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Abstract

As a result of the expected effects of global population growth
and the anticipated need to increase food production, agricul-
tural robotics has become a popular research area. Robots are
able to automate laborious and time-consuming tasks which
allows farmers to make faster decisions and ultimately im-
proves yield. In this paper, we build towards designing a
robotic system that autonomously sizes apple fruitlets. Our
proposed system adopts a viewpoint planning approach tar-
geted towards sizing smaller fruit. We utilize a coarse and
fine planning tree along with a region of interest utility-gain
mechanism to generate next-best view candidates to capture
images of fruitlets. A truncated signed distance function is
used to build a dense surface point cloud and fruits are sized
using a combination of 3D and 2D techniques. We provide
preliminary simulated results demonstrating that our system
can effectively size fruitlets in occluded environments.

Introduction
Apple fruitlet sizing is important because farmers use sizes
to determine when to apply chemical thinners to their crops
to optimize yield. The current sizing method used in practice
involves using calipers to manually record the diameters of
hundreds of fruitlets. This process is quite labor intensive
and farmers are actively seeking alternative solutions.

There has been significant effort dedicated towards de-
ploying robotic systems in the field in order to automate
agricultural tasks. Robotic systems have been designed to
assist with mapping (Marangoz et al. 2022), phenotyping
(Shafiekhani et al. 2017), pruning (Silwal et al. 2021), and
harvesting (Mangaonkar et al. 2022). These systems are able
to produce high-throughput results that enable farmers to
make real-time decisions to better manage their crops. How-
ever, it is challenging for a robot to non-destructively size
apple fruitlets. This is because fruitlets are small - around
6mm when the sizing process starts - and grow in close prox-
imity to one another. This makes them hard to detect, track,
and uniquely identify. As well, they grow in very occluded
environments, making it difficult to capture high-quality im-
ages and generate complete and accurate 3D models.

In this paper, we present a system for sizing apple fruitlets
with a 7 DoF robotic arm. To determine where images
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should be captured, we develop a Next-Best-View (NBV)
planning approach that makes use of both coarse and fine
planning trees and a region of interest (ROI) utility gain
mechanism that can accommodate the fruitlets’ small size.
Once all images are captured, a surface point cloud is built
and the diameters of fruitlets are measured using a combi-
nation of 3D and 2D sizing techniques. We provide prelim-
inary simulated results demonstrating that our approach can
effectively size fruitlets in an occluded environment and out-
performs the current state-of-the-art method.

Related Work
Several approaches have been introduced to size fruits in
agriculture. Popular methods include photogrammetric tech-
niques where fruits are sized from single 2D images. One
such method is capturing images with calibration spheres
placed behind fruits of interest (Cheng et al. 2017; Wang
et al. 2018). This does not adapt well to apple fruitlets as
it is time-consuming to place reference objects behind ev-
ery fruitlet to be sized. Simple 2D geometric approaches
have also been developed to directly measure the widths of
fruits (Gongal, Karkee, and Amatya 2018; Wang, Walsh, and
Verma 2017; Stein, Bargoti, and Underwood 2016; Ponce
et al. 2019). However, they require the entirety of the fruit to
be visible in the image and fail in the presence of occlusions.

Methods have also been developed to perform sizing us-
ing 3D information. 3D models are reconstructed from mul-
tiple sensor measurements in the works of (Wang and Chen
2020; Jadhav, Singh, and Abhyankar 2018). However, they
inconsistently perform in occluded environments where re-
constructions are often incomplete. Automated shape com-
pletion methods have been proposed by (Lehnert et al. 2016;
Marangoz et al. 2022) which fit superellipsoids to accu-
mulated point clouds. This does not extend well to apple
fruitlets due to their small size and the inability to capture
enough of the fruits’ surface.

Recently, there has been work dedicated towards NBV
planning in agriculture. NBV planning approaches based off
ROI exploration are used by (Zaenker et al. 2020; Menon,
Zaenker, and Bennewitz 2022; Zeng, Zaenker, and Ben-
newitz 2022). However, they perform poorly when mapping
at the resolution required by fruitlets as a result of the slow
and computationally expensive raycasting operations.
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Figure 1: Overview of our fruitlet sizing system

Methodology
System Overview
An overview of our system can be seen in Figure 1. Images
are captured using an in-hand flash stereo camera. The cam-
era is attached to the end of a 7 DoF robotic arm (Figure 2)
consisting of a UR5 and linear slider (Silwal et al. 2021).
Fruitlets are segmented and points are projected onto 3D to
build a point cloud with known ROI regions. The point cloud
is passed to 1) a planner which maintains both a coarse and
fine 3D map of the environment stored as an octree; and 2)
a voxblox (Oleynikova et al. 2017) mapping system which
maintains a Truncated Signed Distance Function (TSDF).
The planner then samples and evaluates viewpoints and de-
termines the next best pose for the end-effector based on ex-
pected utility. A path is planned to the pose using the MoveIt
framework (Coleman et al. 2014) which is executed by the
robot controller. The process then repeats until the specified
planning duration is exceeded.

Figure 2: Inhand camera attached to 7DoF robotic arm. Left:
real robotic system. Right: simulated model.

Point Cloud Extraction
In our simulated environment, fruitlet segmentation is per-
formed by applying a threshold in the HSV color space
while RAFT-Stereo (Lipson, Teed, and Deng 2021) extracts
disparities. The segmentations and disparities are used to
project points onto a 3D point cloud with ROI information.

Viewpoint Planning
Our viewpoint planner is an extension to the work of (Za-
enker et al. 2020), adapted to work in the fruitlet domain.
Viewpoint candidates are sampled from the sampling tree
and workspace tree using a combination of ROI-targeted and
exploration sampling. Estimated information gain is calcu-
lated for each sampled viewpoint, and the viewpoint with the
maximum utility is selected as the next best pose.

Workspace and Sampling Tree Generation Our view-
point planner utilizes both a workspace tree and a sampling
tree to sample valid viewpoints. The workspace tree de-
fines the valid end-effector poses the robot is able to reach,
while the sampling tree identifies the areas of interest that
viewpoint targets should be sampled from. To generate the
workspace tree, ten million randomly generated joint con-
figurations were sampled in simulation.

Because apple fruitlets are typically sized in clusters, our
sampling tree was created by defining a region of space
around the cluster of interest. The cluster is identified by an
AprilTag (Olson 2011) and a sphere of fixed sized is posi-
tioned around the cluster which we will refer to as the Clus-
ter Region (Figure 3). The Cluster Region is then discretized
into an octree to build the sampling tree.

Figure 3: Left: example fruitlet cluster. Middle: simulated
fruitlet cluster. Right: Cluster Region positioned around
cluster approximated by detected AprilTag pose.

Coarse and Fine Octree The planner maintains two maps
of the environment: a coarse octree that stores occupancy in-
formation at low resolution, and a fine octree that stores both
occupancy and ROI information at higher resolution. The
coarse map spans the entire observation space and is used
to approximate the occupancy of voxels outside the Cluster
Region, whereas the fine map is restricted to within the Clus-
ter Region and is used to identify which voxels are occupied
by fruitlets. To build the coarse and fine octrees, we use the
OctoMap framework (Hornung et al. 2013) and an ROI ex-
tended implementation (Zaenker et al. 2020) respectively.

Two maps are used because of the expensive raycasting
operations required to update octrees and calculate informa-
tion gain. Using only one map at finer resolution is too slow
and inefficient for real-world applications as too few images
can be captured within a reasonable planning time. On the
other hand, a single coarse map is unable to accurately rep-
resent ROIs and size fruitlets as a result of insufficient voxel
resolution.



Viewpoint Sampling Viewpoint sampling consists of
ROI-targeted and exploration sampling. ROI-targeted sam-
pling is used to propose viewpoint candidates around pre-
viously explored ROIs. ROI frontier voxels are identified
and used as viewpoint targets. For each target, a viewpoint
is selected by sampling a random direction and sensor dis-
tance from the target. If the viewpoint does not lie within the
workspace tree it is discarded.

Exploration sampling is used to find candidate viewpoints
when the space around known ROIs has been sufficiently
covered. Frontier voxels are used as targets, and a viewpoint
is selected by sampling a random sensor distance along the
direction of the estimated surface normal of the target. As in
ROI-targeted sampling, the viewpoint is discarded if it does
not lie within the workspace tree.

Viewpoint Utility Evaluation
Once all candidate viewpoints are sampled, their estimated
information gain is calculated. The information gain metric
we use is a modified version of the Proximity Count met-
ric presented in (Zaenker et al. 2020). For each viewpoint,
a single ray is cast from the viewpoint towards the target.
The coarse and fine maps are used for raycasting operations
outside and inside the Cluster Region respectively. Each un-
known voxel along the ray that lies within the Cluster Re-
gion is assigned a weight wi based on its distance di to the
nearest known ROI

wi =

{
0.5 + 0.5 · maxd−di

maxd
, if di < maxd

0.5, otherwise
(1)

where maxd is a specified maximum distance. Known voxels
and voxels that do not lie within the Cluster Region are as-
signed a weight of 0. This ensures that only uknown voxels
within our sizing area of interest contribute the information
gain.

Raycasting terminates once an occupied voxel is encoun-
tered or the target voxel is reached. The number of vox-
els along the ray that lie within the Cluster Region Nc are
counted and the information gain (IG) is calculated as

IG =
1

Nc

Nc−1∑
i=0

wi (2)

We also compute a cost C to move to the viewpoint which
is the Euclidean distance between the current camera posi-
tion and pose of interest scaled by α. The final utility of the
viewpoint is

U = IG− α · C (3)

Viewpoint Selection Our viewpoint planning algorithm
can be seen in Algorithm 1 (appendix). Viewpoints are sam-
pled using both ROI-targeted sampling and exploration sam-
pling. The viewpoint candidates from both sampling meth-
ods are added to a single heap with order determined by
their utility. The planner then iterates through the heap until
it finds a viewpoint with an expected utility greater than a
specified threshold, and that the motion planner can find a
successful path to. If no viewpoints are left in the heap, new
viewpoints are sampled and the utility threshold is reduced.

Figure 4: Left: example dense surface point cloud generated
by the TSDF. Right: surface point cloud after filtering. Indi-
vidual fruitlets are clustered using DBSCAN.

Fruitlet Sizing During planning, the generated ROI point
clouds are passed to the voxblox mapping system to main-
tain a TSDF of ROIs. Once planning is complete, the TSDF
is used to generate a dense surface point cloud of the
fruitlets. The surface point cloud is filtered by removing
points that do not fall within an ROI occupied voxel of the
fine octree and by applying statistical outlier removal (Fig-
ure 4). DBSCAN (Ester et al. 1996) is then used to cluster
the individual fruitlets.

Sizing fruitlets in 3D is challenging as a result of their
small size and limited surface visibility. To overcome this,
we utilize a combination of 2D sizing techniques and our
3D model. To size an individual fruitlet point cloud, we re-
project the point cloud onto each image that was taken dur-
ing planning. For each image, a convex hull is fit around the
2D segmentation and an ellipse is fit using a least squares
formulation. The size of the fruitlet is calculated as

size =
ma× b

d
(4)

where ma is the minor axis of the fit ellipse, b is the baseline
of the stereo camera, and d is the max disparity value found
in a square region around the center of the reprojected seg-
mented fruitlet. The derivation of equation 4 can be found in
(Qadri 2021). After a size is calculated for each image, the
largest size is used and estimated to be the fruitlet’s diame-
ter. An overview of the ellipse sizing process can be seen in
Figure 5.

(a) (b)

(c) (d)

Figure 5: Ellipse sizing process. (a) Segmented fruitlet is re-
projected back onto 2D image. (b) Convex hull is fit. (c) El-
lipse is fit and minor axis used to estimate size (d) Example
segmentation and ellipse on top of the original fruitlet.



Preliminary Experiments and Results
We run preliminary experiments of our robotic system in
a Gazebo (Koenig and Howard 2004) simulated environ-
ment. For each simulated world, a tree is placed within the
workspace of the robotic arm. A fruitlet cluster with a ran-
dom number of fruitlets in the range of 3 - 6 is randomly
placed on the tree. Each fruitlet is modelled as an ellipsoid
and is randomly sized. The different coloring of the fruitlets
is for visualization purposes and has no effect on segmen-
tation or clustering. To represent the occluded environment,
leaves are randomly placed on the tree. An example of a
simulated world can be seen in Figure 6.

Figure 6: Example simulated world with a randomly gener-
ated cluter and leaves.

We evaluate our fruitlet viewpoint planner (FVP) against
the state-of-the-art ROI viewpoint planner (RVP) presented
in (Zaenker et al. 2020). Both planners were given a three
minute planning time to move around the world and cap-
ture images. For each planning iteration, 100 ROI-targeted
and 100 exploration sampled viewpoints were evaluated to
determine the next best view. For the fruitlet viewpoint plan-
ner, a coarse octree resolution and fine octree resolution of
0.01m and 0.001m were used. For the ROI viewpoint plan-
ner, we used a single ROI octree map of resolution 0.001m.
The TSDF voxel size for both planners was 0.5mm. Both
planners were run for 35 trials in different simulated worlds.

The Match Percent (MP), Mean Absolute Error (MAE),
and Mean Absolute Percentage Error (MAPE) of both plan-
ners averaged over all trials is presented in Table 1. MP is
the percentage of clustered fruitlets whose center distance
is less than 5mm apart from a ground-truth cluster center.
MAE and MAPE are calculated using the error in planner-
measured and ground-truth sizes of the matched pairs.

In these preliminary experiments, our viewpoint planner
does a notably better job at localizing and measuring the
sizes of fruitlets in simulation. Our planner is able to match
8% more fruitlets compared to the start-of-the-art planner
and runs approximately four times faster. Our MAE is just

over 1mm and MAPE is under 10%, which is a 37% im-
provement over the state-of-the-art method.

RVP FVP
MP (%) 82.2 90.1

MAE (mm) 1.65 1.04
MAPE (%) 14.9 9.35

Table 1: Match Percent, Mean Absolute Error, and Mean
Absolute Percentage Error of our viewpoint planner (FVP)
compared to state-of-the-art (RVP)

The distribution of sizes can also be seen in Figure 7.
It is clear from the results of both planners that our sizing
method produces slightly larger sizes on average compared
to ground-truth. However, our planner produces more accu-
rate and consistent results with a much narrower distribu-
tion.
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Figure 7: Distribution of ground-truth (GT), RVP, and FVP
measured fruitlet sizes. The ”x” symbol indicates the mean
and the horizontal line indicates the median.

Future Work
The initial sizing results in simulation show promise, but
there is still work needed in order to produce similar results
on a real robotic system. For one, our HSV segmentation
approach in simulation will not work on fruitlets in the real-
world. While we are able to detect and segment fruitlets us-
ing the work of (Qadri 2021), real-world segmentation may
produce variations as a result of varying illumination condi-
tions that affect the downstream tasks of NBV planning and
sizing. In addition, the octree and TSDF maps will suffer
from measurement error in the robotic arm forward kine-
matics. This may have significant effect on the sizing results
of fruitlets due to their small size. We look forward to iden-
tifying approaches to solve these issues as we build towards
developing a fully autonomous fruitlet sizing system.
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Appendix

Algorithm 1: Viewpoint Planning
Parameter: ut0

Parameter: b < 1

1: ut = ut0;
2: for Planning Duration do
3: rs = roiTargetSample();
4: es = explorationSample();
5: vs = {rs ∩ es};
6: hs = makeHeap(vs);
7: moveSuccessful = False;
8: while hs ̸= ∅ and peek(hs) > ut do
9: vp = pop(hs);

10: if moveToPose(vp) then
11: moveSuccessful = True;
12: break;
13: end if
14: end while
15: if moveSuccessful then
16: ut = ut0;
17: else
18: ut = b · ut;
19: end if
20: end for


