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ABSTRACT

Time series forecasting plays a crucial role in various domains, such as power
and weather forecasting. In recent years, different types of models have achieved
promising results in long-term time series forecasting. However, these models
often produce predictions that lack consistency with the style of the input, re-
sulting in reduced reliability and trust in the forecasts. To address this issue, we
propose the Vision-Enhanced Time Series Forecasting by Decomposed Feature
Extraction and Composed Reconstruction (VisiTER), which leverages the rich
semantic information provided by the image modality to enhance the realism of
the predictions. It consists of two main components: the Decomposed Time Series
to Image Generation and the Composed Image to Time Series Generation. In the
first component, the Decomposed Time Series Feature Extraction Model extracts
periodic and trend information, which is then transformed into images using our
proposed time series to vision transformation architecture. After converting the
input time series into images, the resulting images are used as style features and
concatenated with the previously extracted features. In the second component,
we use our proposed TimeIR along with the previously obtained feature set to
perform image reconstruction for the prediction part. Due to the rich information
provided, the reconstructed images exhibit better consistency with the input images,
which are then transformed back into time series. Extensive experiments on seven
real-world datasets demonstrate that VisiTER achieves state-of-the-art prediction
performance on both traditional metrics and new metrics.

1 INTRODUCTION

Time series forecasting has always been a widely studied research area (Lim & Zohren, 2021; Torres
et al., 2021), with extensive applications in fields such as economics (Granger & Newbold, 2014),
energy (Qian et al., 2019; Martı́n et al., 2010), and weather forecasting (Wu et al., 2023b). The
goal of time series forecasting is to predict future values based on past observed data. Most existing
time series prediction methods focus on extracting periodicity, anomalies, random fluctuations, and
other features from the time series data. However, relying solely on the information provided by the
time series modality is often insufficient, leading to limited prediction accuracy and an inability to
efficiently capture complex relationships within the data (Ismail Fawaz et al., 2019).

One promising strategy for addressing this issue is to convert time series into images for prediction (Li
et al., 2024; Yang et al., 2024; Hatami et al., 2018). This is because the image modality proposes
a new perspective for data modeling compared with time series, providing more rich and diverse
information. Nevertheless, there are several key challenges in using images for time series prediction
tasks. The first challenge is the difficulty in image transformation and model training. Existing
transformation methods directly map time series into scatter plots, which can result in information
loss in the images, ultimately leading to poor performance of the subsequent image models. The
complexity of image models also results in prolonged training and inference times, consuming
substantial GPU memory and increasing the difficulty of training. This is particularly severe for
time series with many variables, which correspond to the number of channels in the image version.
The second is ineffective image utilization in time series: The advantages and methodologies for
effectively utilizing the image modality have not been adequately explored. Some existing prediction
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methods that use images rely on image generation for forecasting. However, the generated images
often lack fidelity in the context of time series, as they miss crucial temporal feature information.

To address these challenges, we propose Vision-Enhanced Time Series Forecasting by Decomposed
Feature Extraction and Composed Reconstruction (VisiTER). It introduces a novel framework of
time series forecasting by transformation and generation between time series and vision domains,
which consists of two main components: (1) the Decomposed Time Series to Vision Generation,
which extracts decomposed temporal features as images for further prediction; (2) the Composed
Vision to Time Series Generation, which utilizes transformed images to generate composed prediction
results by image reconstruction.

In the first component, we propose two main modules: the Decomposed Time Series Feature
Extraction (DTFE) and the Time Series to Vision Transformation (T2V). DTFE decomposes the
original time series and leverages the respective strengths of different types of transformer-based
models to extract two essential temporal features for forecasting: the periodic and trend features.
These decomposed features help the model utilize richer temporal information and improve prediction
accuracy, which benefits the following image generation and reconstruction processes. Then, T2V
adopts a novel approach to convert time series into images, mapping data points with diminishing
pixel values along the y-axis. Utilizing T2V, we transform features from DTFE into image modality,
improving the time series data distribution in corresponding images for better reconstruction.

In the second component, we introduce TimeIR, a novel transformer-based image reconstruction
model specifically designed for time series data, to generate the forecasting results by image gen-
eration. By utilizing the periodic features, trend features extracted from DTFE, and style features
of the time series as priors, TimeIR can enrich the reconstruction process with valuable temporal
information, fully utilizing the potential of vision models. Notably, incorporating style information
allows the reconstructed time series to retain the same style as the input time series. To address the
challenges of difficult training and inference, we redesign the model architecture and adopt a unique
training strategy. Specifically, our model can perform segmented prediction for long sequences,
which helps to reduce the computational load. During training, we also employ a channel sampling
strategy to further decrease the computational requirements.

In conclusion, our work makes the following key contributions:

• We propose the VisiTER framework, which enhances time series forecasting using image
reconstruction models. By first extracting temporal features as priors, we provide the image
model with rich information, thereby fully leveraging the advantages of the image modality.

• We propose DTFE, designed with various transformer-based models to extract periodic
and trend features for more realistic representations. We also introduce T2V, effectively
transforming time series into images, and TimeIR, which leverages priors for reconstructing
time series images more efficiently.

• VisiTER achieves state-of-the-art performance on traditional MSE and MAE metrics. More-
over, we introduce the SSIM metric to time series forecasting tasks, enabling a more
comprehensive evaluation of the structural integrity of predictions. On this metric, our
model also outperforms other state-of-the-art models.

2 REALTED WORK

2.1 TIME SERIES FORECASTING

Time series forecasting methods can be categorized mainly into those based on Recurrent Neural
Networks (RNNs)(Tokgöz & Ünal, 2018; Lai et al., 2018; Salinas et al., 2020), Convolutional Neural
Networks (CNNs)(Wang et al., 2023; Hewage et al., 2020; Livieris et al., 2020), Transformers, and
Multi-Layer Perceptrons (MLPs). In recent years, the Transformer model has emerged as a strong
contender in time series forecasting (Liu et al., 2023; Vaswani, 2017; Zhou et al., 2021; Chen et al.,
2024). Its self-attention mechanisms effectively capture both short-term and long-term dependencies,
positioning it as a leading choice for many tasks. Linear models based on MLPs have also shown
notable predictive results (Oreshkin et al., 2019; Challu et al., 2023; Wang et al., 2024), particularly
for simpler datasets, serving as a useful baseline for comparison with more complex approaches.
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Figure 1: The overall architecture of VisiTER. Different colored sequences represent different
variables in the time series, while the axes indicate the time series modality and the boxes represent
the image modality. In the first part, we predict the periodic and trend features of the time series
using the DTFE model, which are then converted into images. In the second part, we utilize TimeIR
to reconstruct the images by integrating the periodic features, trend features, and style features,
ultimately transforming the results back into time series data.

2.2 IMAGE RECONSTRUCTION

Image reconstruction (Park et al., 2003; Demoment, 1989) is a significant area in computer vision
and image processing, aimed at recovering high-quality images from partial or degraded inputs. This
task is essential in applications like medical imaging (Zhang & Dong, 2020), remote sensing (He
et al., 2019), and video super-resolution (Kappeler et al., 2016; Liu et al., 2022a). Various methods
have been proposed to tackle the image reconstruction problem, broadly categorized as follows.
Optimization-based methods (Fessler, 2020): These establish mathematical models for reconstruction
and use optimization algorithms, such as regularized optimization and dictionary learning. Deep
learning-based methods (Liu et al., 2020; Liang et al., 2021): Utilizing deep neural networks for end-
to-end reconstruction (Ledig et al., 2017; Sajjadi et al., 2017; Goodfellow et al., 2020), these methods,
like SwinIR, effectively learn image priors from large datasets for high-quality results. GAN-based
methods: Introducing the GAN framework, models like SRGAN and EnhanceNet generate more
realistic and natural reconstructions.

2.3 IMAGE TECHNIQUES IN TIME SERIES

In existing time series-related tasks, images are primarily used for time series classification (Li
et al., 2024; Dosovitskiy et al., 2021). The process typically involves converting time series data
into images, followed by the application of traditional image models, such as Vision Transformers,
to classify the images, thereby achieving classification of the time series. Additionally, there are
extremely few models that utilize image models for time series forecasting (Yang et al., 2024), such
as ViTime. These models generally decompose the time series into trend and periodic components
and then generate subsequent images based on the provided input. However, this type of model does
not fully leverage the rich information that the image modality offers, and they require long input
lengths to provide information.

3 VISION-ENHANCED TIME SERIES FORECASTING FRAMEWORK

3.1 OVERALL ARCHITECTURE

We propose the overall framework as shown in the Figure 1. First, we are given the time series
X ∈ RL1×N , where L1 and N denote the look back length and the number of variates, which is
input to the DTFE in Part I to obtain the trend feature T ∈ RL2×N and periodic feature P ∈ RL2×N

of the time series, where L2 denotes the prediction length. Next, T, P and x are input into the T2V
framework to be converted into image formats, and then they are shuffled based on different variables
in Part II. For the same variable i, we concatenate the Pi, Ti, and Xi. If L1 is not equal to L2, we
also need to align them before concatenation. The subsequent TimeIR model operates on a univariate
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basis, meaning we perform reconstruction for each variable individually. For a given time series, we
segment it into N images for reconstruction, with each image corresponding to one of the N variables.
Ultimately, we combine the reconstruction results back into a single image, which is then transformed
back into the time series format.

3.2 DECOMPOSED TIME SERIES TO IMAGE GENERATION

Trend

Transformer

Backbone

Periodic

Transformer

Backbone

Periodic features

Trend features Input
NL

R
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 1x

Input
NL

R

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Figure 2: Overall architecture of DTFE. Different vari-
ables are treated as tokens within the Transformer frame-
work to predict trends, while multiple time steps of a
single variable are considered as a token for predicting
periodicity. Each row of the time series represents a
distinct variable, while each differently colored box sig-
nifies a different token within the Transformer backbone.
The specific architecture of the Transformer framework
is illustrated in Figure 11 of the Appendix B.

In this section, we first predict the peri-
odic information and trend features from
the time series. We observe that the trend
features of a variable are more susceptible
to the influence of other variables, while its
periodic information is less affected. There-
fore, we propose the Decomposed Time
Series Feature Extraction Model (DTFE),
which employs a decomposed architecture
using different Transformers to predict the
periodic and trend features, resulting in
more accurate outcomes.

Next, we convert the predicted periodic in-
formation, trend information, and the in-
put time series into images. The original
direct mapping method transforms time se-
ries into scatter plots, which, while precise,
has limited applicability for image recon-
struction models due to the reduced number
of activated pixels. This results in a sparse
representation that does not fully leverage
the potential of the image modality, lead-
ing to insufficient information for the reconstruction models to utilize effectively. To address this,
we propose a new transformation method, T2V. We diffuse the scatter points, making the image
continuous and more suitable for image models.

3.2.1 DECOMPOSED TIME SERIES FEATURE PREDICTION

In DTFE, for predicting the trend component, it is necessary to consider the inter-channel interactions
more extensively, as the trend of one channel can be influenced by the trends of other channels.
In contrast, for the periodic component, the influence of the periodicities in other channels on a
given channel is relatively small, and hence, a more channel-independent approach can be adopted.
Therefore, for the trend prediction model, we adopt an inverted transformer structure to explicitly
capture the cross-channel dependencies. On the other hand, for the periodic component prediction,
we use a patch-based transformer architecture, where we treat a few adjacent time steps as a patch
and predict the periodicity based on this sequence of patches. By leveraging the strengths of both
single-channel and multi-channel modeling approaches, and by tailoring the model structures to the
specific characteristics of trend and periodicity, the proposed DTFE succeeds to achieve robust and
accurate time series features prediction. The basic framework of DTFE is shown in the Figure 2.

When training DTFE, it is essential to compute the loss functions for the periodic Transformer
backbone and the trend Transformer backbone separately for predicting the periodic and trend
components, and then sum them together. For each periodic Transformer, denoted as P-Trans(·), we
use Lperiod to represent its MSE loss function, and for the trend Transformer, denoted as T-Trans(·),
we use Ltrend to represent its MSE loss function. Additionally, we employ the Discrete Fourier
Transform (DFT) to decompose the ground truth of forecasting result y into its period and trend
components. Thus, we can derive the training losses for period and trend extraction:

Lperiod =
∑

Xi∈B

∣∣∣∣∣∣P-Trans(Xi)− DFT(yi)period

∣∣∣∣∣∣2
2

(1)

4
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T2V

V2T

Figure 3: The top row of the image illustrates the overall framework of T2V, which begins with
normalization, followed by direct mapping to images, and then expands on both sides of the y-axis.
The second row presents the overall framework of V2T, where the maximum value of each column is
selected, mapped to a time series, and finally restored.

Ltrend =
∑

Xi∈B

∣∣∣∣∣∣T-Trans(Xi)− DFT(yi)trend

∣∣∣∣∣∣2
2
, (2)

where B represents the batch used for training, yi denotes the ground truth of forecasting result of
the input time series Xi. Thus, we can achieve the overall loss LDTFE = Lperiod + Ltrend.

3.2.2 TIME SERIES TO IMAGE TRANSFORMATION

Given a time series x ∈ RL×N , we need to transform it into an image F ∈ RH×L×N , where L
corresponds to the length of the time series to be reconstructed, H is a hyperparameter that represents
the height of the image after the transformation into a visual format and N denotes the number of
variables involved. First, we normalize the time series x to have a variance of 1 and a mean of 0,
to facilitate the subsequent operations: x′ = x−µ(x)

σ(x) ,where µ(x) and σ(x) represent the mean and
standard deviation of x respectively. For each channel, we calculate the maximum value and divide
the values in that channel by the maximum value. This maps the entire time series to the range of [-1,
1]: x′′ = x′

max(x′,axis=0) . To control the range of time series within [0, H], we can multiply x′′ by H
2

and then add H
2 : x̃ = x′′ × H

2 + H
2 , which ensures that each value in the time series corresponds to

the vertical coordinate values after conversion into an image format. Based on the normalized values,
we can determine which pixels in the image F need to be activated:

Fi,j,c =

{
1, if x̃j,c = i
0, otherwise (3)

In this context, Fi,j,c denotes the pixel in F at the i-th row, j-th column, and c-th channel, while
x̃j,c represents the value of the c-th variable at the j-th time point in the time series x̃. To help the
reconstruction model perform better, we modify the scatter plot representation by extending the
values on the Y-axis. Specifically, we enhance the neighboring pixels on either side of each activated
pixel in a given column, with the value decreasing as the distance from the activated pixel increases.
The extension range is [0,λ], where λ is a hyperparameter to control extension ranges. The specific
formula is as follows, where k represents the current extension distance:

Fi,j,c =

{
1− k

λ , if x̃j,c = i± k and k ≤ λ
0, otherwise (4)

We transform the periodic features P, trend features T and the input x into images using T2V
respectively, resulting in Pimage, Timage and Ximage.

3.3 COMPOSED IMAGE TO TIME SERIES GENERATION

Based on the decomposed component images after prediction, we construct an image reconstruction
model aimed at generating a complete image of the predicted results. To maintain consistency
in style between the reconstructed predicted image and the original sequence, we introduce the
image of the original sequence as additional style information. Consequently, we propose TimeIR,
a temporal image reconstruction model, which first concatenates these three parts of input for the
image reconstruction, then performs the reconstruction, and finally converts the results back into the
time series format.

5
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Figure 4: Alignment method of the model under different prediction lengths. When L1 is greater
than L2, the length of x is truncated. When L1 equals L2, no special processing is applied. When L1

is less than L2, a sliding window approach is used to segment and truncate P and T for prediction.

3.3.1 COMPOSED IMAGE RECONSTRUCTION

TimeIR is a univariate reconstruction model, so the following discussion pertains to the reconstruction
of a single variable within a time series. The inputs we have received are Ximage ∈ RH×L1×N ,
Pimage ∈ RH×L2×N , and Timage ∈ RH×L2×N , which represent the original time series x as
images, as well as the images depicting the periodicity and trends elucidated by the DTFE. The
length of Ximage is L1, while the lengths of Pimage and Timage are L2. Next, we concatenate these
three components to obtain the input I ∈ RH×L×3, where the three components represent the three
channels of I. To perform the concatenation operation, it is necessary to align the lengths of the
sequences. We handle different scenarios accordingly: when L1 equals L2, we proceed directly.
When L1 is greater than L2, we truncate Ximage to the length of L2 since Ximage serves merely as
a style feature, and its length does not impact the information. When L1 is less than L2, we maintain
a sliding window on Pimage and Timage for learning. During each reconstruction, we select the
periodic features and trend features within the sliding window, while keeping the style feature fixed
at Ximage, as the style of the time series does not change with the sliding window selection. The
reconstruction method is illustrated in Figure 4, and additional alignment details can be found in
Appendix B.2. Thus, we can obtain style, trend, and periodicity priors, which we then concatenate to
form the input to the TimeIR model.

The TimeIR model is comprised of three main components. First, a shallow feature extraction module
utilizing a CNN network block is employed. This is followed by a deep feature extraction module,
which consists of multiple Time Series Swin Transformer Blocks (TSTB). Each TSTB is composed
of several Swin Transformer Blocks. The key characteristic of the Swin Transformer used in TimeIR
is its utilization of an overlapping patch embedding scheme. This approach allows the model to
better focus on the fine-grained details of the input data, which in this case is the time series. Finally,
the deep feature representations are passed through a convolutional layer that reduces the channel
dimension to 1, producing the final time series reconstruction. The overall architecture of TimeIR
illustrated in Figure 10.

Since images and time series are different modalities, we need to convert the ground truth into images
for training. We use MSE as the loss function between the predictions from TimeIR and the ground
truth converted into images, as shown in the equation below.

LTimeIR =
∑

Xi∈B

∣∣∣∣∣∣TimeIR(Ii)− T2V(yi)
∣∣∣∣∣∣2
2

(5)

In this equation, LTimeIR represents the loss function of training TimeIR, B represents the batch used
for training, yi denotes the ground truth of forecasting result of Xi, and Ii refers to the combined
information inputted into TimeIR for the time series Xi.

3.3.2 IMAGE TO TIME SERIES TRANSFORMATION

The process of V2T is the inverse of the T2V procedure. Specifically, V2T converts the reconstruction
results from TimeIR back into a time series, serving as the final prediction output. The first step is to
identify the maximum value in each column of the image. The pixel corresponding to this maximum
value is then set to 1, while all other pixels in that column are assigned a value of 0.

Fi,j,c =

{
1, if Fi,j,c = max(Fi,j,c, axis = 0)
0, otherwise (6)

Then, after rescaling the values to the range [-1, 1]. and normaling the values, we can get the predicted
time series ŷ. The complete T2V and V2T processes are illustrated in Figure 3.

6
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4 EXPERIMENTS

Datasets The datasets comprises 7 collections: ETT dataset (including 4 subsets:ETTh1, ETTh2,
ETTm1, and ETTm2), Weather, Exchange, and Electricity datasets (Wu et al., 2021; Li et al., 2021).
A detailed description of the dataset can be found in the Appendix A.1.

Baseline We will compare VisiTER with 11 latest baselines, including PatchTST (Nie et al.,
2023), iTransformer (Liu et al., 2023), Crossformer (Zhang & Yan, 2023), Autoformer (Wu et al.,
2021), SparseTSF (Lin et al., 2024), TimesNet (Wu et al., 2023a), DLinear (Zeng et al., 2023),
FEDformer (Zhou et al., 2022) , Non-Stationary Transformers (Liu et al., 2022c), SCINet (Liu et al.,
2022b), and TiDE (Das et al., 2023).

Main results The comprehensive forecasting results are listed in Table 1, with the best results
marked in red and the second-best blue, while the visual results are displayed in Figure 5. In the
case where the prediction length is greater than 96, our VisiTER model uses the model trained on the
prediction length of 96 for the dataset to perform zero-shot prediction. We can see that our model
achieve SOTA results on multiple datasets, especially performing particularly well on datasets with
fewer variables. Furthermore, we find that the image reconstruction module is able to maintain low
traditional MSE and MAE evaluation metrics, while also preserving the reconstruction style.

Table 1: Multivariate forecasting results with prediction lengths S ∈ {96, 192, 336, 720} for others
and fixed lookback length T = 96. Results are averaged from all prediction lengths. TimeIR performs
ZERO-SHOT inference when predicting lengths of {192, 336, 720}. Avg means further averaged by
subsets. Full results are listed in Table 5.

Models VisiTER iTransformer SparseTSF PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary
(Ours) (2023) (2024) (2023) (2023) (2023) (2023a) (2023) (2022b) (2022) (2022c)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.386 0.371 0.407 0.410 0.416 0.408 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456

ETTm2 0.279 0.323 0.288 0.332 0.288 0.329 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347

ETTh1 0.431 0.428 0.454 0.447 0.440 0.429 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537

ETTh2 0.368 0.398 0.383 0.407 0.383 0.402 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516

ECL 0.194 0.285 0.178 0.270 0.224 0.297 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.305 0.349

Exchange 0.334 0.389 0.360 0.403 0.361 0.408 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.193 0.296

Weather 0.254 0.277 0.258 0.278 0.276 0.294 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314

4.1 TRAINING STRATEGY

To avoid the excessively high computational demands of traditional image reconstruction models, we
have adopted several strategies during the training process of TimeIR.

Firstly, for a given dataset, we only train the TimeIR for the case of 96-length prediction and 96-length
input. When the prediction length is greater than 96, we directly use this trained model for zero-shot
prediction, and have achieved very good results. Secondly, since some of the datasets have a large
number of variables, we employ a channel sampling operation during training. Specifically, for each
training batch, we select a different set of variables to train on. Lastly, we employed a sliding window
strategy to align the input, ensuring that when the prediction length exceeds the input length, the size
of TimeIR’s input remain fixed, so the GPU memory consumption is independent of the prediction
length. This allows our model to handle even very long prediction lengths without running into
issues of infeasibility. The training strategy for the entire VisiTER framework is described in detail in
Appendix A.2.

4.2 SSIM

The SSIM is a metric used to measure the similarity between images (Wang et al., 2004). Unlike
traditional pixel-level error metrics, such as MSE, SSIM places greater emphasis on the structural
information and perceptual quality of the images. The fundamental idea behind SSIM is to evaluate
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AutoFormer CrossFormer iTransformer TimesNet VeTSF

(ours)

Ground 

Truth

Figure 5: Comparison of visual results for time series reconstruction. The experiment focuses on
predicting 96 steps with a lookback length of 96, using the ETTh2 dataset, where results from different
variables are sampled. Each row represents a sample and each column represents a method. The first
half of each image displays the provided time series, while the second half shows the predictions
from various models. The last column represents the ground truth. Please zoom in for a closer view.

Table 2: The SSIM results of our model compared to other baselines with prediction lengths
S ∈ {96, 192, 336, 720} for others and fixed lookback length T = 96. Results are averaged from all
prediction lengths, with the best results highlighted in bold. TimeIR performs ZERO-SHOT inference
when predicting lengths of {192, 336, 720}. Higher SSIM values indicate better performance. The
complete SSIM results are presented in Table 6.

Model ETTm1 ETTm2 ETTh1 ETTh2 ECL Exchange Weather

Autoformer (Wu et al., 2021) 0.3762 0.4836 0.3867 0.4101 0.6051 0.6168 0.4377

Crossformer (Zhang & Yan, 2023) 0.3800 0.3822 0.4047 0.2620 0.6788 0.3417 0.4199

iTransformer (Liu et al., 2023) 0.4329 0.5025 0.4171 0.4163 0.7015 0.6443 0.5837

TimesNet (Wu et al., 2023a) 0.4292 0.5119 0.4072 0.4013 0.6486 0.6203 0.5720

VisiTER (ours) 0.4553 0.5384 0.4606 0.4395 0.6868 0.6597 0.5941

the quality of two images by comparing their similarity in terms of luminance, contrast, and structure.
For time series images generated by our T2V method, brighter pixel values represent a higher
likelihood, meaning that luminance, contrast, and structure all reflect the authenticity of the time
series. SSIM values range from -1 to 1, where 1 indicates that the two images are identical, while
0 or negative values suggest a low level of similarity. A detailed introduction to SSIM and its
corresponding formulas can be found in Appendix A.4.

We evaluated the performance of our model on various datasets using the SSIM metric. For compar-
ison, we selected four state-of-the-art baselines: Autoformer, Crossformer, TimesNet, and iTrans-
former. Given that the λ in T2V can impact the SSIM values, we have set λ=100 to facilitate the
comparison. The results are presented in Table 2. It can be observed that our VisiTER model
outperforms the other models by a significant margin in terms of SSIM across multiple datasets. This
demonstrates that the time series predicted by our model exhibits stronger fidelity and structural
similarity compared to the baselines.

8
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4.3 ABLATIONS

4.3.1 EFFECTIVENESS OF DTFE STRUCTURE.

To evaluate the effectiveness of our proposed DTFE architecture, we have conducted comparisons on
the ETTh2 dataset against other Transformer-based models, including PatchTST and iTransformer.
By directly summing the predicted trends and periodic components from DTFE, we obtain an
intermediate result of the VisiTER. Additionally, we have included another variant of the DTFE,
which was trained using a different approach and the training strategy are presented in Figure 9.
In our current training method, we separately train a periodic feature extractor and a trend feature
extractor, and the loss function is the sum of the MSE of the periodic loss and the trend loss. The
alternative training method involves directly adding the predicted periodic and trend components,
and then computing the MSE loss between the aggregated prediction and the ground truth.

Table 3: Results of the ablation study on the effec-
tiveness of DTFE on ETTh2.

Models 96 192 336 720 Avg

iTransformer 0.297 0.380 0.428 0.427 0.383

PatchTST 0.302 0.388 0.426 0.431 0.387

DTFE(Strategy B) 0.292 0.371 0.409 0.425 0.374

DTFE(Strategy A) 0.286 0.366 0.404 0.420 0.370

The results are presented in the Table 3, which
the strategy A denotes calculating the loss sepa-
rately, while the strategy B refers to calculating
the loss after summing the components. We
can observe that the DTFE trained using our
composite-architecture outperforms the single-
architecture Transformer models. Furthermore,
the DTFE trained using strategy A demonstrates
superior performance compared to the tradi-
tional aggregation-based training strategy B.
This indicates that our model not only possesses
greater interpretability but also achieves better results.

4.3.2 ABLATION OF λ

λ=0 λ=10 λ=20 λ=50 λ=100

λ=0 λ=10 λ=20 λ=50 λ=100 Ground Truth

Figure 6: The first row is the visualization of the same time series under different λ. Others are the
results obtained from training with different λ values during the training process, with the last column
representing the ground truth. For better visibility, the visualized results only capture the prediction
portion in this figure.

In order to compare the influence of different degree of expansion in T2V (λ) on the performance of
TimeIR, We conducted experiments with an input length of 96 and a prediction length of 96 on the
ETTh2 dataset. In this study, we have fixed the DTFE and ensured that all the inputs are the same,

9
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0.603

0.289
0.286 0.285 0.284

MSE

0.365

0.457
0.468

0.474 0.478

SSIM

L=0 L=10 L=20 L=50 L=100

Figure 7: Results of the ablation study on
the λ of TimeIR on ETTh2.

0.418 0.416

0.460 0.459

0.481
0.475

192 336 720

0.170 0.167

0.322
0.312

0.961

0.772

192 336 720

ETTh1 Exchange

normal training zero shot

Figure 8: Results of the ablation study on the
zero-shot capability.

while also maintaining consistent training hyperparameters. Furthermore, the SSIM values reported
here are measured with λ=100 for the sake of uniform comparison. The visualization results are
presented in Figure 6, and the experimental results are shown in Figure 7.

It can be observed that as the value of λ increases, both the MSE and SSIM metrics exhibit better
performance. However, the visual inspection of a few sample cases reveals that when λ is smaller,
the reconstructed models tend to be more extreme, while larger values of λ result in smoother
reconstructions. In other words, smaller values of λ generate results that are more stylistically similar
to the real data, but this similarity is not necessarily reflected in the numerical metrics. Thus, λ can
be considered a hyperparameter that alters the model’s ability to fuse styles. A smaller λ leads to
reconstructed time series that are more similar in style to the input, but at the cost of ignoring the
overall coherence of the time series. Conversely, a larger λ results in less influence from the style of
the input sequence.

4.3.3 ZERO-SHOT ANALYSIS

In our experiments, to reduce the computational cost of training, we have only conducted training
the TimeIR on the same dataset for sequence length 96 with 96-step prediction. For other cases,
we have adopted a zero-shot approach. For prediction lengths greater than the sequence length, our
training strategy involves randomly selecting the starting position of the sliding window for training.
Additionally, we keep the DTFE model fixed while maintaining the same hyperparameters for the
others. The datasets used in this experiment are Weather and ETTh1, and the results are presented in
the Figure 8.

The results indicate that the zero-shot performance surpasses that of the standard training approach,
and this difference becomes more pronounced as the prediction length increases. The underlying
reason for this seemingly counterintuitive result is related to the design strategy of our model. Our
model is designed to use the input sequence to provide the style features of the time series. However,
when the prediction length is significantly longer than the sequence length, the style or characteristics
may change. When the sliding window is close to the starting point, the style is more similar, but as
the window moves further away, the style can become less similar. This can lead to training instability
and poorer performance compared to the zero-shot approach.

5 CONCLUSION

We propose the Vision-Enhanced Time Series Forecasting by Decomposed Feature Extraction and
Composed Reconstruction Framework (VisiTER) that leverages image reconstruction techniques for
time series forecasting. The framework consists of two main components: the Decomposed Time
Series to Image Generation and the Composed Image to Time Series Generation. It successfully
integrates the image modality into time series forecasting. By supplementing the time series data with
rich information from the image modality, the prediction results become more reliable and accurate.
In future work, we hope to see a growing interest in exploring the use of image modalities within the
field of time series forecasting. This integration could uncover new avenues for enhancing predictive
models and improving performance.
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Alper Tokgöz and Gözde Ünal. A rnn based time series approach for forecasting turkish electricity
load. In 2018 26th Signal processing and communications applications conference (SIU), 2018.
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A IMPLEMENTATION DETAILS

A.1 DATASET DESCRIPTIONS

We conduct experiments on seven real-world datasets to evaluate the performance of the proposed
VisiTER, including:

• ETTh1,ETTh2: This dataset (Kim et al., 2021) contains electricity transformer data recorded
hourly from July 2016 to July 2018. It includes various operational factors that influence
electricity consumption and transformer performance.

• ETTm1,ETTm2: This dataset (Kim et al., 2021) consists of electricity transformer measure-
ments recorded every 15 minutes over the same time span. The higher frequency of data
points allows for analysis of more granular trends and patterns in electricity usage.

• Exchange (Wu et al., 2021): This dataset compiles daily exchange rate panel data from
eight countries, covering the period from 1990 to 2016. It includes various currency pairs,
providing a rich resource for studying financial time series and the effects of economic
events on exchange rates.

• Weather: This dataset (Wu et al., 2021) features 21 meteorological factors, such as tem-
perature, humidity, and wind speed, collected every 10 minutes from the Weather Station
of the Max Planck Biogeochemistry Institute in 2020. It serves as a vital resource for
understanding climate patterns and their relationship with other time-dependent variables.

• ECL: This dataset records (Wu et al., 2021) hourly electricity consumption data from 321
clients. It provides insights into consumer behavior and demand patterns, making it useful
for load forecasting and energy management studies.

We follow the same data processing and train-validation-test set split protocol used in TimesNet,
ensuring a strict chronological order to prevent data leakage. For forecasting settings, we fix the
lookback series length at 96 for all datasets, while the prediction length varies among {96, 192, 336,
720}. Detailed information about the datasets is provided in Table 4.

A.2 TRAINING PROCESS

In the training of our entire framework, we begin by training the DTFE Model. Subsequently, we
freeze its parameters and proceed to train the TimeIR model. Specifically, we focus on training the
portion of the dataset that corresponds to a prediction length of 96. For any other prediction lengths,
we directly employ the model for zero-shot inference.

A.3 EXPERIMENT DETAILS

All experiments were conducted on an NVIDIA RTX 4090. We employed the ADAM optimizer and
MSE as the loss function. The learning rate for all experiments was set at 0.0001. In Part 1, during
the training of DTFE, a batch size of 32 was selected, while in Part 2, the batch size for training
TimeIR was set to 5. Both Transformer blocks in DTFE consist of a single layer, whereas the TSTB
in TimeIR has two layers.

Table 4: Dataset detailed descriptions. The dataset size is organized in (Train, Validation, Test).

Dataset Dim Series Length Dataset Size Frequency Information

ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Temperature

ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Temperature

ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 15 min Temperature

ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 15 min Temperature

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily Economy

Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather
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Figure 9: Different training strategies for DTFE. (a) Utilizing different types of Transformer models
to separately predict periodicity and trends. (b) A conventional model ensemble method, where
predictions are directly summed to compute the loss function.

A.4 METRIC DETAILS

Regarding metrics, we utilize the mean square error (MSE) and mean absolute error (MAE) for
forecasting. The calculations of these metrics are:

MSE =

F∑
i=1

(Xi − X̂i)
2, MAE =

F∑
i=1

|Xi − X̂i|,

where X, X̂ ∈ RF×C are the ground truth and prediction results of the future with F time pints and
C dimensions. Xi means the i-th future time point. At the same time, we convert the time series into
images for Structural Similarity Index (SSIM) testing (Wang et al., 2004). The SSIM relies on three
relatively autonomous components: luminance, contrast, and structures. It is widely recognized and
better aligned with the requirements of perceptual assessment. SSIM estimates the luminance µy of
an image y as the mean of the intensity, while it estimates the contrast σy as the standard deviation
of the intensity.

µy =
1

Ny

∑
p∈Ωy

yp, (7)

σy =
1

Ny − 1

∑
p∈Ωy

[yp − µy]
2 (8)

To enable the comparison of these entities, a similarity comparison function S is introduced:

S (x, y, c) =
2 · x · y + c

x2 + y2 + c
, (9)

The variables x and y are the scalar variables being compared, c = (k · L)2, where 0 < k ≪ 1 is a
constant used to avoid instability. Given a real image y and its approximation ŷ, the comparison for
brightness (Cl) and contrast (Cc) is as follows:

Cl (y, ŷ) = S (µy, µŷ, c1) and Cc (y, ŷ) = S (σy, σŷ, c2) (10)

where c1, c2 > 0. The empirical co-variance

σy,ŷ =
1

Ny − 1

∑
p∈Ωy

(yp − µy) · (ŷp − µŷ) , (11)

determines the structure comparison (Cs), expressed as the correlation coefficient between y and ŷ:

Cs (y, ŷ) =
σy,ŷ + c3

σy · σŷ + c3
, (12)

where c3 > 0. Finally, the SSIM is defined as:

SSIM (y, ŷ) = [Cl (y, ŷ)]α · [Cc (y, ŷ)]β · [Cs (y, ŷ)]γ (13)

where α > 0, β > 0 and γ > 0 are adjustable control parameters for weighting relative importance
of all components.
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Figure 10: Overall architecture of TimeIR. Initially, shallow feature extraction is performed, followed
by deep extraction using multiple TSTB layers, with the Transformer architecture detailed in Figure 11
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Figure 11: The overall architecture of the Transformer backbone. The left side of the figure illustrates
the basic architecture of the Transformer model, while the right side presents a schematic representa-
tion of the self-attention mechanism.
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Figure 12: The black line represents the ground truth, the blue line denotes Time Series One, and the
red line indicates Time Series Two.
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B MODEL DETAILS

B.1 IMAGE RECONSTRUCTION IN TIME-SERIES FORECASTING

The reason we introduced image reconstruction techniques in time series prediction tasks is that
current time series prediction models often lack style continuity. Specifically, the geometric structure
of the predicted time series does not align with that of the input time series. This issue arises from
the use of the MSE loss function, which only reflects the numerical similarity between the predicted
results and the true results, without capturing structural similarity. In other words, two samples may
have the same MSE with respect to the ground truth, yet their shapes may differ.

In Figure 12, we present a detailed example: the ground truth is a sine function, while Time Series
One is a sine function that has been shifted both horizontally and vertically, and Time Series Two is a
straight line. By controlling the magnitude of the shift in Time Series One, we can make both time
series have the same MSE as the ground truth. However, it is clear that Time Series Two lacks any
meaningful information, such as periodicity and trends, even though its MSE is identical to that of
Time Series One. In practical applications of time series, we would prefer to use Time Series Two,
which possesses similar periodicity and trends and contains more information.

When ordinary time series prediction models use MSE as the loss function, they focus solely on
numerical similarity while neglecting the geometrical structural similarity in a two-dimensional
space. Therefore, we attempted to introduce image reconstruction models to capture this aspect of
information. Experimental results have shown that our model achieves better reconstruction results,
maintaining a low MSE while providing improved structural integrity.

B.2 ALIGNMENT DETAILS

To ensure the alignment of P,T and X for concatenation in Part II, we must match their lengths.
When the input length is less than the prediction length, we truncate X to the input length. This
approach is effective because x serves as a style feature, and altering its length does not significantly
impact the stored information. When the input length equals the prediction length, concatenation
can be done directly. When the prediction length exceeds the input length, we maintain a sliding
window on P and T with a length equal to the input length. The window moves from the beginning
to the end, capturing segments that are then concatenated with X to predict the corresponding output
segments. For any excess length after division, an additional window is used to capture the final
portion. The reason all windows are concatenated with X is that X acts as a style feature and does
not provide any temporal information. Algorithm 1 outlines the complete operation of the model,
including a detailed explanation of the input alignment logic.

C FULL FORECASTING RESULTS

Table 5 presents a comprehensive comparison of VisiTER with other baselines across seven datasets.
It is evident that our model performs exceptionally well on the majority of the datasets.
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Algorithm 1 VisiTER - Overall Architecture.
Require: Input lookback time series X ∈ RL1×N ; input Length L1; predicted length L2; variates

number N ; H is a hyperparameter in T2V; Xi represents the image version of X

1: P,T = DTFE
(
X
)
. ▷ P ∈ RL2×N ,T ∈ RL2×N

2: Pi = T2V
(
P
)
. ▷ Pi ∈ RH×L2×N

3: Ti = T2V
(
P
)
. ▷ Ti ∈ RH×L2×N

4: Xi = T2V
(
X
)
. ▷Xi ∈ RH×L1×N

5: if L1 ≥ L2:

6: forfor n in {0, . . . ,N− 1} : ▷ Processing each variable individually

7: forforHn = Concat
(
Xi[:, : L2, n], Pi[:, :, n], Ti[:, :, n]

)
▷ Hn ∈ RH×L2×3

8: forfor▷ Image reconstruction using the TimeIR model

9: forforIn = TimeIR (Hn) ▷ In ∈ RH×L2

10: forI = Concat(I1, . . . , In) ▷ I ∈ RH×L2×N

11: else L1 ≥ L2:

12: forfor l in {0, . . . ,L2//L1 − 2} : ▷ Sliding window.

13: forforfor n in {0, . . . ,N− 1} : ▷ Processing each variable individually

14: forforfor ▷ Hl
n ∈ RH×L1×3

15: forforforHl
n = Concat(Xi,Pi[:, l× L1 : (l+ 1)× L1,n],Ti[:, l× L1 : (l+ 1)× L1,n])

16: forforforIn = TimeIR (Hl
n) ▷ In ∈ RH×L1

17: forIl = Concat(I1, . . . , In) ▷ Il ∈ RH×L1×N

18: forfor n in {0, . . . ,N− 1} : ▷ Processing each variable individually

19: forfor ▷ Hl+1
n ∈ RH×L1×3

20: forforHl+1
n = Concat(Ximage,Pimage[:,−L1 :,n],Timage[:,−L1 :,n])

21: forforIn = TimeIR (Hl+1
n ) ▷ In ∈ RH×L1

22: forIl+1 = Concat(I1, . . . , In) ▷ Il+1 ∈ RH×L1×N

23: forI = Concat(I0, . . . , Il, Il+1[:,−(L2 mod L1) :, :]) ▷ I ∈ RH×L2×N

24: Ŷ = V2T(I) ▷ Ŷ ∈ RL2×N

25: Return Ŷ ▷ Return the prediction result Ŷ
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Table 5: Full results of the long-term forecasting task. We compare extensive competitive models
under different prediction lengths following the setting of TimesNet (2023a). The input sequence
length is set to 96 for all baselines. Avg means the average results from all four prediction lengths.

Models VisiTER iTransformer SparseTSF PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary
(Ours) (2023) (2024) (2023) (2023) (2023) (2023a) (2023) (2022b) (2022) (2022c)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.303 0.326 0.334 0.368 0.357 0.375 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398
192 0.369 0.354 0.377 0.391 0.394 0.393 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444
336 0.400 0.380 0.426 0.420 0.426 0.414 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464
720 0.473 0.423 0.491 0.459 0.488 0.449 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516

Avg 0.386 0.371 0.407 0.410 0.416 0.408 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456

E
T

T
m

2 96 0.174 0.255 0.180 0.264 0.186 0.268 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274
192 0.240 0.299 0.250 0.309 0.248 0.306 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339
336 0.302 0.340 0.311 0.348 0.308 0.343 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361
720 0.400 0.398 0.412 0.407 0.408 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413

Avg 0.279 0.323 0.288 0.332 0.288 0.329 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347

E
T

T
h1

96 0.374 0.383 0.386 0.405 0.386 0.393 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491
192 0.416 0.422 0.441 0.436 0.435 0.422 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504
336 0.459 0.444 0.487 0.458 0.476 0.440 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535
720 0.475 0.461 0.503 0.491 0.460 0.455 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616

Avg 0.431 0.428 0.454 0.447 0.440 0.429 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537

E
T

T
h2

96 0.284 0.337 0.297 0.349 0.304 0.347 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458
192 0.364 0.393 0.380 0.400 0.385 0.396 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493
336 0.406 0.423 0.428 0.432 0.421 0.428 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551
720 0.417 0.440 0.427 0.445 0.420 0.437 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560

Avg 0.368 0.398 0.383 0.407 0.383 0.402 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516

E
C

L

96 0.170 0.263 0.148 0.240 0.210 0.280 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273
192 0.178 0.271 0.162 0.253 0.206 0.282 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286
336 0.194 0.287 0.178 0.269 0.219 0.296 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304
720 0.233 0.319 0.225 0.317 0.260 0.328 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321

Avg 0.194 0.285 0.178 0.270 0.224 0.297 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296

E
xc

ha
ng

e 96 0.083 0.200 0.086 0.206 0.095 0.218 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237
192 0.167 0.293 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335
336 0.312 0.404 0.331 0.417 0.324 0.414 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476
720 0.772 0.660 0.847 0.691 0.839 0.691 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695 1.092 0.769

Avg 0.334 0.389 0.360 0.403 0.361 0.408 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454

W
ea

th
er

96 0.172 0.214 0.174 0.214 0.197 0.237 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223
192 0.218 0.255 0.221 0.254 0.244 0.273 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285
336 0.274 0.296 0.278 0.296 0.293 0.308 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338
720 0.351 0.345 0.358 0.347 0.368 0.357 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410

Avg 0.254 0.277 0.258 0.278 0.276 0.294 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314
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Table 6: The complete SSIM results of our model compared to other baselines with prediction
lengths S ∈ {96, 192, 336, 720} for others and fixed lookback length T = 96. TimeIR performs
ZERO-SHOT inference when predicting lengths of {192, 336, 720}. Avg means further averaged by
subsets. Higher SSIM values indicate better performance.

Models ETTm1 ETTm2 ETTh1 ETTh2 ECL Exchange Weather

Autoformer (Wu et al., 2021)

96 0.3829 0.4924 0.4070 0.4186 0.6110 0.6379 0.4381
192 0.3498 0.4857 0.3518 0.4091 0.6112 0.6308 0.4191
336 0.3729 0.4655 0.3936 0.4106 0.6061 0.6141 0.4379
720 0.3990 0.4909 0.3945 0.4021 0.5655 0.5843 0.4557

Avg 0.3762 0.4836 0.3867 0.4101 0.6051 0.6168 0.4377

Crossformer (Zhang & Yan, 2023)

96 0.3979 0.4594 0.4529 0.3826 0.6988 0.5692 0.4714
192 0.3907 0.4247 0.4160 0.2423 0.6931 0.5137 0.3913
336 0.3718 0.3610 0.3863 0.2163 0.6718 0.1772 0.4409
720 0.3596 0.2837 0.3639 0.2070 0.6517 0.1067 0.3759

Avg 0.3800 0.3822 0.4047 0.2620 0.6788 0.3417 0.4199

iTransformer (Liu et al., 2023)

96 0.4294 0.5232 0.4485 0.4409 0.7167 0.6971 0.6079
192 0.4302 0.4991 0.4186 0.4167 0.7079 0.6561 0.5862
336 0.4333 0.5029 0.4058 0.4077 0.6984 0.6328 0.5745
720 0.4386 0.4848 0.3954 0.3998 0.6828 0.5911 0.5661

Avg 0.4329 0.5025 0.4171 0.4163 0.7015 0.6443 0.5837

TimesNet (Wu et al., 2023a)

96 0.4267 0.5361 0.4394 0.4352 0.6626 0.6640 0.5884
192 0.4237 0.5115 0.4206 0.3936 0.6520 0.6329 0.5725
336 0.4259 0.5065 0.3935 0.3953 0.6453 0.6158 0.5637
720 0.4405 0.4935 0.3754 0.3811 0.6345 0.5686 0.5633

Avg 0.4292 0.5119 0.4072 0.4013 0.6486 0.6203 0.5720

VisiTER (ours)

96 0.4569 0.5624 0.4796 0.4772 0.6976 0.7156 0.6125
192 0.4561 0.5410 0.4605 0.4178 0.6952 0.6723 0.5942
336 0.4513 0.5286 0.4538 0.4310 0.6861 0.6456 0.5867
720 0.4568 0.5216 0.4485 0.4319 0.6682 0.6053 0.5829

Avg 0.4553 0.5384 0.4606 0.4395 0.6868 0.6597 0.5941
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D MORE VISUALIZATION RESULTS

Figure 13 presents additional visual results. It is clear that our model provides more accurate
predictions, particularly when the time series approaches a straight line. In such cases, our model is
able to reconstruct it as a straight line, whereas traditional time series prediction models struggle to
capture the fluctuations.

Autoformer Crossformer iTransformer TimesNet VeTSF

(ours)
Ground Truth

Figure 13: More comparison of visual results for time series reconstruction. The experiment focuses
on predicting 96 steps with a lookback length of 96, using the ETTh2 and Weather dataset, where
results from different variables are sampled. The first half of each image displays the provided time
series, while the second half shows the predictions from various models. The last column represents
the ground truth. Please zoom in for a closer view.
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E EXPECTATIONS FOR FUTURE RESEARCH

This paper introduces the first method that utilizes image reconstruction for time series prediction,
leveraging periodic and trend information to reconstruct time series. The core approach involves
incorporating the style of the time series through image reconstruction. However, when predicting
long time series, the style can change over time as the series lengthens, potentially introducing noise
into the supplementary information. Future research could focus on better utilizing the style feature
to address this issue.

Additionally, we directly employed traditional Transformer models for both feature prediction and
time series image reconstruction. Subsequent work could modify the Transformer architecture to
make it more suitable for reconstructing time series images. While our experiments concentrated on
long time series prediction, this method is also applicable to other time series tasks, such as short
time series prediction and imputation.
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