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ABSTRACT

One-shot object detection presents a significant challenge, requiring the identifi-
cation of objects within a target image using only a single sample image of the
object class as query image. Attention-based methodologies have garnered con-
siderable attention in the field of object detection. Specifically, the cross-attention
module, as seen in DETR, plays a pivotal role in exploiting the relationships be-
tween object queries and image features. However, in the context of DETR net-
works for one-shot object detection, the intricate interplay among target image
features, query image features, and object queries must be carefully considered.
In this study, we propose a novel module termed “indirect attention”. We illus-
trate that relationships among target image features, query image features, and
object queries can be effectively captured in a more concise manner compared to
cross-attention. Furthermore, we introduce a pre-training pipeline tailored specif-
ically for one-shot object detection, addressing three primary objectives: identify-
ing objects of interest, class differentiation, and object detection based on a given
query image. Our experimental findings demonstrate that the proposed IA-DETR
(Indirect-Attention DETR) significantly outperforms state-of-the-art one-shot ob-
ject detection methods on both the Pascal VOC and COCO benchmarks.

1 INTRODUCTION

The field of object detection has seen remarkable advancements with the rise of deep learning tech-
nologies. However, the conventional approach of training models on a fixed set of classes presents
significant limitations. Annotating all potential objects across diverse real-world environments is
impractical, as existing systems are typically trained on a limited subset of objects. Scaling up this
process is challenging. Few-Shot Object Detection (FSOD) addresses this challenge by detecting
novel classes not seen during training, potentially overcoming many of the aforementioned limita-
tions.

One-shot object detection (OSOD), a subset of FSOD, poses an even more demanding challenge,
requiring the detection of objects within a target image using only a single sample image of the
object class. This task is particularly challenging due to the necessity for models to generalize
from extremely limited data. Attention mechanisms (Vaswani et al., 2017), especially self-attention
and cross-attention, have become integral in capturing relationships within and between different
data modalities. These mechanisms have been widely used across various domains, including
multimodal learning (Bakkali et al., 2023) and one-shot and few-shot object detection (Lin et al.,
2023). Recent advancements in attention-based methodologies, particularly the DETR (DEtection
TRansformer) (Carion et al., 2020), have shown promise in object detection by leveraging the cross-
attention mechanism to exploit relationships between object queries and image features. However,
in the few-shot scenario, this correlation problem becomes more complex in DETR-based models
due to the introduction of a third element, the object query. Recent DETR-based few-shot object
detection methods, such as FS-DETR (Bulat et al., 2023) and Meta-DETR (Zhang et al., 2022),
address this problem by incorporating an additional block of cross-attention, aligning target image
features with query image features first and then passing the aligned features to the decoder for a
second cross-attention with the object queries. The first feature alignment process between target
image features and query image features, which initially seems essential for highlighting relevant
areas in the target image based on the query, allows the detection head to focus on these areas during
object detection. However, while this feature alignment strategy may seem necessary, it introduces
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Figure 1: Illustration of the position of double cross-attention, feature alignment, and direct attention
in the overall model.

significant computational overhead. The additional cross-attention block requires pairwise interac-
tions between features from both images, leading to a quadratic increase in computational cost as
the number of features grows. This burden becomes especially pronounced when dealing with high-
resolution images, where the computational expense can severely limit the scalability and efficiency
of the model.

To overcome this limitation, our work proposes a novel solution that challenges the need for explicit
feature alignment. We introduce a new mechanism, which we term “indirect attention”, that lever-
ages the inherent strengths of the attention mechanism in transformers. Unlike traditional attention
mechanisms, our indirect-attention uses inconsistent sequences for the key and value inputs, allow-
ing the model to establish flexible interactions between the object queries, target image features, and
query image features. By decoupling the key and value sequences, object queries can effectively ex-
tract information from the value vectors while relying on the key vector and a box relative position
bias (Lin et al., 2023) which has been show to be important for performance in object detection in
DETR, for guidance, all without direct feature alignment. This preserves the integrity of the features
throughout the network and reduces the computational complexity. An illustration of the difference
between double cross-attention and indirect-attention can be seen in figure 1.

A key innovation in our indirect-attention approach, which further departs from traditional attention
mechanisms is utilizing inconsistent sequences for the key and value inputs. Typically, in standard
attention mechanisms, the key and value sequences are aligned, ensuring that each query interacts
with corresponding features in a consistent manner. However, in our method, we decouple this
assumption and allow the key and value sequences to be distinct.

We also present a pre-training pipeline specifically designed for one-shot object detection, focusing
on three primary objectives: identifying objects of interest, differentiating between classes, and
accurately detecting objects based on the provided query image.

Our experimental results demonstrate that IA-DETR significantly outperforms existing state-of-the-
art methods on prominent benchmarks such as Pascal VOC and COCO.

Our key contributions are summarized as follows:

• To our knowledge, in the field of object detection, we are the first to extend the transformer
attention mechanism to three different elements, surpassing the traditional cross-attention’s
limitation of two elements.
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• We apply our indirect attention mechanism to one-shot object detection, avoiding direct
attention between the target image and query instance, thereby maintaining the integrity of
both feature sets.

• IA-DETR outperforms the state-of-the-art in one-shot object detection on both the Pascal
VOC and COCO datasets.

2 RELATED WORKS

2.1 ATTENTION MECHANISM

Attention has garnered significant interest since its introduction in (Vaswani et al., 2017) and has
found applications across diverse domains. It can be conceptualized as a mapping between a query
set and key-value pair sets, where the query is dynamically modified in the following manner:

Attn = softmax(
QKT

√
d

)V,

where Q denotes the query sequence, K and V denote the key and value sequences, receptively. In
the self-attention mechanism, all queries, keys, and values are projections derived from the same
input sequence. Mathematically, given an input sequence S = [s1, ..., sn] with n ≥ 1 and each
element is of dimension d, the self attention can be formulated as:

Self-Attn(S) = softmax(
WqSS

TWT
k√

d
)WvS, (1)

where Wq , Wk, and Wv are learnable linear projections.

Cross-attention is another variation which has been used in few-shot object detection (Han et al.,
2022). Mathematically, it can be formulated as:

Cross-Attn(S,M) = softmax(
WqSM

TWT
k√

d
)WvM, (2)

where the Wq , Wk, and Wv are learable linear projections. S and M are the two different input
sequences. Note that the sequence S serves as the query in the attention mechanism, while the
sequence M functions as both the key and the value.

2.2 ONE-SHOT OBJECT DETECTION

One-shot object detection aims to detect objects given only a single sample without fine-tuning. The
model is trained only on base classes and then directly applied to detecting novel classes. SiamMask
(Michaelis et al., 2018) enhances Mask R-CNN (He et al., 2017) by adding a matching module to
generate a similarity feature map between the target and query images. CoAE (Hsieh et al., 2019)
employs the non-local scheme (Wang et al., 2018) and squeeze-excitation scheme (Hu et al., 2018b)
to correlate the target and query images. FOC OSOD (Yang et al., 2021) improves classification by
decoupling the classification branch from the regression branch in both the RPN and detection head.

AIT (Chen et al., 2021) develops an attention-based encoder-decoder architecture with transformers
(Vaswani et al., 2017) to evaluate the relationship between target and query images. BHRL (Yang
et al., 2022) enhances alignment between the target image and query image by incorporating hierar-
chical and multi-scale feature attention. Unlike the aforementioned methods, UP-DETR (Dai et al.,
2021), built upon DETR (Carion et al., 2020), adds the query image feature to the object query, after
which the object query undergoes cross-attention blocks in the decoder module.

2.3 DETR AND ITS VARIANTS

DETR and its variants represent the application of transformers in object detection. DETR-based
detectors primarily consist of a backbone, typically either a ResNet (He et al., 2016) or a Swin
Transformer (Liu et al., 2021), followed by an encoder and a decoder. The encoder can be considered
an extension of the backbone. However, recent work such as Plain-DETR (Lin et al., 2023) has
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Figure 2: IA-DETR architecture.

demonstrated that the encoder is not always necessary. The decoder processes the output from
the backbone and encoder, along with a set of object queries. These object queries pass through
multiple decoder layers, undergoing self-attention and cross-attention with the backbone/encoder
output to aggregate the necessary features for bounding box regression and classification. The self-
attention mechanism in the decoder arranges the focus of the object queries, preventing them from
concentrating on a single location, while cross-attention enables interaction with the original image
features. In few-shot scenarios (Bulat et al., 2023), the architecture includes two cross-attention
modules: one for aligning the query image features with the target image features, and another for
exploiting the relationship between the object queries and the image features (both target and query
images).

3 METHODOLOGY

3.1 PROBLEM DEFINITION OF ONE-SHOT OBJECT DETECTION

Given a training set consisting of seen classes Cb and a test set containing new classes Cn with
Cb ∩ Cn = ∅, the task of one-shot object detection is to train a detector on Cb so that it can
generalize to the test set and Cn without additional training or tuning. Specifically, with a sample
instance, also known as the query image Q ∈ RH×W×3 showing one instance of an object of a
certain class, the detector is expected to display the bounding box B ∈ R4 of all instances of the
same class as Q in the target image I ∈ RH×W×3, assuming the target image contains at least one
instance of the same class as the object in Q. This problem can also be viewed as a visual prompt
task (Chen et al., 2024), where given the visual prompt Q, the detector is expected to locate similar
instances in the target image.

3.2 PROPOSED ARCHITECTURE

The architecture of the proposed IA-DETR is shown in Figure 3.2. Similar to other DETR-based
models, it consists of a backbone and a decoder. Following Plain-DETR (Lin et al., 2023), we use
SWIN-based MIM pretrained (Xie et al., 2022) as backbone and remove the DETR encoder, as the
vision transformer-based backbone serves the same purpose. Both the query image and the target
image are processed by the shared backbone. In the decoder, instead of using cross-attention, we
propose indirect attention, which directly exploits the relationship between three elements: object
queries, query image features, and target image features. Additionally, to avoid high computational
costs, we use single-scale features for both target and query images, following the approach of
Plain-DETR.

We also follow the iterative refinement approach as in (Zhu et al., 2020), where each decoder layer
refines the bounding box predictions based on the output of the previous layer, rather than predicting
them from scratch. The object queries are generated from the target image features without consid-
ering the query image. The rationale is that once potential objects are detected by analyzing the
target image alone, these objects can later be filtered and refined in the decoder based on the query
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Figure 3: Illustration of difference between self-attention, cross-attention, and indirect-attention.

image. Instead of passing all proposals to the decoder, we select the top 300 object queries for the
decoding process. Previous works (Jia et al., 2023; Hu et al., 2018a; Chen et al., 2022) have shown
that the original one-to-one matching is less efficient in training positive samples, and that incorpo-
rating an auxiliary one-to-many set matching loss can improve efficacy. In one-shot object detection,
where positive proposals are scarce, this technique can be particularly beneficial. Therefore, we have
employed this hybrid matching technique during training.

3.3 INDIRECT ATTENTION

Cross-attention is typically used to exploit the relationships between two sequences, where one
sequence acts as the query and the other sequence serves as both the key and the value. Although
there has been limited exploration of this concept in computer vision, the idea of different entries for
keys and values has emerged in the field of question answering, particularly in key-value memory
networks (KVMNs) (Miller et al., 2016), where the key and value includes of different but related
words, for example, in a sentence the subject is stored in key and the object is stored in value.
Different from this, we propose indirect attention, which uses two different and potentially unrelated
sources as the key, and value in the attention mechanism:

Indirect-Attn(S,M,L,B) = softmax
(
WqSM

TWT
k +B√

d

)
WvL, (3)

where S, M , and L are three different source sequences. Wq , Wk, and Wv are learnable linear
projections and B is the relative positional bias.

The proposed indirect attention can be seen as a generalization of cross-attention, but with a cru-
cial difference. While cross-attention functions as a matching and alignment module, where one
sequence is aligned and modified based on information from another sequence, indirect attention
modifies the sequence serving as the query based on its relationship with the value sequence while
considering the key sequence, leaving the key and value sequences unchanged. An illustration of
indirect-attention in comparison with self-attention and cross-attencion can be seen in figure 3

3.4 APPLICATION OF INDIRECT ATTENTION IN IA-DETR

The application of the proposed indirect attention in the context of one-shot object detection is
straightforward. DETR models use object queries for localizing and classifying objects, necessi-
tating consideration of the relationships between object queries, target image features, and query
image features. Instead of using two cross-attention modules—one for aligning target image fea-
tures with query image features and the other for exploiting the relationship between object queries
and the image features (both target and query images)—the proposed indirect attention significantly
simplifies this process.
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Specifically, given a query image Q ∈ RH×W×3 and a target image I ∈ RH×W×3, both images are
first encoded by a backbone encoder function E. This results in query image features P = E(Q) and
target image features T = E(I). The object query Ob, where the superscript b denotes the decoder
block, then undergoes transformation within the decoder. More precisely, in the bth decoder block,
the object queries are updated by a self-attention module as follows:

Ôb = Ob + self-attn(Ob).

The outputs Ôb are further updated in the proposed indirect attention module with the help of both
query image features P and target image features T as follows:

Ob+1 = FFN(Ôb + Indirect-Attn(Ôb, P, T,B)). (4)

Note that in the indirect attention, the query image features P serves as the key vector and the target
image features T serves as the value vector.

In equation 4, we choose to use the Box-to-pixel relative postion bias (BoxRPB) as B which is
to compensate for the lack of multi-scale features (Lin et al., 2023). The use of BoxRPB guides
attention to the areas of the bounding box for each object query (Lin et al., 2023). Therefore, it
makes more sense to use the target image features as the value in indirect attention, rather than
the aligned image features. We believe this is one of the key factors contributing to the strong
performance of the proposed indirect attention for one-shot object detection.

For clarity purposes, the layer norm and drop-out are not shown in the equations

3.5 TRAINING STRATEGY

We design a training strategy specifically for one-shot object detection. The core idea is to train the
network to effectively perform three tasks: identifying objects of interest, detecting objects based
on a given query, and differentiating between classes. The first two tasks follow a coarse-to-fine
detection approach, which aligns with the methodology of most object query-based detectors. The
third task, class differentiation, is a common goal in classification problems but is often overlooked
in one-shot object detection, especially during the pre-training stage.

In this paper, we adopt a commonly used two-stage training approach and propose incorporating
contrastive loss (Xie et al., 2021) in the pre-training stage. We argue that this inclusion enhances the
model’s performance in one-shot object detection.

In the first stage (pretraining stage), the model is trained in a supervised manner, enhanced by a
self-supervised approach. Specifically, images containing only seen classes are selected. For each
image, similar to (Dai et al., 2021) a random patch is cropped, with its position used during training.
This patch serves as the query image, which is zero-padded and input into the model along with the
original image as the target image. The model is trained to simultaneously localize the query patch
and detect all objects in the target image.

In the existing methods, pretraining is done on classification task which is different from the ob-
ject detection problem. More precisely, a ground truth vector is constructed, containing objectness
and bounding box information for all objects and the query patch. In this vector, the objectness of
each object is set to 1, while the objectness of the query patch is set to 0. The detection result for
each object query includes an objectness class (0 or 1) and a predicted bounding box. A one-to-one
matching process between the detection results and the ground truth is performed, a common prac-
tice in DETR-based detectors (Sun et al., 2021). Given that the number of object queries typically
exceeds the number of objects in an image, unmatched detections are considered background. Sub-
sequently, classification loss and bounding box loss are calculated as per standard procedures (Lin
et al., 2023).

We propose incorporating a contrastive loss (Xie et al., 2021) using ground truth class information.
For each object query matched to ground truth objects, we embed the bounding box in the detection
result and apply an additional contrastive loss. The goal is to bring embeddings of detections from
the same class closer together and push embeddings from different classes further apart. Ground
truth class information is used to construct positive and negative sets, and the contrastive loss is
calculated accordingly. Background detections and query patch are excluded from this calculation.
For each predicted bounding box feature embedding p̂i corresponding positive and negative box
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feature embeddings P+ and P− are selected based on being in the same class as p̂i and the contrastive
loss is caluculated with τ as temperature hyper-parameter that controls the difficulty of the task of
contrastive learning (Wang & Liu, 2021) as:

Lcon = −
∑
p̂i

∑
P+

log
exp(p̂i · P+/τ)

exp(p̂i · P+/τ) +
∑

P−
exp(p̂i · P−/τ)

(5)

The overall loss of the pre-training stage is:

L = λ1Lbbox + λ2Lcls + λ3Lcon, (6)

where Lbbox, Lcls, and Lcon are the bounding box, classification, and contrastive losses with their
relevant factors λ. The bounding box and classifcation losses are computed same as in (Lin et al.,
2023). It is also important to note that throughout the first stage, the backbone remains frozen.

During the second stage, the model is trained for standard one-shot object detection, aiming to detect
instances of the query image within the target image. The loss function in this stage comprises
bounding box loss and classification loss, calculated in the same manner as described in (Lin et al.,
2023).

In the second stage, we unfreeze the backbone initially but freeze it again after the second epoch to
prevent overfitting on the seen classes.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

For the purpose of fair comparison, we follow the same OSOD dataset setting as the previous
works (Chen et al., 2021; Yang et al., 2022). In PASCAL VOC dataset (Everingham et al., 2010),
we devide the 20 classes to two sets of 16 seen classes and 4 unseen classes. For the MS COCO
dataset (Lin et al., 2014), 4 splits are created in a way that the 80 classes are equally divided into 4
parts (20 classes per part) and in each split three parts serves as unseen classes while the other one
part serves as seen classes. Following (Chen et al., 2021; Yang et al., 2022) we report AP-50 for
both PASCAL VOC and COCO datasets.

4.2 IMPLEMENTATION DETAIL

For the first stage training, we train the model for 30 epochs with batch size of 24 on 4 GPUs using
the SGD optimizer. In this stage, we keep the backbone frozen and only train the decoder part.

In the second stage, we train the model for 14 epochs with batch size of 16 on 8 GPUs using the
SGD optimizer. During both stages, the model is trained only on seen classes.

4.3 TARGET AND QUERY PAIRS

In the first stage, the query is generated same as UP-DETR (Dai et al., 2021) by cropping a random
part of the target image and use it as the query image.

In the second stage, we follow previous OSOD works (Chen et al., 2021; Yang et al., 2022; Hsieh
et al., 2019) to generate the target-query image pairs. During training, for a given target image
containing an object from a seen class, we randomly select a patch of the same class from a different
image. During testing, for each class in the target image, query patches of the same class are shuffled
using a random seed set to the image ID of the target image. The first five patches are then selected,
and the average metric score is reported.

4.4 QUANTITATIVE RESULTS

In Table 1, we compare the performance of IA-DETR with state-of-the-art methods on the Pascal
VOC dataset for both seen and unseen classes. The results clearly show that IA-DETR significantly
outperforms existing methods in both categories.
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Table 1: Comparison results on Pascal VOC dataset. Results based on AP0.5.
Method Seen classes Unseen classes

plant sofa tv car bottle boat chair person bus train horse bike dog bird mbike table Avg. cow sheep cat aero Avg.

SiamFC (Bertinetto et al., 2016) 3.2 22.8 5.0 16.7 0.5 8.1 1.2 4.2 22.2 22.6 35.4 14.2 25.8 11.7 19.7 27.8 15.1 6.8 2.28 31.6 12.4 13.3
SiamRPN (Li et al., 2018) 1.9 15.7 4.5 12.8 1.0 1.1 6.1 8.7 7.9 6.9 17.4 17.8 20.5 7.2 18.5 5.1 9.6 15.9 15.7 21.7 3.5 14.2
OSCD (Fu et al., 2021) 28.4 41.5 65.0 66.4 37.1 49.8 16.2 31.7 69.7 73.1 75.6 71.6 61.4 52.3 63.4 39.8 52.7 75.3 60.0 47.9 25.3 52.1
CoAE (Hsieh et al., 2019) 24.9 50.1 58.8 64.3 32.9 48.9 14.2 53.2 71.5 74.7 74.0 66.3 75.7 61.5 68.5 42.7 55.1 78.0 61.9 72.0 43.5 63.8
AIT(Chen et al., 2021) 46.4 60.5 68.0 73.6 49.0 65.1 26.6 68.2 82.6 85.4 82.9 77.1 82.7 71.8 75.1 60.0 67.2 85.5 72.8 80.4 50.2 72.2
UP-DETR(Dai et al., 2021) 46.7 61.2 75.7 81.5 54.8 57.0 44.5 80.7 74.5 86.8 79.1 80.3 80.6 72.0 70.9 57.8 69.0 80.9 71.0 80.4 59.9 73.1
BHRL(Yang et al., 2022) 57.5 49.4 76.8 80.4 61.2 58.4 48.1 83.3 74.3 87.3 80.1 81.0 87.2 73.0 78.8 38.8 69.7 81.0 67.9 86.9 59.3 73.8

IA-DETR 39.3 69.4 78.3 82.7 52 73.7 49.8 52.6 86.6 86.3 92.4 86.7 90.4 88.2 79.9 69.5 73.6 90.5 81.2 85.2 67.4 81

Table 2: Comparison results on MS COCO dataset. Results are based on AP0.5.

Method Seen classes Unseen classes
split-1 split-2 split-3 split-4 Average split-1 split-2 split-3 split-4 Average

SiamMask (Michaelis et al., 2018) 38.9 37.1 37.8 36.6 37.6 15.3 17.6 17.4 17.0 16.8
CoAE (Hsieh et al., 2019) 42.2 40.2 39.9 41.3 40.9 23.4 23.6 20.5 20.4 22.0
AIT (Chen et al., 2021) 50.1 47.2 45.8 46.9 47.5 26.0 26.4 22.3 22.6 24.3
BHRL (Yang et al., 2022) 56.0 52.1 52.6 53.4 53.5 26.1 29.0 22.7 24.5 25.6

IA-DETR 53.2 55.6 56.2 58.1 55.8 27.3 27.0 28.7 26.4 27.3

To further validate the superiority of IA-DETR, we evaluate our model against other methods on
the challenging COCO dataset across all four splits. The results, presented in Table 2, demonstrate
that IA-DETR consistently outperforms all existing methods by an average of 2% on both seen and
unseen classes.

5 ABLATION STUDIES AND ANALYSIS

In this section, we conduct extensive experiments to study the behavior of different components of
IA-DETR and indirect-attention. All experiments are performed on the Pascal VOC dataset.

First, a natural question may arise: what if we explore different variations of the roles assigned to
object queries, target image features, and query image features as the query, key, and value in the
indirect-attention mechanism? While the role of object queries as the query is inherently fixed, per-
mutations of the target image and query image features as the key and value are worth investigating.
However, empirical results demonstrate that setting the query image features as the value and the
target image features as the key yields zero performance, even with extended training durations.
This outcome aligns with intuitive reasoning: the target image features are best suited as the value,
as they ultimately serve as the source from which object bounding boxes and class predictions are
extracted.

We compare the proposed indirect attention method with two configurations of dual cross-attention
layers, as this is a common approach. In the first configuration, the goal is to first match the target
image T to the query image Q using cross-attention. Then, a second cross-attention is performed
between the object queries O and the output of the first cross-attention, treating it as merged features
as follows:

Fm = Cross-attn(T,Q),

O = cross-attn(O,Fm).

In the second configuration, we maintain two cross-attention blocks, where the object queries serve
as the query in the second block, the output of the first cross-attention block acts as the key, and the
original target image features serve as the value. We conduct ablations on both cross-attention con-
figurations alongside indirect-attention on the Pascal VOC dataset, without the 1st stage of training
and early freezing of the backbone.

As depicted in Table 4, indirect-attention outperforms both cross-attention configurations while uti-
lizing only one attention block. We attribute this to the fact that in indirect-attention, the object
query has access to both target and query image features.

In Table 5, we investigate the significance of BoxRPB on indirect-attention. Given the absence
of direct spatial relationship between key and value, it’s crucial to assess if the query can discern
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semantic associations between them. We observe that without BoxRPB, the performance of the
model drops significantly and even with continued training over several more epochs it does not
match the performance of its counterpart.

In order to further study the effect of BoxRPB by removing it from the model with double cross-
attention and BoxRPB only. The BoxRPB only mode does not involve any kind of interaction
between target features and query features. As the result can be observed in BoxRPB the double
cross-attention and BoxRPB only mode do not get a big drop in performance. However still the
combination of indirect-attention with BoxRPB results to the best performance with fewer number
of parameters.

Table 3: Experiment results on BoxRPB. Results are based on AP0.5.

double cross-attention BoxRPB indirect-attention Seen classes Unseen classes #param.

✓ ✓ ✗ 83.61 63.34 69M
✓ ✗ ✗ 77.9 62.31 69M
✗ ✓ ✗ 81.93 61.31 60M
✗ ✓ ✓ 82.94 65.13 61M

In Table 6, we delve into the importance of our two-stage training strategy. Notably, the contrastive
loss in first stage of training and early freezing of the backbone yield significant performance im-
provements. Specifically, early freezing of the backbone aids in generalization across both seen and
unseen classes and creating a balance between the seen and unseen classes. The performance on the
unseen classes increase but at the cost of decrease in the seen classes. This can be seen in a way that
the less the backbone overfits on the seen classes the better it can generalize on unseen classes. On
the other hand, the MIM pretraining backbone though contributes in performance enhancement but
it is not very significant. However, such a pretraining strategy for the backbone is useful as it does
not rely on labeled data and alleviates the problem of limited labeled data availability. Addition-
ally, these findings underscore the efficacy and generalizability of indirect-attention, highlighting its
independence from specific features learned by the backbone.

5.1 VISUALIZATION

To comprehend the behaviors of indirect-attention, we conducted extensive visualization of the at-
tention maps. Through our analysis, we made the following observations:

• Certain attention heads prioritize the content of the query image features, while others
concentrate on specific locations within the target image features.

• The indirect attention mechanism selects object queries based on the conditioning provided
by the query image features.

To investigate how queries are ranked, purely for visualization purposes, we compute the output
of the dot product between the query and key. Although the model applies softmax along the key
dimension, for query ranking understanding, we reverse the softmax operation by performing soft-
max along the query dimension. It’s noteworthy that not all attention heads focus on the key (query
image), only specific heads do. We extract values along these specific heads, averaging them. Then,
we average again along the key dimension, resulting in a vector with the same length as the number

Table 4: Comparison of indirect-attention with
two configurations using double cross-attention
blocks. Results are based on AP0.5.

Method Seen Unseen

double cross-atten. 1 83.61 63.34
double cross-atten. 2 82.34 63.21
indirect-attention 82.94 65.13

Table 5: Effect of removing BoxRPB on
indirect-attention. Results are based on
AP0.5.

Method Epochs Seen Unseen

w/o BoxRPB 14 29.21 33.8
w/o BoxRPB 80 70 58.6
with BoxRPB 14 82.94 65.13
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Table 6: Impact of MIM pretraining of backbone, contrastive loss in 1st stage, and early backbone
freezing in 2nd stage. The backbone freezing in second stage is done after the second epoch. Results
are based on AP0.5

MIM pre-trained backbone contrastive loss early backbone freezing Seen Unseen
✓ ✗ ✗ 82.63 64.81
✓ ✓ ✗ 82.94 65.13
✗ ✓ ✓ 74.35 79.5
✓ ✓ ✓ 73.6 81

Figure 4: (a): Query image. (b): attention map and detected objects of 4 object queries. (c): attention
score based on object queries. Number in each cell shows the query id.

of object queries. This vector is ordered based on the model’s confidence score in the final predic-
tion. To enhance visualization, we reshape the ordered vector into a two-dimensional matrix. As
illustrated in figure 4, object queries related to the query image object receive higher attention than
others.

5.2 POTENTIAL LIMITATIONS

While the technique presented offers an effective approach for one-shot object detection and pro-
vides an efficient alignment solution, there are notable limitations we wish to address:

• The indirect attention method severs the direct alignment between the key and value, re-
lying extensively on relative positional bias to steer the attention matrix to the appropriate
position within the value sequence.

• OSOD methods presuppose the presence of at least one instance of the query image in the
target image, which may not always hold true in real-world scenarios.

6 CONCLUSION

One-shot object detection holds significant importance in real-world scenarios where obtaining suf-
ficient annotated data for training is challenging. In this paper, we introduce indirect attention as
a viable alternative to two cross-attention blocks, demonstrating the capability of the transformer
attention mechanism to accommodate three different sequences as input. Building upon indirect
attention, we propose IA-DETR, which meticulously considers the complex relationship between
object queries, target images, and query images within a single indirect-attention module. Our ap-
proach achieves state-of-the-art results on both the Pascal VOC and MS COCO datasets.
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cdoc: Vision-language contrastive pre-training model for cross-modal document classification.
Pattern Recognition, 139:109419, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr. Fully-
convolutional siamese networks for object tracking. In Computer Vision–ECCV 2016 Workshops:
Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–
865. Springer, 2016.

Adrian Bulat, Ricardo Guerrero, Brais Martinez, and Georgios Tzimiropoulos. FS-DETR: Few-shot
detection transformer with prompting and without re-training. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 11793–11802, 2023.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213–229. Springer, 2020.

Ding-Jie Chen, He-Yen Hsieh, and Tyng-Luh Liu. Adaptive image transformer for one-shot ob-
ject detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12247–12256, 2021.

Qiang Chen, Jian Wang, Chuchu Han, Shan Zhang, Zexian Li, Xiaokang Chen, Jiahui Chen, Xiaodi
Wang, Shuming Han, Gang Zhang, et al. Group detr v2: Strong object detector with encoder-
decoder pretraining. arXiv preprint arXiv:2211.03594, 2022.

Qibo Chen, Weizhong Jin, Shuchang Li, Mengdi Liu, Li Yu, Jian Jiang, and Xiaozheng Wang.
Exploration of visual prompt in grounded pre-trained open-set detection. In ICASSP 2024-2024
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6115–
6119. IEEE, 2024.

Zhigang Dai, Bolun Cai, Yugeng Lin, and Junying Chen. Up-detr: Unsupervised pre-training for
object detection with transformers. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 1601–1610, 2021.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88:
303–338, 2010.

Kun Fu, Tengfei Zhang, Yue Zhang, and Xian Sun. OSCD: A one-shot conditional object detection
framework. Neurocomputing, 425:243–255, 2021.

Guangxing Han, Jiawei Ma, Shiyuan Huang, Long Chen, and Shih-Fu Chang. Few-shot object
detection with fully cross-transformer. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 5321–5330, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Ting-I Hsieh, Yi-Chen Lo, Hwann-Tzong Chen, and Tyng-Luh Liu. One-shot object detection with
co-attention and co-excitation. Advances in neural information processing systems, 32, 2019.

Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation networks for object
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3588–3597, 2018a.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018b.

Ding Jia, Yuhui Yuan, Haodi He, Xiaopei Wu, Haojun Yu, Weihong Lin, Lei Sun, Chao Zhang, and
Han Hu. Detrs with hybrid matching. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 19702–19712, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. High performance visual tracking with
siamese region proposal network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8971–8980, 2018.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Yutong Lin, Yuhui Yuan, Zheng Zhang, Chen Li, Nanning Zheng, and Han Hu. Detr does not
need multi-scale or locality design. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 6545–6554, 2023.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Claudio Michaelis, Ivan Ustyuzhaninov, Matthias Bethge, and Alexander S Ecker. One-shot instance
segmentation. arXiv preprint arXiv:1811.11507, 2018.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Jason
Weston. Key-value memory networks for directly reading documents. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pp. 1400–1409, 2016.

Zhiqing Sun, Shengcao Cao, Yiming Yang, and Kris M Kitani. Rethinking transformer-based set
prediction for object detection. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 3611–3620, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 2495–2504, 2021.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7794–7803,
2018.

Enze Xie, Jian Ding, Wenhai Wang, Xiaohang Zhan, Hang Xu, Peize Sun, Zhenguo Li, and Ping
Luo. Detco: Unsupervised contrastive learning for object detection. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 8392–8401, 2021.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 9653–9663, 2022.

Hanqing Yang, Yongliang Lin, Hong Zhang, Yu Zhang, and Bin Xu. Towards improving classifica-
tion power for one-shot object detection. Neurocomputing, 455:390–400, 2021.

Hanqing Yang, Sijia Cai, Hualian Sheng, Bing Deng, Jianqiang Huang, Xian-Sheng Hua, Yong
Tang, and Yu Zhang. Balanced and hierarchical relation learning for one-shot object detection.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
7591–7600, 2022.

Gongjie Zhang, Zhipeng Luo, Kaiwen Cui, Shijian Lu, and Eric P Xing. Meta-DETR: Image-
level few-shot detection with inter-class correlation exploitation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

12


	Introduction
	Related works
	Attention mechanism
	One-shot object detection
	DETR and its variants

	Methodology
	Problem definition of one-shot object detection
	Proposed architecture
	Indirect attention
	Application of indirect attention in IA-DETR
	Training strategy

	Experiments
	Datasets and metrics
	Implementation detail
	Target and query pairs
	Quantitative results

	Ablation studies and analysis
	Visualization
	Potential limitations

	Conclusion

