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ABSTRACT

Multimodal data are prevalent across various domains, and learning robust repre-
sentations of such data is paramount to enhancing generation quality and down-
stream task performance. To handle heterogeneity and interconnections among
different modalities, recent multimodal generative models extract shared and pri-
vate (modality-specific) information with two separate variables. Despite attempts
to enforce disentanglement between these two variables, these methods struggle
with challenging datasets where the likelihood model is insufficient. In this pa-
per, we propose Information-disentangled Multimodal VAE (IDMVAE) to explic-
itly address this issue, with rigorous mutual information-based regularizations,
including cross-view mutual information maximization for extracting shared vari-
ables, and a cycle-consistency style loss for redundancy removal using generative
augmentations. We further introduce diffusion models to improve the capacity
of latent priors. These newly proposed components are complementary to each
other. Compared to existing approaches, IDMVAE shows a clean separation be-
tween shared and private information, demonstrating superior generation quality
and semantic coherence on challenging datasets.

1 INTRODUCTION

Most real-world data are inherently multimodal or multi-vie Videos contain both visual scenes
and sounds (Zhao et al., 2018; Owens & Efros, 2018} |Chen et al., [2020a} |Gong et al.| [2023}; [Kim
et al.l 2024); robots can see and feel via sensors (Lee et al.l [2019); images are often accompa-
nied by captions (Radford et al.| 2021} Jia et al., |2021)); and heterogeneous human, animal, and
environmental data are collected for health improvements (Adisasmito et al.,2022)). In addition to
these naturally occurring data, synthetic multi-view data constructed from semantically similar input
components or via augmentation are also widely used to learn useful representations for downstream
tasks (Velickovic et al.,[2019; (Chen et al., 2020b; [Caron et al., [2020; Tian et al., 2020a; |Bardes et al.,
2022)). Despite the abundance of such data, leveraging them is nontrivial even with naturally aligned
modalities due to their diversity and complex correlations. Therefore, a core challenge is to integrate
information across views to learn universal, transferrable representations.

Variational autoencoders (VAEs, Kingma & Wellingl 2014) and their multmodal extensions have
emerged as a powerful paradigm to tackle this problem (Wang et al., 2016} Suzuki et al.| [2016).
They can extract useful shared information in data with missing modalities (Wu & Goodman, [2018])
and noise (Shi et al.,[2021). While early works have assumed that a single latent space can capture all
relevant information and data variations (Shi et al., 2019; Sutter et al., 202 1)), recent approaches have
recognized the existence of both shared and modality-specific (private) information in real-world
datasets (Daunhawer et al., 2022} [Lee & Pavlovic, 2021; Palumbo et al., [2023; 2024). However,
modeling shared and private components naturally exposes a challenge:

How can we achieve maximal disentanglement between shared and private vari-
ables so that learned representations are complete and non-redundant?

Without a clean separation, shared information leaks into private encodings and vice versa, causing
weak coherence across modalities, wasted model capacity, and inadequate generative quality.

"We use “modality” and “view” interchangeably as they both appear in the literature.
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Our Contributions. We propose Information-disentangled Multimodal VAE (IDMVAE), a novel
framework for unsupervised multimodal representation learning hailing from theoretical stringency
and practical performance. (1) Different from prior works which use capacity-based (Wang et al.,
2016) or shortcut-preventing (Palumbo et al.||2023) heuristics, we employ mutual information (MI)-
based regularizations to ensure disentanglement. In particular, we use cross-view MI to extract
common factors that likelihood models fail to fully capture, thereby enhancing cross-modal coher-
ence. Additionally, a cycle-consistency-style loss removes redundancy between shared and private
latents using samples generated by the model itself, eliminating the need for domain-specific aug-
mentations. (2) To overcome limitations of simple Gaussian priors, we leverage diffusion-based
priors (Sohl-Dickstein et al., 2015} [Ho et al.| [2020; [Song et al., 2021)) that capture the richness of
multimodal latent spaces, leading to greater representational capacities. (3) Across multiple com-
plex datasets spanning image, text and multi-omics data, IDMVAE performs consistently better than
state-of-the-art methods in terms of cross-modal generation and coherence, showing a synergy be-
tween MI-based objectives and diffusion priors, which leads to improved performance.

2 METHOD

Given a set of M modalities X = {x1,...,Xp},

we would like to learn a factorized latent space
for each modality m, separating information shared
across modalities, captured by latent variable z,
from modality-specific private information, cap-
tured by w,,. As illustrated in Figure [T we as-
sume that, Vm, x,, is generated by z,, and w,,
jointly with p(Xy,|2m, Ws), and the latent vari-
ables have independent priors p(z, {w,,}M_,) =

m=1
‘A bright orange bird _
oy, P(2) [T n—y P(Wi). We perform variational infer

farsusangfeetwitna | €NCE and parameterize the approximate posteriors
—— ) ——— with a factorized form: ¢(z, W, |xm) = q(z|x,) -
Figure 1: Our approach with two modalities. q(W|Xm). Learned q(z|x,,) and q(w,,|X,,) pro-
vide representations of original inputs which can be

used in downstream tasks. Our method consists of three major components.

2.1 LIKELIHOOD MODELING WITH MULTIMODAL VAE

We begin with the Evidence Lower Bound (ELBO) of the MM VAE+ model as our foundation. Let
q(z|x,,) be the posterior of shared variable derived from modality m (with distribution parame-
ters modeled by an encoder), and ¢(w,,|x,,) be the posterior of private variable from modality
m (modeled by another encoder). One can define a global posterior of z by aggregating infor-
mation from view-specific posteriors, e.g., using the mixture-of-experts (MoE) scheme ¢(z|X) =
5 2%21 q(z|x,,). Together with generative distributions p(x,,|z, w,,) modeled by decoders of
each view, an ELBO for X can be derived with variational inference (Kingma & Welling| [2014),
which involves reconstructing x,, using samples of ¢(w,,|x,,) and ¢(z|x,,), forn,m =1,... M.

Since the posterior ¢(w,|x,) is dependent on x,, and potentially retains shared information, to
keep decoder p(x,,|z, w,,) from taking the “shortcut” to use leaked shared information, MM VAE+
uses sample of Ww,, from an auxiliary prior r(W,,) instead for cross-view reconstruction, where z
is derived from another view m # n; avoiding such shortcut enforces shared information to come
from ¢(z|x,,). This design leads to the following minimizing objective:

M
1 P(Xm |2, Win )p(2)p(Wim) _
L Y E ~q(z|x 1 n|dy, Wn
MMVAE+ Vi mz::l ijgEvaT)zm) 0g 2(2[X)q(Wo %) H p(Xn |z, Wy)
{Wn,NT(W71)}'rL#'rrL

n#m

Within the expectation, p(X,, |z, W,,) and p(x,,|z, W,, ) are conditional likelihood of self- and cross-
reconstructions, respectively. [Palumbo et al|(2023) shows that —Cymvags (X1:.07) < log(x1.a1)
remains a valid ELBO. Compared with previous multimodal VAE using MoE parameterization (Shi
et al., 2019), MMVAE+ achieves superior performance for extracting shared information, although
the result is somewhat sensitive to the relative capacity (dimensionality) of z and w. In the rest
of this section, we will show that regularizing the generative model with mutual information (MI)
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is more effective at achieving disentanglement. We emphasize that MMVAE+ is one option for
multimodal VAE, and our improvement below can also be applied to other models, e.g., POE (Wu &
Goodman, 2018)) or MoPoE (Sutter et al., [ 2021]).

2.2  SHARED VARIABLE EXTRACTION WITH CROSS-VIEW MI MAXIMIZATION

While general (per-dimension) disentanglement of variations is theoretically challenging (Locatello
et al.,|2019)), the underlying structure of our setup that inputs of different modalities share a common
cause facilitate (variable-level) disentanglement of shared versus private information.

To extract the shared information, it is natural to enforce the shared representation of modality m,
denoted z,,, (with distribution ¢(z|x,)) to have high mutual information (MI) with x,, for n. # m.
Note this is partially pursued by Lymyags through cross-view reconstruction. In light of the decom-
position I (z,, Wp; X ) = I(Zm; Xn) +1(Wp; Xp|2m ), we can maximize I(z,,, W, ; X,, ) while min-
imizing I(w,,; X,,|Z,) to maximize I(z,,; X, ). Focusing on the first term, since I(z,, Wp; X, ) =
H(x,) — H(Xn|2m, w,) where the entropy H(x,) is a constant, minimizing the conditional en-
tropy H (Xp|2m, Wn) = Ex, 2,.,w, [— 108 D(Xn|Zm, Wy )] is equivalent to maximizing conditional
likelihood. However, maximizing this upper bound does not ensure maximal I (z,,; X, ) due to the
gap I(wy; X, |2 ). Therefore, likelihood maximization alone does not ensure disentanglement.

We thus take the alternative approach to maximize I(z,, z, ) which is a lower bound of I (2., x,,):
I(Zm; Xn) = I(Zm; Zn, Xn) - I(Zm; Zn|xn) = I(Zm; Zn, Xn) = ](Zm; Zn) + I(Zm; Xn|zn) >
1(2y,; 2p,), where I(2,,;Zn|X,) = 0 in the first step due to variability of z, coming from x,,
only (Federici et al.|[2020). In this work, we use the contrastive estimate of MI (Oord et al., 2018)):

¢(vaz7l) ‘
W2 Z0) + D5y (2, Z0)

I(zm; 20) = Contrast(zm, z,) = E,,, 5, log [ (1

T
Zy

where ¢(zm, z,) = exp (%) is the affinity function, and {2/, }%_, are k negative examples

randomly sampled from the minibatch not aligned with z,,. Since we have M modalities, we
compute the average of cross-modality MIs as our regularization for extracting shared information:

2

Lcrossmr = —m Zm<n Contrast(zy,, z,).

2.3 DISENTANGLEMENT WITH GENERATIVE AUGMENTATION

While equation [T] encourages z to capture shared information across views, it does not guarantee
that the learned z,,, contains no private information which should be modeled by w,,. Similarly,
even if z,, contains no private information and the self-reconstruction term in Lypvags encour-
ages (zm,, Wy, ) to jointly capture all information about x,,, the learned w,,, can still retain shared
information. Thus, we need additional regularization to remove redundancy between z,,, and w,.

To motivate our method, consider the desired scenario where z,, and w,,, are disentangled, so that
they each can be varied independently to generate new samples of x,,, using the decoder. Let x,,
and x/,, be two input samples, and let (z,,, w,,) be a pair of samples drawn from the posteriors
q(z|x,n) and ¢(w,,|X,,), respectively, and similarly (z,,, w! ) be a pair of samples drawn from
conditional posteriors for x/,,. With disentanglement and a good likelihood model, a sample x> ~
(X |Zm, W/, ) would share the same z with x,,,. In turn, when we map x;,". back to the latent space,
q(z|x;") and q(z|x,,) should be similar. Likewise, q(w,,|x;" ) and q(w,,|x’,,) should be similar.

More formally, assume that z,, is sufficient for x,,, meaning that it captures all shared information,
ie., I(zm;xn) = I(X;m;X,) as encouraged by Lcrossmr- Then in view of I(z,,;x,) = H(2m) —
H(2z,|xy,), we would like to find the minimal z,,, (with lowest H (z,,)) by minimizing

H(zpm|xpn) = Eq,, x, [~ l0g p(Zm|x,)] = EXNp(X),zan(zlxm)[* log q(z = 2, |xp)]-

Similar approaches have been used by |Federici et al.| (2020, symmetric KL for minimizing
I(Xpm,2Zm|xp)) and [Tsai et al.| (2019, inverse prediction) for learning minimally sufficient shared
variable. Essentially, for extracting shared information, x,,, and x,, indeed constitute two views that
are mutually redundant, satisfying I (X,,;x,|z) = 0, so that the IB principle naturally applies.
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Note however, we do not have multiple natural views sharing w,,, to carry out the above idea.
This challenge motivates us to synthesize the view X;\, ~ p(X,|2Zm, W), ), with w,, ~ g(w|x],)
from another sample x/, to reduce the redundancy of learned w,,, by approximately minimizing

H(w,,|x.,) with the following loss

_ / +
X~ () X~ (K ) o (2 ) W (W 1) 5 o (e 1 wip ) | 108 AWy %57

Assuming that posteriors are parameterized Gaussians, this loss reduces to /2 loss for matching
means of posteriors. In practice, we find it more stable to use a contrastive loss for matching, i.e.,

7 + "

LGenaug,w,, := —Contrast(w,,, w),) where X ~ p(Xp |2, W), Wi~ q(Woa|X)).

m
We show results obtained with contrastive estimation in the main paper, and provide empirical com-
parisons of the two implementations in Appendix We also define LgenAug,z,,, Similarly by switch-
ing the role of z,, and w,,,. The total redundancy removal regularization is defined as

1 M
ﬁGenAug = 2M E me1 (ﬁGenAugzm + EGenAugwm) .

Although we do not have the reconstruction target for x;", matching q(z|x;") with q(z|x,,), and
matching q(w,,|x;") with ¢(w,,|x/,) implement a form of cycle-consistency (Zhu et al., 2017),
and provide learning signals for both the encoder and the decoder. Previously, |Bai et al.| (2021)
derived an ELBO of sequence data for disentangling static versus dynamic components, which in-
volved mutual information terms based on data augmentation, similar to Lgenaug. However, their
augmentation requires strong domain knowledge (e.g., shuffling the frame order does not alter the
static component, and color change applied to all frames does not alter the dynamic component). In
contrast, our augmentations require no domain knowledge and are produced by the model itself.

2.4 THE FINAL IDMVAE OBJECTIVE

We define our objective of Information-Disentangled Multimodal VAE (IDMVAE) as

min LipMvag = LMMVAE+ + A1 LcrossMI + A2LGenAug (2

where \; and Ao are user parameters tuned on the validation set.

Diffusion Priors In most multimodal VAEs, the prior distributions are chosen to be simple and
easy to sample from, e.g., Gaussian for continuous data. However, such unstructured priors may
not be ideal for representation learning, whose purpose is to discover useful structure of data for
supervised downstream tasks. As an example, a representation containing rich label information
most likely have a clustering structure where data of different classes are separated far apart, and
will not have a uni-modal distribution like Gaussian. We use diffusion models (Sohl-Dickstein
et al.,|2015; Ho et al., 2020; Song et al.,|2021)) to overcome this limitation by parameterizing p(z) as
a denoising process started with pure noise. To naturally introduce diffusion models into our loss,we
decompose the KL divergence inside Lyvyag+ (Which we minimize) as (Vahdat et al., 2021)):

DKL(q(Z‘X)Hp(Z)) = Eq(ZIX) [log q(z|x)] + Eq(ZIX) [_ Ing(Z)] . 3)

The first term maximizes the entropy of the approximate posterior ¢(z|x). The second term max-
imizes the likelihood of samples from ¢(z|x) under p(z), which we model with diffusion models.
We can treat z ~ ¢(z|x) as “data”, and destroy its structure by gradually adding noise to it, resulting
in pure noise after a number of steps. With repeated applications of a denoising network, diffu-
sion models gradually reverse the noising process, and recover the original data from pure noise.
Diffusion models have well-defined ELBO objectives which lower bound log p(z), and plugging
them into equation 3] yields valid upper bounds of the KL divergence. Since the latent variables are
of low dimensionality, we parameterize the diffusion backward process with a simple feedforward
network. In practice, we introduce additional loss weight for E,(,x) [~ logp(z)], and model the
mean of ¢(z|x) with the DDPM parameterization (Ho et al.l 2020). We optimize over all modules
(encoders, decoders, diffusion networks) jointly in an end-fo-end manner. A recent work (Palumbo
et al.,[2024)) proposed a two-step approach which first learns the representations with MM VAE+, and
then learns diffusion models in the input space, conditioned on VAE reconstructions. Note our use
of diffusion model has a different motivation, and we jointly train it during representation learning.
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3 RELATED WORK

Disentanglement in VAEs. To achieve disentangled latent representations in VAEs, researchers
have commonly used mutual information (MI) based regularization, and employed various metrics
to assess the results (Higgins et al. [2017; |[Kim & Mnih, 2018; [Chen et al., [2018}; [Kumar et al.,
2018). However, it has been shown that, without supervision or inductive bias in the model, it is
theoretically challenging to recover (per-dimension) disentanglement (Locatello et al., 2019).

Contrastive and self-supervised learning (SSL). SSL is a paradigm that aims at learning useful
representations from large amounts of unlabeled data, by creating artificial targets that are generally
correlated with downstream tasks. SSL is often applied to a single modality, with artificial views
created based on the structures of data (Oord et al., 2018 |[Logeswaran & Leel |2018}; Hjelm et al.
2019; Bachman et al.l 2019; |Chen et al.l 2020b}; |Caron et al., [2020; [Tian et al.l 2020a; Bardes
et al.| [2022; |[Zbontar et al., [2021)), as well as multimodal data (Radford et al.| 2021} Jia et al., 2021}
Elizalde et al.| [2023)) and many methods are motivated by the classical infomax principle (Linsker,
1988) and they implement neural estimation of mutual information, with contrastive loss being the
most popular variant. Recent works have proposed theoretical interpretations of SSL and contrastive
learning (Wang & Isola,|2020; |Zimmermann et al., |2021; Hyvérinen et al.||2019; Tian et al.| [2020bj
Tosh et al., 2021} |Chen et al., 2021} Zhai et al., 2024), with the focus of providing guarantees for
extracting the shared variable, without considering the private variables.

A few works took private variations into consideration. [von Kiigelgen et al.| (2021)) proposed a
generative model in which the latent space is divided into “content” and “style”; importantly, data
augmentations were assumed to preserve content while altering dimensions within style. |Tsai et al.
(2021)) studied self-supervised learning from a multi-view perspective and with the multi-view re-
dundancy assumption (Chaudhuri et al.,[2009; Tosh et al.| 2021) that the private variable of each view
contains little information for the downstream task, they focused on extracting the shared variable
with combinations of several multi-view losses. Realizing the limitation of this assumption, [Liang
et al.[(2023)) studied the scenario where the private variables contain significant useful information,
and proposed a contrastive learning algorithm for extracting it. Their algorithm required sophisti-
cated data augmentation procedures designed for downstream task. |[Lyu et al.| (2022) proposed a
model for understanding SSL, assuming a data generation process similar to ours. They extracted
shared variable with CCA loss, and private variable by MI minimization between shared and private
variables. The generation quality of their model is suboptimal, due to it being fully deterministic.

Information bottleneck (IB) and mutual-information regularization. Another set of proba-
bilistic models were motivated by the IB method (Tishby et al., [1999; Tishby & Zaslavsky, [2015
Achille & Soatto, 2018)). |Alemi et al.|(2017) proposed a variational IB method to extract z from x;
which has high MI with x5 (estimated with conditional likelihood), so that it captures the shared in-
formation, and at the same time has low MI with x; so that it contains little nuisance factors/private
information. [Federici et al.| (2020) leveraged the multi-view redundancy assumption that all the in-
formation x; contains about an unobserved label is also contained in x5, and showed that that if the
learned representation z is sufficient, in the sense that I (x;, x2|z) = 0, then z has all the predictive
power from (x1,x2) for label. Remarkably, their objective did not involve any reconstruction paths,
and the authors considered this to be an advantage, given that density modeling for high dimensional
data is difficult. Wang et al.| (2025)) extended |[Federici et al.|(2020) and proposed a two-step approach
to first extract shared and then the private variables with guarantees, again without generative mod-
eling. We argue that, with the development of powerful generative models, likelihood modeling
becomes feasible and provides the additional benefit of (controllable) generation.

4 EXPERIMENTS
We compare our method, IDMVAE, and its variant with diffusion priors, against several baselines.

MMVAE (Shi et al.| [2019): uses a MoE inference network to combine information from different
modalities. It only models the shared variable z with ELBO.

MoPoE-VAE (Sutter et al.,[2021): uses a mixture-of-products-of-experts inference network for z.
DMVAE (Lee & Pavlovicl 2021)): performs PoE inference for z, and models w,,, within ELBO.

MMVAE+ (Palumbo et al.,2023)): performs separation of shared versus private information with the
help of auxiliary prior variables. It is a special case of IDMVAE (w.o. diffusion) with A\; = Ay = 0.
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Table 1: Latent classification on PolyMNIST-Quadrant. Accuracies are averaged over 5 modalities.

Model z— Digit?T z— Quad] | w— QuadT w — Digit ]
MMVAE 0.492 0.798 — —
MoPoE-VAE 0.536 0.751 — —
DMVAE 0.157 0.254 0.710 0.179
MMVAE+ 0.382 0.355 0.999 0.341
IDMVAE (ours) 0.983 0.271 0.999 0.162

— Lcrossm1 (A1 = 0) 0.111 0.267 0.999 0.356

— LGenaug (A2 = 0) 0.977 0.277 0.999 0.202
+ Diffusion prior 0.982 0.267 0.999 0.143

DisentangledSSL (Wang et al., [2025)): performs extraction of shared variable (using the method
of |Federici et al., [2020) and private variable in two sequential steps. It is a state-of-the-art disentan-
glement method without likelihood modeling, but it can only be applied to two views currently.

4.1 RESULTS ON POLYMNIST-QUADRANT

PolyMNIST (Sutter et all 2021) is a benchmark
for multimodal representation learning, consisting of
MNIST (LeCun et al.,|1998) digits overlaid on com-
plex backgrounds. We make the dataset more chal-
lenging, by taking each MNIST digit and placing a
32x32 scaled version of it into one of four quad-
rants of a 64x64 canvas; see Figure |Z| for an illustra-
tion. This modification introduces the private latent
variable which captures the quadrant position (with
ground truth label) and background for each modality,
allowing for nuanced evaluation of disentanglement
and generation. Our training/validation/test sets con-
tain 220,000/5,000/10,000 samples. We use the deep
residual network (He et al., [2015) architecture as the
backbone of encoders and decoders for all methods.
The dimensionality is set to 32 for z and 128 for w,,.

Digits (0-9) are placed in one of the four
quadrants randomly. Each column contains
one multimodal sample. Each modality has
a different background scheme. Digit label
is shared across all modalities, while quad-
rant label is private to each modality.

Latent Classification. For evaluation, we perform linear classification on the samples of posterior
distributions (samples reflects both mean and variance of posteriors). Multi-class logistic regression
models are trained on the posterior samples of training set and applied to posterior samples of the
test set. We perform two types of classifications: (1) predicting shared label from the shared variable
(z) and private label from the private variable (w,,), where high accuracy is better, indicating the
desired variation is captured; and (2) cross-classification, where we predict shared label from w,,
and predict quadrant label from z. Ideally, with successful disentanglement, cross-classification
accuracies should approaching the performance of a random classifier (e.g., 10% for predicting
digits from w,,, 25% for predicting quadrants from z). We present results of different methods in
Table |I|, as well as performance of our method when either Lcrossmr OF Lgenaug is removed from our
loss. Clearly, our method achieves superior performance. Lcyossmr 1S critical for extracting the shared
variable, and this is because the digits occupy a small number of pixels and pure likelihood modeling
may ignore them. Lgenaug helps remove redundant information, so that cross-classification accuracy
is reduced. Adding diffusion in latent space (last row of table) leads to small gain.

Conditional Coherence. This metric evaluates the model’s ability to generate consistent samples
across modalities. We assess this for both self-reconstruction and cross-modal generation. Formally,
we combine either posterior z, , ~ ¢(z|x,) or prior z, , ~ p(z) (using diffusion prior if available)
of a modality s, with the posterior w; 4 ~ ¢(W|x;) or the prior w;, ~ p(w;) (using diffusion
prior if available) of modality ¢, and apply ¢(x:|z, w;) to generate a new sample of modality ¢. This
sample should have the same digit label as x if posterior of z is used, and random digit label if
prior is used. Similarly, the quadrant label can be determined based on whether posterior or prior
is used for w;. We then use ResNet classifiers trained on original images to predict corresponding
labels of generated images, and the averaged accuracy across modalities is referred to as coherence.
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Table 2: Generative coherence, averaged over 5 views, on PolyMNIST-Quadrant. We use subscript
q to indicate samples from posteriors and subscript p to indicate samples from priors. For generated
images, digit label is determined by z , or otherwise random (with target accuracy 10%), quadrant
label is determined by w, , or otherwise random (with target accuracy 25%).

Self Gen (s = t) Cross Gen (s # t)| Uncond.
Model Gen(zsq, Wip) | Gen(zi,, Wsq) | Gen(zs,q, Wip) |[Gen(zy,, wp)

Digit T Quad | |Digit | Quad T [[Digit T Quad ] Digit T
MMVAE 0.879  0.998 — — 0.170  0.248 0.041
MoPoE-VAE 0.861  0.999 — — 0.173  0.250 0.029
DMVAE 0297 0252 |0.532 0.999 | 0.161 0.249 0.005
MMVAE+ 0.120  0.251 0915 0.999 0.119 0.250 0.000
IDMVAE (ours) 0.898 0249 [0.162 0.999 | 0.881 0.250 0.070
— Lcrossmt (A1 =0) || 0.101  0.252 | 0.926  0.999 0.100  0.250 0.000
— LGenaug (A2 =0) || 0.670  0.250 | 0.370  0.999 | 0.671  0.250 0.008
+ Diffusion prior 0942 0251 [0.106 0.999 | 0.887 0.251 0.664

RS a

MMVAE MoPoE-AE DMVAE MMVAE+

Figure 3: Unconditional generations on PolyMNIST-Quadrant. Each row is a multimodal sample
generated with a prior sample of z, so images in the same row ideally have the same digit identity.

We provide conditional generative coherence in Table 2] (left panel for self generation where s = ¢,
and middle panel for cross generation s # ¢); see Appendix [B.1|for sample generations. The results
are consistent with those of latent classification, and diffusion priors significantly boost coherence.

Unconditional Coherence. This metric further assesses the consistency of the shared informa-
tion in unconditionally generated samples. We first sample a shared latent code z, ~ p(z) (us-
ing diffusion prior when available). For each modality m, we then sample an independent private
Wpp ~ P(Wy,) and generate a sample X,,, from the combined latent code (z,, W,y ,,). The gen-
erated multimodal sample {Z1, ..., Z s} are then passed to their respective digit classifiers (ResNet)
trained on original training images, to predict the shared label. A sample set is considered coherent
if all classifiers agree on the same shared label. We report the percentage of coherent sets as uncon-
ditional coherence, shown in Table 2] (right panel). Most methods obtain close to zero unconditional
coherence, indicating the difficulty of matching prior and posterior distributions for latent variables.
However, with diffusion prior our method achieves significantly better coherence, thanks to its flex-
ibility. We show generations in Figure 3] and 2D visualizations of latent codes in Appendix [B.3]

Generative augmentation. Recall that in Lgenaye We mix and
match posteriors of z and w,,, from different samples to generate new
samples in modality m. We provide illustration of such samples from
our trained model in Figure[d] The first row and first column contain
images for which we extract posterior samples of z and w,,, respec-
tively. And the rest of the grid contain generate images using samples
of w,,, of the corresponding row and z of the corresponding column.
We observe that images in each column share the same digit, while
images in each row share share the same quadrant, as desired. Gen-
erated images are of high quality, showing that we can independently
vary shared and private variables to obtain controllable generations.

Figure 4: Augmentations.
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Table 3: Latent classification on CUB, using posterior means. z; and w; refers to image latents.

Model z—Cat.T z1— Dir.| | wy — Dir.t w— Cat. |
MMVAE 0.685 0.820 — —
MoPoE-VAE 0.731 0.837 — —
DMVAE 0.418 0.771 0.843 0.400
MMVAE+ 0.725 0.692 0.612 0.323
DisentangledSSL 0.831 0.557 0.592 0.179
IDMVAE (ours) 0.815 0.501 0.720 0.200

— Lcrossm1 (A1 = 0) 0.759 0.767 0.635 0.292

— Lgenaug (A2 = 0) 0.810 0.493 0.698 0.230
+ Diffusion prior 0.840 0.526 0.667 0.321

4.2 RESULTS ON CUB

The CUB-200-2011 dataset (Wah et al.| 2011; Reed et al.| 2016} |Shi et al.l |2019; Palumbo et al.,
20235 2024) is a widely used benchmark for fine-grained visual categorization, containing 64x64
RGB images of 200 bird species. Each image is paired with 10 textual descriptions. Follow-
ing [Palumbo et al.| (2024), we group 22 categories of species from the 200 bird species into 8
super-categories, yielding 1-of-8 class labels for these species. Data with category label is split into
training/validation/test with 80%/10%/10% portions. The rest 178 species are added to the train-
ing set for representation learning. The training/validation/test sets contain 115,240/1,280/1,360
samples, respectively. See more details on data generation in Appendix [C]

For this dataset, the two modalities (image, text) share rich information about bird category, since the
text describes the color of different parts of the bird. To evaluate the quality of private information,
we note that the horizontal direction of the bird (with direction inferred from the original CUB
attributes, see Appendix [C|for details) can only be inferred from the image. Therefore, we consider
the direction as private label for the image modality.

We use ResNet as encoders and decoders for images, while convolution network as those for texts
(using one-hot representation of text with a vocabulary of 1,590 words). And the dimensionality is
set to 48 for z and 16 for w,,, following [Palumbo et al.[(2023)). After representation learning, we
perform latent linear classification similar to the previous section. With disentangled latent repre-
sentations, the target (random) classification accuracy is 50% for predicting direction from z, and
12.5% for predicting category from w; (derived from image). The results of latent classification
are given in Table [3] Again, cross-view mutual information maximization is critical for recover-
ing z, when we do not have a very strong likelihood model (due to limited image data). On the
other hand, generative augmentation still helps reduce redundancy in latent space. In Figure 5} we
provide examples of cross-modality generations and our method achieves more coherent generation
than MM VAE+; additional conditional generations are given in Appendix [C.3] We note that Disen-
tangledSSL performs well for extracting z (their first step has a objective that similarly maximizes
mutual information across views), but failed to retain private information in its second step. In
contrast, our model keeps the most useful information in the latent space with generative modeling.

4.3 RESULTS ON THE CANCER GENOME ATLAS (TCGA)

TCGA datasef’] is a real-world multi-omics dataset that is by nature multimodal. Using the same
data processing procedure from|Lee & van der Schaar|(2021)), we obtain a dataset of 10,960 samples
(of which 9,477 are labeled) with 5 views (each of 100 dimensions), each representing a molecular
modality and labels (see Appendix for details). The binary label represents 1-year mortality
of a patient-sample. We selected 2 views (mMRNA and miRNA) which had 9,874 samples out of
all possible combinations after filtering out samples with missing values. After adding data with
missing labels to the training set, a 90%/5%/5% split was performed with 5 different seeds. Due to
the complex nature of biological data, private information may be predictive as well.

As shown in Table [d] our method in general performs better than baseline methods in terms of ac-
curacy (see Appendix for AUROC results), both learned shared and private latent spaces are
predictive, and combining z and w achieves the best performance. This is likely because clean dis-

“https://www.cancer.gov/tcga
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Figure 5: Cross-modality generation on CUB. We combine posterior sample z of the modality being
conditioned on, with prior sample w of the other modality for generation. Top row: image-to-text.
Bottom row: text-to-image. The top image is the original image paired with text, while the rest
three are different samples. Note our generations better match the conditional input in color.

Table 4: Prediction accuracy on TCGA, averaged over 2 modalities and 5 splits.

Model z 1 w z+wT
MMVAE 0.695+0.010 — —
MoPoE-VAE 0.695+0.014 — —
DMVAE 0.688+0.018 | 0.691£0.014 | 0.697+0.016
MMVAE+ 0.692+0.010 | 0.69040.012 | 0.690+0.011
DisentangledSSL 0.6914+0.011 | 0.691+0.012 | 0.690+0.011
IDMVAE (ours) 0.7074+0.016 | 0.708+0.013 | 0.718+0.017
— Lcrossmt (A1 = 0) | 0.6914+0.014 | 0.689+0.010 | 0.691+0.014
— LGenawg (A2 = 0) | 0.701£0.015 | 0.7064+0.019 | 0.723£0.013
+ Diffusion prior 0.7144+0.009 | 0.719+0.024 | 0.731+0.019

entanglement separates predictive information between shared and private latent variables, making
predictions based on combined latent space more robust. In particular, Lcpossmr contributed most to
the performance, and adding diffusion priors in latent space consistently improves performance.

5 CONCLUSIONS

We have proposed IDMVAE, a generative model for learning disentangled representation from mul-
timodal data. Our innovations include the incorporation of cross-view mutual information maxi-
mization for shared variable extraction, redundancy removal based on generative augmentation, and
flexible latent priors with diffusion models. These components are complimentary to each other and
jointly overcome the limitations of pure likelihood modeling, resulting in superior performance than
existing state-of-the-art multimodal VAEs as well as non-generative disentanglement method.

In the future, we would like to extend the model to handle missing modalities, leveraging the con-
trollable generation capability of our model. On the other hand, for the CUB dataset, we were not
able to generate very high fidelity samples of images, perhaps due to limited data volume and capac-
ity of the decoder. We would like to introduce (possibly pre-trained) diffusion models in the input
space to produce high quality samples, which may be more useful for generative augmentation.
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A DIFFERENT IMPLEMENTATIONS FOR GENERATIVE AUGMENTATION

In section we have discussed two implementations of generative augmentation for redundancy
removal. Here we provide a detailed comparison of them.

Recall that x,,, and x/,, are two input samples, (2,,, W, ) is pair of samples drawn from the posteri-
ors q(z|x.,) and g(w,|X,, ) respectively, and similarly (z,, w/,) is a pair of samples drawn from
conditional posteriors for x/,. With disentanglement and a good generative model, we could inde-
pendently vary one variable while keeping the other the same to obtain a new sample. In particular,
a sample x;\, ~ p(X,, |z, w),,) would share the same z with x,,. In turn, when we map x;, back
to the latent space, q(z|x;") and q(z|x,,) should be similar. Likewise, q(w,,|x;}) and ¢(w,,|x/,)
should be similar.

Least squares matching. In the first implementation, we would like to minimize I(z,,;x;) by
approximately minimizing H (w,, |x}):

_ ! |xt
Exm ’\‘p(xnl ) ,x;" Np(xrn)7zrn’\’q(z|x7n ) aW;n Np(WmL ‘xin)7xj;1 NP(Xm ‘zm, W ) [ IOg q(wm |Xm)] :

m

Assuming that posteriors are parameterized Gaussians, LGenaug,w,, reduces to ¢5 loss for matching
means of posteriors, and we implement it as

£, . =E N W, —w" |
GenAug x7nNp(xm)ﬂ(;n’vp(an)7zm,NQ(z‘xm)7winNQ(Wnl|x;n)1xm"’p(xm|z7naw;n) m m

where W/, is the posterior mean of g¢(w,,|x/) while W/" is the posterior mean of q(w,,|x;).

Contrastive matching. In practice, we find it more stable to use a contrastive loss for matching,
ie.,

1"

Lcontrast o m ™ q(wm|X:,r1)

Ganang = —Contrast(w,,, w,) where X ~ p(Xp|Zm, W), W

We plug in the two different implementations into our loss. In Table[5]and [6] we provide the compar-
ison of the two on PolyMNIST-Quadrant, each with its loss coefficient tuned on the validation set.

We find the best coefficients to be A\;=80 and \57=0.75 for L5 Aug> and A1=80 and A57"#re1=20

for Lé%ﬁzl‘;t; diffusion prior loss has a coefficient of 1.0 when incorporated. We observe that both
contrast

implementations improve the disentanglement compared with using Lcposspr 0Only, with »CGenAHg
outperforming ﬁlcfeanug'

. 3 lsq contrast : : : : :
Table 5: Comparison of L5, and LGNAe*" for generative augmentation regularization in latent

linear classification on PolyMNIST-Quadrant. Accuracies are averaged over 5 modalities.

Our Models z—= DigitT 2z—Quadl] | w— Quad?l w — Digit ]
Lcrossm1 Only (Ay = 0) 0.977 0.277 0.999 0.202
Lcrossmr + El(f;lAug 0.972 0.267 0.999 0.186

+ diffusion prior 0.980 0.263 0.999 0.154
LcrossM1 + £g;g,§?;gst 0.983 0.271 0.999 0.162

+ diffusion prior 0.982 0.267 0.999 0.143
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Table 6: Comparison of Elcse’i Aug

contrast
and EGenAug

for generative augmentation regularization in gen-

erative coherence, averaged over 5 views, on PolyMNIST-Quadrant. We use subscript ¢ to indicate
samples from posteriors and subscript p to indicate samples from priors. For generated images, digit
label is determined by z, , or otherwise random (with target accuracy 10%), quadrant label is deter-
mined by w, 4 or otherwise random (with target accuracy 25%).

Self Gen (s = t) Cross Gen (s # t) || Uncond.
Our Models Gen(zs q,Wip) | Gen(zip, Wsq) | Gen(zg g, wep) [[Gen(zy, wy)

Digit T Quad | |Digit | Quad? |[Digit T Quad ] Digit 1
Lcrossvr Only (A2 = 0) || 0.670  0.250 | 0.370  0.999 || 0.671 0.250 0.008
Lerossmt + Lo aug 0817 0250 |0219 0999 [0812  0.250 0.044
+ Diffusion prior 0917 0.249 |0.109 0.999 | 0.875 0.250 0.668
Lcrossm1 + E&%ﬁ;ﬁ‘g“ 0.898 0.249 |0.162  0.999 | 0.881 0.250 0.070
+ Diffusion prior 0942 0.251 |0.106 0.999 | 0.887  0.251 0.664
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B DETAILS AND ADDITIONAL RESULTS ON POLYMNIST-QUADRANT

B.1 CONDITIONAL GENERATION

In Figure [6]and Figure[7} we provide additional results on conditional generations, where one latent
variable is sampled from the posterior, while the other is sampled from the prior. In Figure 8] we
provide conditional generations for which both z and w are sampled from posteriors; this simulates
the samples we use in Lgenaug- In all cases, our method provides the most coherent generations,
consistent with the quantitative results in Section[4.1}

MoPoE-VAE

MMVAE+ IDMVAE + diffusion prior

Figure 6: Conditional generations on PolyMNIST-Quadrant, with conditioning on z. The top row
shows the samples (from modality 1) we condition on. We sample z ~ ¢(z|x;), sample the pri-
vate variable from the corresponding prior w,,, ~ p(W,,|X;,), and generate a new sample from
p(Xm |z, W.,). Row 2 to row 6 are generated samples for modalities 1 to 5. Note for well-
disentangled latent variables, each column shall contain the same digit z. For each row we used
the same prior sample of w, so images in the same row shall have the same quadrant, writing style,
and background.

B.2 IMPLEMENTATION DETAILS

We utilize a deep residual network (ResNet) architecture of 3 residual blocks, with the number of
filters doubling from 64 to up to 512 after each block for the encoder, and the number of filters
halving after each decoder for the decoder, for all five modalities. And each modality’s information
is factorized in the latent space into a shared latent dimension of 32 and a private latent dimension
of 128. Models are trained for 100 epochs using the Adam optimizer with a learning rate of 5e~*
and a batch size of 128, and use the other default hyperparameters of MM VAE+ baseline, including
the KL divergence coefficient 3 of 2.5. We performed a grid search over the coefficients to tune
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Figure 7: Conditional generations on PolyMNIST-Quadrant, with conditioning on w,,. The top
row shows the samples (from modality 1) we condition on. We sample w ~ ¢(w|x; ), and sample
z ~ p(z), and generate a new sample from p(x;|z, w;). Row 2 to row 6 are generated samples.
Note for well-disentangled latent variables, each column shall have the same quadrant position and
background. For each row we used the same prior sample of z, so images in the same row shall have
the same digit.
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Figure 8: Conditional generation on PolyMNIST-Quadrant. The first row and first column contain
images for which we extract posterior samples of z and w,,, respectively. And the rest of the grid
contains generated images using latent samples of the corresponding row and column. This figure
illustrates the samples we use in generative augmentation.

the regularization terms, A; and Ao, after training for 100 epochs. We search them in the range
[0.01,100]. We tune ) individually first to find the best general performance in latent classification

for Lcrossmi, and fix the A, then combine with Lg%ﬁi’;‘é“, and find the best combination of A1=80

and Ag"”tht:ZO. Finally, we tune the diffusion prior weight to 1.0 out of {0.01, 0.1, 1.0, 10.0},
which optimizes the final general performance at the 100th epoch.
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B.3 LATENT VISUALIZATION

In Figure |§|, we provide 2D visualizations of the latent representation ¢(z|x;) on the PolyMNIST-
Quadrant test set. Observe that, without diffusion prior (left panel), there exists a gap between the
posterior and the Gaussian prior, whereas the capacity of diffusion prior is strong enough to ensure
good overlap between the two distributions (right panel).

prior

class 0 '

class 1

class 2

class 3 ‘

class 4 ‘ .

class 5 ‘
class 6

class 7

class 8 .

class 9

w.o. diffusion prior w. diffusion prior
Figure 9: 2D Latent Visualization (UMAP) of learned shared latent representation z by our methods

on the test set. We color each representation according to its ground truth digit label. Black points
are samples from the prior.
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C DETAILS AND ADDITIONAL RESULTS ON CUB

C.1 DATASET

The 8 super-categories, namely Blackbird, Gull, Jay, Oriole, Tanager, Tern, Warbler, and Wren, are
created following the same grouping method introduced by [Palumbo et al. (2024)), as shown in

Figure[10]
In addition, we introduce a private binary label representing the bird’s horizontal direction, deter-
mined by the part location annotations provided in the original dataset 2011), as illus-
trated in Figure [T1] Specifically, we compare the average horizontal position of the group of the
bird’s ‘head’ parts with the average horizontal position of the group of its ‘body’ parts. If the head
is positioned to the left of the body, the direction label is ‘left’ (label 0); otherwise, it is ‘right’ (label
1). This creates a modality-specific (private) label for the image that cannot be inferred from the text
captions. At the same time, as shown in Figure [T1] (b) and (c), a very small fraction of the images
have invisible ‘head’ or ‘body’ location annotations, or the locations are too close, in which case
they are not assigned the direction label. Direction labels of validation and test images are verified
by human.

Blackbird Gull Oriole

Jav / l\
Rusty l Red-winged Western l Herring Blue Florida Scott's Baltimore
Blackbird Brewers  Blackbird Gull California Gull Jay Jaly Oriole Hooded Oriole
Blackbird Gull _ Oriole o
oo e . 7 Y =
N | »” L 2 v - »
* L/ | N PRy
=L\ [ | ¥ | { $5 —= Ny
Tanager Tern Warbler Wren
Scarlet Summer Elegant l Caspian Pine l Yellow House l Caroline
Tanager Tanager Tern Artic Tern Warbler Kentucky Warbler Wren Marsh Wren

B R

Figure 10: CUB category labels: dividing 22 species into 8 super-categories (Palumbo et al., 2024).

(Right Wing
not visible)

(Right Eye

T

a. Collected Parts b. Invisible ¢. Ambiguous

Figure 11: The collected parts in the original dataset (Wah et al., 2011), and sample images with
invisible ‘body’ or ‘head’ location annotations or ambiguous horizontal direction.

C.2 IMPLEMENTATION DETAILS

For the image modality, we utilize a deep residual network (ResNet) architecture of 5 residual
blocks, with the number of filters doubling from 64 to up to 1024 after each block for the en-
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coder, and the number of filters halving after each block for the decoder. For text modality, we
utilize a convolutional neural network, CNN-based encoder and decoder with one-hot encoded cap-
tions from a vocabulary size of 1590 words. The shared variable has a dimensionality of 48, and
the private variable has a dimensionality of 16. Models are trained for 150 epochs using the Adam
optimizer with a learning rate of 10~3 and a batch size of 128, and other default hyperparameters of
the MM VAE+ baseline, including the KL divergence coefficient 5 = 1.0.

During training, we apply horizontal flip augmentation to the image modality, with a flip probability

of 0.5. Then we tune the Lcrossmi, Lg%;‘/i’;‘g“, and diffusion prior similarly to w and obtain the

optimal coefficients A\; = 40, A\5o"74st = (.05, and diffusion loss weight 0.1.

C.3 CONDITIONAL GENERATION
In Figure[I2} [13] [T4} we provide conditional generation of competitive methods.

MMVAE+ IDMVAE (Ours) + diffusion prior

EPTRLAENE N NE AE Y

748 ff r;rf“? fm[.

Figure 12: Text-to-image generation on CUB. We combine posterior sample z of the text modality
(top row), with prior sample w of the image modality (shared by each row) for generation.
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MMVAE+ IDMVAE (Ours) + diffusion prior
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Figure 13: Image-to-text generation on CUB. We combine posterior sample z of the image modality
(top row), with prior sample w of the text modality (shared by each row) for generation.

IDMVAE (Ours)

Figure 14: Image-to-image generation on CUB. We combine the posterior sample z of the image
modality (top row), with the prior sample w of the image modality (shared by each row) for gener-
ation.
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D DETAILS AND ADDITIONAL RESULTS ON TCGA

D.1 DATA PREPARATION

TCGA dataset (2016 version) is processed by combining multi-omics data across different cancer
types and different patients before features are selected and kernel PCA was performed to reduce the
dimensionality to 100. Because clinical trials usually have small sample sizes, high dimensionalities,
and complex dependencies, this dataset is ideal to test the robustness of our method. One significant
outcome of cancer multi-omics data is the days of survival after samples were collected. Because
patients may not show up for checkups, it is possible that a sample is censored (unlabeled). The days
of survival are then converted to a binary 1-year mortality indicator. The dataset itself has missing
views but contains predictive information and high correlations among different views, making it
suitable for our task. Further notice that this dataset does not contain private ground truth.

D.2 IMPLEMENTATION

A 2-layer MLP with 128 as hidden dimensions was used for encoding and decoding with 48 latent
dimensions (16 for z and 32 for w). Evaluation for all methods regarding this dataset is done by
averaging logits from each view. 50 epochs were run to train the model. For TCGA dataset, base-
line methods are performed with default hyperparameter, which gives KL divergence a coefficient
of 2.5. For DisentangledSSL baseline in particular, step 1 coefficient was set to 0 since we use
posterior mean instead of zsample to match other methods and step 2 coefficient was set to 0.01.
To tune our method, we performed a grid search with coefficients {0.001,0.01,0.1, 1,10, 100}
and chose the best combination on validation set, before recording the performance on test set.
A1 = 10, A2 = 0.001 were chosen to be the best combination at 40 epochs. For ablation studies,
we set one coefficient to be 0 while keeping the other one optimal in a combined setting. For the
optimal coefficients combination, we used the model at epoch 40; A\; = 0, at epoch 50; and Ay = 0,
at epoch 35. For adding a diffusion prior, we tuned the diffusion weight to be 0.1 out of 0.1, 1, 10
while keeping A1, Ay same as the optimal combination and chose the best performance at validation
set at epoch 40.

D.3 PREDICTION AUROC

In Table|/} we provide the linear classification AUROC of different methods using latent represen-
tations. The relative merits of different methods are consistent with that observed with the accuracy
metric in Table [

Table 7: Prediction AUROC Performance with ablation on TCGA dataset, averaged over 2 modali-
ties and 5 splits. Tuning reported in Appendix [D.2]

Model z 1 w z+w7
MMVAE 0.653+£0.033 — —
MoPoE-VAE 0.660+0.024 — —
DMVAE 0.609+0.030 | 0.6364+0.037 | 0.643£0.032
MMVAE+ 0.586+ 0.027 | 0.581+0.033 | 0.585+0.033
DisentangledSSL 0.6934+0.046 | 0.55140.019 | 0.699+0.045
IDMVAE (ours) 0.74040.025 | 0.74040.022 | 0.767+0.026
= Lcrossmt (A1 = 0) | 0.54940.017 | 0.54540.026 | 0.548+0.026
— LGenaug (A2 = 0) | 0.740£0.019 | 0.746+£0.022 | 0.77140.021
+ Diffusion prior 0.745+0.024 | 0.751+0.029 | 0.772+0.022
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