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Abstract

We propose a novel memory-modular learner for image classification that separates knowl-
edge memorization from reasoning. Our model enables e�ective generalization to new classes
by simply replacing the memory contents, without the need for model retraining. Unlike tra-
ditional models that encode both world knowledge and task-specific skills into their weights
during training, our model stores knowledge in the external memory of web-crawled im-
age and text data. At inference time, the model dynamically selects relevant content from
the memory based on the input image, allowing it to adapt to arbitrary classes by sim-
ply replacing the memory contents. The key di�erentiator is that our learner meta-learns
to perform classification tasks with noisy web data from unseen classes, resulting in ro-
bust performance across various classification scenarios. Experimental results demonstrate
the promising performance and versatility of our approach in handling diverse classification
tasks, including zero-shot/few-shot classification of unseen classes, fine-grained classification,
and class-incremental classification.

1 Introduction

Large-scale neural models have achieved remarkable results when fine-tuned and applied to downstream tasks
in computer vision (Kolesnikov et al., 2020; Yuan et al., 2021; Alayrac et al., 2022) and natural language
processing (Brown et al., 2020; Touvron et al., 2023). These models are trained on massive datasets using
immense computational resources, resulting in a vast number of model parameters that encapsulate both
world knowledge and task-specific skills. This complexity poses two challenges. First, it is di�cult to
determine which knowledge in the training data or learned skills contributes to the model output for a
specific task. Second, models cannot directly reflect changes in world knowledge, such as updates to data
sources relevant to the target task, without undergoing additional training.

Recent research on retrieval-augmented models (Guu et al., 2020; Hu et al., 2023b) explores the concept of
separating knowledge memory from reasoning. This approach allows models to leverage external knowledge
sources and e�ciently allocate model parameters to focus on reasoning tasks. Although these models have
shown promising results in knowledge-intensive applications, such as question answering (Gao et al., 2022)
and long-tailed classification (Long et al., 2022), their capabilities are limited to a specific target task. More-
over, they assume that the memory content is retained throughout training and testing; the generalizability
of the learned models when faced with substantial memory updates or replacements remains unexplored.

In this paper, we introduce a novel learning architecture, the memory-modular learner (MML), for image
classification. MML leverages an external memory to perform input-adaptive reasoning during the clas-
sification process. A key advantage of MML is its ability to generalize with memory replacement, i.e.,
memory-modular generalization. By simply plugging in new-class content into memory, MML can adapt to
novel classification tasks without requiring any architectural modifications (Fig. 1). The external memory
used by MML is populated by web-crawled images and text obtained by keyword search of the target class
names. This approach facilitates the incorporation of up-to-date world knowledge into the memory, ensuring
that MML remains applicable as external knowledge evolves. Despite the potential introduction of data
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Figure 1: Training and evaluation stages of MML for web-assisted zero-shot classification. MML
constructs image/text memory with text keyword search on the internet given target classes. The memory
provides relevant image/text features which are integrated via a trainable knowledge integration module (a).
On evaluation, the memory can be replaced or detached from the model such that MML joins the new
knowledge as memory, while the rest of the model remains unchanged. Once trained, MML handles zero-
shot classification on unseen classes with memory replacement (b) and incremental classes with memory
expansion (c) using the new knowledge collected from web to solve zero-shot classification.

noise from web crawling, MML demonstrates robust classification performance in practice. This remarkable
robustness allows MML to e�ectively leverage the noisy memory contents for accurate image classification.

One critical observation of our work is that by representing classification as metric learning (Vinyals et al.,
2016; Snell et al., 2017), MML becomes less susceptible to overfitting on the specific content of the mem-
ory. This allows it to learn more e�ectively how to perform classification reasoning with arbitrary memory
contents. Specifically, we represent class weights as class prototypes generated dynamically from memory
items rather than as learnable parameters. This design choice allows us to update the memory and adapt to
new classes without retraining the entire model. Due to its inherent flexibility, our meta-learned model can
handle zero- to multi-shot samples, as well as a variable number of classes with the knowledge collected from
web1. Experimental results in various scenarios, including zero-shot/few-shot classification of previously
unseen classes, fine-grained classification, and class-incremental classification, demonstrate the promising
performance of MML.

Our contributions can be summarized as follows.

• We introduce a memory-modular learner (MML) for image classification, that performs adaptive
reasoning using external and replaceable memory.

• We investigate the generalizability in adapting to new classes by replacing the memory with related
content, without tuning the model weights.

• We provide in-depth analyses on the memory-modular generalization to unseen classes in realistic
setups, i.e., using a noisy web-crawled memory.

• We show that MML achieves promising gains in various scenarios such as zero-shot, few-shot, fine-
grained, and class-incremental classification by leveraging target-class knowledge collected from web.

2 Related work

2.1 Few-shot and zero-shot classification with the assistance of external web data

Few-shot image classification (Fei-Fei et al., 2006) aims to generalize to arbitrary unseen classes given
a few support images from a target class set. The conventional experimental setup of few-shot classifica-
tion (Vinyals et al., 2016; Triantafillou et al., 2020; Doersch et al., 2020; Zhang et al., 2020; Kang et al., 2021)

1We clarify our zero-shot classification approach that accesses to unlabeled web data as web-assisted zero-shot classification.
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assumes at least a few hundred labeled images used for (meta-)training before the actual few-shot inference
stage. We, however, adopt a more label-e�cient and realistic approach for this task; we train a model with
even fewer labeled training samples e.g., Æ 16; instead we assume retrieval access to external unannotated
data. Zero-shot classification (Larochelle et al., 2008; Yu & Aloimonos, 2010) aims for generalization
beyond seen classes without the use of few-shot support images for the target classes. Instead, classification
is conducted based on non-visual clues such as textual information of the images (Fu et al., 2015; Akata
et al., 2016), yes-or-no attributes (Lampert et al., 2013) or the class name in text (Socher et al., 2013) of
arbitrary classes. The conventional zero-shot tasks have assumed no use of images from target classes during
training, but with the advent of web-driven pretrained models, recent “zero-shot” methods (Iscen et al., 2024;
Liu et al., 2023) started to use the expression in a more relaxed way, meaning no use of manually-annotated
images from target classes, thus allowing access to noisy web data. For example, a vision-and-language
foundation model named CLIP (Radford et al., 2021) trains image and text encoders with 400 million
image-and-caption pairs from internet which likely overlap with standard zero-shot classification benchmark
categories. We follow this usage in our paper and leverage web data to leverage the external world knowledge
for zero-shot classification. We thus clarify that our approach as web-assisted zero-shot classification
with the terminology of “shot” denoting the number of class-annotated images for each target class.

2.2 Image recognition with memory retrieval

One of the earliest works of using an external memory in machine learning is the k-nearest neighbor
(kNN) classifier (Hart, 1968), which retrieves k-nearest neighbors from memory for class prediction. Re-
cent work constructs memory from large-scale pre-trained models and performs kNN retrieval for class
prediction (Khandelwal et al., 2020; Nakata et al., 2022). This straightforward method revisits the potential
of external memory for class reasoning, being decoupled from encoder learning (Graves et al., 2014). Image
recognition models have also been trained using external image-text paired memory (Jia et al., 2021b; Long
et al., 2022; Iscen et al., 2023). Our approach assumes a more weakly-supervised type of memory, collecting
image and text memory contents separately. Other external memory-based image recognition work focuses
on training multi-modal feature encoders (Wei et al., 2023; Hu et al., 2023b) or training CLIP models with
external image-text paired data (Iscen et al., 2024; Liu et al., 2023). One common theme among the existing
memory-based models is that they are either trained for a specific task (Long et al., 2022; Hu et al., 2023b;
Iscen et al., 2023) or static memory (Iscen et al., 2024). In contrast, MML aims to generalize beyond a seen
class set and modular memory that can be updated at any time. To the best of our knowledge, MML is the
first to investigate the memory replacement with new memory contents to tackle unseen-class generalization.

2.3 Class-incremental classification

Class-incremental classification (Rebu� et al., 2017; Zhu et al., 2023) assumes that a set of unseen classes
arrives at each stage and aims to classify the input into all known classes given limited access to the old
class data. The most critical challenge of this task is catastrophic forgetting, i.e., directly training neural
networks with the new-class data leads to significant performance drops in old classes. To address this
challenge, recent work (Yan et al., 2021; Wang et al., 2022a; Zhou et al., 2023b; Douillard et al., 2022; Wang
et al., 2022b) introduces a memory to store data from previously seen classes as a training source to compile
knowledge into a model. In contrast, the memory in MML plays the role of a replaceable and extensible
world-knowledge reference.

3 Memory-modular learner

We address the problem of classifying an input image into target classes that are represented by a class name
in text, i.e., zero-shot classification, or additional few support images, i.e., few-shot classification. To this
end, we introduce a memory-modular learner that performs adaptive reasoning using an external memory
that is updatable and replaceable. Our memory-modular learner takes advantage of both vision and language
modalities using the CLIP encoder (Radford et al., 2021) as a base feature extractor for image and text.
Since our method is not restricted to CLIP, any other image-text model, e.g. ALIGN (Jia et al., 2021a) or
LiT (Zhai et al., 2022), can also be adopted. Figure 2 illustrates the overall architecture of our approach.
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Figure 2: Memory-modular learner (MML) constructs image/text memory by web-crawling with text
keyword search. Given a query image, its kNN features are retrieved from each memory and used for attentive
knowledge integration. The class prototypes are constructed with the average of the memory elements of
the highest cross-modal similarity. MML derives class reasoning with NNs from the external memory. This
modular memory enables MML to perform web-assisted zero-/few-shot classification on unseen classes by
memory replacement and class-incremental classification by memory expansion.

The memory-modular learner starts by loading the knowledge memory and generating class prototypes
for target classes (Sec. 3.1). These front-loaded memory items and prototypes are all stored as frozen
features from a pre-trained image-text encoder. They are replaceable whenever the target classes change or
the external knowledge sources are updated. Given an input image, the memory-modular learner accesses
the knowledge memory, retrieves k-nearest-neighbor (kNN) items, and predicts the corresponding class via
cosine-similarity with class prototypes (Sec. 3.2). Since class prototypes are generated immediately from the
memory items, the prototype-based classifier can adapt to new target classes of updated memory contents
without additional training.

3.1 Memory construction and prototype generation

Given target class names or descriptions, we construct the knowledge memory based on available image
and text data and generate class prototypes using the memory. As the world knowledge is updated, these
memory items can be added or deleted, and even completely replaced, without updating the model weights.

Knowledge memory

The image memory is constructed using images obtained from keyword searches on the internet. For each
target class c, images are collected using the class name as the search keyword on a search engine, e.g.,
Google or Flickr (Kim et al., 2023; Hou et al., 2018). We follow a similar strategy for text memory. In this
work, textual information relevant to each target class name is retrieved by querying Wikipedia (Tian et al.,
2022; Hu et al., 2023a; Naeem et al., 2023). These web-crawled images and texts may be noisy, but consist
of scalable memory contents that reflect the world knowledge. After collecting the relevant images and texts
for each target class c, we extract their d-dimensional features with the image-text encoder, and then store
them in the image and text memory: Mimg

c = {vi}
N img

c
i=1 and Mtxt

c = {tj}Ntxt
c

j=1 , respectively.

Class prototypes

For zero-shot classification, we construct class prototypes based on cross-modal consensus between image
and text memory items. For each target class c, we first compute the cross-modal cosine similarity from each
image item to all text items of the same class and then select the top-M images with the highest similarity
to the texts, i.e., images with high cross-modal consensus. The image prototype for class c is then set to be
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the average of the M features:

pimg
c = 1

|T |
ÿ

vœT
v, T = argmaxM

vÕœMimg
c

3 ÿ

tœMtxt
c

vÕ · t

||vÕ|| ||t||

4
, (1)

where argmaxM
sœS(·) denotes the top-M operator that returns the best M items from the set S maximizing

the operand function. Based on image-text consensus, this process constructs robust and representative class
prototypes from noisy data in the absence of human annotation. Likewise, the text prototype is obtained
using the average text-to-image similarity.

In a few-shot classification scenario, i.e., when a few support image samples are available for the target class
name, our method naturally extends by incorporating the samples into the averaging in Eq. 1. In this work,
for the few-shot scenario, we simply generate the prototype by averaging the support samples.

Memory update for adapting to unseen classes

The knowledge memory contents and class prototypes are modular and thus replaceable. When target classes
vary, e.g., classification of unseen classes or incremental classes, new memory contents are collected to pertain
to the new classes. Subsequently, the prototypes for the classes are updated accordingly using Eq. 1.

3.2 Reasoning with memory access

Given an input image for classification, we incorporate memory knowledge into reasoning. Items relevant
to the input are retrieved from image/text memory and integrated with the input feature through cross-
attention. The input is then correlated with the image and text class prototypes. Finally, the predictions
from the image and text branches are merged at the logit level for class prediction.

Memory retrieval

For an input image feature f extracted from the image encoder, its k-nearest-neighbor image items are
retrieved based on cosine similarity with all image memory items of all target classes:

N img = argmaxK
vœMimg

3
f · v

|f || ||v||

4
, (2)

where Mimg = ficMimg
c . The kNN text elements are also retrieved in a similar manner by querying the

input image feature to the text memory.

Attentive knowledge integration

The knowledge of the retrieved memory items N img = [vk]Kk=1 is aggregated by cross-attention (Vaswani
et al., 2017; Jaegle et al., 2021) and then integrated with the input embedding f . The cross-attention learns
to integrate the relevant NN features into the input feature:

f img = f + ‡

3Q(f) · [K(vk)]Kk=1Ô
d

4
[V(vk)]Kk=1, (3)

where Q, K, V are projection layers with non-linearity, ‡ softmax over k items, and [·] concatenation. Sim-
ilarly, the same step with the text NN features is performed in parallel. This process can be viewed as a
learnable soft NN integration in contrast to the hard majority voting with NNs (Nakata et al., 2022).

Multi-modal inference

The resulting embedding is matched against the multi-modal prototypes P img = [pimg
c ]Cc=1 and P txt =

[ptxt
c ]Cc=1 for all C target classes to produce classification scores as

z = P txt · f txt

||P txt|| ||f txt|| + P img · f img

||P img|| ||f img|| , z œ RC . (4)

Final prediction is conducted simply by taking the class with the highest score.
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Table 1: Cross-dataset zero-shot transfer. MML is trained with 1 or 4 samples from 1000 ImageNet (ImgNet)
classes and transferred to 10 other datasets with zero shot using CLIP-B/16.

method ImgNet1K
Caltech101 OxfordPets Cars Flowers Food Aircraft SUN DTD EuroSAT UCF

avg.

objects pets cars flowers food airplanes scenes textures land actions

zero-shot CLIP (Radford et al., 2021) 66.7 75.9 63.6 62.9 54.7 74.5 18.2 55.3 33.3 43.0 58.7 55.2

kNN classifier (Nakata et al., 2022) 55.7 87.6 72.7 68.6 75.2 75.6 29.6 56.2 33.2 37.3 63.2 59.5

MML (ImgNet-1) 48.3 92.6 86.4 68.1 76.2 81.8 26.2 60.0 41.6 45.6 64.2 62.8

MML (ImgNet-4) 69.0 93.5 86.7 68.9 77.5 84.2 26.3 64.7 42.8 48.2 66.5 66.2

3.3 Training

Our model is trained with cross-entropy loss with one-hot ground-truth class label y and the logit z:

L = ≠
Cÿ

c=1
yc log exp(zc/·)

qC
cÕ exp(zcÕ/·)

, (5)

where · is a temperature for scaling. Note that we freeze the pre-trained image-text encoder backbone and
train the remaining parameters only, i.e., those of attention layers on the image and text branches. This helps
to retain general knowledge in the pre-trained encoder, avoid overfitting, and reuse pre-computed features of
memory items. In our case, the number of training parameters and the frozen backbone parameters amounts
to 6.3M and 151M in total when using the CLIP-B/32 backbone. The small trainable part e�ectively learns
memory-based reasoning for classification, as experimentally shown in the following section.

4 Experiments

4.1 Experimental setup

Training details

For the image/text feature extractor, we use the pre-trained CLIP (Radford et al., 2021) and ALIGN (Jia
et al., 2021a). Unless specified, CLIP-B/32 is used. For training, we use a batch size of 256, a learning rate
of 1e≠6 and weight decay of 5e≠4 on a single 2080 Ti or an RTX 3090 GPU for all training and testing. We
retrieve 32 NNs from both the image and text memory. We use M = 16 for prototype construction and set
the logit temperature · = 16, which is chosen via hyperparameter search. We use three random seeds for
drawing few-shot samples randomly and report the average.

Memory and data

To construct the external image memory for ImageNet derivatives, we employ a readily available web-crawled
image dataset, WebVision ver. 2 (Li et al., 2017). WebVision is collected from Google and Flickr by the
keyword search of the 1000 class names of ImageNet1K (Russakovsky et al., 2015). We use the image subset
crawled from Google unless otherwise specified. To construct image memory for the other datasets (Fei-Fei
et al., 2004; Parkhi et al., 2012; Krause et al., 2013; Nilsback & Zisserman, 2008; Bossard et al., 2014; Maji
et al., 2013; Xiao et al., 2016; Cimpoi et al., 2014; Helber et al., 2019; Soomro et al., 2012; Wah et al.,
2011) used in this work, as no public web-crawled datasets for the corresponding classes are available, we
crawl a maximum of 100 images per class from Google with an auto crawler. For text memory, we query
Wikipedia for each class name and retrieve the corresponding article text through web crawling. In such
a way, the modest length of memory is obtained, e.g., 0.7M images and 0.2M texts for the 1K classes of
ImageNet1K, of which kNN search is feasible with the PyTorch (Paszke et al., 2017) built-in topK module.
The dataset details used for zero-shot/few-shot, fine-grained, and class incremental classification are specified
in the corresponding experiment analysis paragraph.
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Table 2: Comparison on zero-shot classification on CUB (Wah et al., 2011). Note that RECO (Iscen et al.,
2024) is trained with CC12M (Changpinyo et al., 2021).

method backbone accuracy (%)

RECO* (Iscen et al., 2024) CLIP-B/32 75.2

MML CLIP-B/32 76.7

method backbone accuracy (%)

Yu et al. (2020) ResNet-101 72.4

Xu et al. (2020) ResNet-101 73.8

Chen et al. (2022) ResNet-101 76.1

MML ResNet-101 78.8

Table 3: Memory replacement at testing time from one memory
content to another

image mem at train WebVision (WV) Google WebVision (WV) Flickr

image mem at test WV Google æ WV Flickr WV Flickr æ WV Google

ImageNet-S 83.0 æ 83.1 (+0.1) 83.2 æ 83.2 (≠0.0)

text mem at train Wikipedia text thumbnails

text mem at test Wikipedia æ text thumbnails text thumbnails æ Wikipedia

ImageNet-S 83.0 æ 82.7 (≠0.3) 83.2 æ 83.0 (≠0.2)

Table 4: Retrieval and classification of
MML on ImageNet-S with clean/noisy im-
age memory

kNN retrieval class

recall@1 recall@16 accuracy

ImageNet1K 66.4 93.5 84.7

WebVision (noisy) 65.5 90.3 83.0

4.2 Web-assisted zero-shot classification

First of all, we evaluate our method on zero-shot classification setup, where no labeled images are provided
for the target classes. The only information given for the task is a phrased class label for each class, e.g.,
“van cat”, which is used as the search keyword to collect the web-crawled memory.

Datasets: MML is evaluated on single-dataset and cross-dataset zero-shot classification benchmarks. For
single-dataset zero-shot classification, ImageNet-S and CUB are used, where the classes of each dataset
are split into disjoint sets for few-shot training and zero-shot testing. We adopt the existing zero-shot
classification CUB benchmark (Wah et al., 2011; Akata et al., 2013) of which classes are split into 150/50
bird species classes for train/validation. Similarly, we introduce an ImageNet (Russakovsky et al., 2015) split
such that it comprises 600/200/200 classes for train/validation/test and call it ImageNet-S (S stands for
class split). We use 16 images per class for training. For testing on target classes, either zero or a few shots
are used for zero- or few-shot classification scenarios. For the cross-dataset setting, we adopt a cross-dataset
zero-shot transfer scenario (Zhou et al., 2022), where a model is trained with a few samples from ImageNet1K
and transferred to 10 fine-grained datasets: Caltech101, OxfordPets, StanfordCars, Flowers102, Food101,
FgvcAircraft, SUN397, DTD, EuroSAT, and UCF101 (Fei-Fei et al., 2004; Parkhi et al., 2012; Krause et al.,
2013; Nilsback & Zisserman, 2008; Bossard et al., 2014; Maji et al., 2013; Xiao et al., 2016; Cimpoi et al.,
2014; Helber et al., 2019; Soomro et al., 2012). The total number of classes amount to 1,000 classes of
ImageNet1K plus 1,310 fine-grained classes from 10 di�erent datasets of which details are found in Table 10.

Baselines: The kNN classifier (Nakata et al., 2022) retrieves kNN of the input from memory2 and immediately
predict the class by majority voting. Zero-shot CLIP/ALIGN extracts text embeddings of the text class
names in the predefined templates, e.g., a photo of a van cat, and matches them against the input image
embedding. Three state-of-the-art zero-shot models (Yu et al., 2020; Xu et al., 2020; Chen et al., 2022) are
also compared, which are trained with the total 8885 annotated images and text attributes of CUB.

Results: Table 1 compares zero-shot baselines and MML on cross-dataset transfer. MML is trained with
a few ImageNet samples but exhibits great performance on other datasets with extreme domain shifts,
e.g., from classifying general objects (Russakovsky et al., 2015) to land (Helber et al., 2019), by simply
replacing the memory with the web-crawled domain-related knowledge. In particular, compared with the
kNN classifier, which is uni-modal and non-learnable, our method meta-learns to integrate the multi-modal
kNNs and e�ectively transfers to unseen classes. Table 2 compares MML and other zero-shot models on the
zero-shot CUB benchmark (Akata et al., 2013) with 150 training classes and 50 test classes, where MML
demonstrates its outstanding e�ectiveness compared to other models. While the existing models train with

2The original work (Nakata et al., 2022) leverages annotated datasets such as ImageNet1K as image memory, which is
expensive to be used as memory. We thus replace it with the noisy web-crawled memory for reproduction.
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Figure 3: Examples of a query, image 2NNs and text 2NNs. Human faces are anonymized for visualization.

full training images and ground-truth attribute annotations (e.g., eye colors), MML learns with zero human-
annotated attributes, but shows great performance based on integrating the relevant NN knowledge from the
external memory. Comparing CLIP and ours examines the significant advantage of external memory access
and knowledge integration where ours obtains a 7.6-11.0 % point accuracy improvement. Plus, we examine
the e�cacy of di�erent backbones in Table 15 in Appendix, where MML consistently outperforms the others.
The following paragraphs continue with more analyses and ablation studies on zero-shot classification.

Robustness to di�erent memory contents

Table 3 shows that MML does not overfit to certain memory contents and performs robustly to di�erent
memory contents with little loss of performance. Note that MML already makes unseen class predictions
with completely new memory contents of the new classes at the zero-shot testing phase (Tables 1-2). This
experiment further examines whether the model performs robustly when di�erent instances of the same
classes are plugged into the memory. We equip a pair of image/text data collection from two di�erent
sources of the same target classes. For image memory, we use the two disjoint sets from the WebVision
(WV) dataset; one set is obtained through Google crawling and the other from Flickr, where both of them
are from ImageNet-S classes. For text memory, we use the text articles from Wikipedia and the text
thumbnails of Google text keyword search. Once MML is trained with one source, we test it by plugging the
two di�erent memory sources. The results show that the model exhibits a marginal performance gap when
replacing the test memory from one to another and also proves the modular property of the memory.

Nearest neighbor (NN) retrieval and integration

Table 4 compares the memory retrieval quality and the end task performance on clean- and noisy-labeled
image memory, ImageNet1K and WebVision, respectively. The recall@K is an instance retrieval metric that
returns 1 if any instances from the ground-truth class are included in the kNN and 0 otherwise (Jégou et al.,
2011). In terms of the data noise level, the ImageNet1K memory is viewed as an upper bound of WebVision.
Although the clean image memory enhances mid-level retrieval and end-task classification accuracy, the noisy
memory model achieves comparable results to the upper bound. This experiment supports our modeling
choice — utilizing web-crawled images as external memory — is reasonably e�ective and label-e�cient
compared to fully annotated memory. Figure 7 in the Appendix visualizes two 8NN examples retrieved
from WebVision and the attention value of each NN gained. The attention weight value is translated as the
learned aggregation weight for the NNs to what extent each element is contributed for aggregation among
the NNs to represent the query. Note that the retrieved 8NNs exhibit superficially similar appearance of
the query but often belong to di�erent classes, e.g., turtle and whale floating on the sea. The subsequent
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Table 5: Comparison with di�er-
ent memory types
retrieval from ImgNet-S CUB

no kNN 75.6 60.0

text memory 82.3 69.4

image memory 76.2 71.2

unified memory 76.8 71.3

MML (separate memory) 83.0 75.6

Table 6: Comparison with di�er-
ent class prototypes

prototype ImgNet-S CUB

avg mem 81.2 74.4

text only 82.7 69.1

image only 82.3 76.8
MML

(image & text)
83.0 75.6

Table 7: Few-shot classification on
ImageNet-S
method 4-shot 16-shot

linear-prob CLIP (Radford et al., 2021) 72.1 80.6

ProtoNet (Snell et al., 2017) 76.4 76.5

RAC (Long et al., 2022) 66.8 78.1

kNN classifier (Nakata et al., 2022) 77.2 77.2

MML 82.8 83.5

attentive knowledge integration process then reweights the NNs with soft attention weight values. In the
second example, the 1NN appears similar to the query but is a di�erent class, however, its attention value
is down-weighted and contributes insignificantly to the attentive aggregation. The attentive aggregation
meta-learns to function independently of memory contents and is able to perform e�ectively with unseen
memory contents.

Visualization of multi-modal kNN

Figure 3 visualizes the retrieved two image NNs and two text NNs of the given input as well as the zero-shot
CLIP prediction. Note that the images and texts in the example are independently retrieved from each
memory. We notice that the image NNs often contain the query’s noticeable visual patterns. From the
text NNs, we observe that retrieved texts often contain synonymous keywords, e.g., the scientific names of
animals, or visually describe the given image, e.g., “sharp-tailed” in the second query example. The last
exemplar image with cows is comprised of multiple objects hence ambiguously class-labeled. In this case,
MML is able to retrieve semantically related NNs and predicts a reasonable class than the ground truth.

Comparison with di�erent memory types

To validate our separate memory design, we ablate the memory and compare the results in Table 5. The “no
kNN" baseline has the same architecture as the proposed model, but instead, it feeds the input feature for
the key and value inputs in replace of the kNNs, i.e., the query feature is shared with Q, K, V in Figure 2.
This baseline exhibits the lowest performance and signifies the importance of the kNN knowledge integration.
Next, we ablate either image or text memory. It is noticed that the model using only the image memory is
more e�ective than the one using the text memory on CUB, while this trend is reversed on ImageNet-S. The
opposite trend suggests that the vast and detailed visual knowledge collected from the internet is beneficial
for fine-grained image classification, on the other hand, textual information is useful for coarse-grained
classification of general objects. Lastly, we merge the image and text memory contents and then retrieve
the modality-agnostic NN features, which are then passed to a single knowledge integration branch. We
observe that the majority of NNs are from the image memory, thus closely matching the performance of the
image-memory model. To e�ectively interact with multi-modal NNs, we choose to separate the image/text
memories as well as the knowledge integration branches. This memory ablation results signify that the
dual-branch multi-modal knowledge integration is crucial in zero-shot unseen class generalization.

Comparison with di�erent class prototypes

Table 6 compares di�erent methods to build class prototypes. We first try to naïvely average all the contents
in each memory to obtain class prototypes without using the top-M operator (Eq. 1). This average aggrega-
tion is likely to include plenty of unfiltered data noise, resulting in poor performance on both datasets. We
also attempt to share the class prototype from either memory for the two knowledge integration branches.
We observe that the image prototype is more helpful than the text prototype on CUB and the reverse on
ImageNet-S, as similarly observed in Table 5, suggesting that the e�cacy of the image and text prototype
can be dependent on target dataset characteristics. Our method computes an image prototype by taking
the average of M image memory elements that have the top-M similarity of the text memory elements
of the same class, and similarly for the text class prototype. This cross-modal similarity sorting returns
the consensus-based representative class data and also avoid involving potential data noise into the class
prototype. Using the multi-modal prototypes, our model achieves robust performance on both datasets.
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Table 8: Results with increasing shots
from target classes. TTT stands for
test-time training on ImageNet-S.

methods TTT 4 16 64 128 256

(a) linear prob X 72.0 80.6 85.5 86.9 87.3

(b) MML 82.8 83.5 85.7 85.7 85.8

(c) MML
ú X 83.4 87.0 87.4 87.9 88.3

(b) - (a) gap +10.8 +2.9 +0.2 -1.2 -1.5

(c) - (a) gap +11.4 +6.4 +1.9 +1.0 +1.0

Figure 4: Class-incremental clas-
sification on ImageNet100

Figure 5: Result with training la-
bel noise

4.3 Application to other classification setups

Few-shot image classification

Few-shot classification (Fei-Fei et al., 2006; Vinyals et al., 2016) represents unseen classes with few-shot
image samples for each target class during testing.

Datasets: We reuse ImageNet-S to make it a few-shot classification scenario by allowing access to additional
4 or 16 shots for validation/testing.

Baselines: Linear prob is the simplest few-shot classification baseline (Chen et al., 2019), where we add
a class-length linear layer on top of the frozen backbone and train it with the given target class few-shot
examples. ProtoNet (Snell et al., 2017) is another few-shot classification baseline, where the few-shot samples
are averaged and used as a class prototype. We also compare ours with another memory-based classification
model, Retrieval-Augmented Classification (RAC) (Long et al., 2022). RAC first retrieves NN images from
an image memory and feeds their corresponding class text labels to the subsequent text encoder to obtain
an auxiliary textual feature, which is then added to the input image feature. RAC was originally designed
to be trained with abundant training data for long-tailed classification (Huang et al., 2016). We adapt RAC
for few-shot classification and keep the text encoder frozen; otherwise, few-shot training fails to converge.
All methods use the CLIP-B/32 backbone.

Results: Table 7 compares MML and the aforementioned baselines on few-shot classification. While our MML
outperforms the other methods, we observe that the performance gap between MML and the linear prob
CLIP is bigger with fewer shots. This result implies that the knowledge retrieval from external memory is
especially e�ective when limited supervised data are available as the external memory access can compensate
for the lack of supervised data.

Few-shot to many-shot classification

Continued from the previous paragraph, we increase the few shots from the target classes to many shots
and demonstrate the performance trend in Table 8. While the linear prob (a) is directly trained with 4 to
256 shots from the target classes, our method (b) is trained on the non-target classes and tested without
additional training with the 4 to 256 shots. MML outperforms linear prob by a significant margin with 4
shots, and the gain gradually diminishes with increasing training data for linear prob. The results of MML
with the test-time training (c) with the 4 to 256 shots show that our model recovers the diminished gap
and further improves performance. Note that this work primarily focuses on leveraging external knowledge
with zero or minimal supervision, in addition, we also show that additional test-time training benefits MML
orthogonally to retrieval-based reasoning.

Class-incremental classification (CIC)

We compare CIC methods and ours on a standard CIC benchmark. The results are plotted in Figure 4.
For a fair comparison, we reproduce existing CIC methods (Li & Hoiem, 2017; Ratcli�, 1990; Rebu� et al.,
2017; Wang et al., 2022a) with the CLIP-B/32 backbone as well as ours on a unified codebase (Zhou et al.,
2023a) by following the standard CIC constraints.
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Table 9: Supervised classification results trained with 4 shots from the target (seen) classes from each dataset

method ImgNet1K Caltech101 OxfordPets Cars Flowers Food Aircraft SUN DTD EuroSAT UCF avg.

zero-shot CLIP (Radford et al., 2021) 58.2 86.3 85.8 55.6 66.1 77.3 17.3 58.5 42.3 37.6 61.5 58.8

linear prob (Radford et al., 2021) 41.3 84.3 56.4 48.4 84.8 55.2 23.6 54.6 50.1 68.3 62.2 57.2

ProtoNet (Snell et al., 2017) 38.3 81.6 59.0 45.9 81.3 52.2 21.6 54.0 48.0 65.3 64.0 55.6

kNN classifier (Nakata et al., 2022) 55.7 79.7 59.9 55.8 65.6 60.4 20.5 50.2 29.0 19.4 45.2 49.2

RAC (Long et al., 2022) 37.0 83.6 69.4 52.9 78.9 59.4 20.6 53.0 49.8 57.4 59.0 56.5

MML 66.2 90.2 85.5 64.8 84.1 76.7 21.3 65.8 52.4 44.1 70.1 65.6

Benchmark: We adopt a public benchmark, ImageNet100-Base0-Inc10 (Rebu� et al., 2017), where 10 unseen
classes and their annotated samples are sequentially given for 10 consecutive stages. For each stage, a
model is required to classify an image into all the known classes, resulting in the accumulation of 100-class
classification at the end. Across all stages, the size of the memory for each stage is always restricted to 2000
elements for all methods. For each stage, MML manages the memory length by dropping some old-class
data from the memory and storing the new-class data such that the remaining memory elements are closest
to the average of the memory contents, following (Rebu� et al., 2017). Accordingly, MML updates the class
prototypes with the updated memory elements at each stage. For evaluation, input images are classified into
all the seen classes without stage-specific information.

Results: As seen in Figure 4, MML outperforms or performs on par with the CIC specialist models, without
using specific techniques for the CIC task such as distillation of old class knowledge in model weights (Rebu�
et al., 2017) or storing the heavy model weights to the model memory (Wang et al., 2022a). Note that our
memory introduces an insignificant overhead as it consists of gradient-detached embeddings, consuming only
1.4 GB GPU memory when all the 100 classes are loaded. For CIFAR100, please see Figure 6 in Appendix.

Training label noise robustness

We showcase that the reasoning procedure via memory retrieval is robust against the training data label
noise. To simulate the label noise, we randomly permute from 10% to 40% of the class labels of training
queries with a wrong class and train the architecture with the corrupted labels. This comparison validates
the e�ectiveness of reasoning sources for classification: reasoning from the relevant external knowledge vs.
reasoning from the memorized parameters. Figure 5 presents the comparison of the baselines and ours on
ImageNet1K with the increasing portion of incorrect class labels. The memory-based models, RAC and
MML, show robustness and powerful performance against training data noise. As MML predicts classes
assisted by retrieving input-adaptive kNN from the frozen memory, MML can avoid directly compiling the
wrong training data into parameters, particularly being more robust as the more incorrect label noise is
injected in training. We hypothesize that retrieval-based reasoning encourages robust learning against the
training label noise as the kNNs provide interactive reasoning with the neighborhood embeddings.

Supervised image classification

We also signify the e�cacy of MML on the standard supervised image classification in Table 9. In contrast to
the unseen-class classification of the previous paragraphs, the more primitive definition of image classification
assumes that the target classes are identical across training, validation, and testing. In other words, the
generalization beyond the seen classes during training is not the focus of this classification task. MML can
also tackle this classification by setting the memory content and the prototype unchanged between training
and testing to handle the known closed-set target classes.

Baseline: Note that there exist no prior zero-shot methods that use dynamic memory, directly comparable to
ours. A similar method with external memory retrieval, RAC (Long et al., 2022), is compared. RAC tackles
seen class problems, whereas MML focuses on generalizing beyond seen classes with memory replacement.

Benchmark: The 11 datasets in Table 1 are used. For each dataset, 4 random images per class are used for
training. All methods are evaluated on each dataset using the CLIP-RN50 backbone.
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Results: The results are shown in Table 9. MML performs more accurately than other baselines on average.
In particular, our model demonstrates greater e�ectiveness when supplemented with external web-crawled
data that provide relevant features for classification. For instance, the diverse viewpoints and color variations
of car images on the internet benefit for car model categorization (Cars196). Overall, the proposed MML
signifies its e�ectiveness also on the standard supervised and fine-grained image classification.

4.4 Computational overhead

MML is lightweight and introduces little computational overhead; feature extraction, kNN retrieval, and
knowledge integration take 1129.9, 58.3, and 10.7 GFLOPs (94.2, 4.9, and 0.9 %), respectively. MML is
e�cient in that training/testing with batch size 256 consumes only 2.2 GB GPU memory on a 2080Ti
thanks to the frozen backbone and memory features.

5 Conclusion

We have presented the memory-modular learner and demonstrated its e�cacy in various scenarios, investigat-
ing the memory-modular generalization for unseen classes. The experiments show that our memory-modular
reasoning e�ortlessly generalizes to unseen classes with memory replacement and exhibits robustness to
noisy memory data. We also frame our retrieval-based zero-shot classification as web-assisted zero-shot
classification, which is believed to be more realistic in the future research with the growth of web-trained
foundation models. Although the memory introduces space and time overhead than conventional models
in the memory construction and retrieval, the overhead is greatly reduced thanks to our memory design;
the memory consists of pre-computed features of the frozen encoder, which are reused for inference except
for memory replacement. We believe that memory-modular learning benefits various tasks in the areas of
artificial intelligence beyond classification, leaving them for future work.
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