

000 001 002 003 004 005 DISENTANGLEMENT OF VARIATIONS WITH MULTI- 006 MODAL GENERATIVE MODELING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

011 Multimodal data are prevalent across various domains, and learning robust representations of such data is paramount to enhancing generation quality and downstream task performance. To handle heterogeneity and interconnections among different modalities, recent multimodal generative models extract shared and private (modality-specific) information with two separate variables. Despite attempts to enforce disentanglement between these two variables, these methods struggle with challenging datasets where the likelihood model is insufficient. In this paper, we propose Information-disentangled Multimodal VAE (IDMVAE) to explicitly address this issue, with rigorous mutual information-based regularizations, including cross-view mutual information maximization for extracting shared variables, and a cycle-consistency style loss for redundancy removal using generative augmentations. We further introduce diffusion models to improve the capacity of latent priors. These newly proposed components are complementary to each other. Compared to existing approaches, IDMVAE shows a clean separation between shared and private information, demonstrating superior generation quality and semantic coherence on challenging datasets.
028
029

1 INTRODUCTION

030 Most real-world data are inherently multimodal or multi-view¹. Videos contain both visual scenes
031 and sounds (Zhao et al., 2018; Owens & Efros, 2018; Chen et al., 2020a; Gong et al., 2023; Kim
032 et al., 2024); robots can see and feel via sensors (Lee et al., 2019); images are often accompa-
033 nied by captions (Radford et al., 2021; Jia et al., 2021); and heterogeneous human, animal, and
034 environmental data are collected for health improvements (Adisasmitho et al., 2022). In addition to
035 these naturally occurring data, synthetic multi-view data constructed from semantically similar input
036 components or via augmentation are also widely used to learn useful representations for downstream
037 tasks (Veličković et al., 2019; Chen et al., 2020b; Caron et al., 2020; Tian et al., 2020a; Bardes et al.,
038 2022). Despite the abundance of such data, leveraging them is nontrivial even with naturally aligned
039 modalities due to their diversity and complex correlations. Therefore, a core challenge is to integrate
040 information across views to learn universal, transferrable representations.
041

041 Variational autoencoders (VAEs, Kingma & Welling, 2014) and their multimodal extensions have
042 emerged as a powerful paradigm to tackle this problem (Wang et al., 2016; Suzuki et al., 2016). They can extract useful shared information in data with missing modalities (Wu & Goodman, 2018)
043 and noise (Shi et al., 2021). While early works have assumed that a single latent space can capture all
044 relevant information and data variations (Shi et al., 2019; Sutter et al., 2021), recent approaches have
045 recognized the existence of both shared and modality-specific (private) information in real-world
046 datasets (Daunhawer et al., 2022; Lee & Pavlovic, 2021; Palumbo et al., 2023; 2024). However,
047 modeling shared and private components naturally exposes a challenge:
048

049 *How can we achieve maximal disentanglement between shared and private vari-
050 ables so that learned representations are complete and non-redundant?*

051 Without a clean separation, shared information leaks into private encodings and vice versa, causing
052 weak coherence across modalities, wasted model capacity, and inadequate generative quality.
053

¹We use “modality” and “view” interchangeably as they both appear in the literature.

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
Our Contributions. We propose Information-disentangled Multimodal VAE (IDMVAE), a novel
 054 framework for unsupervised multimodal representation learning hailing from theoretical stringency
 055 and practical performance. (1) Different from prior works which use capacity-based (Wang et al.,
 056 2016) or shortcut-preventing (Palumbo et al., 2023) heuristics, we employ mutual information (MI)-
 057 based regularizations to ensure disentanglement. In particular, we use cross-view MI to extract
 058 common factors that likelihood models fail to fully capture, thereby enhancing cross-modal coherence.
 059 Additionally, a cycle-consistency-style loss removes redundancy between shared and private
 060 latents using samples generated by the model itself, eliminating the need for domain-specific aug-
 061 mentations. (2) To overcome limitations of simple Gaussian priors, we leverage diffusion-based
 062 priors (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) that capture the richness of
 063 multimodal latent spaces, leading to greater representational capacities. (3) Across multiple com-
 064 plex datasets spanning image, text and multi-omics data, IDMVAE performs consistently better than
 065 state-of-the-art methods in terms of cross-modal generation and coherence, showing a synergy be-
 066 tween MI-based objectives and diffusion priors, which leads to improved performance.
 067

2 METHOD

070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 Figure 1: Our approach with two modalities.

Given a set of M modalities $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_M\}$, we would like to learn a factorized latent space for each modality m , separating information shared across modalities, captured by latent variable \mathbf{z} , from modality-specific private information, captured by \mathbf{w}_m . As illustrated in Figure 1, we assume that, $\forall m$, \mathbf{x}_m is generated by \mathbf{z}_m and \mathbf{w}_m jointly with $p(\mathbf{x}_m|\mathbf{z}_m, \mathbf{w}_m)$, and the latent variables have independent priors $p(\mathbf{z}, \{\mathbf{w}_m\}_{m=1}^M) = p(\mathbf{z}) \prod_{m=1}^M p(\mathbf{w}_m)$. We perform variational inference and parameterize the approximate posteriors with a factorized form: $q(\mathbf{z}, \mathbf{w}_m|\mathbf{x}_m) = q(\mathbf{z}|\mathbf{x}_m) \cdot q(\mathbf{w}_m|\mathbf{x}_m)$. Learned $q(\mathbf{z}|\mathbf{x}_m)$ and $q(\mathbf{w}_m|\mathbf{x}_m)$ provide representations of original inputs which can be

084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 used in downstream tasks. Our method consists of three major components.

2.1 LIKELIHOOD MODELING WITH MULTIMODAL VAE

084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 We begin with the Evidence Lower Bound (ELBO) of the MMVAE+ (Palumbo et al., 2023) model as our foundation. Let $q(\mathbf{z}|\mathbf{x}_m)$ be the posterior of shared variable derived from modality m (with distribution parameters modeled by an encoder), and $q(\mathbf{w}_m|\mathbf{x}_m)$ be the posterior of private variable from modality m (modeled by another encoder). One can define a global posterior of \mathbf{z} by aggregating information from view-specific posteriors, e.g., using the mixture-of-experts (MoE) scheme $q(\mathbf{z}|\mathbf{X}) = \frac{1}{M} \sum_{m=1}^M q(\mathbf{z}|\mathbf{x}_m)$. Together with generative distributions $p(\mathbf{x}_m|\mathbf{z}, \mathbf{w}_m)$ modeled by decoders of each view, an ELBO for \mathbf{X} can be derived with variational inference (Kingma & Welling, 2014), which involves reconstructing \mathbf{x}_n using samples of $q(\mathbf{w}_n|\mathbf{x}_n)$ and $q(\mathbf{z}|\mathbf{x}_m)$, for $n, m = 1, \dots, M$.

095
 096
 097
 098
 099
 Since the posterior $q(\mathbf{w}_n|\mathbf{x}_n)$ is dependent on \mathbf{x}_n and potentially retains shared information, to keep decoder $p(\mathbf{x}_n|\mathbf{z}, \mathbf{w}_n)$ from taking the “shortcut” to use leaked shared information, MMVAE+ uses sample of $\tilde{\mathbf{w}}_n$ from an auxiliary prior $r(\tilde{\mathbf{w}}_n)$ instead for cross-view reconstruction, where \mathbf{z} is derived from another view $m \neq n$; avoiding such shortcut enforces shared information to come from $q(\mathbf{z}|\mathbf{x}_m)$. This design leads to the following minimizing objective:

$$100 \quad \mathcal{L}_{\text{MMVAE+}} = -\frac{1}{M} \sum_{m=1}^M \mathbb{E}_{\substack{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}_m) \\ \mathbf{w}_m \sim q(\mathbf{w}_m|\mathbf{x}_m) \\ \{\tilde{\mathbf{w}}_n \sim r(\tilde{\mathbf{w}}_n)\}_{n \neq m}}} \left[\log \left(\frac{p(\mathbf{x}_m|\mathbf{z}, \mathbf{w}_m)p(\mathbf{z})p(\mathbf{w}_m)}{q(\mathbf{z}|\mathbf{X})q(\mathbf{w}_m|\mathbf{x}_m)} \prod_{n \neq m} p(\mathbf{x}_n|\mathbf{z}, \tilde{\mathbf{w}}_n) \right) \right].$$

104
 105
 106
 107
 Within the expectation, $p(\mathbf{x}_m|\mathbf{z}, \mathbf{w}_m)$ and $p(\mathbf{x}_n|\mathbf{z}, \tilde{\mathbf{w}}_n)$ are conditional likelihood of self- and cross- reconstructions, respectively. Palumbo et al. (2023) shows that $-\mathcal{L}_{\text{MMVAE+}}(\mathbf{x}_{1:M}) \leq \log(\mathbf{x}_{1:M})$ remains a valid ELBO. Compared with previous multimodal VAE using MoE parameterization (Shi et al., 2019), MMVAE+ achieves superior performance for extracting shared information, although the result is somewhat sensitive to the relative capacity (dimensionality) of \mathbf{z} and \mathbf{w} . In the rest

108 of this section, we will show that regularizing the generative model with mutual information (MI)
109 is more effective at achieving disentanglement. We emphasize that MMVAE+ is one option for
110 multimodal VAE, and our improvement below can also be applied to other models, e.g., PoE (Wu &
111 Goodman, 2018) or MoPoE (Sutter et al., 2021).

112

113 2.2 SHARED VARIABLE EXTRACTION WITH CROSS-VIEW MI MAXIMIZATION

114

115 While general (per-dimension) disentanglement of variations is theoretically challenging (Locatello
116 et al., 2019), the underlying structure of our setup that inputs of different modalities share a common
117 cause facilitate (variable-level) disentanglement of shared versus private information.

118

119 To extract the shared information, it is natural to enforce the shared representation of modality m ,
120 denoted \mathbf{z}_m (with distribution $q(\mathbf{z}|\mathbf{x}_m)$) to have high mutual information (MI) with \mathbf{x}_n for $n \neq m$.
121 Note this is partially pursued by $\mathcal{L}_{\text{MMVAE+}}$ through cross-view reconstruction. In light of the decom-
122 position $I(\mathbf{z}_m, \mathbf{w}_n; \mathbf{x}_n) = I(\mathbf{z}_m; \mathbf{x}_n) + I(\mathbf{w}_n; \mathbf{x}_n | \mathbf{z}_m)$, we can maximize $I(\mathbf{z}_m, \mathbf{w}_n; \mathbf{x}_n)$ while min-
123 imizing $I(\mathbf{w}_n; \mathbf{x}_n | \mathbf{z}_m)$ to maximize $I(\mathbf{z}_m; \mathbf{x}_n)$. Focusing on the first term, since $I(\mathbf{z}_m, \mathbf{w}_n; \mathbf{x}_n) =$
124 $H(\mathbf{x}_n) - H(\mathbf{x}_n | \mathbf{z}_m, \mathbf{w}_n)$ where the entropy $H(\mathbf{x}_n)$ is a constant, minimizing the conditional en-
125 tropy $H(\mathbf{x}_n | \mathbf{z}_m, \mathbf{w}_n) = \mathbb{E}_{\mathbf{x}_n, \mathbf{z}_m, \mathbf{w}_n}[-\log p(\mathbf{x}_n | \mathbf{z}_m, \mathbf{w}_n)]$ is equivalent to maximizing conditional
126 likelihood. However, maximizing this upper bound does not ensure maximal $I(\mathbf{z}_m; \mathbf{x}_n)$ due to the
127 gap $I(\mathbf{w}_n; \mathbf{x}_n | \mathbf{z}_m)$. Therefore, likelihood maximization alone does not ensure disentanglement.

128

129 We thus take the alternative approach to maximize $I(\mathbf{z}_m, \mathbf{z}_n)$ which is a lower bound of $I(\mathbf{z}_m, \mathbf{x}_n)$:
130 $I(\mathbf{z}_m; \mathbf{x}_n) = I(\mathbf{z}_m; \mathbf{z}_n, \mathbf{x}_n) - I(\mathbf{z}_m; \mathbf{z}_n | \mathbf{x}_n) = I(\mathbf{z}_m; \mathbf{z}_n, \mathbf{x}_n) = I(\mathbf{z}_m; \mathbf{z}_n) + I(\mathbf{z}_m; \mathbf{x}_n | \mathbf{z}_n) \geq$
131 $I(\mathbf{z}_m; \mathbf{z}_n)$, where $I(\mathbf{z}_m; \mathbf{z}_n | \mathbf{x}_n) = 0$ in the first step due to variability of \mathbf{z}_n coming from \mathbf{x}_n
132 only (Federici et al., 2020). In this work, we use the contrastive estimate of MI (Oord et al., 2018):
133

$$134 I(\mathbf{z}_m; \mathbf{z}_n) \approx \text{Contrast}(\mathbf{z}_m, \mathbf{z}_n) := \mathbb{E}_{\mathbf{z}_m, \mathbf{z}_n} \log \left[\frac{\phi(\mathbf{z}_m, \mathbf{z}_n)}{\phi(\mathbf{z}_m, \mathbf{z}_n) + \sum_{j=1}^k \phi(\mathbf{z}_m, \bar{\mathbf{z}}_n^j)} \right] \quad (1)$$

135

136 where $\phi(\mathbf{z}_m, \mathbf{z}_n) = \exp\left(\frac{\mathbf{z}_m^\top \mathbf{z}_n}{\|\mathbf{z}_m\| \cdot \|\mathbf{z}_n\|}\right)$ is the affinity function, and $\{\bar{\mathbf{z}}_n^j\}_{j=1}^k$ are k negative examples
137 randomly sampled from the minibatch not aligned with \mathbf{z}_m . Since we have M modalities, we
138 compute the average of cross-modality MIs as our regularization for extracting shared information:

$$139 \mathcal{L}_{\text{CrossMI}} = -\frac{2}{M(M-1)} \sum_{m < n} \text{Contrast}(\mathbf{z}_m, \mathbf{z}_n).$$

140

141 2.3 DISENTANGLEMENT WITH GENERATIVE AUGMENTATION

142 While equation 1 encourages \mathbf{z} to capture shared information across views, it does not guarantee
143 that the learned \mathbf{z}_m contains no private information which should be modeled by \mathbf{w}_m . Similarly,
144 even if \mathbf{z}_m contains no private information and the self-reconstruction term in $\mathcal{L}_{\text{MMVAE+}}$ encour-
145 ages $(\mathbf{z}_m, \mathbf{w}_m)$ to jointly capture all information about \mathbf{x}_m , the learned \mathbf{w}_m can still retain shared
146 information. Thus, we need additional regularization to remove redundancy between \mathbf{z}_m and \mathbf{w}_m .

147

148 To motivate our method, consider the desired scenario where \mathbf{z}_m and \mathbf{w}_m are disentangled, so that
149 they each can be varied independently to generate new samples of \mathbf{x}_m using the decoder. Let \mathbf{x}_m
150 and \mathbf{x}'_m be two input samples, and let $(\mathbf{z}_m, \mathbf{w}_m)$ be a pair of samples drawn from the posteriors
151 $q(\mathbf{z}|\mathbf{x}_m)$ and $q(\mathbf{w}_m|\mathbf{x}_m)$, respectively, and similarly $(\mathbf{z}'_m, \mathbf{w}'_m)$ be a pair of samples drawn from
152 conditional posteriors for \mathbf{x}'_m . With disentanglement and a good likelihood model, a sample $\mathbf{x}'_m \sim$
153 $p(\mathbf{x}_m | \mathbf{z}_m, \mathbf{w}'_m)$ would share the same \mathbf{z} with \mathbf{x}_m . In turn, when we map \mathbf{x}'_m back to the latent space,
154 $q(\mathbf{z}|\mathbf{x}'_m)$ and $q(\mathbf{z}|\mathbf{x}_m)$ should be similar. Likewise, $q(\mathbf{w}_m|\mathbf{x}'_m)$ and $q(\mathbf{w}_m|\mathbf{x}_m)$ should be similar.

155

156 More formally, assume that \mathbf{z}_m is sufficient for \mathbf{x}_n , meaning that it captures all shared information,
157 i.e., $I(\mathbf{z}_m; \mathbf{x}_n) = I(\mathbf{x}_m; \mathbf{x}_n)$ as encouraged by $\mathcal{L}_{\text{CrossMI}}$. Then in view of $I(\mathbf{z}_m; \mathbf{x}_n) = H(\mathbf{z}_m) -$
158 $H(\mathbf{z}_m | \mathbf{x}_n)$, we would like to find the minimal \mathbf{z}_m (with lowest $H(\mathbf{z}_m)$) by minimizing

$$159 H(\mathbf{z}_m | \mathbf{x}_n) = \mathbb{E}_{\mathbf{z}_m, \mathbf{x}_n}[-\log p(\mathbf{z}_m | \mathbf{x}_n)] \approx \mathbb{E}_{\mathbf{X} \sim p(\mathbf{X}), \mathbf{z}_m \sim q(\mathbf{z} | \mathbf{x}_m)}[-\log q(\mathbf{z} = \mathbf{z}_m | \mathbf{x}_n)].$$

160

161 Similar approaches have been used by Federici et al. (2020, symmetric KL for minimizing
162 $I(\mathbf{x}_m, \mathbf{z}_m | \mathbf{x}_n)$) and Tsai et al. (2019, inverse prediction) for learning minimally sufficient shared
163 variable. Essentially, for extracting shared information, \mathbf{x}_m and \mathbf{x}_n indeed constitute two views that
164 are mutually redundant, satisfying $I(\mathbf{x}_m; \mathbf{x}_n | \mathbf{z}) = 0$, so that the IB principle naturally applies.

162 Note however, we do not have multiple natural views sharing \mathbf{w}_m to carry out the above idea.
 163 This challenge motivates us to synthesize the view $\mathbf{x}_m^+ \sim p(\mathbf{x}_m | \mathbf{z}_m, \mathbf{w}'_m)$, with $\mathbf{w}'_m \sim q(\mathbf{w}'_m | \mathbf{x}'_m)$
 164 from another sample \mathbf{x}'_m , to reduce the redundancy of learned \mathbf{w}_m by approximately minimizing
 165 $H(\mathbf{w}_m | \mathbf{x}'_m)$ with the following loss

$$166 \mathbb{E}_{\mathbf{x}_m \sim p(\mathbf{x}_m), \mathbf{x}'_m \sim p(\mathbf{x}_m), \mathbf{z}_m \sim q(\mathbf{z} | \mathbf{x}_m), \mathbf{w}'_m \sim q(\mathbf{w}_m | \mathbf{x}'_m), \mathbf{x}_m^+ \sim p(\mathbf{x}_m | \mathbf{z}_m, \mathbf{w}'_m)} [-\log q(\mathbf{w}'_m | \mathbf{x}_m^+)].$$

168 Assuming that posteriors are parameterized Gaussians, this loss reduces to ℓ_2 loss for matching
 169 means of posteriors. In practice, we find it more stable to use a contrastive loss for matching, i.e.,

$$170 \mathcal{L}_{\text{GenAug}, \mathbf{w}_m} := -\text{Contrast}(\mathbf{w}''_m, \mathbf{w}'_m) \quad \text{where } \mathbf{x}_m^+ \sim p(\mathbf{x}_m | \mathbf{z}_m, \mathbf{w}'_m), \mathbf{w}''_m \sim q(\mathbf{w}_m | \mathbf{x}_m^+).$$

172 We show results obtained with contrastive estimation in the main paper, and provide empirical com-
 173 parisons of the two implementations in Appendix A. We also define $\mathcal{L}_{\text{GenAug}, \mathbf{z}_m}$ similarly by switch-
 174 ing the role of \mathbf{z}_m and \mathbf{w}_m . The total redundancy removal regularization is defined as

$$175 \mathcal{L}_{\text{GenAug}} = \frac{1}{2M} \sum_{m=1}^M (\mathcal{L}_{\text{GenAug}, \mathbf{z}_m} + \mathcal{L}_{\text{GenAug}, \mathbf{w}_m}).$$

178 Although we do not have the reconstruction target for \mathbf{x}_m^+ , matching $q(\mathbf{z} | \mathbf{x}_m^+)$ with $q(\mathbf{z} | \mathbf{x}_m)$, and
 179 matching $q(\mathbf{w}_m | \mathbf{x}_m^+)$ with $q(\mathbf{w}_m | \mathbf{x}'_m)$ implement a form of *cycle-consistency* (Zhu et al., 2017),
 180 and provide learning signals for both the encoder and the decoder. Previously, Bai et al. (2021)
 181 derived an ELBO of sequence data for disentangling static versus dynamic components, which in-
 182 volved mutual information terms based on data augmentation, similar to $\mathcal{L}_{\text{GenAug}}$. However, their
 183 augmentation requires strong domain knowledge (e.g., shuffling the frame order does not alter the
 184 static component, and color change applied to all frames does not alter the dynamic component). In
 185 contrast, our augmentations require no domain knowledge and are produced by the model itself.

186 2.4 THE FINAL IDMVAE OBJECTIVE

188 We define our objective of Information-Disentangled Multimodal VAE (IDMVAE) as

$$190 \min \mathcal{L}_{\text{IDMVAE}} := \mathcal{L}_{\text{MMVAE+}} + \lambda_1 \mathcal{L}_{\text{CrossMI}} + \lambda_2 \mathcal{L}_{\text{GenAug}} \quad (2)$$

191 where λ_1 and λ_2 are user parameters tuned on the validation set.

193 **Diffusion Priors** In most multimodal VAEs, the prior distributions are chosen to be simple and
 194 easy to sample from, e.g., Gaussian for continuous data. However, such unstructured priors may
 195 not be ideal for representation learning, whose purpose is to discover useful structure of data for
 196 supervised downstream tasks. As an example, a representation containing rich label information
 197 most likely have a clustering structure where data of different classes are separated far apart, and
 198 will not have a uni-modal distribution like Gaussian. We use diffusion models (Sohl-Dickstein
 199 et al., 2015; Ho et al., 2020; Song et al., 2021) to overcome this limitation by parameterizing $p(\mathbf{z})$ as
 200 a denoising process started with pure noise. To naturally introduce diffusion models into our loss, we
 201 decompose the KL divergence inside $\mathcal{L}_{\text{MMVAE+}}$ (which we minimize) as (Vahdat et al., 2021):

$$202 D_{\text{KL}}(q(\mathbf{z} | \mathbf{x}) || p(\mathbf{z})) = E_{q(\mathbf{z} | \mathbf{x})} [\log q(\mathbf{z} | \mathbf{x})] + E_{q(\mathbf{z} | \mathbf{x})} [-\log p(\mathbf{z})]. \quad (3)$$

204 The first term maximizes the entropy of the approximate posterior $q(\mathbf{z} | \mathbf{x})$. The second term max-
 205 imizes the likelihood of samples from $q(\mathbf{z} | \mathbf{x})$ under $p(\mathbf{z})$, which we model with diffusion models.
 206 We can treat $\mathbf{z} \sim q(\mathbf{z} | \mathbf{x})$ as “data”, and destroy its structure by gradually adding noise to it, resulting
 207 in pure noise after a number of steps. With repeated applications of a denoising network, diffusion
 208 models gradually reverse the noising process, and recover the original data from pure noise.
 209 Diffusion models have well-defined ELBO objectives which *lower bound* $\log p(\mathbf{z})$, and plugging
 210 them into equation 3 yields *valid upper bounds* of the KL divergence. Since the latent variables are
 211 of low dimensionality, we parameterize the diffusion backward process with a simple feedforward
 212 network. In practice, we introduce additional loss weight for $E_{q(\mathbf{z} | \mathbf{x})} [-\log p(\mathbf{z})]$, and model the
 213 mean of $q(\mathbf{z} | \mathbf{x})$ with the DDPM parameterization (Ho et al., 2020). We optimize over all modules
 214 (encoders, decoders, diffusion networks) jointly in an *end-to-end* manner. A recent work (Palumbo
 215 et al., 2024) proposed a two-step approach which first learns the representations with MMVAE+, and
 then learns diffusion models in the input space, conditioned on VAE reconstructions. Note our use
 of diffusion model has a different motivation, and we jointly train it during representation learning.

216 3 RELATED WORK

218 **Disentanglement in VAEs.** To achieve disentangled latent representations in VAEs, researchers
 219 have commonly used mutual information (MI) based regularization, and employed various metrics
 220 to assess the results (Higgins et al., 2017; Kim & Mnih, 2018; Chen et al., 2018; Kumar et al.,
 221 2018). However, it has been shown that, without supervision or inductive bias in the model, it is
 222 theoretically challenging to recover (per-dimension) disentanglement (Locatello et al., 2019).

223 **Contrastive and self-supervised learning (SSL).** SSL is applied to a single modality, with artifi-
 224 cial views created based on the structures of data (Oord et al., 2018; Logeswaran & Lee, 2018; Hjelm
 225 et al., 2019; Bachman et al., 2019; Chen et al., 2020b; Caron et al., 2020; Tian et al., 2020a; Bardes
 226 et al., 2022; Zbontar et al., 2021), as well as multimodal data (Radford et al., 2021; Jia et al., 2021;
 227 Elizalde et al., 2023), and many methods are motivated by the classical infomax principle (Linsker,
 228 1988) and they implement neural estimation of mutual information, with contrastive loss being the
 229 most popular variant. Recent works have proposed theoretical interpretations of SSL and contrastive
 230 learning (Wang & Isola, 2020; Zimmermann et al., 2021; Hyvärinen et al., 2019; Tian et al., 2020b;
 231 Tosh et al., 2021; Chen et al., 2021; Zhai et al., 2024), with the focus of providing guarantees for
 232 extracting the shared variable, without considering the private variables.

233 A few works took private variations into consideration. von Kügelgen et al. (2021) proposed a
 234 generative model in which the latent space is divided into “content” and “style”; importantly, data
 235 augmentations were assumed to preserve content while altering dimensions within style. Tsai et al.
 236 (2021) studied self-supervised learning from a multi-view perspective and with the *multi-view re-*
 237 *dundancy* assumption (Chaudhuri et al., 2009; Tosh et al., 2021) that the private variable of each view
 238 contains little information for the downstream task, they focused on extracting the shared variable
 239 with combinations of several multi-view losses. Realizing the limitation of this assumption, Liang
 240 et al. (2023) studied the scenario where the private variables contain significant useful information,
 241 and proposed a contrastive learning algorithm for extracting it. Their algorithm required sophisti-
 242 cated data augmentation procedures designed for the downstream task. Lyu et al. (2022) proposed
 243 a model for understanding SSL, assuming a data generation process similar to ours. They extracted
 244 shared variable with CCA loss, and private variable by MI minimization.

245 **Information bottleneck (IB) and mutual-information regularization.** Another set of proba-
 246 bilitistic models was motivated by the IB method (Tishby et al., 1999; Tishby & Zaslavsky, 2015;
 247 Achille & Soatto, 2018). Alemi et al. (2017) proposed a variational IB method to extract \mathbf{z} from \mathbf{x}_1
 248 which has high MI with \mathbf{x}_2 (estimated with conditional likelihood), so that it captures the shared in-
 249 formation, and at the same time has low MI with \mathbf{x}_1 so that it contains little nuisance factors/private
 250 information. Federici et al. (2020) leveraged the multi-view redundancy assumption that all the in-
 251 formation \mathbf{x}_1 contains about an unobserved label is also contained in \mathbf{x}_2 , and showed that that if the
 252 learned representation \mathbf{z} is sufficient, in the sense that $I(\mathbf{x}_1, \mathbf{x}_2|\mathbf{z}) = 0$, then \mathbf{z} has all the predictive
 253 power from $(\mathbf{x}_1, \mathbf{x}_2)$ for label. Remarkably, their objective did not involve any reconstruction paths,
 254 and the authors considered this to be an advantage, given that density modeling for high dimensional
 255 data is difficult. Wang et al. (2025) extended Federici et al. (2020) and proposed a two-step approach
 256 to first extract shared and then private variables with guarantees, again without generative modeling.

257 4 EXPERIMENTS

258 We compare our method, IDMVAE, and its variant with diffusion priors, against several baselines.

259 **MMVAE** (Shi et al., 2019): uses a MoE inference network to combine information from different
 260 modalities. It only models the shared variable \mathbf{z} with ELBO.

261 **MoPoE-VAE** (Sutter et al., 2021): uses a mixture-of-products-of-experts inference network for \mathbf{z} .

262 **DMVAE** (Lee & Pavlovic, 2021): performs PoE inference for \mathbf{z} , and models \mathbf{w}_m within ELBO.

263 **MMVAE+** (Palumbo et al., 2023): performs separation of shared versus private information with the
 264 help of auxiliary prior variables. It is a special case of IDMVAE (w.o. diffusion) with $\lambda_1 = \lambda_2 = 0$.

265 **DisentangledSSL** (Wang et al., 2025): performs extraction of shared variable (using the method
 266 of Federici et al., 2020) and private variable in two sequential steps. It is a state-of-the-art disentan-
 267 glement method without likelihood modeling, but it can only be applied to two views currently.

268 **SBM** (Wesego & Rooshenas, 2024): first trains individual VAEs for each modality with a single
 269 latent variable, and then couples modalities with diffusion modeling on the joint representations.

270 Table 1: Latent classification on PolyMNIST-Quadrant. Accuracies are averaged over 5 modalities.
 271 For methods with a single latent variable in each view, evaluation results are collected under z .

Model	$z \rightarrow \text{Digit} \uparrow$	$z \rightarrow \text{Quad} \downarrow$	$w \rightarrow \text{Quad} \uparrow$	$w \rightarrow \text{Digit} \downarrow$
MMVAE	0.492	0.798	—	—
MoPoE-VAE	0.536	0.751	—	—
DMVAE	0.157	0.254	0.710	0.179
MMVAE+	0.382	0.355	0.999	0.341
SBM	0.263	0.995	—	—
IDMVAE (ours)	0.983	0.271	0.999	0.162
$-\mathcal{L}_{\text{CrossMI}} (\lambda_1 = 0)$	0.111	0.267	0.999	0.356
$-\mathcal{L}_{\text{GenAug}} (\lambda_2 = 0)$	0.977	0.277	0.999	0.202
+ Diffusion prior	0.982	0.267	0.999	0.143

4.1 RESULTS ON POLYMNIST-QUADRANT

293 Figure 2: PolyMNIST-Quadrant dataset.
 294 Digits (0-9) are placed in one of the four
 295 quadrants randomly. Each column contains
 296 one multimodal sample. Each modality has
 297 a different background scheme. Digit label
 298 is shared across all modalities, while
 299 quadrant label is private to each modality.

PolyMNIST (Sutter et al., 2021) is a benchmark for multimodal representation learning, consisting of MNIST (LeCun et al., 1998) digits overlaid on complex backgrounds. We make the dataset more challenging, by taking each MNIST digit and placing a 32x32 scaled version of it into one of four quadrants of a 64x64 canvas; see Figure 2 for an illustration. This modification introduces the private latent variable which captures the quadrant position (with ground truth label) and background for each modality, allowing for nuanced evaluation of disentanglement and generation. Our training/validation/test sets contain 220,000/5,000/10,000 samples. We use the deep residual network (He et al., 2015) architecture as the backbone of encoders and decoders for all methods. The dimensionality is set to 32 for \mathbf{z} and 128 for \mathbf{w}_m .

Latent Classification. For evaluation, we perform linear classification on the *samples* of posterior distributions (samples reflect both mean and variance of posteriors). Multi-class logistic regression models are trained on the posterior samples of training set and applied to posterior samples of the test set. We perform two types of classifications: (1) predicting shared label from the shared variable (\mathbf{z}) and private label from the private variable (\mathbf{w}_m), where high accuracy is better, indicating the desired variation is captured; and (2) cross-classification, where we predict shared label from \mathbf{w}_m and predict quadrant label from \mathbf{z} . Ideally, with successful disentanglement, cross-classification accuracies should approach the performance of a random classifier (e.g., 10% for predicting digits from \mathbf{w}_m , 25% for predicting quadrants from \mathbf{z}). We present results of different methods in Table 1, as well as performance of our method when either $\mathcal{L}_{\text{CrossMI}}$ or $\mathcal{L}_{\text{GenAug}}$ is removed from our loss. Clearly, our method achieves superior performance. $\mathcal{L}_{\text{CrossMI}}$ is critical for extracting the shared variable, and this is because the digits occupy a small number of pixels and pure likelihood modeling may ignore them. $\mathcal{L}_{\text{GenAug}}$ helps remove redundant information, so that cross-classification accuracy is reduced. Adding diffusion in latent space (last row of table) leads to small gain.

Conditional Coherence. This metric evaluates the model’s ability to generate consistent samples across modalities. We assess this for both self-reconstruction and cross-modal generation. Formally, we combine either posterior $\mathbf{z}_{s,q} \sim q(\mathbf{z}|\mathbf{x}_s)$ or prior $\mathbf{z}_{s,p} \sim p(\mathbf{z})$ (using diffusion prior if available) of a modality s , with the posterior $\mathbf{w}_{t,q} \sim q(\mathbf{w}|\mathbf{x}_t)$ or the prior $\mathbf{w}_{t,p} \sim p(\mathbf{w}_t)$ (using diffusion prior if available) of modality t , and apply $p(\mathbf{x}_t|\mathbf{z}, \mathbf{w}_t)$ to generate a new sample of modality t . This sample should have the same digit label as \mathbf{x}_s if posterior of \mathbf{z} is used, and random digit label if prior is used. Similarly, the quadrant label can be determined based on whether posterior or prior is used for \mathbf{w}_t . We then use ResNet classifiers trained on original images to predict corresponding labels of generated images, and the averaged accuracy across modalities is referred to as *coherence*. We provide conditional generative coherence in Table 2 (left panel for self generation where $s = t$, and middle panel for cross generation $s \neq t$); see Appendix B.2 for sample generations. The results are consistent with those of latent classification, and diffusion priors significantly boost coherence.

324
325
326
327
Table 2: Generative coherence, averaged over 5 views, on PolyMNIST-Quadrant. We use subscript
 q to indicate samples from posteriors and subscript p to indicate samples from priors. For generated
328 images, digit label is determined by $\mathbf{z}_{s,q}$ or otherwise random (with target accuracy 10%), quadrant
329 label is determined by $\mathbf{w}_{s,q}$ or otherwise random (with target accuracy 25%).

329 Model	330 Self Gen ($s = t$)				Cross Gen ($s \neq t$)	Uncond.
	331 $Gen(\mathbf{z}_{s,q}, \mathbf{w}_{t,p})$		332 $Gen(\mathbf{z}_{t,p}, \mathbf{w}_{s,q})$		333 $Gen(\mathbf{z}_{s,q}, \mathbf{w}_{t,p})$	334 $Gen(\mathbf{z}_p, \mathbf{w}_p)$
	335 $Digit \uparrow$	336 $Quad \downarrow$	337 $Digit \downarrow$	338 $Quad \uparrow$	339 $Digit \uparrow$	340 $Digit \uparrow$
MMVAE	—	—	—	—	0.170	0.041
MoPoE-VAE	—	—	—	—	0.173	0.029
DMVAE	0.297	0.252	0.532	0.999	0.161	0.005
MMVAE+	0.120	0.251	0.915	0.999	0.119	0.000
SBM	—	—	—	—	0.158	0.007
IDMVAE (ours)	0.898	0.249	0.162	0.999	0.881	0.070
— $\mathcal{L}_{\text{CrossMI}} (\lambda_1 = 0)$	0.101	0.252	0.926	0.999	0.100	0.000
— $\mathcal{L}_{\text{GenAug}} (\lambda_2 = 0)$	0.670	0.250	0.370	0.999	0.671	0.008
+ Diffusion prior	0.942	0.251	0.106	0.999	0.887	0.664

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Figure 3: Unconditional generations on PolyMNIST-Quadrant. Each row is a multimodal sample
378 generated with a prior sample of \mathbf{z} , so images in the same row ideally have the same digit identity.

Unconditional Coherence. This metric further assesses the consistency of the shared information in unconditionally generated samples. We first sample a shared latent code $\mathbf{z}_p \sim p(\mathbf{z})$ (using diffusion prior when available). For each modality m , we then sample an independent private $\mathbf{w}_{m,p} \sim p(\mathbf{w}_m)$ and generate a sample $\hat{\mathbf{x}}_m$ from the combined latent code $(\mathbf{z}_p, \mathbf{w}_{m,p})$. The generated multimodal sample $\{\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_M\}$ are then passed to their respective digit classifiers (ResNet) trained on original training images, to predict the shared label. A sample set is considered coherent if *all* classifiers agree on the same shared label. We report the percentage of coherent sets as unconditional coherence, shown in Table 2 (right panel). Most methods obtain close to zero unconditional coherence, indicating the difficulty of matching prior and posterior distributions for latent variables. However, with diffusion prior our method achieves significantly better coherence, thanks to its flexibility. We show generations in Figure 3, and 2D visualizations of latent codes in Appendix B.3.

Generative augmentation. Recall that in $\mathcal{L}_{\text{GenAug}}$ we mix and match posteriors of \mathbf{z} and \mathbf{w}_m from different samples to generate new samples in modality m . We provide illustration of such samples from our trained model in Figure 4. The first row and first column contain images for which we extract posterior samples of \mathbf{z} and \mathbf{w}_m respectively. And the rest of the grid contain generate images using samples of \mathbf{w}_m of the corresponding row and \mathbf{z} of the corresponding column. We observe that images in each column share the same digit, while images in each row share the same quadrant, as desired. Generated images are of high quality, showing that we can independently vary shared and private variables to obtain controllable generations.

Figure 4: Augmentations.

378 Table 3: Latent classification on CUB, using posterior means. \mathbf{z}_1 and \mathbf{w}_1 refers to image latents.
379

Model	$\mathbf{z} \rightarrow Cat. \uparrow$	$\mathbf{z}_1 \rightarrow Dir. \downarrow$	$\mathbf{w}_1 \rightarrow Dir. \uparrow$	$\mathbf{w} \rightarrow Cat. \downarrow$
MMVAE	0.685	0.820	—	—
MoPoE-VAE	0.731	0.837	—	—
DMVAE	0.418	0.771	0.843	0.400
MMVAE+	0.725	0.692	0.612	0.323
DisentangledSSL	0.831	0.557	0.592	0.179
IDMVAE (ours)	0.815	0.501	0.720	0.200
– $\mathcal{L}_{CrossMI} (\lambda_1 = 0)$	0.759	0.767	0.635	0.292
– $\mathcal{L}_{GenAug} (\lambda_2 = 0)$	0.810	0.493	0.698	0.230
+ Diffusion prior	0.840	0.526	0.667	0.321

390
391 4.2 RESULTS ON CUB392 The CUB-200-2011 dataset (Wah et al., 2011; Reed et al., 2016; Shi et al., 2019; Palumbo et al.,
393 2023; 2024) is a widely used benchmark for fine-grained visual categorization, containing 64x64
394 RGB images of 200 bird species. Each image is paired with 10 textual descriptions. Following
395 Palumbo et al. (2024), we group 22 categories of species from the 200 bird species into 8
396 super-categories, yielding 1-of-8 class labels for these species. Data with category label is split into
397 training/validation/test with 80%/10%/10% portions. The rest 178 species are added to the training
398 set for representation learning. The training/validation/test sets contain 115,240/1,280/1,360
399 samples, respectively. See more details on data generation in Appendix C.1.400 For this dataset, the two modalities (image, text) share rich information about bird category, since the
401 text describes the color of different parts of the bird. To evaluate the quality of private information,
402 we note that the horizontal direction of the bird (with direction inferred from the original CUB
403 attributes, see Appendix C.1 for details) can only be inferred from the image. Therefore, we consider
404 the direction as private label for the image modality.405 We use ResNet as encoders and decoders for images, while convolution network as those for texts
406 (using one-hot representation of text with a vocabulary of 1,590 words). And the dimensionality is
407 set to 48 for \mathbf{z} and 16 for \mathbf{w}_m , following Palumbo et al. (2023). After representation learning, we
408 perform latent linear classification similar to the previous section. With disentangled latent repre-
409 sentations, the target (random) classification accuracy is 50% for predicting direction from \mathbf{z} , and
410 12.5% for predicting category from \mathbf{w}_1 (derived from image). The results of latent classification
411 are given in Table 3. Again, cross-view mutual information maximization is critical for recover-
412 ing \mathbf{z} , when we do not have a very strong likelihood model (due to limited image data). On the
413 other hand, generative augmentation still helps reduce redundancy in latent space. In Figure 5, we
414 provide examples of cross-modality generations and our method achieves more coherent generation
415 than MMVAE+; additional conditional generations are given in Appendix C.3. We note that Disen-
416 tangledSSL performs well for extracting \mathbf{z} (their first step has a objective that similarly maximizes
417 mutual information across views), but failed to retain private information in its second step. In
418 contrast, our model keeps the most useful information in the latent space with generative modeling.

419 4.3 RESULTS ON THE CANCER GENOME ATLAS (TCGA)

420 TCGA dataset² is a real-world multi-omics dataset that is by nature multimodal. Using the same
421 data processing procedure from Lee & van der Schaar (2021), we obtain a dataset of 10,960 samples
422 (of which 9,477 are labeled) with 5 views (each of 100 dimensions), each representing a molecular
423 modality and labels (see Appendix D.1 for details). The binary label represents 1-year mortality
424 of a patient-sample. We selected 2 views (mRNA and miRNA) which had 9,874 samples out of
425 all possible combinations after filtering out samples with missing values. After adding data with
426 missing labels to the training set, a 90%/5%/5% split was performed with 5 different seeds. Due to
427 the complex nature of biological data, private information may be predictive as well.428 As shown in Table 4, our method in general performs better than baseline methods in terms of ac-
429 curacy (see Appendix D.3 for AUROC results), both learned shared and private latent spaces are
430 predictive, and combining \mathbf{z} and \mathbf{w} achieves the best performance. This is likely because clean dis-431
2²<https://www.cancer.gov/tcga>

	MMVAE+	IDMVAE	+ Diffusion	MMVAE+	IDMVAE	+ Diffusion	
432							
433							
434		this bird has blue blue blue and blue a blue beak .	the bird has blue colored feathers and has long .	this bird has a white head and a and throat and and and blue black and black speckled .		this bird bird yellow and black and and a short and .	the bird has yellow color feathers and thin two long eyering .
435							
436							
437							
438							
439		this bird has red with with and , and short beak .	the bird has red breasted feathers and and a long .	this bird has a red head , a and throat and and and is black and black beak .		this bird has a that white and and white a , and beak .	the bird has black overall feathers and thick a bright eyes .
440							
441							
442							
443	this bird is mostly black with a red and white stripe at the base of his wings .	 	 	an average sized bird with a black nape and yellow body feathers .	 	 	
444							
445							
446							
447							
448							
449							
450							
451							
452							

Figure 5: Cross-modality generation on CUB. We combine posterior sample \mathbf{z} of the modality being conditioned on, with prior sample \mathbf{w} of the other modality for generation. **Top row:** image-to-text. **Bottom row:** text-to-image. The top image is the original image paired with text, while the rest three are different samples. Note our generations better match the conditional input in color.

Table 4: Prediction accuracy on TCGA, averaged over 2 modalities and 5 splits.

Model	$\mathbf{z} \uparrow$	\mathbf{w}	$\mathbf{z} + \mathbf{w} \uparrow$
MMVAE	0.695 ± 0.010	—	—
MoPoE-VAE	0.695 ± 0.014	—	—
DMVAE	0.688 ± 0.018	0.691 ± 0.014	0.697 ± 0.016
MMVAE+	0.692 ± 0.010	0.690 ± 0.012	0.690 ± 0.011
DisentangledSSL	0.691 ± 0.011	0.691 ± 0.012	0.690 ± 0.011
IDMVAE (ours)	0.707 ± 0.016	0.708 ± 0.013	0.718 ± 0.017
$-\mathcal{L}_{\text{CrossMI}} (\lambda_1 = 0)$	0.691 ± 0.014	0.689 ± 0.010	0.691 ± 0.014
$-\mathcal{L}_{\text{GenAug}} (\lambda_2 = 0)$	0.701 ± 0.015	0.706 ± 0.019	0.723 ± 0.013
+ Diffusion prior	0.714 ± 0.009	0.719 ± 0.024	0.731 ± 0.019

entanglement separates predictive information between shared and private latent variables, making predictions based on combined latent space more robust. In particular, $\mathcal{L}_{\text{CrossMI}}$ contributed most to the performance, and adding diffusion priors in latent space consistently improves performance.

5 CONCLUSIONS

We have proposed IDMVAE, a generative model for learning disentangled representation from multimodal data. Our innovations include the incorporation of cross-view mutual information maximization for shared variable extraction, redundancy removal based on generative augmentation, and flexible latent priors with diffusion models. These components are complimentary to each other and jointly overcome the limitations of pure likelihood modeling, resulting in superior performance than existing state-of-the-art multimodal VAEs as well as non-generative disentanglement method.

In the future, we would like to extend the model to handle missing modalities, leveraging the controllable generation capability of our model. On the other hand, for the CUB dataset, we were not able to generate very high fidelity samples of images, perhaps due to limited data volume and capacity of the decoder. We would like to introduce (possibly pre-trained) diffusion models in the input space to produce high quality samples, which may be more useful for generative augmentation.

486 REFERENCES
487

- 488 Alessandro Achille and Stefano Soatto. Emergence of invariance and disentanglement in deep rep-
489 resentations. *Journal of Machine Learning Research*, 19(1):1947–1980, 2018.
- 490 Wiku B. Adisasmitho, Salama Almuhairi, Casey Barton Behravesh, Pépé Bilivogui, Salome A.
491 Bukachi, Natalia Casas, Natalia Cediel Becerra, Dominique F. Charron, Abhishek Chaudhary,
492 Janice R. Ciacci Zanella, Andrew A. Cunningham, Osman Dar, Nitish Debnath, Baptiste Dungu,
493 Elmoubasher Farag, George F. Gao, David T. S. Hayman, Margaret Khaitsa, Marion P. G.
494 Koopmans, Catherine Machalaba, John S. Mackenzie, Wanda Markotter, Thomas C. Metten-
495 leiter, Serge Morand, Vyacheslav Smolenskiy, and Lei Zhou. One health: A new defini-
496 tion for a sustainable and healthy future. 18(6):e1010537, 2022. ISSN 1553-7374. doi:
497 10.1371/journal.ppat.1010537.
- 498 Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
499 bottleneck. In *ICLR*, 2017.
- 500 Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
501 mutual information across views. In *NeurIPS*, 2019.
- 503 Junwen Bai, Weiran Wang, and Carla Gomes. Contrastively disentangled sequential variational
504 autoencoder. In *NeurIPS*, 2021.
- 505 Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance regulariza-
506 tion for self-supervised learning. In *ICLR*, 2022.
- 508 Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
509 Unsupervised learning of visual features by contrasting cluster assignments. In *NeurIPS*, 2020.
- 511 Kamalika Chaudhuri, Sham M. Kakade, Karen Livescu, and Karthik Sridharan. Multi-view cluster-
512 ing via canonical correlation analysis. In *ICML*, 2009.
- 513 Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale audio-
514 visual dataset. In *ICASSP*, 2020a.
- 515 Jeff Z. Hao Chen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-
516 supervised deep learning with spectral contrastive loss. In *NeurIPS*, 2021.
- 518 Ricky T. Q. Chen, Xuechen Li, Roger Grosse, and David Duvenaud. Isolating sources of disentan-
519 glement in vaes. In *NeurIPS*, 2018.
- 520 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
521 contrastive learning of visual representations. In *ICML*, 2020b.
- 523 Imant Daunhawer, Thomas M. Sutter, Kieran Chin-Cheong, Emanuele Palumbo, and Julia E. Vogt.
524 On the limitations of multimodal VAEs. In *ICLR*, 2022.
- 525 Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang. CLAP: Learning
526 audio concepts from natural language supervision. In *ICASSP*, 2023.
- 528 Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust
529 representations via multi-view information bottleneck. In *ICLR*, 2020.
- 530 Yuan Gong, Andrew Rouditchenko, Alexander H. Liu, David Harwath, Leonid Karlinsky, Hilde
531 Kuehne, and James R. Glass. Contrastive audio-visual masked autoencoder. In *ICLR*, 2023.
- 533 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
534 nition, 2015.
- 535 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: a
536 reference-free evaluation metric for image captioning. In *EMNLP*, 2021.
- 538 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
539 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *NeurIPS*,
2017.

- 540 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 541 Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
 542 constrained variational framework. In *ICLR*, 2017.
- 543 R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
 544 Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
 545 and maximization. In *ICLR*, 2019.
- 546 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
 547 2020.
- 548 Aapo Hyvärinen, Hiroaki Sasaki, and Richard E. Turner. Nonlinear ICA using auxiliary variables
 549 and generalized contrastive learning. In *AISTATS*, 2019.
- 550 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan
 551 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 552 with noisy text supervision. In *ICML*, 2021.
- 553 Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In *ICML*, 2018.
- 554 Jongsuk Kim, Hyeongkeun Lee, Kyeongha Rho, Junmo Kim, and Joon Son Chung. EquiAV: Lever-
 555 aging equivariance for audio-visual contrastive learning. In *ICML*, 2024.
- 556 Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In *ICLR*, 2014.
- 557 Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational inference of disentan-
 558 gled latent concepts from unlabeled observations. In *ICLR*, 2018.
- 559 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 560 document recognition. *Proc. IEEE*, 86(11):2278–2324, 1998.
- 561 Changhee Lee and Mihaela van der Schaar. A variational information bottleneck approach to multi-
 562 omics data integration. In *AISTATS*, 2021.
- 563 Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interactive
 564 facial image manipulation. In *Proceedings of the IEEE/CVF conference on computer vision and*
 565 *pattern recognition*, pp. 5549–5558, 2020.
- 566 Michelle A. Lee, Yuke Zhu, Krishnan Srinivasan, Parth Shah, Silvio Savarese, Li Fei-Fei, Ani-
 567 mesh Garg, and Jeannette Bohg. Making sense of vision and touch: Self-supervised learning of
 568 multimodal representations for contact-rich tasks. In *International Conference on Robotics and*
 569 *Automation (ICRA)*, 2019. doi: 10.1109/ICRA.2019.8793485.
- 570 Mihee Lee and Vladimir Pavlovic. Private-shared disentangled multimodal VAE for learning of la-
 571 tent representations. In *2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 572 *Workshops (CVPRW)*, 2021.
- 573 Paul Pu Liang, Zihao Deng, Martin Q. Ma, James Zou, Louis-Philippe Morency, and Russ Salakhut-
 574 dinov. Factorized contrastive learning: Going beyond multi-view redundancy. In *NeurIPS*, 2023.
- 575 R. Linsker. Self-organization in a perceptual network. *Computer*, 21(3):105–117, 1988. doi: 10.
 576 1109/2.36.
- 577 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
 578 In *ICCV*, pp. 3730–3738, 2015.
- 579 Francesco Locatello, Stefan Bauer, Mario Lucic, Sylvain Gelly, Bernhard Scholkopf, and Olivier
 580 Bachem. Challenging common assumptions in the unsupervised learning of disentangled repre-
 581 sentations. In *ICML*, 2019.
- 582 Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence representa-
 583 tions. In *ICLR*, 2018.
- 584 Qi Lyu, Xiao Fu, Weiran Wang, and Songtao Lu. Understanding latent correlation-based multiview
 585 learning and self-supervision: An identifiability perspective. In *ICLR*, 2022.

- 594 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 595 tive coding. arXiv:1807.03748, 2018.
- 596
- 597 Andrew Owens and Alexei A. Efros. Audio-visual scene analysis with self-supervised multisensory
 598 features. In *ECCV*, 2018.
- 599
- 600 Emanuele Palumbo, Imant Daunhawer, and Julia E. Vogt. MMVAE+: Enhancing the generative
 601 quality of multimodal VAEs without compromises. In *ICLR*, 2023.
- 602
- 603 Emanuele Palumbo, Laura Manduchi, Sonia Laguna, Daphné Chopard, and Julia E Vogt. Deep
 604 generative clustering with multimodal diffusion variational autoencoders. In *ICLR*, 2024.
- 605
- 606 Kushagra Pandey, Avideep Mukherjee, Piyush Rai, and Abhishek Kumar. DiffuseVAE: Efficient,
 607 controllable and high-fidelity generation from low-dimensional latents. *Transactions on Machine
 608 Learning Research*, 2022.
- 609
- 610 William Peebles and Saining Xie. Scalable diffusion models with transformers. *arXiv preprint
 611 arXiv:2212.09748*, 2022.
- 612
- 613 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 614 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 615 Sutskever. Learning transferable visual models from natural language supervision. In *ICML*,
 616 2021.
- 617
- 618 Scott Reed, Zeynep Akata, Honglak Lee, and Bernt Schiele. Learning deep representations of fine-
 619 grained visual descriptions. In *CVPR*, pp. 49–58, 2016.
- 620
- 621 Yuge Shi, N. Siddharth, Brooks Paige, and Philip H. S. Torr. Variational mixture-of-experts autoen-
 622 coders for multi-modal deep generative models. In *NeurIPS*, 2019.
- 623
- 624 Yuge Shi, Brooks Paige, Philip Torr, and Siddharth N. Relating by contrasting: A data-efficient
 625 framework for multimodal generative models. In *ICLR*, 2021.
- 626
- 627 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 628 learning using nonequilibrium thermodynamics. In *ICML*, 2015.
- 629
- 630 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 631 Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021.
- 632
- 633 Thomas M. Sutter, Imant Daunhawer, and Julia E. Vogt. Generalized multimodal ELBO. In *ICLR*,
 634 2021.
- 635
- 636 Masahiro Suzuki, Kotaro Nakayama, and Yutaka Matsuo. Joint multimodal learning with deep
 637 generative models. *arXiv:1611.01891*, 2016.
- 638
- 639 Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In *ECCV*, 2020a.
- 640
- 641 Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
 642 makes for good views for contrastive learning? In *NeurIPS*, 2020b.
- 643
- 644 Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
 645 *2015 IEEE Information Theory Workshop (ITW)*, 2015.
- 646
- 647 Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method. In
 648 *37th Annual Allerton Conference on Communication, Control and Computing*, 1999.
- 649
- 650 Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. Contrastive learning, multi-view redun-
 651 dancy, and linear models. In *Algorithmic Learning Theory*, 2021.
- 652
- 653 Yao-Hung Hubert Tsai, Paul Pu Liang, Amir Zadeh, Louis-Philippe Morency, and Ruslan Salakhut-
 654 dinov. Learning factorized multimodal representations. In *ICLR*, 2019.
- 655
- 656 Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe Morency. Self-
 657 supervised learning from a multi-view perspective. In *ICLR*, 2021.

- 648 Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. In
 649 *NeurIPS*, 2021.
- 650
- 651 Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
 652 Hjelm. Deep graph infomax. In *ICLR*, 2019.
- 653
- 654 Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
 655 Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
 656 isolates content from style. In *ICLR*, 2021.
- 657
- 658 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 659 birds-200-2011 dataset. Technical report, Caltech, 2011.
- 660
- 661 Chenyu Wang, Sharut Gupta, Xinyi Zhang, Sana Tonekaboni, Stefanie Jegelka, Tommi Jaakkola,
 662 and Caroline Uhler. An information criterion for controlled disentanglement of multimodal data.
 663 In *ICLR*, 2025.
- 664
- 665 Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
 666 ment and uniformity on the hypersphere. In *ICML*, 2020.
- 667
- 668 Weiran Wang, Xincheng Yan, Honglak Lee, and Karen Livescu. Deep variational canonical corre-
 669 lation analysis. *arXiv:1610.03454*, 2016.
- 670
- 671 Daniel Wesego and Pedram Rooshenas. Score-based multimodal autoencoder, 2024. URL <https://arxiv.org/abs/2305.15708>.
- 672
- 673 Mike Wu and Noah Goodman. Multimodal generative models for scalable weakly-supervised learn-
 674 ing. In *NeurIPS*, 2018.
- 675
- 676 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
 677 learning via redundancy reduction. In *ICML*, 2021.
- 678
- 679 Runtian Zhai, Bingbin Liu, Andrej Risteski, J Zico Kolter, and Pradeep Kumar Ravikumar. Under-
 680 standing augmentation-based self-supervised representation learning via RKHS approximation
 681 and regression. In *ICLR*, 2024.
- 682
- 683 Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Vondrick, Josh McDermott, and Antonio
 684 Torralba. The sound of pixels. In *ECCV*, 2018.
- 685
- 686 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
 687 using cycle-consistent adversarial networks. In *ICCV*, 2017.
- 688
- 689 Roland S. Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Brendel.
 690 Contrastive learning inverts the data generating process. In *ICML*, 2021.
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702 A DIFFERENT IMPLEMENTATIONS FOR GENERATIVE AUGMENTATION
703704 In section 2.3, we have discussed two implementations of generative augmentation for redundancy
705 removal. Here we provide a detailed comparison of them.
706707 Recall that \mathbf{x}_m and \mathbf{x}'_m are two input samples, $(\mathbf{z}_m, \mathbf{w}_m)$ is pair of samples drawn from the posteriors
708 $q(\mathbf{z}|\mathbf{x}_m)$ and $q(\mathbf{w}_m|\mathbf{x}_m)$ respectively, and similarly $(\mathbf{z}'_m, \mathbf{w}'_m)$ is a pair of samples drawn from
709 conditional posteriors for \mathbf{x}'_m . With disentanglement and a good generative model, we could inde-
710 pendently vary one variable while keeping the other the same to obtain a new sample. In particular,
711 a sample $\mathbf{x}'_m \sim p(\mathbf{x}_m|\mathbf{z}_m, \mathbf{w}'_m)$ would share the same \mathbf{z} with \mathbf{x}_m . In turn, when we map \mathbf{x}'_m back
712 to the latent space, $q(\mathbf{z}|\mathbf{x}'_m)$ and $q(\mathbf{z}|\mathbf{x}_m)$ should be similar. Likewise, $q(\mathbf{w}_m|\mathbf{x}'_m)$ and $q(\mathbf{w}_m|\mathbf{x}'_m)$
713 should be similar.
714715 **Least squares matching.** In the first implementation, we would like to minimize $I(\mathbf{z}_m; \mathbf{x}_n)$ by
716 approximately minimizing $H(\mathbf{w}_m|\mathbf{x}'_m)$:
717

718
$$\mathbb{E}_{\mathbf{x}_m \sim p(\mathbf{x}_m), \mathbf{x}'_m \sim p(\mathbf{x}_m), \mathbf{z}_m \sim q(\mathbf{z}|\mathbf{x}_m), \mathbf{w}'_m \sim p(\mathbf{w}_m|\mathbf{x}'_m), \mathbf{x}'_m \sim p(\mathbf{x}_m|\mathbf{z}_m, \mathbf{w}'_m)} [-\log q(\mathbf{w}'_m|\mathbf{x}'_m)].$$

719 Assuming that posteriors are parameterized Gaussians, $\mathcal{L}_{\text{GenAug}, \mathbf{w}_m}$ reduces to ℓ_2 loss for matching
720 means of posteriors, and we implement it as
721

722
$$\mathcal{L}_{\text{GenAug}}^{\text{lsq}} = \mathbb{E}_{\mathbf{x}_m \sim p(\mathbf{x}_m), \mathbf{x}'_m \sim p(\mathbf{x}_m), \mathbf{z}_m \sim q(\mathbf{z}|\mathbf{x}_m), \mathbf{w}'_m \sim q(\mathbf{w}_m|\mathbf{x}'_m), \mathbf{x}'_m \sim p(\mathbf{x}_m|\mathbf{z}_m, \mathbf{w}'_m)} \|\bar{\mathbf{w}}'_m - \bar{\mathbf{w}}''_m\|^2$$

723 where $\bar{\mathbf{w}}'_m$ is the posterior mean of $q(\mathbf{w}_m|\mathbf{x}'_m)$ while $\bar{\mathbf{w}}''_m$ is the posterior mean of $q(\mathbf{w}_m|\mathbf{x}'_m)$.
724725 **Contrastive matching.** In practice, we find it more stable to use a contrastive loss for matching,
726 i.e.,
727

728
$$\mathcal{L}_{\text{GenAug}}^{\text{contrast}} := -\text{Contrast}(\mathbf{w}''_m, \mathbf{w}'_m) \quad \text{where} \quad \mathbf{x}'_m \sim p(\mathbf{x}_m|\mathbf{z}_m, \mathbf{w}'_m), \mathbf{w}''_m \sim q(\mathbf{w}_m|\mathbf{x}'_m).$$

729 We plug in the two different implementations into our loss. In Table 5 and 6, we provide the com-
730 parison of the two on PolyMNIST-Quadrant, each with its loss coefficient tuned on the validation set.
731 We find the best coefficients to be $\lambda_1=80$ and $\lambda_2^{\text{lsq}}=0.75$ for $\mathcal{L}_{\text{GenAug}}^{\text{lsq}}$, and $\lambda_1=80$ and $\lambda_2^{\text{contrast}}=20$
732 for $\mathcal{L}_{\text{GenAug}}^{\text{contrast}}$; diffusion prior loss has a coefficient of 1.0 when incorporated. We observe that both
733 implementations improve the disentanglement compared with using $\mathcal{L}_{\text{CrossMI}}$ only, with $\mathcal{L}_{\text{GenAug}}^{\text{contrast}}$
734 outperforming $\mathcal{L}_{\text{GenAug}}^{\text{lsq}}$.
735736 Table 5: Comparison of $\mathcal{L}_{\text{GenAug}}^{\text{lsq}}$ and $\mathcal{L}_{\text{GenAug}}^{\text{contrast}}$ for generative augmentation regularization in latent
737 linear classification on PolyMNIST-Quadrant. Accuracies are averaged over 5 modalities.
738

Our Models	$z \rightarrow \text{Digit} \uparrow$	$z \rightarrow \text{Quad} \downarrow$	$w \rightarrow \text{Quad} \uparrow$	$w \rightarrow \text{Digit} \downarrow$
$\mathcal{L}_{\text{CrossMI}} \text{ Only } (\lambda_2 = 0)$	0.977	0.277	0.999	0.202
$\mathcal{L}_{\text{CrossMI}} + \mathcal{L}_{\text{GenAug}}^{\text{lsq}}$ + diffusion prior	0.972	0.267	0.999	0.186
$\mathcal{L}_{\text{CrossMI}} + \mathcal{L}_{\text{GenAug}}^{\text{contrast}}$ + diffusion prior	0.983	0.271	0.999	0.162
	0.982	0.267	0.999	0.143

746
747
748
749
750
751
752
753
754
755

756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775

776 Table 6: Comparison of $\mathcal{L}_{\text{GenAug}}^{\text{lsq}}$ and $\mathcal{L}_{\text{GenAug}}^{\text{contrast}}$ for generative augmentation regularization in generative coherence, averaged over 5 views, on PolyMNIST-Quadrant. We use subscript q to indicate samples from posteriors and subscript p to indicate samples from priors. For generated images, digit label is determined by $\mathbf{z}_{s,q}$ or otherwise random (with target accuracy 10%), quadrant label is determined by $\mathbf{w}_{s,q}$ or otherwise random (with target accuracy 25%).

Our Models	Self Gen ($s = t$)		Cross Gen ($s \neq t$)		Uncond.
	$\text{Gen}(\mathbf{z}_{s,q}, \mathbf{w}_{t,p})$	$\text{Gen}(\mathbf{z}_{t,p}, \mathbf{w}_{s,q})$	$\text{Gen}(\mathbf{z}_{s,q}, \mathbf{w}_{t,p})$	$\text{Gen}(\mathbf{z}_p, \mathbf{w}_p)$	
	$\text{Digit} \uparrow$	$\text{Quad} \downarrow$	$\text{Digit} \downarrow$	$\text{Quad} \uparrow$	
$\mathcal{L}_{\text{CrossMI}}$ Only ($\lambda_2 = 0$)	0.670	0.250	0.370	0.999	0.671
$\mathcal{L}_{\text{CrossMI}} + \mathcal{L}_{\text{GenAug}}^{\text{lsq}}$ + Diffusion prior	0.817	0.250	0.219	0.999	0.812
$\mathcal{L}_{\text{CrossMI}} + \mathcal{L}_{\text{GenAug}}^{\text{contrast}}$ + Diffusion prior	0.917	0.249	0.109	0.999	0.875
	0.898	0.249	0.162	0.999	0.881
	0.942	0.251	0.106	0.999	0.887

790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 B DETAILS AND ADDITIONAL RESULTS ON POLYMNIST-QUADRANT
811812 B.1 IMPLEMENTATION DETAILS
813

814 We utilize a deep residual network (ResNet) architecture of 3 residual blocks, with the number
815 of filters doubling from 64 to up to 512 after each block for the encoder, for all five modalities.
816 Our model has a total of 201M parameters without diffusion prior and 206.5M Parameters with
817 diffusion prior. And each modality's information is factorized in the latent space into a shared
818 latent dimension of 32 and a private latent dimension of 128. Models are trained for 100 epochs
819 using the Adam optimizer with a learning rate of $5e^{-4}$ and a batch size of 128, and use the other
820 default hyperparameters of MMVAE+ baseline, including the KL divergence coefficient β of 2.5.
821 We performed a grid search over the coefficients to tune the regularization terms, λ_1 and λ_2 , after
822 training for 100 epochs. We search them in the range [0.01, 100]. We tune λ_1 individually first to find
823 the best general performance in latent classification for $\mathcal{L}_{\text{CrossMI}}$, and fix the λ_1 , then combine with
824 $\mathcal{L}_{\text{GenAug}}^{\text{contrast}}$, and find the best combination of $\lambda_1=80$ and $\lambda_2^{\text{contrast}}=20$. Finally, we tune the diffusion
825 prior weight to 1.0 out of {0.01, 0.1, 1.0, 10.0}, which optimizes the final general performance at
826 the 100th epoch.

827 B.2 CONDITIONAL GENERATION
828

829 In Figure 6 and Figure 7, we provide additional results on conditional generations, where one latent
830 variable is sampled from the posterior, while the other is sampled from the prior. In Figure 8, we
831 provide conditional generations for which both \mathbf{z} and \mathbf{w} are sampled from posteriors; this simulates
832 the samples we use in $\mathcal{L}_{\text{GenAug}}$. In Table 7, we give quantitative measure of the generation results
833 using FID (Heusel et al., 2017). In all cases, our method provides the most coherent generations,
834 consistent with the quantitative results in Section 4.1.

835 Table 7: Generative quality, as measured by FID, on PolyMNIST-Quadrant test set.
836

837 Model	838 Cross Conditional FID ↓	839 Uncondidional FID ↓
840 DMVAE	841 100.817	79.646
842 MMVAE+	843 86.091	87.008
844 SBM	128.7	128.8
845 IDMVAE (ours)	84.528	87.108
	– $\mathcal{L}_{\text{CrossMI}} (\lambda_1 = 0)$	85.589
	– $\mathcal{L}_{\text{GenAug}} (\lambda_2 = 0)$	84.698
	+ Diffusion prior	73.186
		73.681

Figure 6: Conditional generations on PolyMNIST-Quadrant, with conditioning on \mathbf{z} . The top row shows the samples (from modality 1) we condition on. We sample $\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}_1)$, sample the private variable from the corresponding prior $\mathbf{w}_m \sim p(\mathbf{w}_m|\mathbf{x}_m)$, and generate a new sample from $p(\mathbf{x}_m|\mathbf{z}, \mathbf{w}_m)$. Row 2 to row 6 are generated samples for modalities 1 to 5. Note for well-disentangled latent variables, each column shall contain the same digit \mathbf{z} . For each row we used the same prior sample of \mathbf{w} , so images in the same row shall have the same quadrant, writing style, and background.

Figure 7: Conditional generations on PolyMNIST-Quadrant, with conditioning on \mathbf{w}_m . The top row shows the samples (from modality 1) we condition on. We sample $\mathbf{w} \sim q(\mathbf{w}|\mathbf{x}_1)$, and sample $\mathbf{z} \sim p(\mathbf{z})$, and generate a new sample from $p(\mathbf{x}_1|\mathbf{z}, \mathbf{w}_1)$. Row 2 to row 6 are generated samples. Note for well-disentangled latent variables, each column shall have the same quadrant position and background. For each row we used the same prior sample of \mathbf{z} , so images in the same row shall have the same digit.

MMVAE+

IDMVAE

Figure 8: Conditional generation on PolyMNIST-Quadrant. The first row and first column contain images for which we extract posterior samples of \mathbf{z} and \mathbf{w}_m , respectively. And the rest of the grid contains generated images using latent samples of the corresponding row and column. This figure illustrates the samples we use in generative augmentation.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 B.3 LATENT VISUALIZATION
973

974 In Figure 9 and Figure 10, we provide 2D visualizations of latent representations of view 2 (i.e.,
975 samples of $q(\mathbf{z}|\mathbf{x}_2)$ and $q(\mathbf{w}|\mathbf{x}_2)$ respectively) on the PolyMNIST-Quadrant test set. Our method
976 leads to improved separation of digit or quadrant classes in the latent spaces, as also shown in the
977 quantitative analysis (Table 1). Observe that, without diffusion prior, there exists a gap between
978 the posterior and the Gaussian prior, whereas the capacity of diffusion prior is strong enough to
979 ensure good overlap between the two distributions, and therefore leads to superior unconditional
980 generation.

1009 Figure 9: 2D visualization (by UMAP) of learned \mathbf{z}_2 on the test set. We color each point according
1010 to its ground truth digit label, and black markers correspond to samples from the prior.
1011

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 10: 2D visualization (by UMAP) of learned w_2 on the test set. We color each point according to its ground truth quadrant label, and black markers correspond to samples from the prior.

1080 **C DETAILS AND ADDITIONAL RESULTS ON CUB**
10811082 **C.1 DATASET**
10831084 The 8 super-categories, namely Blackbird, Gull, Jay, Oriole, Tanager, Tern, Warbler, and Wren, are
1085 created following the same grouping method introduced by Palumbo et al. (2024), as shown in
1086 Figure 11.1087 In addition, we introduce a private binary label representing the bird’s horizontal direction, deter-
1088 mined by the part location annotations provided in the original dataset (Wah et al., 2011), as illus-
1089 trated in Figure 12. Specifically, we compare the average horizontal position of the group of the
1090 bird’s ‘head’ parts with the average horizontal position of the group of its ‘body’ parts. If the head
1091 is positioned to the left of the body, the direction label is ‘left’ (label 0); otherwise, it is ‘right’ (label
1092 1). This creates a modality-specific (private) label for the image that cannot be inferred from the text
1093 captions. At the same time, as shown in Figure 12 (b) and (c), a very small fraction of the images
1094 have invisible ‘head’ or ‘body’ location annotations, or the locations are too close, in which case
1095 they are not assigned the direction label. Direction labels of validation and test images are verified
1096 by human.
10971113 Figure 11: CUB category labels: dividing 22 species into 8 super-categories (Palumbo et al., 2024).
11141115 Figure 12: The collected parts in the original dataset (Wah et al., 2011), and sample images with
1116 invisible ‘body’ or ‘head’ location annotations or ambiguous horizontal direction.
11171131 **C.2 IMPLEMENTATION DETAILS**
11321133 For the image modality, we utilize a deep residual network (ResNet) architecture of 5 residual
blocks, with the number of filters doubling from 64 to up to 1024 after each block for the en-

1134 coder, and the number of filters halving after each block for the decoder. For text modality, we
 1135 utilize a convolutional neural network, CNN-based encoder and decoder with one-hot encoded captions
 1136 from a vocabulary size of 1590 words. The shared variable has a dimensionality of 48, and
 1137 the private variable has a dimensionality of 16. Models are trained for 150 epochs using the Adam
 1138 optimizer with a learning rate of 10^{-3} and a batch size of 128, and other default hyperparameters of
 1139 the MMVAE+ baseline, including the KL divergence coefficient $\beta = 1.0$.

1140 During training, we apply horizontal flip augmentation to the image modality, with a flip probability
 1141 of 0.5. Then we tune the $\mathcal{L}_{\text{CrossMI}}$, $\mathcal{L}_{\text{GenAug}}^{\text{contrast}}$, and diffusion prior similarly to B.1, and obtain the
 1142 optimal coefficients $\lambda_1 = 40$, $\lambda_2^{\text{contrast}} = 0.05$, and diffusion loss weight 0.1.
 1143

C.3 CONDITIONAL GENERATION

In Figure 13, 14, 15, we provide conditional generation of competitive methods.

Figure 13: Text-to-image generation on CUB. We combine posterior sample z of the text modality (top row), with prior sample w of the image modality (shared by each row) for generation.

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214

Figure 14: Image-to-text generation on CUB. We combine posterior sample z of the image modality (top row), with prior sample w of the text modality (shared by each row) for generation.

1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

Figure 15: Image-to-image generation on CUB. We combine the posterior sample z of the image modality (top row), with the prior sample w of the image modality (shared by each row) for generation.

1242 **D DETAILS AND ADDITIONAL RESULTS ON TCGA**
12431244 **D.1 DATA PREPARATION**
12451246 TCGA dataset (2016 version) is processed by combining multi-omics data across different cancer
1247 types and different patients before features are selected and kernel PCA was performed to reduce the
1248 dimensionality to 100. Because clinical trials usually have small sample sizes, high dimensionalities,
1249 and complex dependencies, this dataset is ideal to test the robustness of our method. One significant
1250 outcome of cancer multi-omics data is the days of survival after samples were collected. Because
1251 patients may not show up for checkups, it is possible that a sample is censored (unlabeled). The days
1252 of survival are then converted to a binary 1-year mortality indicator. The dataset itself has missing
1253 views but contains predictive information and high correlations among different views, making it
1254 suitable for our task. Further notice that this dataset does not contain private ground truth.
12551256 **D.2 IMPLEMENTATION**
12571258 A 2-layer MLP with 128 as hidden dimensions was used for encoding and decoding with 48 latent
1259 dimensions (16 for \mathbf{z} and 32 for \mathbf{w}). Evaluation for all methods regarding this dataset is done by
1260 averaging logits from each view. 50 epochs were run to train the model. For TCGA dataset, base-
1261 line methods are performed with default hyperparameter, which gives KL divergence a coefficient
1262 of 2.5. For DisentangledSSL baseline in particular, step 1 coefficient was set to 0 since we use
1263 posterior mean instead of zsample to match other methods and step 2 coefficient was set to 0.01.
1264 To tune our method, we performed a grid search with coefficients $\{0.001, 0.01, 0.1, 1, 10, 100\}$
1265 and chose the best combination on validation set, before recording the performance on test set.
1266 $\lambda_1 = 10, \lambda_2 = 0.001$ were chosen to be the best combination at 40 epochs. For ablation studies,
1267 we set one coefficient to be 0 while keeping the other one optimal in a combined setting. For the
1268 optimal coefficients combination, we used the model at epoch 40; $\lambda_1 = 0$, at epoch 50; and $\lambda_2 = 0$,
1269 at epoch 35. For adding a diffusion prior, we tuned the diffusion weight to be 0.1 out of 0.1, 1, 10
1270 while keeping λ_1, λ_2 same as the optimal combination and chose the best performance at validation
set at epoch 40.
12711272 **D.3 PREDICTION AUROC**
12731274 In Table 8, we provide the linear classification AUROC of different methods using latent represen-
1275 tations. The relative merits of different methods are consistent with that observed with the accuracy
1276 metric in Table 4.
12771278 Table 8: Prediction AUROC Performance with ablation on TCGA dataset, averaged over 2 modalities
1279 and 5 splits. Tuning reported in Appendix D.2.
1280

Model	$\mathbf{z} \uparrow$	\mathbf{w}	$\mathbf{z} + \mathbf{w} \uparrow$
MMVAE	0.653 ± 0.033	—	—
MoPoE-VAE	0.660 ± 0.024	—	—
DMVAE	0.609 ± 0.030	0.636 ± 0.037	0.643 ± 0.032
MMVAE+	0.586 ± 0.027	0.581 ± 0.033	0.585 ± 0.033
DisentangledSSL	0.693 ± 0.046	0.551 ± 0.019	0.699 ± 0.045
IDMVAE (ours)	0.740 ± 0.025	0.740 ± 0.022	0.767 ± 0.026
- $\mathcal{L}_{\text{CrossMI}} (\lambda_1 = 0)$	0.549 ± 0.017	0.545 ± 0.026	0.548 ± 0.026
- $\mathcal{L}_{\text{GenAug}} (\lambda_2 = 0)$	0.740 ± 0.019	0.746 ± 0.022	0.771 ± 0.021
+ Diffusion prior	0.745 ± 0.024	0.751 ± 0.029	0.772 ± 0.022

1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296

E RESULTS ON HIGH-QUALITY CUB (CUB-HQ)

1297
 1298 In this experiment, we use the 256x256 resolution version of the original CUB dataset (Wah et al.,
 1299 without cropping images using bounding boxes for birds. Compared to the CUB dataset
 1300 used in the main paper, the CUB-HQ setup contains richer background and is more challenging for
 1301 representation learning. Labels of the bird category and orientation are created similarly as described
 1302 in Appendix C.1. Data with category label is split into training/validation/test with 70%/15%/15%
 1303 portions.

1304
 1305

E.1 IMPLEMENTATION DETAILS

1306
 1307 **Pre-trained VAE for data pre-processing** We pre-process the image modality with a pretrained-
 1308 VAE encoder³ similarly used by Peebles & Xie (2022), converting each original RGB images to a
 1309 $4 \times 32 \times 32$ tensor, which then serves as the model input. We can then apply the corresponding
 1310 pre-trained decoder on samples of our model to generate high resolution images.

1311
 1312 **Architecture of IDMVAE** We use a deep residual network (ResNet) for the image modality. Both
 1313 encoder and decoder have five residual blocks. For the encoder, the number of filters doubles after
 1314 each block, starting at 64 and ending at 1024. The decoder mirrors this, with the number of filters
 1315 halving after each block. For the text modality, we utilize CNN-based encoder and decoder on
 1316 one-hot encoded captions with a vocabulary size of 1,590 words. Our model has a total of 137M
 1317 parameters without diffusion prior and 140M Parameters with diffusion prior. During training, we
 1318 apply horizontal flip augmentation to the image modality, with a flip probability of 0.5.

1319
 1320 **Hyperparameters** Both the shared variable and the private variable have 256 dimensions. Models
 1321 are trained for 50 epochs using Adam optimizer with a learning rate of 10^{-4} and a batch size of 256,
 1322 with the rest of the hyperparameters being the default of the MMVAE+ baseline, including the KL
 1323 divergence coefficient $\beta = 1.0$.

1324 Then we tune the coefficients of $\mathcal{L}_{\text{CrossMI}}$, $\mathcal{L}_{\text{GenAug}}$, and diffusion prior similarly to B.1, and obtain
 1325 the optimal coefficients $\lambda_1 = 40$, $\lambda_2 = 10$, and diffusion loss weight 0.1.

1326
 1327 **High resolution image generation** After training, our model can generate images of 4 channels
 1328 and 32×32 resolution, which can then be decoded using the pretrained-VAE decoder into 256×256
 1329 RGB images. However, given the relatively small training set size of CUB, the generated images
 1330 tend to be blurry. Following Pandey et al. (2022) and Palumbo et al. (2024), we train a diffusion
 1331 model to generate high-quality images conditioned on our model’s generations. Specifically, for
 1332 each model, we extract its reconstructions of the training data by the image modality architecture
 1333 (i.e., applying two encoders to obtain $(\mathbf{z}_0, \mathbf{w}_0)$, followed by the image decoder), and train a DiT
 1334 model (Peebles & Xie, 2022) to generate the ground-truth training images from pure Gaussian noise,
 1335 conditioned on model reconstructions. We use the pre-trained checkpoint of the XL-2 architecture,
 1336 and add an additional patch embedding layer to map conditioning features into representations that
 1337 are later incorporated into the AdaLN module of each DiT block. We finetune all parameters of the
 1338 resulting model, with minibatches of 32 images for 70000 updates.

1339

E.2 RESULTS

1340
 1341 **Representation quality** We perform linear classification on the latent representations \mathbf{z} and \mathbf{w} to
 1342 exam their information content; the results are given in Table 9. Note that with disentangled latent
 1343 representations, the target classification accuracy is 50% (i.e., random) for predicting direction from
 1344 \mathbf{z} , and 12.5% for predicting category from \mathbf{w}_1 (derived from image). We observe that cross-view
 1345 MI is critical for recovering \mathbf{z} , when we do not have a very strong likelihood model (due to limited
 1346 image data). On the other hand, generative augmentation significantly reduces redundancy in the
 1347 latent space by removing the directional information from \mathbf{z} and capturing it in \mathbf{w} . Adding diffusion
 1348 prior leads to the best performance overall, demonstrating the effectiveness of a flexible latent prior.
 1349 Our methods outperforms both generative and deterministic baselines by a clear margin.

³<https://huggingface.co/stabilityai/sd-vae-ft-mse>

1350 Table 9: Latent classification on CUB-HQ, using posterior means. \mathbf{z}_1 and \mathbf{w}_1 refers to image latents.

Model	$\mathbf{z} \rightarrow Cat. \uparrow$	$\mathbf{z}_1 \rightarrow Dir. \downarrow$	$\mathbf{w}_1 \rightarrow Dir. \uparrow$	$\mathbf{w} \rightarrow Cat. \downarrow$
MMVAE	0.602	0.727	—	—
MoPoE-VAE	0.615	0.777	—	—
DMVAE	0.511	0.658	0.732	0.394
MMVAE+	0.633	0.787	0.567	0.486
SBM	0.452	0.799	—	—
DisentangledSSL	0.672	0.538	0.567	0.173
IDMVAE (ours)	0.764	0.592	0.677	0.322
– $\mathcal{L}_{CrossMI} (\lambda_1 = 0)$	0.614	0.792	0.557	0.379
– $\mathcal{L}_{GenAug} (\lambda_2 = 0)$	0.777	0.498	0.792	0.395
+ Diffusion prior	0.752	0.526	0.797	0.311

1362 Table 10: Generative coherence, as measured by FID and CLIPscores on CUB-HQ test set. As a
1363 reference, the CLIPScore between ground truth test images and text is 0.762. For image-to-image
1364 generation, we use posterior of \mathbf{z} and prior of \mathbf{w} .
1365

Model	Text-to-Img		Img-to-text CLIP \uparrow	Img-to-Img	
	FID \downarrow	CLIP \uparrow		FID \downarrow	CLIP \uparrow
DMVAE	104.167	0.665	0.683	70.534	0.707
MMVAE+	70.157	0.691	0.693	62.528	0.712
SBM	79.900	0.684	0.687	—	—
IDMVAE (ours)	64.435	0.718	0.736	58.065	0.721
– $\mathcal{L}_{CrossMI} (\lambda_1 = 0)$	72.166	0.694	0.692	62.938	0.710
– $\mathcal{L}_{GenAug} (\lambda_2 = 0)$	66.291	0.709	0.719	69.988	0.702
+ Diffusion prior	60.549	0.721	0.737	59.700	0.716

1376 **Generative coherence** To measure the generative coherence of models, we perform image-to-
1377 text, text-to-image, and image-to-image generations. We measure the quality of generated high-
1378 resolution images with FID (Heusel et al., 2017), and the coherence between text and images using
1379 CLIPScore (Hessel et al., 2021). These metrics are given in Table 10. For reference, the CLIPScore
1380 between ground truth test images and text is 0.762. The generation performance of our model is
1381 superior to those of the baseline. We provide samples of text-to-image generation in Figure 16,
1382 samples of image-to-text generation in Figure 17, and samples of image-to-image generation in
1383 Figure 18 and Figure 19.

1384 **Generative augmentation** To understand how generative augmentation and \mathcal{L}_{GenAug} help with
1385 disentanglement, we visualize such generations in Figure 20. The first row and first column contain
1386 images for which we extract posterior samples of \mathbf{z} and \mathbf{w} respectively. And the rest of the grid
1387 contain generated images using samples of \mathbf{w} of the corresponding row and \mathbf{z} of the corresponding
1388 column. We observe that images in each column mostly share the same bird color, while images in
1389 each row mostly share the same orientation as desired. It is important to note that, different from
1390 PolyMNIST, the generated images with our ResNet architecture are not of high resolution, but they
1391 already capture essential information regarding shared and private labels. Conditional generations
1392 by DiTs are of high quality, showing that we can independently vary shared and private variables to
1393 obtain controllable generations for complex modalities.

Figure 16: Text-to-image generation on CUB-HQ, without DiT conditional generation (top panel) and with DiT conditional generation (bottom panel). We combine posterior sample z of the text modality (top row), with prior sample w of the image modality (shared by each row) for generation. Ideally images in the same column are of similar bird category and color, and images in the same row shall have the same bird orientation.

Figure 17: Image-to-text generation on CUB-HQ. We combine posterior sample z of the image modality (top row), with prior sample w of the text modality (shared by each row) for generation.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469 MMVAE+

1470 IDMVAE (Ours)

1471 + diffusion prior

1472 MMVAE+

1473 IDMVAE (Ours)

1474 + diffusion prior

1475 Figure 18: Image-to-image generation on CUB-HQ, without DiT conditional generation (top panel)
 1476 and with DiT conditional generation (bottom panel). We combine the posterior sample z of the
 1477 image modality (top row), with the prior sample w of the image modality (shared by each row) for
 1478 generation. Ideally images in the same column are of similar bird category and color, while images
 1479 in the same row shall have the same bird orientation.

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

Figure 19: Image-to-image generation on CUB-HQ, without DiT conditional generation (top panel) and with DiT conditional generation (bottom panel). We combine the posterior sample w of the image modality (top row), with the prior sample z of the image modality (shared by each row) for generation. Ideally images in the same column are of the same bird orientation, while images in the same row shall have similar bird category and color.

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589

1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601

Figure 20: Generative augmentations on CUB-HQ, without DiT conditional generation (top panel) and with DiT conditional generation (bottom panel). The first row and first column contain images for which we extract posterior samples of \mathbf{z} and \mathbf{w} respectively. And the rest of the grid contain generated images using samples of \mathbf{w} of the corresponding row and \mathbf{z} of the corresponding column. Ideally images in the same column are of the same bird category and color, while images in the same row shall have the same bird orientation.

1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1620
 1621 **Latent Visualization** In Figure 21 and Figure 22, we provide visualization of latent representa-
 1622 tions of shared variables. Consistent with latent classification results (Table 9), our method leads to
 1623 better separation of classes. Furthermore, diffusion priors are flexible enough to model the structured
 1624 latents.
 1625

1652 Figure 21: 2D visualization (by UMAP) of z_1 , i.e., learned shared representation of the image
 1653 modality, on the validation set. We color each representation according to its ground truth bird
 1654 category cluster label, and black markers correspond to samples from the prior.
 1655

1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

Figure 22: 2D visualization (by UMAP) of z_2 , i.e., learned shared representation of the text modality, on the validation set. We color each representation according to its ground truth bird category cluster label, and the black markers correspond to samples from the prior.

1728 **F RESULTS ON HIGH-QUALITY CELEBAMASK (CELEBAMASK-HQ)**
1729

1730 We compare our method with SBM Wesego & Rooshenas (2024) on the high-quality CelebAMask
1731 (CelebAMask-HQ) dataset (Lee et al., 2020; Liu et al., 2015). CelebAMask-HQ has 30000 samples,
1732 with three modalities: Image, Mask, and Attributes. An illustration of this dataset is shown in
1733 Figure 23. The images and masks have a 128x128 resolution. Following the approach of Wu &
1734 Goodman (2018), the attribute modality employed 18 attributes⁴, which were a subset of the total
1735 40 original attributes. The training/validation/test sets contain 24,183/2,993/2,824 (80%/10%/10%)
1736 samples.
1737

1754 Figure 23: A sample of the CelebAMask-HQ dataset, and its positive **Attribute**: Brown_Hair,
1755 Bushy_Eyebrows, Heavy_Makeup, Mouth_Slightly_Open, Smiling, and Wavy_Hair.

1756 **F.1 IMPLEMENTATION DETAILS**
1757

1758 We follow the same experiment setup of Wesego & Rooshenas (2024). We use the same model
1759 architecture for all methods. For the Image modality, we utilize a deep residual network (ResNet)
1760 architecture of 3 residual blocks. Both the encoder and decoder have three residual blocks. For
1761 the encoder, the number of filters doubles after each block, starting at 64 and ending at 512. The
1762 decoder mirrors this, with the number of filters halved after each block. For the Mask modality, we
1763 utilize a similar ResNet-based architecture. Both the encoder and decoder have two residual blocks.
1764 For the encoder, the number of filters doubles after each block, starting at 64 and ending at 256, and
1765 the decoder mirrors this. For the Attribute modality, we utilize MLP-based encoder and decoder,
1766 each with 5 layers. Our model has a total of 144M parameters without diffusion prior, and 148M
1767 parameters with diffusion prior.
1768

1769 Both the shared and the private variables have a dimensionality of 128. The KL-divergence term in
1770 MMVAE loss is set to $\beta = 5.0$. We use the Adam optimizer with a learning rate of 0.0002, and a
1771 batch size of 128. We also use the Laplace prior, posterior, and likelihood except for the attribute
1772 modality, which uses a Bernoulli likelihood. For hyperparameters, we tune λ_1 over {20, 40, 60, 80,
1773 100} first to find the best performance in F1 score for $\mathcal{L}_{\text{CrossMI}}$. We then fix the best λ_1 , and tune
1774 $\lambda_2^{\text{contrast}}$ over {1, 5, 10, 30, 60} for $\mathcal{L}_{\text{GenAug}}^{\text{contrast}}$. The best combination that maximizes F1 score is
1775 $\lambda_1=60$ and $\lambda_2^{\text{contrast}}=30$. Finally, we tune the diffusion prior over {0.001, 0.01, 0.1, 1.0} and the
1776 best value is 0.1. We train MMVAE+ and our models for 100 epochs.
1777

1778
1779
1780 ⁴These 18 attributes are: Bald, Bangs, Black_Hair, Blond_Hair, Brown_Hair, Bushy_Eyebrows, Eyeglasses,
1781 Gray_Hair, Heavy_Makeup, Male, Mouth_Slightly_Open, Mustache, Pale_Skin, Receding_Hairline, Smiling,
1782 Straight_Hair, Wavy_Hair, Wearing_Hat.

1782 Table 11: Conditional generation coherence, as measured by F1 score and FID, on CelebAMask-HQ
 1783 test set. We use the posterior of \mathbf{z} of given modality/modalities and prior of \mathbf{w} of target modality for
 1784 conditional generation.

Given	Attribute		Mask		Image		
	Both	Img	Both	Img	Both	Mask	Attr
	F1 ↑	F1 ↑	F1 ↑	F1 ↑	FID ↓	FID ↓	FID ↓
MMVAE+	0.621	0.640	0.772	0.907	139.20	133.19	153.98
SBM-VAE	0.62	0.58	0.83	0.83	81.6	81.9	78.7
IDMVAE (ours)	0.670	0.685	0.837	0.904	135.70	120.98	137.17
– $\mathcal{L}_{\text{CrossMI}} (\lambda_1 = 0)$	0.644	0.645	0.820	0.903	139.88	121.14	147.95
– $\mathcal{L}_{\text{GenAug}} (\lambda_2 = 0)$	0.656	0.677	0.832	0.908	150.60	131.59	150.03
+ Diffusion prior	0.662	0.679	0.839	0.903	123.72	110.27	124.58

F.2 RESULTS

1798 **Generative coherence** We provide the conditional generation coherence of different methods, as
 1799 measured by the F1 score and FID, in Table 11. When generating a modeled conditioned on the
 1800 other two (labeled as “Both” in the table), we use the average of the posteriors of \mathbf{z} of the given
 1801 two modalities for our method. Overall, we are able to reproduce the F1 score results of MMVAE+
 1802 and SBM by Wesego & Rooshenas (2024). Our method IDMVAE achieves the best F1 scores,
 1803 outperforming others for attribute generation by a clear margin. With the proposed regularizations,
 1804 IDMVAE improves over MMVAE+ on all the F1 and FID metrics, and each term contributes to the
 1805 final performance. The diffusion priors mainly lead to improved FIDs. For image generation, our
 1806 method has worse FIDs than SBM, and this is due to our method focusing on extracting structured
 1807 latent space enforced by regularizations.

1808 **Generative augmentation** In Figure 24, we provide generative augmentations for which both \mathbf{z}
 1809 and \mathbf{w} are sampled from posteriors of different inputs; this simulates the samples we use in $\mathcal{L}_{\text{GenAug}}$.
 1810 The first row and first column contain images for which we extract posterior samples of \mathbf{z} and \mathbf{w} ,
 1811 respectively. And the rest of the grid contain generated images using samples of \mathbf{w} of the
 1812 corresponding row and \mathbf{z} of the corresponding column. Ideally, images in the same column are of the
 1813 same attribute, such as gender and hair color, while images in the same row shall have the same
 1814 background. The comparison shows that IDMVAE outperforms MMVAE+ in disentanglement. The
 1815 quality of images can potentially be significantly improved with a diffusion denoiser, similar to that
 1816 used in CUB-HQ experiments.

1836

1837

1838

1839

1840

1841

1842

1843

MMVAE+

IDMVAE

Figure 24: Generative augmentations on CelebAMask-HQ, the first row and first column contain images for which we extract posterior samples of \mathbf{z} and \mathbf{w} , respectively. And the rest of the grid contain generated images using samples of \mathbf{w} of the corresponding row and \mathbf{z} of the corresponding column. Ideally, images in the same column are of the same attribute, such as gender and hair color, while images in the same row shall have the same background.

1883

1884

1885

1886

1887

1888

1889