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ABSTRACT

Multimodal data are prevalent across various domains, and learning robust repre-
sentations of such data is paramount to enhancing generation quality and down-
stream task performance. To handle heterogeneity and interconnections among
different modalities, recent multimodal generative models extract shared and pri-
vate (modality-specific) information with two separate variables. Despite attempts
to enforce disentanglement between these two variables, these methods struggle
with challenging datasets where the likelihood model is insufficient. In this pa-
per, we propose Information-disentangled Multimodal VAE (IDMVAE) to explic-
itly address this issue, with rigorous mutual information-based regularizations,
including cross-view mutual information maximization for extracting shared vari-
ables, and a cycle-consistency style loss for redundancy removal using generative
augmentations. We further introduce diffusion models to improve the capacity
of latent priors. These newly proposed components are complementary to each
other. Compared to existing approaches, IDMVAE shows a clean separation be-
tween shared and private information, demonstrating superior generation quality
and semantic coherence on challenging datasets.

1 INTRODUCTION

Most real-world data are inherently multimodal or multi-vie Videos contain both visual scenes
and sounds (Zhao et al., 2018; Owens & Efros, 2018} |Chen et al., [2020a} |Gong et al.| [2023}; [Kim
et al.l 2024); robots can see and feel via sensors (Lee et al.l [2019); images are often accompa-
nied by captions (Radford et al.| 2021} Jia et al., |2021)); and heterogeneous human, animal, and
environmental data are collected for health improvements (Adisasmito et al.,2022)). In addition to
these naturally occurring data, synthetic multi-view data constructed from semantically similar input
components or via augmentation are also widely used to learn useful representations for downstream
tasks (Velickovic et al.,[2019; (Chen et al., 2020b; [Caron et al., [2020; Tian et al., 2020a; |Bardes et al.,
2022)). Despite the abundance of such data, leveraging them is nontrivial even with naturally aligned
modalities due to their diversity and complex correlations. Therefore, a core challenge is to integrate
information across views to learn universal, transferrable representations.

Variational autoencoders (VAEs, Kingma & Wellingl 2014) and their multmodal extensions have
emerged as a powerful paradigm to tackle this problem (Wang et al., 2016} Suzuki et al.| [2016).
They can extract useful shared information in data with missing modalities (Wu & Goodman, [2018])
and noise (Shi et al.,[2021). While early works have assumed that a single latent space can capture all
relevant information and data variations (Shi et al., 2019; Sutter et al., 202 1)), recent approaches have
recognized the existence of both shared and modality-specific (private) information in real-world
datasets (Daunhawer et al., 2022} [Lee & Pavlovic, 2021; Palumbo et al., [2023; 2024). However,
modeling shared and private components naturally exposes a challenge:

How can we achieve maximal disentanglement between shared and private vari-
ables so that learned representations are complete and non-redundant?

Without a clean separation, shared information leaks into private encodings and vice versa, causing
weak coherence across modalities, wasted model capacity, and inadequate generative quality.

"We use “modality” and “view” interchangeably as they both appear in the literature.
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Our Contributions. We propose Information-disentangled Multimodal VAE (IDMVAE), a novel
framework for unsupervised multimodal representation learning hailing from theoretical stringency
and practical performance. (1) Different from prior works which use capacity-based (Wang et al.,
2016) or shortcut-preventing (Palumbo et al.||2023) heuristics, we employ mutual information (MI)-
based regularizations to ensure disentanglement. In particular, we use cross-view MI to extract
common factors that likelihood models fail to fully capture, thereby enhancing cross-modal coher-
ence. Additionally, a cycle-consistency-style loss removes redundancy between shared and private
latents using samples generated by the model itself, eliminating the need for domain-specific aug-
mentations. (2) To overcome limitations of simple Gaussian priors, we leverage diffusion-based
priors (Sohl-Dickstein et al., 2015} [Ho et al.| [2020; [Song et al., 2021)) that capture the richness of
multimodal latent spaces, leading to greater representational capacities. (3) Across multiple com-
plex datasets spanning image, text and multi-omics data, IDMVAE performs consistently better than
state-of-the-art methods in terms of cross-modal generation and coherence, showing a synergy be-
tween MI-based objectives and diffusion priors, which leads to improved performance.

2 METHOD

Given a set of M modalities X = {x1,...,xum},
we would like to learn a factorized latent space
for each modality m, separating information shared
across modalities, captured by latent variable z,
from modality-specific private information, cap-
tured by w,,,. As illustrated in Figure |l we as-
sume that, Vm, x,, is generated by z,, and w,,
jointly with p(Xp,|2m, Wy,), and the latent vari-
ables have independent priors p(z, {w,,}M_,) =
orgnterense s | p(2) Hif:l p(wWp,). We perform variational infer-
susandieetwina| - ence and parameterize the approximate posteriors
. . ) — with a factorized form: ¢(z, w,,|X:m) = ¢(2|Xm) -
Figure 1: Our approach with two modalities. q(Wyn|%m). Learned ¢(z|x,,) and ¢(w,,|X,,) pro-
vide representations of original inputs which can be

used in downstream tasks. Our method consists of three major components.

2.1 LIKELIHOOD MODELING WITH MULTIMODAL VAE

We begin with the Evidence Lower Bound (ELBO) of the MM VAE+ (Palumbo et al., 2023) model
as our foundation. Let ¢(z|x,,) be the posterior of shared variable derived from modality m (with
distribution parameters modeled by an encoder), and g(w,,|x,,) be the posterior of private vari-
able from modality m (modeled by another encoder). One can define a global posterior of z by
aggregating information from view-specific posteriors, e.g., using the mixture-of-experts (MoE)
scheme ¢(z|X) = +; Zi\le q(z|x,,). Together with generative distributions p(X,, |z, W, ) mod-
eled by decoders of each view, an ELBO for X can be derived with variational inference (Kingma

& Welling, [2014)), which involves reconstructing x,, using samples of ¢(w,|x,,) and ¢(z|x,,), for
nom=1,..., M.

Since the posterior ¢(w,|x,) is dependent on x,, and potentially retains shared information, to
keep decoder p(x,,|z, w,,) from taking the “shortcut” to use leaked shared information, MM VAE+
uses sample of W,, from an auxiliary prior r(W,,) instead for cross-view reconstruction, where z
is derived from another view m # n; avoiding such shortcut enforces shared information to come
from ¢(z|X,, ). This design leads to the following minimizing objective:

p(xm ‘Z, Wm
Lymvag: = — E  eg(zxm log p(x,|z, W
' Z WWTNZE:JTW \x)m) q(ZlX) (wm ‘Xm H " n

n#m
{Wn~r (W) b nztm

Within the expectation, p(X;,|z, W,,,) and p(x,|z, W,,) are conditional likelihood of self- and cross-
reconstructions, respectively. |[Palumbo et al|(2023) shows that —Cymvags (X1:07) < log(xi.a7)
remains a valid ELBO. Compared with previous multimodal VAE using MoE parameterization (Shi
et al., 2019), MMVAE+ achieves superior performance for extracting shared information, although
the result is somewhat sensitive to the relative capacity (dimensionality) of z and w. In the rest
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of this section, we will show that regularizing the generative model with mutual information (MI)
is more effective at achieving disentanglement. We emphasize that MM VAE+ is one option for
multimodal VAE, and our improvement below can also be applied to other models, e.g., PoE (Wu &
Goodman, 2018)) or MoPoE (Sutter et al.| 2021)).

2.2  SHARED VARIABLE EXTRACTION WITH CROSS-VIEW MI MAXIMIZATION

While general (per-dimension) disentanglement of variations is theoretically challenging (Locatello
et al.,2019), the underlying structure of our setup that inputs of different modalities share a common
cause facilitate (variable-level) disentanglement of shared versus private information.

To extract the shared information, it is natural to enforce the shared representation of modality m,
denoted z,, (with distribution ¢(z|x,,)) to have high mutual information (MI) with x,, for n # m.
Note this is partially pursued by Lyvvags through cross-view reconstruction. In light of the decom-
position I (Z,,, Wp; X, ) = I(Zm; Xn) +1(Wp; Xp|2m ), we can maximize I(z,,, Wy, ; X, ) while min-
imizing I(w,,; X, |2, ) to maximize I(2,; X, ). Focusing on the first term, since I(z,, Wy;X,) =
H(x,) — H(Xn|2m, W,) where the entropy H(x,) is a constant, minimizing the conditional en-
tropy H (Xp|2Zm, Wn) = Ex, 2,..w, [— 108 p(Xn|Zm, Wy)] is equivalent to maximizing conditional
likelihood. However, maximizing this upper bound does not ensure maximal I(z,,; x,,) due to the
gap I(wp; X, |2, ). Therefore, likelihood maximization alone does not ensure disentanglement.

We thus take the alternative approach to maximize I(%.,, Z,) which is a lower bound of 1(z,,, x,):
I(Zm; Xn) = I(Zm, Zy, Xn) - I(Zm.; Zn|Xn) = I(zm; Zy, Xn) = I(zm; zn) + I(zm; Xn|zn) >
I(Zm; Zn), where I(Z,,;2,|x,) = 0 in the first step due to variability of z, coming from x,
only (Federici et al., [2020). In this work, we use the contrastive estimate of MI (Oord et al., 2018):

¢(va Zn) ‘
O (ZmZn) + Yy (2, 7)

(2 20) = Contrast(zm, z,) = E,,, 5, log [ (D

T .
where ¢(z,,2,) = exp (%) is the affinity function, and {2/, }%_, are k negative examples

randomly sampled from the minibatch not aligned with z,,. Since we have M modalities, we
compute the average of cross-modality MIs as our regularization for extracting shared information:

2

Lcrossmr = *m Zm<n C’ontrast(zm, Zn).

2.3 DISENTANGLEMENT WITH GENERATIVE AUGMENTATION

While equation 1| encourages z to capture shared information across views, it does not guarantee
that the learned z,,, contains no private information which should be modeled by w,,. Similarly,
even if z,, contains no private information and the self-reconstruction term in Lypmvags encour-
ages (Zm,, Wy, ) to jointly capture all information about x,,, the learned w,,, can still retain shared
information. Thus, we need additional regularization to remove redundancy between z,,, and w,.

To motivate our method, consider the desired scenario where z,,, and w,,, are disentangled, so that
they each can be varied independently to generate new samples of x,, using the decoder. Let x,,
and x/,, be two input samples, and let (z,,, wW,,) be a pair of samples drawn from the posteriors
q(z|x,,) and ¢(W,,|x., ), respectively, and similarly (z),, w?,) be a pair of samples drawn from
conditional posteriors for x/,. With disentanglement and a good likelihood model, a sample x> ~

P(Xm|Zm, W, ) would share the same z with x,,,. In turn, when we map x;, back to the latent space,
q(z|x;},) and q(z|x,,) should be similar. Likewise, q(w,,|x;",) and ¢(w,,|x/,) should be similar.

More formally, assume that z,, is sufficient for x,,, meaning that it captures all shared information,
ie., I(Zm;Xn) = I(Xm;X,) as encouraged by Lcgossvi- Then in view of I(2y,;%,) = H(zpm) —
H(z,|xy,), we would like to find the minimal z,,, (with lowest H (z,,)) by minimizing

H(Zm |X'VI/) = Ezwmxn [_ IOg p(zm |XTL)] ~ IEXN;D(X),zmNq(z|xm) [_ log Q(Z = Zm|xn)] .

Similar approaches have been used by |Federici et al.| (2020, symmetric KL for minimizing
I(Xpm,Zm|xy)) and [Tsai et al.| (2019, inverse prediction) for learning minimally sufficient shared
variable. Essentially, for extracting shared information, x,,, and x,, indeed constitute two views that
are mutually redundant, satisfying I (X,,;x,|z) = 0, so that the IB principle naturally applies.
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Note however, we do not have multiple natural views sharing w,,, to carry out the above idea.
This challenge motivates us to synthesize the view X;\, ~ p(X,|2Zm, W), ), with w,, ~ g(w|x],)
from another sample x/, to reduce the redundancy of learned w,,, by approximately minimizing

H(w,,|x.,) with the following loss

_ / +
X~ () X~ (K ) o (2 ) W (W 1) 5 o (e 1 wip ) | 108 AWy %57

Assuming that posteriors are parameterized Gaussians, this loss reduces to /2 loss for matching
means of posteriors. In practice, we find it more stable to use a contrastive loss for matching, i.e.,

7 + "

LGenaug,w,, := —Contrast(w,,, w),) where X ~ p(Xp |2, W), Wi~ q(Woa|X)).

m
We show results obtained with contrastive estimation in the main paper, and provide empirical com-
parisons of the two implementations in Appendix We also define LgenAug,z,,, Similarly by switch-
ing the role of z,, and w,,,. The total redundancy removal regularization is defined as

1 M
ﬁGenAug = 2M E me1 (ﬁGenAugzm + EGenAugwm) .

Although we do not have the reconstruction target for x;", matching q(z|x;") with q(z|x,,), and
matching q(w,,|x;") with ¢(w,,|x/,) implement a form of cycle-consistency (Zhu et al., 2017),
and provide learning signals for both the encoder and the decoder. Previously, |Bai et al.| (2021)
derived an ELBO of sequence data for disentangling static versus dynamic components, which in-
volved mutual information terms based on data augmentation, similar to Lgenaug. However, their
augmentation requires strong domain knowledge (e.g., shuffling the frame order does not alter the
static component, and color change applied to all frames does not alter the dynamic component). In
contrast, our augmentations require no domain knowledge and are produced by the model itself.

2.4 THE FINAL IDMVAE OBJECTIVE

We define our objective of Information-Disentangled Multimodal VAE (IDMVAE) as

min LipMvag = LMMVAE+ + A1 LcrossMI + A2LGenAug (2

where \; and Ao are user parameters tuned on the validation set.

Diffusion Priors In most multimodal VAEs, the prior distributions are chosen to be simple and
easy to sample from, e.g., Gaussian for continuous data. However, such unstructured priors may
not be ideal for representation learning, whose purpose is to discover useful structure of data for
supervised downstream tasks. As an example, a representation containing rich label information
most likely have a clustering structure where data of different classes are separated far apart, and
will not have a uni-modal distribution like Gaussian. We use diffusion models (Sohl-Dickstein
et al.,|2015; Ho et al., 2020; Song et al.,|2021)) to overcome this limitation by parameterizing p(z) as
a denoising process started with pure noise. To naturally introduce diffusion models into our loss,we
decompose the KL divergence inside Lyvyag+ (Which we minimize) as (Vahdat et al., 2021)):

DKL(q(Z‘X)Hp(Z)) = Eq(ZIX) [log q(z|x)] + Eq(ZIX) [_ Ing(Z)] . 3)

The first term maximizes the entropy of the approximate posterior ¢(z|x). The second term max-
imizes the likelihood of samples from ¢(z|x) under p(z), which we model with diffusion models.
We can treat z ~ ¢(z|x) as “data”, and destroy its structure by gradually adding noise to it, resulting
in pure noise after a number of steps. With repeated applications of a denoising network, diffu-
sion models gradually reverse the noising process, and recover the original data from pure noise.
Diffusion models have well-defined ELBO objectives which lower bound log p(z), and plugging
them into equation 3] yields valid upper bounds of the KL divergence. Since the latent variables are
of low dimensionality, we parameterize the diffusion backward process with a simple feedforward
network. In practice, we introduce additional loss weight for E,(,x) [~ logp(z)], and model the
mean of ¢(z|x) with the DDPM parameterization (Ho et al.l 2020). We optimize over all modules
(encoders, decoders, diffusion networks) jointly in an end-fo-end manner. A recent work (Palumbo
et al.,[2024)) proposed a two-step approach which first learns the representations with MM VAE+, and
then learns diffusion models in the input space, conditioned on VAE reconstructions. Note our use
of diffusion model has a different motivation, and we jointly train it during representation learning.
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3 RELATED WORK

Disentanglement in VAEs. To achieve disentangled latent representations in VAEs, researchers
have commonly used mutual information (MI) based regularization, and employed various metrics
to assess the results (Higgins et al., 2017} [Kim & Mnihl 2018} |Chen et al.| 2018} |[Kumar et al.,
2018). However, it has been shown that, without supervision or inductive bias in the model, it is
theoretically challenging to recover (per-dimension) disentanglement (Locatello et al., 2019).

Contrastive and self-supervised learning (SSL). SSL is applied to a single modality, with artifi-
cial views created based on the structures of data (Oord et al.|[2018};[Logeswaran & Lee}, 2018} [Hjelm
et al.,[2019; | Bachman et al.,|2019; |Chen et al., [2020b; |Caron et al., [2020; Tian et al., 2020a; Bardes
et al., [2022; |[Zbontar et al., 2021}, as well as multimodal data (Radford et al., 2021} Jia et al., 2021}
Elizalde et al.}[2023)), and many methods are motivated by the classical infomax principle (Linsker,
1988) and they implement neural estimation of mutual information, with contrastive loss being the
most popular variant. Recent works have proposed theoretical interpretations of SSL and contrastive
learning (Wang & Isola,|2020; |Zimmermann et al., |2021; Hyvérinen et al.||2019; Tian et al.|[2020bj
Tosh et al., 2021} (Chen et al., 2021} Zhai et al., 2024), with the focus of providing guarantees for
extracting the shared variable, without considering the private variables.

A few works took private variations into consideration. [von Kiigelgen et al.| (2021]) proposed a
generative model in which the latent space is divided into “content” and “‘style”; importantly, data
augmentations were assumed to preserve content while altering dimensions within style. |Tsai et al.
(2021)) studied self-supervised learning from a multi-view perspective and with the multi-view re-
dundancy assumption (Chaudhuri et al.,|2009; Tosh et al.| 2021) that the private variable of each view
contains little information for the downstream task, they focused on extracting the shared variable
with combinations of several multi-view losses. Realizing the limitation of this assumption, |[Liang
et al.[(2023)) studied the scenario where the private variables contain significant useful information,
and proposed a contrastive learning algorithm for extracting it. Their algorithm required sophisti-
cated data augmentation procedures designed for the downstream task. |[Lyu et al.|(2022) proposed
a model for understanding SSL, assuming a data generation process similar to ours. They extracted
shared variable with CCA loss, and private variable by MI minimization.

Information bottleneck (IB) and mutual-information regularization. Another set of proba-
bilistic models was motivated by the IB method (Tishby et al., |1999; Tishby & Zaslavsky, 2015;
Achille & Soattol 2018). |Alemi et al.[(2017) proposed a variational IB method to extract z from x;
which has high MI with x5 (estimated with conditional likelihood), so that it captures the shared in-
formation, and at the same time has low MI with x; so that it contains little nuisance factors/private
information. |Federici et al.| (2020) leveraged the multi-view redundancy assumption that all the in-
formation x; contains about an unobserved label is also contained in x5, and showed that that if the
learned representation z is sufficient, in the sense that I(x1,X2|z) = 0, then z has all the predictive
power from (x1, x2) for label. Remarkably, their objective did not involve any reconstruction paths,
and the authors considered this to be an advantage, given that density modeling for high dimensional
data is difficult. [Wang et al.| (2025)) extended Federici et al.| (2020) and proposed a two-step approach
to first extract shared and then private variables with guarantees, again without generative modeling.

4 EXPERIMENTS
We compare our method, IDMVAE, and its variant with diffusion priors, against several baselines.

MMVAE (Shi et al.l 2019): uses a MoE inference network to combine information from different
modalities. It only models the shared variable z with ELBO.

MoPoE-VAE (Sutter et al., 2021): uses a mixture-of-products-of-experts inference network for z.
DMVAE (Lee & Pavlovic, [2021)): performs PoE inference for z, and models w,,, within ELBO.
MMVAE+ (Palumbo et al.,[2023)): performs separation of shared versus private information with the
help of auxiliary prior variables. It is a special case of IDMVAE (w.o. diffusion) with A\; = X2 = 0.

DisentangledSSL (Wang et al.| 2025): performs extraction of shared variable (using the method
of [Federici et al.| 2020) and private variable in two sequential steps. It is a state-of-the-art disentan-
glement method without likelihood modeling, but it can only be applied to two views currently.

SBM (Wesego & Rooshenas| 2024)): first trains individual VAEs for each modality with a single
latent variable, and then couples modalities with diffusion modeling on the joint representations.
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Table 1: Latent classification on PolyMNIST-Quadrant. Accuracies are averaged over 5 modalities.
For methods with a single latent variable in each view, evaluation results are collected under z.

Model z—=> DigitT z— Quadl | w— Quad?tT w — Digit]
MMVAE 0.492 0.798 — —
MoPoE-VAE 0.536 0.751 — —
DMVAE 0.157 0.254 0.710 0.179
MMVAE+ 0.382 0.355 0.999 0.341
SBM 0.263 0.995 — —
IDMVAE (ours) 0.983 0.271 0.999 0.162

= Lcrossmi (A1 = 0) 0.111 0.267 0.999 0.356

— LGenaug (A2 = 0) 0.977 0.277 0.999 0.202
+ Diffusion prior 0.982 0.267 0.999 0.143

4.1 RESULTS ON POLYMNIST-QUADRANT

PolyMNIST (Sutter et all 2021) is a benchmark
for multimodal representation learning, consisting of
MNIST (LeCun et al.,|1998) digits overlaid on com-
plex backgrounds. We make the dataset more chal-
lenging, by taking each MNIST digit and placing a
32x32 scaled version of it into one of four quad-
rants of a 64x64 canvas; see Figure |Z| for an illustra-
‘ tion. This modification introduces the private latent

- . D variable which captures the quadrant position (with
Figure 2: PolyMNIST-Quadrant dataset. ground truth label) and background for each modality,
allowing for nuanced evaluation of disentanglement
and generation. Our training/validation/test sets con-
tain 220,000/5,000/10,000 samples. We use the deep
residual network (He et al., [2015) architecture as the
backbone of encoders and decoders for all methods.
The dimensionality is set to 32 for z and 128 for w,,.

Digits (0-9) are placed in one of the four
quadrants randomly. Each column contains
one multimodal sample. Each modality has
a different background scheme. Digit label
is shared across all modalities, while quad-
rant label is private to each modality.

Latent Classification. For evaluation, we perform linear classification on the samples of posterior
distributions (samples reflect both mean and variance of posteriors). Multi-class logistic regression
models are trained on the posterior samples of training set and applied to posterior samples of the
test set. We perform two types of classifications: (1) predicting shared label from the shared variable
(z) and private label from the private variable (w,,), where high accuracy is better, indicating the
desired variation is captured; and (2) cross-classification, where we predict shared label from w,,
and predict quadrant label from z. Ideally, with successful disentanglement, cross-classification
accuracies should approach the performance of a random classifier (e.g., 10% for predicting digits
from w,y,, 25% for predicting quadrants from z). We present results of different methods in Table[T]
as well as performance of our method when either Lcrossmi OF Lgenaug is removed from our loss.
Clearly, our method achieves superior performance. Lcpossmr 18 critical for extracting the shared
variable, and this is because the digits occupy a small number of pixels and pure likelihood modeling
may ignore them. Lgenaug helps remove redundant information, so that cross-classification accuracy
is reduced. Adding diffusion in latent space (last row of table) leads to small gain.

Conditional Coherence. This metric evaluates the model’s ability to generate consistent samples
across modalities. We assess this for both self-reconstruction and cross-modal generation. Formally,
we combine either posterior z, , ~ ¢(z|x,) or prior z, , ~ p(z) (using diffusion prior if available)
of a modality s, with the posterior w; ; ~ ¢(w|x;) or the prior w;, ~ p(w;) (using diffusion
prior if available) of modality ¢, and apply p(x:|z, w;) to generate a new sample of modality ¢. This
sample should have the same digit label as x if posterior of z is used, and random digit label if
prior is used. Similarly, the quadrant label can be determined based on whether posterior or prior
is used for w;. We then use ResNet classifiers trained on original images to predict corresponding
labels of generated images, and the averaged accuracy across modalities is referred to as coherence.
We provide conditional generative coherence in Table 2] (left panel for self generation where s = ¢,
and middle panel for cross generation s # t); see Appendix [B.2]for sample generations. The results
are consistent with those of latent classification, and diffusion priors significantly boost coherence.
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Table 2: Generative coherence, averaged over 5 views, on PolyMNIST-Quadrant. We use subscript
q to indicate samples from posteriors and subscript p to indicate samples from priors. For generated
images, digit label is determined by z , or otherwise random (with target accuracy 10%), quadrant
label is determined by w, , or otherwise random (with target accuracy 25%).

Self Gen (s = t) Cross Gen (s # t)| Uncond.
Model Gen(zeq, Wi p) | Gen(ze p, Ws q) || Gen(zs g, Wi p) [Gen(z,, wp)

Digit T Quad | |Digit | Quad T Digit T Digit T
MMVAE — — — — 0.170 0.041
MoPoE-VAE — — — — 0.173 0.029
DMVAE 0297 0.252 |0.532  0.999 0.161 0.005
MMVAE+ 0.120 0.251 | 0915  0.999 0.119 0.000
SBM — — — — 0.158 0.007
IDMVAE (ours) 0.898 0.249 |0.162  0.999 0.881 0.070
— Lerossmr (A1 =0) || 0.101  0.252 | 0.926  0.999 0.100 0.000
— LGenawg (A2 = 0) || 0.670 0250 | 0.370  0.999 0.671 0.008
+ Diffusion prior 0942 0.251 |0.106 0.999 0.887 0.664

MMVAE MoPoE-VAE DMVAE MMVAE+ IDMVAE + Diff.

Figure 3: Unconditional generations on PolyMNIST-Quadrant. Each row is a multimodal sample
generated with a prior sample of z, so images in the same row ideally have the same digit identity.

Unconditional Coherence. This metric further assesses the consistency of the shared informa-
tion in unconditionally generated samples. We first sample a shared latent code z, ~ p(z) (us-
ing diffusion prior when available). For each modality m, we then sample an independent private
Wp,p ~ P(Wy,) and generate a sample X,,, from the combined latent code (z,, W,y ,). The gen-
erated multimodal sample {Z1, ..., Z s } are then passed to their respective digit classifiers (ResNet)
trained on original training images, to predict the shared label. A sample set is considered coherent
if all classifiers agree on the same shared label. We report the percentage of coherent sets as uncon-
ditional coherence, shown in Table 2] (right panel). Most methods obtain close to zero unconditional
coherence, indicating the difficulty of matching prior and posterior distributions for latent variables.
However, with diffusion prior our method achieves significantly better coherence, thanks to its flex-
ibility. We show generations in Figure 3] and 2D visualizations of latent codes in Appendix [B.3]

Generative augmentation. Recall that in Lgenaye We mix and
match posteriors of z and w,,, from different samples to generate new
samples in modality m. We provide illustration of such samples from
our trained model in Figure[d] The first row and first column contain
images for which we extract posterior samples of z and w,,, respec-
tively. And the rest of the grid contain generate images using samples
of w,,, of the corresponding row and z of the corresponding column.
We observe that images in each column share the same digit, while
images in each row share share the same quadrant, as desired. Gen-
3 erated images are of high quality, showing that we can independently
vary shared and private variables to obtain controllable generations.

Figure 4: Augmentations.
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Table 3: Latent classification on CUB, using posterior means. z; and w; refers to image latents.

Model z—Cat.T z1— Dir.| | wy — Dir.t w— Cat. |
MMVAE 0.685 0.820 — —
MoPoE-VAE 0.731 0.837 — —
DMVAE 0.418 0.771 0.843 0.400
MMVAE+ 0.725 0.692 0.612 0.323
DisentangledSSL 0.831 0.557 0.592 0.179
IDMVAE (ours) 0.815 0.501 0.720 0.200

— Lcrossm1 (A1 = 0) 0.759 0.767 0.635 0.292

— Lgenaug (A2 = 0) 0.810 0.493 0.698 0.230
+ Diffusion prior 0.840 0.526 0.667 0.321

4.2 RESULTS ON CUB

The CUB-200-2011 dataset (Wah et al.| 2011; Reed et al.| 2016} |Shi et al.l |2019; Palumbo et al.,
20235 2024) is a widely used benchmark for fine-grained visual categorization, containing 64x64
RGB images of 200 bird species. Each image is paired with 10 textual descriptions. Follow-
ing [Palumbo et al.| (2024), we group 22 categories of species from the 200 bird species into 8
super-categories, yielding 1-of-8 class labels for these species. Data with category label is split into
training/validation/test with 80%/10%/10% portions. The rest 178 species are added to the train-
ing set for representation learning. The training/validation/test sets contain 115,240/1,280/1,360
samples, respectively. See more details on data generation in Appendix [C.1]

For this dataset, the two modalities (image, text) share rich information about bird category, since the
text describes the color of different parts of the bird. To evaluate the quality of private information,
we note that the horizontal direction of the bird (with direction inferred from the original CUB
attributes, see Appendix|C.I|for details) can only be inferred from the image. Therefore, we consider
the direction as private label for the image modality.

We use ResNet as encoders and decoders for images, while convolution network as those for texts
(using one-hot representation of text with a vocabulary of 1,590 words). And the dimensionality is
set to 48 for z and 16 for w,,, following [Palumbo et al.[(2023)). After representation learning, we
perform latent linear classification similar to the previous section. With disentangled latent repre-
sentations, the target (random) classification accuracy is 50% for predicting direction from z, and
12.5% for predicting category from w; (derived from image). The results of latent classification
are given in Table [3] Again, cross-view mutual information maximization is critical for recover-
ing z, when we do not have a very strong likelihood model (due to limited image data). On the
other hand, generative augmentation still helps reduce redundancy in latent space. In Figure 5} we
provide examples of cross-modality generations and our method achieves more coherent generation
than MM VAE+; additional conditional generations are given in Appendix [C.3] We note that Disen-
tangledSSL performs well for extracting z (their first step has a objective that similarly maximizes
mutual information across views), but failed to retain private information in its second step. In
contrast, our model keeps the most useful information in the latent space with generative modeling.

4.3 RESULTS ON THE CANCER GENOME ATLAS (TCGA)

TCGA datasef’] is a real-world multi-omics dataset that is by nature multimodal. Using the same
data processing procedure from|Lee & van der Schaar|(2021)), we obtain a dataset of 10,960 samples
(of which 9,477 are labeled) with 5 views (each of 100 dimensions), each representing a molecular
modality and labels (see Appendix for details). The binary label represents 1-year mortality
of a patient-sample. We selected 2 views (mMRNA and miRNA) which had 9,874 samples out of
all possible combinations after filtering out samples with missing values. After adding data with
missing labels to the training set, a 90%/5%/5% split was performed with 5 different seeds. Due to
the complex nature of biological data, private information may be predictive as well.

As shown in Table [d] our method in general performs better than baseline methods in terms of ac-
curacy (see Appendix for AUROC results), both learned shared and private latent spaces are
predictive, and combining z and w achieves the best performance. This is likely because clean dis-

“https://www.cancer.gov/tcga
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Figure 5: Cross-modality generation on CUB. We combine posterior sample z of the modality being
conditioned on, with prior sample w of the other modality for generation. Top row: image-to-text.
Bottom row: text-to-image. The top image is the original image paired with text, while the rest
three are different samples. Note our generations better match the conditional input in color.

Table 4: Prediction accuracy on TCGA, averaged over 2 modalities and 5 splits.

Model z 1 w z+wT
MMVAE 0.695+0.010 — —
MoPoE-VAE 0.695+0.014 — —
DMVAE 0.688+0.018 | 0.691£0.014 | 0.697+0.016
MMVAE+ 0.692+0.010 | 0.69040.012 | 0.690+0.011
DisentangledSSL 0.6914+0.011 | 0.691£0.012 | 0.690+0.011
IDMVAE (ours) 0.7074+0.016 | 0.708+0.013 | 0.718+0.017
— Lcrossmt (A1 = 0) | 0.6914+0.014 | 0.689+0.010 | 0.691+0.014
— Lgenawg (A2 = 0) | 0.701£0.015 | 0.7064+0.019 | 0.723£0.013
+ Diffusion prior 0.7144+0.009 | 0.719+0.024 | 0.731+0.019

entanglement separates predictive information between shared and private latent variables, making
predictions based on combined latent space more robust. In particular, Lcpossmr contributed most to
the performance, and adding diffusion priors in latent space consistently improves performance.

5 CONCLUSIONS

We have proposed IDMVAE, a generative model for learning disentangled representation from mul-
timodal data. Our innovations include the incorporation of cross-view mutual information maxi-
mization for shared variable extraction, redundancy removal based on generative augmentation, and
flexible latent priors with diffusion models. These components are complimentary to each other and
jointly overcome the limitations of pure likelihood modeling, resulting in superior performance than
existing state-of-the-art multimodal VAEs as well as non-generative disentanglement method.

In the future, we would like to extend the model to handle missing modalities, leveraging the con-
trollable generation capability of our model. On the other hand, for the CUB dataset, we were not
able to generate very high fidelity samples of images, perhaps due to limited data volume and capac-
ity of the decoder. We would like to introduce (possibly pre-trained) diffusion models in the input
space to produce high quality samples, which may be more useful for generative augmentation.
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A DIFFERENT IMPLEMENTATIONS FOR GENERATIVE AUGMENTATION

In section we have discussed two implementations of generative augmentation for redundancy
removal. Here we provide a detailed comparison of them.

Recall that x,,, and x/,, are two input samples, (2,,, W, ) is pair of samples drawn from the posteri-
ors q(z|x.,) and g(w,|X,, ) respectively, and similarly (z,, w/,) is a pair of samples drawn from
conditional posteriors for x/,. With disentanglement and a good generative model, we could inde-
pendently vary one variable while keeping the other the same to obtain a new sample. In particular,
a sample x;\, ~ p(X,, |z, w),,) would share the same z with x,,. In turn, when we map x;, back
to the latent space, q(z|x;") and q(z|x,,) should be similar. Likewise, q(w,,|x;}) and ¢(w,,|x/,)
should be similar.

Least squares matching. In the first implementation, we would like to minimize I(z,,;x;) by
approximately minimizing H (w,, |x}):

_ ! |xt
Exm ’\‘p(xnl ) ,x;" Np(xrn)7zrn’\’q(z|x7n ) aW;n Np(WmL ‘xin)7xj;1 NP(Xm ‘zm, W ) [ IOg q(wm |Xm)] :

m

Assuming that posteriors are parameterized Gaussians, LGenaug,w,, reduces to ¢5 loss for matching
means of posteriors, and we implement it as

£, . =E N W, —w" |
GenAug x7nNp(xm)ﬂ(;n’vp(an)7zm,NQ(z‘xm)7winNQ(Wnl|x;n)1xm"’p(xm|z7naw;n) m m

where W/, is the posterior mean of g¢(w,,|x/) while W/" is the posterior mean of q(w,,|x;).

Contrastive matching. In practice, we find it more stable to use a contrastive loss for matching,
ie.,

1"

Lcontrast o m ™ q(wm|X:,r1)

Ganang = —Contrast(w,,, w,) where X ~ p(Xp|Zm, W), W

We plug in the two different implementations into our loss. In Table[5]and [6] we provide the compar-
ison of the two on PolyMNIST-Quadrant, each with its loss coefficient tuned on the validation set.

We find the best coefficients to be A\;=80 and \57=0.75 for L5 Aug> and A1=80 and A57"#re1=20

for Lé%ﬁzl‘;t; diffusion prior loss has a coefficient of 1.0 when incorporated. We observe that both
contrast

implementations improve the disentanglement compared with using Lcposspr 0Only, with »CGenAHg
outperforming ﬁlcfeanug'

. 3 lsq contrast : : : : :
Table 5: Comparison of L5, and LGNAe*" for generative augmentation regularization in latent

linear classification on PolyMNIST-Quadrant. Accuracies are averaged over 5 modalities.

Our Models z—= DigitT 2z—Quadl] | w— Quad?l w — Digit ]
Lcrossm1 Only (Ay = 0) 0.977 0.277 0.999 0.202
Lcrossmr + El(f;lAug 0.972 0.267 0.999 0.186

+ diffusion prior 0.980 0.263 0.999 0.154
LcrossM1 + £g;g,§?;gst 0.983 0.271 0.999 0.162

+ diffusion prior 0.982 0.267 0.999 0.143
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Table 6: Comparison of Ege'{l Aug and Eé‘;ﬁiﬁ‘g“ for generative augmentation regularization in gen-
erative coherence, averaged over 5 views, on PolyMNIST-Quadrant. We use subscript ¢ to indicate
samples from posteriors and subscript p to indicate samples from priors. For generated images, digit
label is determined by z, , or otherwise random (with target accuracy 10%), quadrant label is deter-

mined by w, 4 or otherwise random (with target accuracy 25%).

Self Gen (s = t) Cross Gen (s # t)| Uncond.
Our Models Gen(zs,q, Wi p) | Gen(ze p, Ws q) || Gen(zs,q, Wt ) [Gen(z,, wp)

Digit T Quad | [Digit | Quad T Digit 1 Digit 1
Lcrossmi Only (A2 = 0) || 0.670  0.250 | 0.370  0.999 0.671 0.008
Lerossmtt + L5 aue 0817 0250 |0219 0.999 0.812 0.044
+ Diffusion prior 0917 0.249 |0.109 0.999 0.875 0.668
Lcrossmi + cgggg;gst 0.898 0.249 |0.162  0.999 0.881 0.070
+ Diffusion prior 0942 0.251 |0.106 0.999 0.887 0.664
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B DETAILS AND ADDITIONAL RESULTS ON POLYMNIST-QUADRANT

B.1 IMPLEMENTATION DETAILS

We utilize a deep residual network (ResNet) architecture of 3 residual blocks, with the number
of filters doubling from 64 to up to 512 after each block for the encoder, for all five modalities.
Our model has a total of 201M parameters without diffusion prior and 206.5M Parameters with
diffusion prior. And each modality’s information is factorized in the latent space into a shared
latent dimension of 32 and a private latent dimension of 128. Models are trained for 100 epochs
using the Adam optimizer with a learning rate of 5¢=* and a batch size of 128, and use the other
default hyperparameters of MM VAE+ baseline, including the KL divergence coefficient /3 of 2.5.
We performed a grid search over the coefficients to tune the regularization terms, A; and o, after
training for 100 epochs. We search them in the range [0.01, 100]. We tune \; individually first to find
the best general performance in latent classification for Lcposomr, and fix the A, then combine with

Lggmiiest, and find the best combination of A\;=80 and A\5"*"***=20. Finally, we tune the diffusion

prior weight to 1.0 out of {0.01, 0.1, 1.0, 10.0}, which optimizes the final general performance at
the 100th epoch.

B.2 CONDITIONAL GENERATION

In Figure[6]and Figure[7} we provide additional results on conditional generations, where one latent
variable is sampled from the posterior, while the other is sampled from the prior. In Figure (8] we
provide conditional generations for which both z and w are sampled from posteriors; this simulates
the samples we use in Lgenaug- In Table[7] we give quantitative measure of the generation results
using FID (Heusel et al., 2017). In all cases, our method provides the most coherent generations,
consistent with the quantitative results in Section[4.1]

Table 7: Generative quality, as measured by FID, on PolyMNIST-Quadrant test set.

Model Cross Conditional | Uncondidtional
FID | FID |
DMVAE 100.817 79.646
MMVAE+ 86.091 87.008
SBM 128.7 128.8
IDMVAE (ours) 84.528 87.108
— Lcrossmi (A1 = 0) 85.589 85.563
— LGenaug (A2 = 0) 84.698 85.596
+ Diffusion prior 73.186 73.681
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MMVAE+ IDMVAE + diffusion prior

Figure 6: Conditional generations on PolyMNIST-Quadrant, with conditioning on z. The top row
shows the samples (from modality 1) we condition on. We sample z ~ ¢(z|x;), sample the pri-
vate variable from the corresponding prior w,,, ~ p(W,,|X;,), and generate a new sample from
p(Xm |z, W.). Row 2 to row 6 are generated samples for modalities 1 to 5. Note for well-
disentangled latent variables, each column shall contain the same digit z. For each row we used
the same prior sample of w, so images in the same row shall have the same quadrant, writing style,
and background.

o i BT R 2
B %) h 3

4 (] A3 b 3
h 3 N3

q ] =41 g b <
b 9 h G

¢ q 1 5 bl
S n L

q ] et ] =t | 2
3 N <

4 '] [ g -
h 4 & h 4

IDMVAE + diffusion prior

Figure 7: Conditional generations on PolyMNIST-Quadrant, with conditioning on w,,,. The top
row shows the samples (from modality 1) we condition on. We sample w ~ ¢(w|x1 ), and sample
z ~ p(z), and generate a new sample from p(x;|z, w;). Row 2 to row 6 are generated samples.
Note for well-disentangled latent variables, each column shall have the same quadrant position and
background. For each row we used the same prior sample of z, so images in the same row shall have
the same digit.
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MMVAE+ IDMVAE

Figure 8: Conditional generation on PolyMNIST-Quadrant. The first row and first column contain
images for which we extract posterior samples of z and w,,, respectively. And the rest of the grid
contains generated images using latent samples of the corresponding row and column. This figure
illustrates the samples we use in generative augmentation.
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B.3 LATENT VISUALIZATION

In Figure [9] and Figure we provide 2D visualizations of latent representations of view 2 (i.e.,
samples of ¢(z|x2) and ¢(w|x2) respectively) on the PolyMNIST-Quadrant test set. Our method
leads to improved separation of digit or quadrant classes in the latent spaces, as also shown in the
quantitative analysis (Table [T). Observe that, without diffusion prior, there exists a gap between
the posterior and the Gaussian prior, whereas the capacity of diffusion prior is strong enough to
ensure good overlap between the two distributions, and therefore leads to superior unconditional
generation.
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Figure 9: 2D visualization (by UMAP) of learned z5 on the test set. We color each point according
to its ground truth digit label, and black markers correspond to samples from the prior.
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MMVAE+ IDMVAE

« class 0

. class1 g‘-ﬁ.

e 4 %
,hf‘

class 2

prior
class 0

class 1
.
class 2 sy

Figure 10: 2D visualization (by UMAP) of learned w2 on the test set. We color each point according
to its ground truth quadrant label, and black markers correspond to samples from the prior.
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C DETAILS AND ADDITIONAL RESULTS ON CUB

C.1 DATASET

The 8 super-categories, namely Blackbird, Gull, Jay, Oriole, Tanager, Tern, Warbler, and Wren, are
created following the same grouping method introduced by [Palumbo et al. (2024)), as shown in

Figure[T1]
In addition, we introduce a private binary label representing the bird’s horizontal direction, deter-
mined by the part location annotations provided in the original dataset 2011), as illus-
trated in Figure [I2] Specifically, we compare the average horizontal position of the group of the
bird’s ‘head’ parts with the average horizontal position of the group of its ‘body’ parts. If the head
is positioned to the left of the body, the direction label is ‘left’ (label 0); otherwise, it is ‘right’ (label
1). This creates a modality-specific (private) label for the image that cannot be inferred from the text
captions. At the same time, as shown in Figure [I2] (b) and (c), a very small fraction of the images
have invisible ‘head’ or ‘body’ location annotations, or the locations are too close, in which case
they are not assigned the direction label. Direction labels of validation and test images are verified
by human.

Blackbird Gull Oriole

i / l\
Rusty l Red-winged Western l Herring Blue Florida Scott's Baltimore
Blackbird Brewers  Blackbird Gull California Gull Jay Jaly Oriole Hooded Oriole
Blackbird Gull — N Oriole —
| o : - =
& 5% 1 ¥ ) v . 2 ¥ . -
* L/ | RN PR
ma ¢ - bl 43 L -
Tanager Tern Warbler Wren
Scarlet Summer Elegant l Caspian Pine l Yellow House l Caroline
Tanager Tanager Tern Artic Tern Warbler Kentucky Warbler Wren Marsh Wren

B R

Figure 11: CUB category labels: dividing 22 species into 8 super-categories (Palumbo et al., 2024).

(Right Wing
not visible)

(Right Eye
not visible)

a. Collected Parts b. Invisible ¢. Ambiguous

Figure 12: The collected parts in the original dataset (Wah et al., 2011), and sample images with
invisible ‘body’ or ‘head’ location annotations or ambiguous horizontal direction.

C.2 IMPLEMENTATION DETAILS

For the image modality, we utilize a deep residual network (ResNet) architecture of 5 residual
blocks, with the number of filters doubling from 64 to up to 1024 after each block for the en-
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coder, and the number of filters halving after each block for the decoder. For text modality, we
utilize a convolutional neural network, CNN-based encoder and decoder with one-hot encoded cap-
tions from a vocabulary size of 1590 words. The shared variable has a dimensionality of 48, and
the private variable has a dimensionality of 16. Models are trained for 150 epochs using the Adam
optimizer with a learning rate of 10~3 and a batch size of 128, and other default hyperparameters of
the MM VAE+ baseline, including the KL divergence coefficient 5 = 1.0.

During training, we apply horizontal flip augmentation to the image modality, with a flip probability

of 0.5. Then we tune the Lcrossmi, Lg%;‘/i’;‘g“, and diffusion prior similarly to m and obtain the

optimal coefficients A\; = 40, A\5o"74st = (.05, and diffusion loss weight 0.1.

C.3 CONDITIONAL GENERATION
In Figure[I3] [T4][I5] we provide conditional generation of competitive methods.

MMVAE+ IDMVAE (Ours) + diffusion prior

Figure 13: Text-to-image generation on CUB. We combine posterior sample z of the text modality
(top row), with prior sample w of the image modality (shared by each row) for generation.
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Figure 14: Image-to-text generation on CUB. We combine posterior sample z of the image modality
(top row), with prior sample w of the text modality (shared by each row) for generation.

MMVAE+

Figure 15: Image-to-image generation on CUB. We combine the posterior sample z of the image

modality (top row), with the prior sample w of the image modality (shared by each row) for gener-

ation.
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D DETAILS AND ADDITIONAL RESULTS ON TCGA

D.1 DATA PREPARATION

TCGA dataset (2016 version) is processed by combining multi-omics data across different cancer
types and different patients before features are selected and kernel PCA was performed to reduce the
dimensionality to 100. Because clinical trials usually have small sample sizes, high dimensionalities,
and complex dependencies, this dataset is ideal to test the robustness of our method. One significant
outcome of cancer multi-omics data is the days of survival after samples were collected. Because
patients may not show up for checkups, it is possible that a sample is censored (unlabeled). The days
of survival are then converted to a binary 1-year mortality indicator. The dataset itself has missing
views but contains predictive information and high correlations among different views, making it
suitable for our task. Further notice that this dataset does not contain private ground truth.

D.2 IMPLEMENTATION

A 2-layer MLP with 128 as hidden dimensions was used for encoding and decoding with 48 latent
dimensions (16 for z and 32 for w). Evaluation for all methods regarding this dataset is done by
averaging logits from each view. 50 epochs were run to train the model. For TCGA dataset, base-
line methods are performed with default hyperparameter, which gives KL divergence a coefficient
of 2.5. For DisentangledSSL baseline in particular, step 1 coefficient was set to 0 since we use
posterior mean instead of zsample to match other methods and step 2 coefficient was set to 0.01.
To tune our method, we performed a grid search with coefficients {0.001,0.01,0.1, 1,10, 100}
and chose the best combination on validation set, before recording the performance on test set.
A1 = 10, A2 = 0.001 were chosen to be the best combination at 40 epochs. For ablation studies,
we set one coefficient to be 0 while keeping the other one optimal in a combined setting. For the
optimal coefficients combination, we used the model at epoch 40; A\; = 0, at epoch 50; and Ay = 0,
at epoch 35. For adding a diffusion prior, we tuned the diffusion weight to be 0.1 out of 0.1, 1, 10
while keeping A1, Ay same as the optimal combination and chose the best performance at validation
set at epoch 40.

D.3 PREDICTION AUROC

In Table|8] we provide the linear classification AUROC of different methods using latent represen-
tations. The relative merits of different methods are consistent with that observed with the accuracy
metric in Table [

Table 8: Prediction AUROC Performance with ablation on TCGA dataset, averaged over 2 modali-
ties and 5 splits. Tuning reported in Appendix [D.2]

Model z 1 w z+w7
MMVAE 0.653+£0.033 — —
MoPoE-VAE 0.660+0.024 — —
DMVAE 0.609+0.030 | 0.6364+0.037 | 0.643£0.032
MMVAE+ 0.586+ 0.027 | 0.581+0.033 | 0.585+0.033
DisentangledSSL 0.6934+0.046 | 0.55140.019 | 0.699+0.045
IDMVAE (ours) 0.74040.025 | 0.74040.022 | 0.767+0.026
= Lcrossmt (A1 = 0) | 0.54940.017 | 0.54540.026 | 0.548+0.026
— LGenaug (A2 = 0) | 0.740£0.019 | 0.746+£0.022 | 0.77140.021
+ Diffusion prior 0.745+0.024 | 0.751+0.029 | 0.772+0.022
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E RESULTS ON HIGH-QUALITY CUB (CUB-HQ)

In this experiment, we use the 256x256 resolution version of the original CUB dataset (Wah et al.,
2011) without cropping images using bounding boxes for birds. Compared to the CUB dataset
used in the main paper, the CUB-HQ setup contains richer background and is more challenging for
representation learning. Labels of the bird category and orientation are created similarly as described
in Appendix Data with category label is split into training/validation/test with 70%/15%/15%
portions.

E.1 IMPLEMENTATION DETAILS

Pre-trained VAE for data pre-processing We pre-process the image modality with a pretrained-
VAE encodelﬂ similarly used by |Peebles & Xie| (2022), converting each original RGB images to a
4 x 32 x 32 tensor, which then serves as the model input. We can then apply the corresponding
pre-trained decoder on samples of our model to generate high resolution images.

Architecture of IDMVAE We use a deep residual network (ResNet) for the image modality. Both
encoder and decoder have five residual blocks. For the encoder, the number of filters doubles after
each block, starting at 64 and ending at 1024. The decoder mirrors this, with the number of filters
halving after each block. For the text modality, we utilize CNN-based encoder and decoder on
one-hot encoded captions with a vocabulary size of 1,590 words. Our model has a total of 137M
parameters without diffusion prior and 140M Parameters with diffusion prior. During training, we
apply horizontal flip augmentation to the image modality, with a flip probability of 0.5.

Hyperparameters Both the shared variable and the private variable have 256 dimensions. Models
are trained for 50 epochs using Adam optimizer with a learning rate of 10~* and a batch size of 256,
with the rest of the hyperparameters being the default of the MM VAE+ baseline, including the KL
divergence coefficient 8 = 1.0.

Then we tune the coefficients of Lcrossmi> LGenaug, and diffusion prior similarly to and obtain
the optimal coefficients A\; = 40, Ao = 10, and diffusion loss weight 0.1.

High resolution image generation After training, our model can generate images of 4 channels
and 32 x 32 resolution, which can then be decoded using the pretrained-VAE decoder into 256 x 256
RGB images. However, given the relatively small training set size of CUB, the generated images
tend to be blurry. Following [Pandey et al.| (2022)) and |Palumbo et al.| (2024), we train a diffusion
model to generate high-quality images conditioned on our model’s generations. Specifically, for
each model, we extract its reconstructions of the training data by the image modality architecture
(i.e., applying two encoders to obtain (zg, wg), followed by the image decoder), and train a DiT
model (Peebles & Xie},[2022)) to generate the ground-truth training images from pure Gaussian noise,
conditioned on model reconstructions. We use the pre-trained checkpoint of the XL-2 architecture,
and add an additional patch embedding layer to map conditioning features into representations that
are later incorporated into the AdaLN module of each DiT block. We finetune all parameters of the
resulting model, with minibatches of 32 images for 70000 updates.

E.2 RESULTS

Representation quality We perform linear classification on the latent representations z and w to
exam their information content; the results are given in Table[9} Note that with disentangled latent
representations, the target classification accuracy is 50% (i.e., random) for predicting direction from
z, and 12.5% for predicting category from w; (derived from image). We observe that cross-view
MI is critical for recovering z, when we do not have a very strong likelihood model (due to limited
image data). On the other hand, generative augmentation significantly reduces redundancy in the
latent space by removing the directional information from z and capturing it in w. Adding diffusion
prior leads to the best performance overall, demonstrating the effectiveness of a flexible latent prior.
Our methods outperforms both generative and deterministic baselines by a clear margin.

3https://huggingface.co/stabilityai/sd-vae-ft-mse
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Table 9: Latent classification on CUB-HQ, using posterior means. z; and w refers to image latents.

Model z—Cat.T z1— Dir.| | wy — Dir.t w— Cat. |
MMVAE 0.602 0.727 — —
MoPoE-VAE 0.615 0.777 — —
DMVAE 0.511 0.658 0.732 0.394
MMVAE+ 0.633 0.787 0.567 0.486
SBM 0.452 0.799 — —
DisentangledSSL 0.672 0.538 0.567 0.173
IDMVAE (ours) 0.764 0.592 0.677 0.322
= Lcrossm1 (A1 = 0) 0.614 0.792 0.557 0.379
— LGenaug (A2 = 0) 0.777 0.498 0.792 0.395
+ Diffusion prior 0.752 0.526 0.797 0.311

Table 10: Generative coherence, as measured by FID and CLIPscores on CUB-HQ test set. As a
reference, the CLIPScore between ground truth test images and text is 0.762. For image-to-image
generation, we use posterior of z and prior of w.

Model Text-to-Img Img-to-text Img-to-Img
FID| CLIP?T CLIP 1 FID| CLIP?
DMVAE 104.167  0.665 0.683 70.534  0.707
MMVAE+ 70.157 0.691 0.693 62.528  0.712
SBM 79.900 0.684 0.687 — —
IDMVAE (ours) 64.435 0.718 0.736 58.065  0.721
— Lerossm1 (A1 =0) | 72.166 0.694 0.692 62.938  0.710
— LGenawg (A2 =0) | 66.291 0.709 0.719 69.988  0.702
+ Diffusion prior 60.549 0.721 0.737 59.700  0.716

Generative coherence To measure the generative coherence of models, we perform image-to-
text, text-to-image, and image-to-image generations. We measure the quality of generated high-
resolution images with FID (Heusel et al., 2017), and the coherence between text and images using
CLIPScore (Hessel et al.,[2021). These metrics are given in Table@} For reference, the CLIPScore
between ground truth test images and text is 0.762. The generation performance of our model is
superior to those of the baseline. We provide samples of text-to-image generation in Figure
samples of image-to-text generation in Figure and samples of image-to-image generation in

Figure [I8|and Figure[I9]

Generative augmentation To understand how generative augmentation and Lgenaug help with
disentanglement, we visualize such generations in Figure [20] The first row and first column contain
images for which we extract posterior samples of z and w respectively. And the rest of the grid
contain generated images using samples of w of the corresponding row and z of the corresponding
column. We observe that images in each column mostly share the same bird color, while images in
each row mostly share the same orientation as desired. It is important to note that, different from
PolyMNIST, the generated images with our ResNet architecture are not of high resolution, but they
already capture essential information regarding shared and private labels. Conditional generations
by DiTs are of high quality, showing that we can independently vary shared and private variables to
obtain controllable generations for complex modalities.
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Figure 18: Image-to-image generation on CUB-HQ, without DiT conditional generation (top panel)
and with DiT conditional generation (bottom panel). We combine the posterior sample z of the
image modality (top row), with the prior sample w of the image modality (shared by each row) for
generation. Ideally images in the same column are of similar bird category and color, while images
in the same row shall have the same bird orientation.
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Figure 19: Image-to-image generation on CUB-HQ, without DiT conditional generation (top panel)
and with DiT conditional generation (bottom panel). We combine the posterior sample w of the
image modality (top row), with the prior sample z of the image modality (shared by each row) for
generation. Ideally images in the same column are of the same bird orientation, while images in the
same row shall have similar bird category and color.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

IDMVAE

(urs)

4 R .

+ diffusion prior
2~ 11 E/

Figure 20: Generative augmentations on CUB-HQ, without DiT conditional generation (top panel)
and with DiT conditional generation (bottom panel). The first row and first column contain images
for which we extract posterior samples of z and w respectively. And the rest of the grid contain
generated images using samples of w of the corresponding row and z of the corresponding column.
Ideally images in the same column are of the same bird category and color, while images in the same
row shall have the same bird orientation.
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Latent Visualization In Figure 21| and Figure 22] we provide visualization of latent representa-
tions of shared variables. Consistent with latent classification results (Table[9), our method leads to
better separation of classes. Furthermore, diffusion priors are flexible enough to model the structured
latents.

MMVAE+ IDMVAE
class 1 . e class 1 . ®
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Figure 21: 2D visualization (by UMAP) of z;, i.e., learned shared representation of the image
modality, on the validation set. We color each representation according to its ground truth bird
category cluster label, and black markers correspond to samples from the prior.
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Figure 22: 2D visualization (by UMAP) of zo, i.e., learned shared representation of the text modal-
ity, on the validation set. We color each representation according to its ground truth bird category

prior
class 1
class 2
class 3
class 4
class 5
class 6
class 7
class 8

IDMVAE

cluster label, and the black markers correspond to samples from the prior.
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F RESULTS ON HIGH-QUALITY CELEBAMASK (CELEBAMASK-HQ)

We compare our method with SBM |Wesego & Rooshenas|(2024) on the high-quality CelebAMask
(CelebAMask-HQ) dataset (Lee et al.,[2020; Liu et al.,[2015). CelebAMask-HQ has 30000 samples,
with three modalities: Image, Mask, and Attributes. An illustration of this dataset is shown in
Figure 23] The images and masks have a 128x128 resolution. Following the approach of [Wu &
Goodman| (2018), the attribute modality employed 18 attributesﬂ which were a subset of the total
40 original attributes. The training/validation/test sets contain 24,183/2,993/2,824 (80%/10%/10%)
samples.

Itﬁaée Mask
Figure 23: A sample of the CelebAMask-HQ dataset, and its positive Attribute: Brown_Hair,
Bushy_Eyebrows, Heavy _Makeup, Mouth_Slightly_Open, Smiling, and Wavy_Hair.

F.1 IMPLEMENTATION DETAILS

We follow the same experiment setup of [Wesego & Rooshenas| (2024). We use the same model
architecture for all methods. For the Image modality, we utilize a deep residual network (ResNet)
architecture of 3 residual blocks. Both the encoder and decoder have three residual blocks. For
the encoder, the number of filters doubles after each block, starting at 64 and ending at 512. The
decoder mirrors this, with the number of filters halved after each block. For the Mask modality, we
utilize a similar ResNet-based architecture. Both the encoder and decoder have two residual blocks.
For the encoder, the number of filters doubles after each block, starting at 64 and ending at 256, and
the decoder mirrors this. For the Attribute modality, we utilize MLP-based encoder and decoder,
each with 5 layers. Our model has a total of 144M parameters without diffusion prior, and 148M
parameters with diffusion prior.

Both the shared and the private variables have a dimensionality of 128. The KL-divergence term in
MMVAE loss is set to 5 = 5.0. We use the Adam optimizer with a learning rate of 0.0002, and a
batch size of 128. We also use the Laplace prior, posterior, and likelihood except for the attribute
modality, which uses a Bernoulli likelihood. For hyperparameters, we tune A; over {20, 40, 60, 80,
100} first to find the best performance in F1 score for Legossvi- We then fix the best A1, and tune
Asomirest over {1, 5, 10, 30, 60} for L&A, The best combination that maximizes F1 score is
A1=60 and /\g""”‘”t=30. Finally, we tune the diffusion prior over {0.001, 0.01, 0.1, 1.0} and the
best value is 0.1 We train MM VAE+ and our models for 100 epochs.

“These 18 attributes are: Bald, Bangs, Black_Hair, Blond_Hair, Brown_Hair, Bushy_Eyebrows, Eyeglasses,
Gray_Hair, Heavy_Makeup, Male, Mouth_Slightly_Open, Mustache, Pale_Skin, Receding_Hairline, Smiling,
Straight_Hair, Wavy_Hair, Wearing_Hat.
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Table 11: Conditional generation coherence, as measured by F1 score and FID, on CelebAMask-HQ
test set. We use the posterior of z of given modality/modalities and prior of w of target modality for
conditional generation.

Attribute Mask Image

Given Both Img | Both Img Both Mask Attr
F1t+ F11 | F1t+ F11 | FID] FID| FID|]
MMVAE+ 0.621 0.640 | 0.772 0.907 | 139.20 133.19 153.98

SBM-VAE 062 058 | 083 0.83 81.6 81.9 78.7
IDMVAE (ours) 0.670 0.685 | 0.837 0.904 | 135.70 12098 137.17
— Lcrossmt (A1 =0) | 0.644  0.645 | 0.820 0.903 | 139.88 121.14 147.95
— LGenaug (A2 = 0) | 0.656  0.677 | 0.832  0.908 | 150.60 131.59 150.03
+ Diffusion prior 0.662 0.679 | 0.839 0.903 | 123.72 110.27 124.58

F.2 RESULTS

Generative coherence We provide the conditional generation coherence of different methods, as
measured by the F1 score and FID, in Table When generating a modeled conditioned on the
other two (labeled as “Both” in the table), we use the average of the posteriors of z of the given
two modalities for our method. Overall, we are able to reproduce the F1 score results of MM VAE+
and SBM by [Wesego & Rooshenas| (2024). Our method IDMVAE achieves the best F1 scores,
outperforming others for attribute generation by a clear margin. With the proposed regularizations,
IDMVAE improves over MMVAE+ on all the F1 and FID metrics, and each term contributes to the
final performance. The diffusion priors mainly lead to improved FIDs. For image generation, our
method has worse FIDs than SBM, and this is due to our method focusing on extracting structured
latent space enforced by regularizations.

Generative augmentation In Figure we provide generative augmentations for which both z
and w are sampled from posteriors of different inputs; this simulates the samples we use in Lgenaug-
The first row and first column contain images for which we extract posterior samples of z and w,
respectively. And the rest of the grid contain generated images using samples of w of the corre-
sponding row and z of the corresponding column. Ideally, images in the same column are of the
same attribute, such as gender and hair color, while images in the same row shall have the same
background. The comparison shows that IDMVAE outperforms MMVAE+ in disentanglement. The
quality of images can potentially be significantly improved with a diffusion denoiser, similar to that
used in CUB-HQ experiments.
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Figure 24: Generative augmentations on CelebAMask-HQ, the first row and first column contain
images for which we extract posterior samples of z and w, respectively. And the rest of the grid
contain generated images using samples of w of the corresponding row and z of the corresponding
column. Ideally, images in the same column are of the same attribute, such as gender and hair color,
while images in the same row shall have the same background.
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