifier demonstrated correct problem-
solving when evaluating Llama3.1-8B in last example, it doesn’t apply the same mechanism to GPT-4o, instead accepting the GPT-4o’s
incorrect reasoning.]
Verdict: [[Correct]]

Figure 21: Case study: How generator capability influences TNR (RQ2). We compare verifier
behavior on the same problem when evaluating weak (Llama3.1-8B) versus strong (GPT-4o) genera-
tors. The weak generator correctly lists all the cases but then contradicts itself in the final calculation,
producing an inconsistent solution. The verifier catches this apparent mistake and rejects it. The
strong generator makes a single early-stage error but maintains internal consistency throughout its
reasoning, generating a well-structured and self-contained chain that appears correct. Despite the
solution containing an actual error, the verifier fails to detect it and accepts the solution.

31

	Introduction
	Related Work
	Experimental Setup
	Preliminaries
	Tasks and Models

	Experimental results
	How Does Problem Difficulty Affect Verification?
	How Does Generator Capability Influence Verification?
	How does Verifier Generation Capability Impact Verification?

	Application to Test-Time Scaling (TTS)
	Can Weak Generators Match Stronger Generators in TTS?
	Can Weak Verifiers Match the Gains of Strong Verifiers in TTS?

	Conclusion
	Prompt Templates
	Additional Preliminaries and Setup
	Details of Math Problems Correctness Check
	Model Naming Conventions
	Detailed Experimental Setup of RQ2

	Additional Results
	More Details in Problem Difficulty Analysis
	Analysis on Reasoning Model
	Explanation of Below-Random Verification Performance on Hard Problems
	Additional Results of Verifier Generation Capability
	Additional Results of Generator Analysis in Test-Time Scaling
	Additional Results of Verifier Analysis in Test-Time Scaling

	Case Studies

