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ABSTRACT

Semi-supervised learning (SSL), exemplified by FixMatch (Sohn et al., 2020), has
shown significant generalization advantages over supervised learning (SL), particu-
larly in the context of deep neural networks (DNNs). However, it is still unclear,
from a theoretical standpoint, why FixMatch-like SSL algorithms generalize better
than SL on DNNS. In this work, we present the first theoretical justification for the
enhanced test accuracy observed in FixMatch-like SSL applied to DNNs by taking
convolutional neural networks (CNNSs) on classification tasks as an example. Our
theoretical analysis reveals that the semantic feature learning processes in FixMatch
and SL are rather different. In particular, FixMatch learns all the discriminative
features of each semantic class, while SL only randomly captures a subset of fea-
tures due to the well-known lottery ticket hypothesis. Furthermore, we show that
our analysis framework can be applied to other FixMatch-like SSL methods, e.g.,
FlexMatch, FreeMatch, Dash, and SoftMatch. Inspired by our theoretical analysis,
we develop an improved variant of FixMatch, termed Semantic-Aware FixMatch
(SA-FixMatch). Experimental results corroborate our theoretical findings and the
enhanced generalization capability of SA-FixMatch.

1 INTRODUCTION

Deep learning has made significant strides in various domains, showcasing applications in computer
vision and natural language modeling (He et al., 2016; Vaswani et al., 2017; Radford et al., 2018;
Dosovitskiy et al., 2020; Ho et al., 2020; Mildenhall et al., 2021; Ouyang et al., 2022; Schick
et al., 2023). These advances stem from the scalable supervised learning where simultaneously
scaling network size and labeled dataset size often enjoys better performance compared with small-
scale network and dataset. Unfortunately, in real-world scenarios, labeled data are often scarce.
Accordingly, the performance benefits given by a larger dataset can therefore come at a significant
cost, since labeling data often requires human efforts and is very expensive, especially for the
scenarios where experts are needed for labeling (Sohn et al., 2020; Ouali et al., 2020; Zhou et al.,
2020; Zhang et al., 2021a; Pan et al., 2022).

To address this challenge, semi-supervised learning (SSL) (Berthelot et al., 2019b; Sohn et al., 2020;
Zhang et al., 2021a) has emerged as a promising solution, demonstrating effectiveness across various
tasks. The methodology of SSL involves training a network on both labeled and unlabeled data,
where pseudo-labels for the unlabeled data are generated during training. As a leading SSL approach,
FixMatch (Sohn et al., 2020) first generates a pseudo-label using the current model’s prediction
on a weakly augmented unlabeled image. It then selects the highly-confident pseudo-label as the
training label of the strongly-augmented version of the same image, and trains the model together
with the vanilla labeled data. By accessing large amount of cheap unlabeled data with minimal
human effort, FixMatch has effortlessly and greatly improved supervised learning. Moreover, thanks
to its effectiveness and simplicity, FixMatch has inspired many SoTA FixMatch-like SSL works,
e.g., FlexMatch (Zhang et al., 2021a), FreeMatch (Wang et al., 2022b), Dash (Xu et al., 2021), and
SoftMatch (Chen et al., 2023), and is seeing increasing applications across many deep learning
tasks (Xie et al., 2020; Xu et al., 2021; Schmutz et al., 2022; Wang et al., 2022b; Chen et al., 2023).

Despite FixMatch’s practical success, its theoretical foundations have not kept pace with its applica-
tions. Specifically, it remains unclear how FixMatch and its SL counterpart perform on deep neural
networks, though heavily desired. Moreover, few theoretical studies explore the reasons for the
practical superiority in test performance of SSL over SL on networks, let alone FixMatch. Most
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existing theoretical works (He et al., 2022; Tifrea et al., 2023) focus on analyzing the over-simplified
models, e.g., linear learning models, which, however, differ significantly from the highly nonlinear
and non-convex neural networks used in real-world SSL scenarios. Due to this gap, these works
cannot well reveal the learning mechanism of SSL like FixMatch on networks. Some of other
works (Rigollet, 2007; Van Engelen & Hoos, 2020; Guo et al., 2020) view the model as a black-box
function under certain restrictive conditions, and their results do not reveal the dependence on the
CNN models which is key for the superiority of FixMatch.

Contributions. To solve these issues, we theoretically justify the superior test performance of
FixMatch-like SSL over SL in classification tasks, using FixMatch as a case study. We analyze the
semantic learning processes in FixMatch and SL, elucidating their test performance differences and
motivating the development of an enhanced FixMatch variant. Key contributions are summarized.

Firstly, we prove that on a three-layered CNN, FixMatch achieves better test accuracy than SL.
Specifically, under the widely acknowledged multi-view data assumption (Allen-Zhu & Li, 2023),
where multiple/single discriminative features exist in multi/single-view data, FixMatch consistently
achieves zero training and test classification errors on both multi-view and single-view data. In
contrast, while SL achieves zero test classification error on multi-view data, it suffers up to 50% test
error on single-view data, showcasing FixMatch’s superior generalization capacity compared to SL.

Secondly, our analysis highlights distinct feature learning processes between FixMatch and SL,
directly affecting their test performance. We show that FixMatch comprehensively captures all
semantic features within each class, virtually eliminating test classification errors. But SL learns only
a partial set of these semantic features, and often fails on single-view samples due to the unlearned
features, explaining its poor test classification accuracy on single-view data.

Finally, inspired by these insights, we introduce an improved version of FixMatch termed Semantic-
Aware FixMatch (SA-FixMatch). This variant enhances FixMatch by masking learned semantics in
unlabeled data, compelling the network to learn the remaining features missed by the current network.
Our experimental evaluations confirm that SA-FixMatch achieves better generalization performance
than FixMatch across various classification benchmarks.

2 RELATED WORKS

Modern Deep SSL Algorithms. Pseudo-labeling (Scudder, 1965; MclLachlan, 1975) and consis-
tency regularization (Bachman et al., 2014; Sajjadi et al., 2016; Laine & Aila, 2016) are the two
important principles responsible for the success of modern deep SSL algorithms (Berthelot et al.,
2019bsa; Xie et al., 2020; Zhang et al., 2021a; Xu et al., 2021; Wang et al., 2022b; Chen et al., 2023).
FixMatch (Sohn et al., 2020), as a remarkable deep SSL algorithm, combines these principles with
weak and strong data augmentations, achieving competitive results especially when labeled data
is limited. Following FixMatch, several works, e.g., FlexMatch (Zhang et al., 2021a), Dash (Xu
et al., 2021), FreeMatch (Wang et al., 2022b), and SoftMatch (Chen et al., 2023), try to improve
FixMatch by adopting a flexible confidence threshold rather than the hard and fixed threshold adopted
by FixMatch. These modern deep SSL algorithms can achieve remarkable test accuracy even trained
with one labeled sample per semantic class (Sohn et al., 2020; Zhang et al., 2021a; Xu et al., 2021;
Wang et al., 2022b; Chen et al., 2023).

SSL Generalization Error. Previous works on generalization capacity of SSL focus on a general
machine learning setting (Rigollet, 2007; Singh et al., 2008; Van Engelen & Hoos, 2020; Wei et al.,
2020; Guo et al., 2020; Mey & Loog, 2022). In particular, the authors here view the model as a
black-box function under certain assumptions which does not reveal the dependence on model design.
Some recent works (He et al., 2022; Tifrea et al., 2023) analyze the generalization performance of SSL
under the binary Gaussian mixture data distribution for linear learning models. The over-simplified
model is significantly different from the highly nonlinear and non-convex neural networks.

Feature Learning Analysis Previous works on feature learning analysis have provided valuable
insights into how neural networks learn and represent data (Wen & Li, 2021; 2022; Allen-Zhu &
Li, 2022; 2023). For instance, Allen-Zhu & Li (2023) investigated the mechanisms through which
ensemble method and knowledge distillation improve generalization performance, Wen & Li (2021)
explained why contrastive learning can effectively capture true sparse features and avoid spurious
dense features. Despite these advances, to the best of our knowledge, this work is the first to analyze
the feature learning process of neural networks in the context of semi-supervised learning.
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Figure 1: Visualization of pretrained ResNet-50 (He et al., 2016) using Grad-CAM. ResNet-50
locates different regions for different car images, e.g., wheel, rearview mirror, front light, and door.

3 PROBLEM SETUP

Here we first introduce the necessary multi-view data assumption used in this work, and then present
FixMatch, a popular and classic SSL approach, to train a three-layered CNN on a k-class classification

problem. For brevity, we use O(-), Q(-), ©(-) to hide constants w.r.t. k and use O(-), Q(-), O(-) to

hide polylogarithmic factors. Let poly (k) and polylog(k) respectively denote ©(k€) and ©(log® k)
with a constant C' > 0. We use [n] to denote the set of {1,2,...,n}.

3.1 MULTI-VIEW DATA DISTRIBUTION

Following Allen-Zhu & Li (2023), we employ the multi-view data assumption that suggests each
semantic class possesses multiple distinct features—such as car lights and wheels—that can indepen-
dently facilitate correct classification. To empirically validate this hypothesis, we utilize Grad-CAM
(Selvaraju et al., 2017) to identify class-specific regions within images. As shown in Figure 1,
Grad-CAM distinctly highlights separate and non-overlapping regions, such as different parts of a car,
that contribute to its recognition. These results corroborate the findings of Allen-Zhu & Li (2023),
confirming the presence of multiple independent discriminative features within each semantic class.

Now we introduce the multi-view data assumption in Allen-Zhu & Li (2023), which considers a
dataset with k& semantic classes. Let each sample pair (X, y) consists of the sample X, which is
comprised of a set of P patches {z, € Rd};f:l, and y € [k] as the class label. We assume each
class 4 has two discriminative features, v; 1 and v; 2 in R?, capable of independently ensuring correct
classification. While this analysis focuses on two features per class, the methodology extends to
multiple features. Below we define V as the set of all discriminative features across the & classes:

. . . k
V={vi1,vi2 | Jvialla = lvizlla = Lvig L if (6,0) # (@ 0) )]

where the conditions ensure the discrimination of each class and each feature in the data. Accordingly,

we define the multi- and singe- view distribution D,,, and D, where data from D,,, has two features,
and data from D, have one single feature. Set sparsity parameter s = polylog(k) and constant C),.

Definition 1 (Informal, Data distribution (Allen-Zhu & Li, 2023)). The data distribution D contains
data from the multi-view data distribution D,,, with probability 1 — p, and data from the single-view
data distribution Dy with probability |1 = m. We define (X,y) ~ D by randomly uniformly

selecting a label y € [k] and generate data X accordingly as follows.

(a) Sample a set of noisy features V' uniformly at random from {v; 1, vi,g}#y, each with probability

s/k. Then the whole feature set of X is V(X) = V' U {vy1,vy 2}, i.e., the noisy feature set V' plus
the main features {vy 1,vy2}.

(b) For each v € V(X), pick C, disjoint patches in [P] and denote them as P,(X). For a patch
p € Pu(X), we set ¥, = z,v + “noises” € R, where the coefficients z, > 0 satisfy:

(b1) For “multi-view" data (X,y) € Dm, > cp (x) % € [1,0(1)] when v € {vy,1,vy2} and
ZPEPU(X) zp € [Q(1),0.4] when v € V(X) \ {vy.1, v§,72}.

(b2) For “single-view" data (X,y) € Ds, pick a value | € [2] randomly uniformly as the index of the
main feature. Then 3 e p, (x) 2 € [L, O] whenv = v, 3 pep, (x) 2 € [, O(P)) (p = k70
whenv=w, 5 jandy cp )2 = m whenv € V(X) \ {vy,1,vy,2}.

(¢) For each purely noisy patch p € [P]\ UyevPy(X), we set z, = “noises”.

For the details of Def. 1, please see Def. 7 in Appendix A, and also see more explanations in
Appendix L. According to the definition, a multi-view sample (X, y) € D,, has patches with two
main features v, ; and vy o plus some noises, while a single-view sample (X, y) € D, has patches
with only one primary feature v, ; or v, o plus noises.
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3.2 FIXMATCH FOR TRAINING NEURAL NETWORKS

Here we introduce the representative SSL approach, FixMatch and its variants, on a k-class classifica-
tion problem, the most popular task in SSL.

Neural Network For the network, we assume it as a three-layer CNN which has mk convolutional
kernels {w;,, }ic[k),re[m]- Its classification probability logit,;(F, X') on class i € [k] is defined as

IOgiti(F’ X) = exp(FZ-(X))/ Zje[k] eXp(Fj (X))7 2
where F(X) = (F1(X),- -+, Fx(X)) € R? is defined as
Fi(X) = Zrew ZPG[P] ReLU((w; r, xp)), (Vi € [k]). 3)

Here ReLU (Allen-Zhu & Li, 2023) is a smoothed ReL U that outputs zero for negative values, reduces
small positive values to diminish noises, and maintains a linear relationship for larger inputs. This
ensures ReLLU to focus on important features while filtering out noises. See details in Appendix A.

This three-layer network contains the essential components of neural networks, including linear
mapping, activation, and a softmax layer, and thus its analysis provides valuable insights into
understanding networks trained using SSL. Notably, many other theoretical works also ultilize
shallow networks (e.g., two-layer models) to derive insights into deep networks, as seen in the
analyses of Li & Yuan (2017); Arora et al. (2019); Zhang et al. (2021b). Additionally, this setup
precisely matches the network architecture in Allen-Zhu & Li (2023), enabling direct comparisons
between our FixMatch results and the SL findings in Allen-Zhu & Li (2023) in Sec. 4.2.

SSL Training For FixMatch-like SSLs, at ¢-th iteration, it has two types of losses: 1) a supervised
one Lgt) on labeled data, and 2) an unsupervised one Lgf ) on unlabeled data. For Lgt), it iS cross-

entropy loss on labeled dataset Z;:
Lgt) :E(Xl,y)NZngt) (Xl7 y) = E(Xl,y)'\‘zz [_ IOg loglty(F(t)7 a<Xl))]a (4)

where a(X) is a weak augmentation applied to input X. In practice, «(X) includes a random
horizontal flip and a random crop that retains most region of the image (Sohn et al., 2020; Zhang
et al., 2021a) which often do not alter the semantic features. So we treat the weak augmentation as an
identity map to simplify our analysis. Additionally, experiments in Appendix K.2 also verify that
weak augmentation does not have significant effect on the training of SSL.

For the unsupervised loss Lq(f)(Xu), it feeds a weakly-augmented unlabeled sample «(X,,) into
the network to get the model classification probability logit;(F ), a(X,,)) (i € [k]). Next, if the
maximal classification probability is highly-confident, i.e., max; logiti(F(t), a(Xy)) > T; with a
confidence threshold 7; € (0, 1], FixMatch-like SSLs use it as the pseudo-label to supervise the
corresponding strongly-augmented image A(X,):

LY =Ex, .z, L (Xy) = Ex,~z, [~ T{iogit,(F®),a(x.)) > 7 loglogit, (F, AX,))],  (5)

where b is the pseudo-label b = arg max; ¢y {logit;(F® a(X,))}. Here, FixMatch-like SSLs use
pseudo-labels generated from weakly-augmented samples to supervise the corresponding strongly-
augmented ones, enforcing consistency regularization on model predictions, which we will show in
Sec. 4.2 is crucial for the superior generalization performance of SSL compared to SL. For threshold
T, FixMatch (Sohn et al., 2020) sets it as a constant threshold 7; = 7 (e.g. 0.95) for high pseudo-label
quality. Current SoTA SSLs, e.g., FlexMatch (Zhang et al., 2021a), FreeMatch (Wang et al., 2022b),
Dash (Xu et al., 2021), and SoftMatch (Schick et al., 2023), follow FixMatch framework, and often
design their own confidence threshold 7; in Eq. (5). This decides the applicability of our theoretical
results on FixMatch in Sec. 4 to these FixMatch-like SSLs. See details in Appendix G.

For strong augmentation A(+), it often uses CutOut (DeVries & Taylor, 2017) and RandAugment
(Cubuk et al., 2020). CutOut randomly masks a large square region of the input image, potentially
removing some semantic features. Experimental results in Appendix K.1 confirm the significant
impact of CutOut on image semantics and model performance. RandAugment includes various trans-
formations, e.g., rotation, translation, solarization. Appendix K.I reveals that those augmentations
that may remove data semantics also have a large impact on model performance. Based on these
findings, we model the probabilistic feature removal effect of .A(-) for our analysis in Sec. 4.1.
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Now given the training loss L") = Lgt) + )\Lq(f) at the ¢-th iteration, we adopt the widely used

gradient descent (GD) to update the model parameters {ww}ie[;@]yre[m] in the network:
Wit = wl) =0V, LY = WV, LY, (©)
where 17 > 0 is a learning rate, and A > 0 is the weight to balance the two losses. According to the

common practice (Sohn et al., 2020; Zhang et al., 2021a; Xu et al., 2021; Wang et al., 2022b; Chen
et al., 2023), we set A = 1 in both our theoretical analysis and experiments.

4 MAIN RESULTS

In this section, we first prove the superior generalization performance of FixMatch compared with
SL. Next we analyze the intrinsic reasons for its superiority over SL via revealing and comparing
the semantic feature learning process. Finally, inspired by our theoretical insights, we propose a
Semantic-Aware FixMatch (SA-FixMatch) to better learn the semantic features.

4.1 RESULTS ON TEST PERFORMANCE

Here we analyze the performance of FixMatch, and compare it with its SL counterpart, whose
implementation is simply setting the weight A = 0 for the unsupervised loss in Eq. (6).

As discussed in Sec. 3.1, we assume that the training dataset Z follows the multi-view distribution
D as defined in Def. 1, with multi-view and single-view sample ratios of 1 — x4 and u, respectively.
Each class ¢ € [k] in Z is associated with two i.i.d. semantic features v; 1 and v; o, both of which are
capable of predicting label 7. Multi-view samples contain both semantics, while single-view samples
contain only one. For clarity, we denote the labeled multi-view and single-view subsets of Z as Z; ,,
and Z; ,, respectively, and the corresponding unlabeled subsets as Z,, ,, and Z,, ;. Below, we outline
the necessary assumptions on the dataset and model initialization.

Assumption 2. (a) The training dataset Z follows the distribution D, and the size of the unlabeled
data satisfies N = |2y U 2y 5| = | Z1,m U 25| - poly (k).

(b) Each convolution kernel u)fg) (i € [k], 7 € [m])is initialized by a Gaussian distribution N'(0, o21),

where 0872 = 1/k and q > 3 is given in the definition of ReLU.

Assumption 2(a) indicates that number of unlabeled data significantly exceeds that of the labeled data,
a common scenario given the lower cost of acquiring unlabeled versus labeled data. The Gaussian
initialization in Assumption 2(b) accords with the standard initialization in practice, and is mild.
Moreover, we also need assumptions on the strong augmentation A(-) to formulate the effect of
consistency regularization in unsupervised loss (5).

Assumption 3. Suppose for a given image, strong augmentation A(-) randomly removes its semantic
patches and noisy patches with probabilities w9 and 1 — o, respectively.

(1) For a single-view image, the sole semantic feature is removed with probability o.

(2) For a multi-view image, either of the two features, v; 1 or v; o, is removed with probabilities m 7
and (1 — ) 7o, respectively. We define strong augmentation A(-) for multi-view data: for p € [P),

max(eq, €2)p, if vy1 is in the patch x,,
A(zp) = max(1 — €1, €2)xp, if vy 2 is in the patch x,, 7
(1—ex)xp, otherwise (noisy patch),

where €1 and €5 are i.i.d. Bernoulli variables, respectively equaling to 0 with probabilities w1 and 5.

As discussed in Sec. 3, for strong augmentation .A(-), we focus on its probabilistic feature removal
effect on the input image, caused by techniques like CutOut and certain operations in RandAugment,
such as solarization. The use of the max function ensures that €; is active when e, = 0, indicating
that A(-) removes one feature at a time. Further details are provided in Appendix A.

Based on the above assumptions, we analyze the training and test performance of FixMatch, and
summarize our main results in Theorem 4 with its proof in Appendix F.

Theorem 4. Suppose Assumptions 2,3 holds. For sufficiently large k and m=polylog(k), by setting
n<1/poly(k), after running FixMatch for T =poly(k)/n iterations, we have:
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(a) Training performance is good. For all training samples (X,y) € Z, with probability at least
1— e~2008° k) e have
Fy(T) (X) > max;iz, F]-(T) (X) + Q(log k).

(b) Test performance is good. With probability at least 1 — e=1°8"¥) oyer the selection of any
multi-view test sample (X, y) ~ Dy, and single-view test sample (X,y) ~ Ds, we have

FM(X)> Hlan?gij(T)(X) +Q(log k).

Theorem 4(a) shows that after 7' = poly(k)/n training iterations, the network F(7) trained by
FixMatch can well fit the training dataset Z, and achieves zero classification error. This is because for
any training sample (X, y), the predicted value F, (X) for the true label y consistently exceeds the
predictions F;(X) (j # y) for other class labels, ensuring correct classification. More importantly,
Theorem 4(b) establishes that the trained network F(7) can also accurately classify test samples
(X,y) ~ Dy, UDs, validating the generalization performance of FixMatch.

Now we compare FixMatch with SL (i.e. A = 0 in Eq. (6)) under the same data distribution and the
same network. According to Allen-Zhu & Li (2023), under the same assumption of Theorem 4, after
running standard SL for 7' = poly (k) /7 iterations, SL can achieve good training performance as in
Theorem 4(a). However, SL exhibits inferior test performance compared to FixMatch. Specifically,
both methods achieve zero classification error on multi-view samples (X, y) ~ D,,,, while on single-
view data (X, y) ~ D, SL achieves only about 50% classification accuracy, significantly lower than
FixMatch’s nearly 100% accuracy. See Appendix B for more details on SL.

For other FixMatch-like SSLs such as FlexMatch (Zhang et al., 2021a), FreeMatch (Wang et al.,
2022b), Dash (Xu et al., 2021), and SoftMatch (Chen et al., 2023), our theoretical results in Theorem 4
and the comparison with SL are also broadly applicable. Due to space limitations, we defer the
discussions to Appendix G. These theoretical results justify the superiority of FixMatch-like SSLs
over SL, aligning with empirical evidence from several studies (Sohn et al., 2020; Zhang et al., 202 1a;
Wang et al., 2022b; Xu et al., 2021; Chen et al., 2023).

4.2 RESULTS ON FEATURE LEARNING PROCESS

Here we analyze the feature learning process in FixMatch and SL, and explain their rather different
test performance as shown in Sec. 4.1. To monitor the feature learning process, we define

o) =3 o)t ek iep)
as a feature learning indicator of feature v, ; in class ¢ (i € [k],! € [2]), since it denotes the total
positive correlation score between the I-th feature v; ; of class 4 and all the m convolution kernels
w; r (r € [m]) at the ¢-th iteration. Larger <I)Z(.’tl) means the network can better capture the feature v; ;,
and thus can better use feature v; ; for classification. See more discussion in Appendix D.

Next, FixMatch uses a confidence threshold (7) to govern the usage of unsupervised loss as in Eq. (5),
delineating its feature learning process into Phase I and II. For Phase I, the network relies primarily on
supervised loss due to its inability to generate highly confident pseudo-labels. As training continues,
the network learns partial feature and becomes better at predicting highly confident pseudo-labels for
unlabeled data. This marks the transition to Phase II, where unsupervised loss begins to contribute,
driven by consistency regularization between weakly and strongly augmented samples.

Now we are ready to present the feature learning process of FixMatch and SL in Theorem 5.

Theorem 5. Suppose Assumptions 2,3 holds. For sufficiently large k and m = polylog(k), by setting
n < 1/poly(k) and T = 1 — O(1/s2), with probability at least 1 — e=(1°8” k) :
(a) FixMatch. At the end of Phase I which continues for T = %(k) iterations, we have

o)) > Qlogk), @5, < 1/polylog(k), (Vi e [k], 3 € [2)). 8)
At the end of its Phase Il which continues another T' = %(k) iterations, we have
o) > Qlogk), (Vi € [k, VI € [2)). ©9)
(b) Supervised Learning. After running T' > %(k) iterations, Eq. (8) always holds.
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See its proof in Appendix F. Theorem 5(a) indicates that Phase I in FixMatch continues for 7' =
poly(k)/n iterations. During this phase, the network learns only one of the two semantic features per
class. Specifically, in Eq. (8), for any class ¢ € [k], there exists an index [ € [2] so that the correlation

score CIJ,L(.? exceeds Q(log k), showing feature v;; is captured; and the score @5731)_ , Temains low,
indicating failure of learning v; 3_;. Then we analyze classification performance when Eq. (8) holds.

Corollary 6. Under the same conditions as Theorem 5. Assume Eq. (8) holds for the trained network
FT) . For any sample X from class i containing the feature V4,1, the network F (T) can correctly

predict label i. Conversely, if X contains only the feature v; 3_;, F (T) would misclassify X.

See its proof in Appendix D. According to Corollary 6, after Phase I, the network can correctly
classify the multi-view data, since each contains two features and the network has learned one of them.
However, for single-view samples that possess only one of the features, the network’s classification
accuracy is only around 50% since it may not have learned the specific feature present in the sample.
Then by running another 7" iterations in Phase II, as shown in Theorem 5(a), FixMatch enables the
network to capture both two features v; ; and v; o in class ¢ (Vi € [k]). As indicated in Eq. (9), all

features have large correlation scores ®55+T/) (Vi € [k], VI € [2]). By Corollary 6, for all training
and test data, the network trained by FixMatch can correctly classify them with high probability. This
explains the good classification performance of FixMatch in Theorem 4.

For Phase II of FixMatch, the reason for it to learn the semantics missed in Phase I is as follows.
Having learned one feature per class in Phase I, the network is capable of generating highly confident
pseudo-labels for weakly-augmented multi-view samples. As the confidence threshold 7 =1 —
0(1/52) is close to 1 (e.g., 7 = 0.95), it ensures the correctness of these pseudo-labels. Then,
FixMatch uses these correct pseudo-labels to supervise the corresponding strongly-augmented
samples via consistency regularization. As shown in Eq. (7), strong augmentation .A(-) randomly
removes the learned features in unlabeled multi-view samples with probabilities 7175 or (1 — 71 )7,
effectively converting these samples into single-view data containing the unlearned feature. Given
the large volume of unlabeled data as specified in Assumption 2, these transformed single-view
samples are significant in their size. Accordingly, they dominate the unsupervised loss, since the rest
samples containing the learned feature are already correctly classified by the network after Phase
I and contribute minimally to the training loss. Consequently, the unsupervised loss enforces the
network to learn the unlearned feature in Phase II.

For supervised learning (SL), Theorem 5(b) shows that with high probability, SL can only learn one
of the two features for each class. This result accords with Phase I in FixMatch. Then according to
Corollary 6, SL can correctly classify multi-view data using the single learned feature, but achieves
only about 50% test accuracy on single-view data due to the unlearned feature, aligning with Sec. 4.1.
By comparison, FixMatch achieves nearly 100% test accuracy on multi-view and single-view data, as
it learns both semantic features for each class.

Comparison to Other SSL Analysis. This work differs from previous works from two key aspects.
a) Our work provides the first analysis for FixMatch-like SSLs on CNNs. In contrast, many other
works (He et al., 2022; Tifrea et al., 2023) analyze over-simplified models, e.g., linear learning
models, that differs substantially from the highly nonlinear and non-convex networks used in SSL.
Some other works (Rigollet, 2007; Singh et al., 2008; Van Engelen & Hoos, 2020) view the model as
a black-box function and do not reveal insights to model design. b) This work is also the first one to
reveal the feature learning process of SSL, deepening the understanding to SSL and unveiling the
intrinsic reasons of the superiority of SSL over its SL counterpart.

4.3 SEMANTIC-AWARE FIXMATCH

The analysis of feature learning Phase Il in Sec. 4.2 shows the crucial role of strong augmentation .A(-)
via consistency regularization in Eq. (5) to learn the features missed in Phase I. However, according to
Eq. (7), A(-) only removes the learned feature with probabilities 71 72 or (1—m1 )7o. This means given
Ny.m unlabeled multi-view samples, A(-) can generate at most N4 = max(m;ma, (1 — 71)m2) Ny m
samples containing only the missed features to enforce the network to learn them in Phase II. So
FixMatch does not fully utilize unlabeled data in Phase II to learn comprehensive features, especially
when 79 is small, which usually happens when semantics only occupy a small portion of the image
so that strong augmentation A(-) like CutOut (DeVries & Taylor, 2017) and RandAugment has small
probability to remove semantics (e.g., in ImageNet, see Appendix K.6).
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Table 1: Comparison of Test accuracy (%) on CIFAR-100 and STL-10.

CIFAR-100 STL-10
400 2500 10000 40 250 1000

Label Amount

SL 1145 +0.12 4045 £050 63.77 £029 | 23.61 +1.62 38.83 + 1.12 64.08 £+ 0.47
FixMatch 55.16 £ 0.63 71.36 £ 044 7725 £0.22 | 70.00 £ 4.02 88.73 +£0.92 93.45 +0.19
SA-FixMatch 55.57 +£0.43 7212 +£020  77.46 £0.16 | 71.81 £4.23 89.45 + 1.19 94.04 + 0.19

Motivated by this finding, we propose Semantic-Aware FixMatch (SA-FixMatch) to improve the
probability of removing learned features by replacing random CutOut in FixMatch’s strong augmen-
tation .A(-) with Semantic-Aware CutOut (SA-CutOut). Specifically, if the unlabeled sample X has
highly confident pseudo-label, SA-CutOut first performs Grad-CAM (Selvaraju et al., 2017) on the
network F' to localize the learned semantic regions which contribute to the network’s class prediction
and can be regarded as features. Then for each semantic region, SA-CutOut finds its region center,
i.e., the point with highest attention score in the region, and then averages attention score within a gx¢q
bounding box centered at this point (e.g., ¢=16). Finally, SA-CutOut selects one semantic region
with the highest average score for masking. Here masking semantic region with the highest score can
enforce the network to learn the remaining features that are not well learned or missed in Phase I,
as they will not be detected by Grad-CAM or detected with relatively low attention scores. In this
way, SA-FixMatch can enhance vanilla FixMatch to better use unlabeled data to learn comprehensive
semantic features. For analysis, see our formulation of \A(-) with SA-CutOut in Appendix E.

In Theorem 13 of Appendix A, we prove that SA-FixMatch enjoys the same good training and
test accuracy in Theorem 4, but reduces the required number of unlabeled data samples [V, in
vanilla FixMatch to N,, = max{mmg, (1 — 7 )72} N., where N, is given in Assumption 2. This
data efficiency stems from SA-FixMatch’s use of SA-CutOut, which selectively removes the well-
learned features, thereby compelling the network to focus on learning previously missed or unlearned
features. Detailed theoretical discussions and proofs are presented in Appendix E, illustrating how
SA-FixMatch outperforms vanilla FixMatch in terms of data efficiency and better test performance.

As discussed in Sec. 3.2, SoTA deep SSLs, including FlexMatch (Zhang et al., 2021a),
FreeMatch (Wang et al., 2022b), Dash (Xu et al., 2021), and SoftMatch (Chen et al., 2023), of-
ten build upon FixMatch, and only modify the confidence threshold 7; in Eq. (5). Hence, SA-CutOut
is also applicable to these FixMatch-like SSLs to enhance performance. Experimental results in
Sec. 5.3 validates the effectiveness and compatibility of SA-CutOut.

5 EXPERIMENTS

To corroborate our theoretical results, we evaluate SL, FixMatch, and SA-FixMatch on several
image classification benchmarks, including CIFAR-100 (Krizhevsky et al., 2009), STL-10 (Coates
etal., 2011), Imagewoof (Howard & Gugger, 2020), and ImageNet (Deng et al., 2009). Following
standard SSL evaluation protocols (Sohn et al., 2020; Zhang et al., 2021a; Wang et al., 2022a), we
use WRN-28-8 (Zagoruyko & Komodakis, 2016) for CIFAR-100, WRN-37-2 (Zhou et al., 2020) for
STL-10 and Imagewoof, and ResNet50 (He et al., 2016) for ImageNet. We also apply SA-CutOut
to other FixMatch-like SSL methods and compare their performance with the original algorithms.
All experiments are run three times, and we report the mean and standard deviation. Additional
experimental details are provided in Appendix K.4 and K.5. Our code is included in the supplementary
material and will be publicly released.

5.1 CLASSIFICATION RESULTS

Here we evaluate SL, FixMatch, and SA-FixMatch by using different number of labeled data on
CIFAR-100, STL-10, Imagewoof, and ImageNet. Table 1 shows that on STL-10, FixMatch and
SA-FixMatch improve SL by a significant 28%+ of test accuracy under all three settings. From
Tables 1 and 2, one can also observe very similar big improvement on other datasets, e.g., 13%+
on CIFAR-100 and Imagewoof, and 6%+ on ImageNet. These results verify the superiority of SSL
methods over conventional SL methods, and are consistent with our theoretical findings in Sec. 4.1.

Meanwhile, from Tables 1 and 2, we find that our proposed SA-FixMatch outperforms vanilla Fix-
Match. For example, on Imagewoof, SA-FixMatch has a 1.5%+ average test accuracy improvement
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Table 2: Comparison of Test accuracy (%) on Imagewoof and ImageNet.

Imagewoof ImageNet
Label Amount 250 1000 2000 100K
SL 2594 £154  42.04+£090  60.77 £1.04 | 44.62 £ 1.16
FixMatch 43.00 £ 146 6491 £1.18 74.05+0.15 | 50.80 £0.73
SA-FixMatch 46.73 £136 6776 £129 7562 +0.13 | 52.18 £0.32

Figure 2: Visualization of WRN-28-8 via Grad-CAM on CIFAR-100. For each group of three images,
the left, middle and right one are the visualization of the models trained with SL, FixMatch, and
SA-FixMatch, respectively.

on FixMatch; on ImageNet, SA-FixMatch has a 1.38% higher average test accuracy than FixMatch;
on CIFAR-100 and STL-10, SA-FixMatch also consistently outperforms FixMatch, albeit with
a smaller performance gap. The reason behind this different improvement is that for samples in
CIFAR-100 and STL-10, the semantic subject in the image occupies the majority of the image (see
Appendix K.6). Accordingly, a random square mask in CutOut can well remove the semantic features
with high probability, and thus has very similar masking effects as our SA-CutOut. Indeed, if we
reduce the mask size in CutOut, random mask has less chance to well mask the semantic features and
its performance degrades as observed in Table 4. For the Imagewoof and ImageNet datasets, most
semantic subject only occupies less than a quarter of the image (see Appendix K.6). Therefore, a
random square mask in CutOut only has small probability to remove the semantic features compared
with SA-CutOut, and SA-FixMatch has much better test performance than FixMatch.

The superior test accuracy of SA-FixMatch compared to FixMatch is consistent with our theoretical
analysis in Sec. 4.3. The reason behind this improvement is that to achieve good test performance
in Theorem 4, the Phase II of SSL algorithms need to effectively remove well-learned features for
enforcing the network to learn missed semantic features in Phase I. While FixMatch uses CutOut
to randomly mask learned features in unlabeled data, SA-FixMatch always well masks the learned
semantic feature because it adopts SA-CutOut as discussed in Sec. 4.3. Therefore, with a fixed
number of images in unlabeled dataset, SA-FixMatch can more effectively use unlabeled data for
feature learning, and thus achieve better test performance.

5.2 SEMANTIC FEATURE LEARNING

To visualize the semantic features learned by networks trained by SL, FixMatch, and SA-FixMatch,
we use Grad-CAM (Selvaraju et al., 2017) to highlight regions of input images that contribute to the
model’s class-specific predictions. For SL, FixMatch, and SA-FixMatch, we follow the default setting
of Grad-CAM, and apply it to the last convolutional layer of the WRN-28-8 network on CIFAR-100.

Figure 2 shows that the network trained by SL often captures a single semantic feature since Grad-
CAM only localizes one small image region, e.g., bicycle front wheel. Differently, networks trained
by FixMatch can often grab multiple features for some classes, e.g., bicycle front and back wheels, but
still misses some features for certain classes, e.g., bus compartment. By comparison, networks trained
by SA-FixMatch reveals better semantic feature learning performance, since it often captures multiple
semantic features, e.g., bicycle front and back wheels, bus front and compartment. The reason
behind these phenomena is that as theoretically analyzed in Sec. 4.2, for classes which have multiple
semantic features, SL can only learn a single semantic feature, while FixMatch and SA-FixMatch
are capable of learning all the semantic features via the two-phase (supervised and unsupervised)
learning process. Moreover, as shown in Sec. 4.3, compared with FixMatch, SA-FixMatch can more
effectively use unlabeled data as it better removes well-learned features for enforcing network to
learn missed features in data. Thus, SA-FixMatch is more likely to capture all semantic features of
the data in practice with a fix number of unlabeled training data as observed in Figure 2.
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5.3 SA-CUTOUT ON FIXMATCH VARIANTS

SA-CutOut is compatible with other deep SSL methods, such as FlexMatch (Zhang et al., 2021a),
FreeMatch (Wang et al., 2022b), Dash (Xu et al., 2021), and SoftMatch (Chen et al., 2023), since as
discussed in Sec. 3.2, the main difference between these deep SSL methods and FixMatch is their
choice of confidence threshold 7;. Here we apply SA-CutOut to these algorithms and compare their
test accuracies with the original methods on STL-10 and CIFAR-100 dataset. From Table 3, one can
observe that on STL-10, application of SA-CutOut increases the test accuracies of FlexMatch and
FreeMatch by 2.6%-+, and the test accuracies of Dash and SoftMatch by 5.4%-+. On CIFAR-100, SA-
CutOut increases the test accuracies of FreeMatch and Dash by 0.65%+, SoftMatch and FlexMatch
by 0.5%-+. This validates our analysis in Sec. 4.3 that SA-CutOut can more effectively use unlabeled
data to learn comprehensive semantic features and thereby achieve higher test accuracy.

Table 3: Comparison of Test accuracy (%) of SSL algorithms with CutOut and SA-CutOut on STL-10
with 40 labeled data and CIFAR-100 with 400 labeled data.

Dataset | STL-10 | CIFAR-100
Algorithm | FlexMatch FreeMatch Dash SoftMatch | FlexMatch FreeMatch Dash SoftMatch
CutOut 7213 £566 7529+129 6751 +147 7855+290 | 59.65 £ 1.14 5844 +£192 4856 +2.16 60.16 +2.22

SA-CutOut | 7591 £559 7791 £201 7841 £191 84.04 £467 | 60.16 £1.06 59.12+1.69 5024 +£1.82 60.69 £ 1.95

5.4 ABLATION STUDY

Here we investigate the effect of the mask size Table 4: Effect of (SA-)CutOut mask size to test
in (SA-)CutOut on the performance of (SA- accuracy (%) on CIFAR-100 with 400 labeled data.
)FixMatch. For CIFAR-100 whose image size is
32 x 32, we set the mask size in (SA-)CutOut as Mask Size | 4 8 12 16

4,8, 12, and 16 to train the WRN-28-8 network. FixMatch 4865  50.11 5348 5523
Table 4 shows that 1) as mask size grows, both SA-FixMatch | 5271 5295 5537 3578

the test accuracy of FixMatch and SA-FixMatch

improves; 2) when mask size is small, SA-FixMatch makes significant improvement over FixMatch,
e.g., 4%+ when using a mask size of 4; 3) as mask size grows, the improvement of SA-FixMatch
over FixMatch becomes reduced, e.g., 0.55% when using a mask size of 16. For 1), as mask size
in (SA-)CutOut increases, the learned features in the image are more likely to be removed, which
is the key for (SA-)FixMatch to learn comprehensive semantics in Phase II as analyzed in Sec. 4.2.
This explains the better performance of FixMatch and SA-FixMatch when their mask sizes increase.
For 2), when using small masks, a random mask in CutOut has much lower probability to remove
learned features compared with SA-CutOut. Thus, SA-FixMatch has much better performance than
FixMatch. For 3), as mask size grows, a random mask in CutOut also has large probability to mask
learned features in the image. This explains the reduced gap between SA-FixMatch and FixMatch.

6 CONCLUSION

By examining the classical FixMatch, we first provide theoretical justifications for the superior test
performance of SSL over SL on neural networks. Then we uncover the differences in the feature
learning processes between FixMatch and SL, explaining their distinct test performances. Inspired by
theoretical insights, a practical enhancement called SA-FixMatch is proposed and validated through
experiments, showcasing the potential for our newly developed theoretical understanding to inform
improved SSL methodologies. Apart from FixMatch-like SSL, there are also other effective SSL
frameworks whose analyses and comparisons are left as our future work.

Limitations. (a) Apart from FixMatch-like SSLs, we did not analyze other SSL frameworks, like
MeanTeacher (Tarvainen & Valpola, 2017) and MixMatch (Berthelot et al., 2019b). However,
current SOTA deep SSLs like FlexMatch, FreeMatch, Dash, and SoftMatch all follow the FixMatch
framework, indicating the generalizability of our theoretical analysis on them. See details in Sec. 3.2
and Appendix G. (b) Due to limited GPU resources, we use small datasets, e.g. STL-10 and CIFAR-
100, instead of large datasets like ImageNet to test SA-CutOut on other SOTA SSLs. Future work
involves testing SA-CutOut on other SSLs methods (other than FixMatch) and on larger datasets.

10
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A THEOREM STATEMENT

In this section, we formally state the relevant data assumptions and theorems. Building on the proof
framework of Allen-Zhu & Li (2023), our results extend their findings from supervised learning (SL)
to semi-supervised learning (SSL). To maintain consistency, we adopt their notation throughout our
proof. Specifically, we follow their data distribution assumptions and extend their analysis from SL
to SSL through a two-phase learning process.

To formally define the data distribution, we set global constant C,, sparsity parameter s = polylog(k),
feature noise parameter v = m, and random noise parameter o, = Vapolylog(k) to control
noises in data. Here, feature noise implies that a sample from class 7 primarily exhibits feature
v;; (with [ € [2]), but also includes minor scaled features v;; (with j # ¢) from other classes.
Each sample pair (X, y) consists of the sample X, which is comprised of a set of P = k? patches
{x; € R4}E_ | and y € [K] as the class label. The following describes the data generation process.

Definition 7 (data distributions for single-view D and multi-view data D,,, (Allen-Zhu & Li, 2023)).
Data distribution D consists of data from multi-view data D,,, with probability 1 — u and from
single-view data D with probability i = 1/poly (k). We define (X, y) ~D by randomly uniformly
selecting a label y € [k] and generating data X as follows.

1) Sample a set of noisy features V' uniformly at random from {v;1,v; 2}izy each with
probability s/k.

2) Denote V(X) = V' U {vy 1,vy2} as the set of feature vectors used in data X.

3) Foreachv € V(X), pick C), disjoint patches in [P] and denote it as P,(X) (the distribution
of these patches can be arbitrary). We denote P(X) = U,ecy(x)Po(X).

4) If D = Dy is the single-view distribution, pick a value =1 (X) € [2] uniformly at random.

5) For each p € P,(X) for some v € V(X), given feature noise o, ,» € [0, 7], we set
Tp = 2pU + Zu/ev apv”'U/ + &p,

where &, € N (0, 012)1) is an independent random Gaussian noise. The coefficients z, > 0
satisfy

— For “multi-view” data (X, y) € Dy, when v € {vy,1,vy2}, > ,ep, (x) 2 € [1,0(1)]
and y,cp (x)%p € [1,0(1)] for an integer q = 3, and the marginal distribution of
> pep, (x) 2p i3 left-close. Whenv € V(X)\{vy1,vy2}, 3 pep, (x) 20 € [2(1),0.4],
and the marginal distribution of Zper (x) %p is right-close.

— For “single-view” data (X,y) € Dy, whenv = v, j, > cp (x) % € [1,O0(1)] for
the integer ¢ > 3. Whenv = v, 3 1, > cp (x)%p € [p,O(p)] (we set p = k—0-01
for simplicity). When v € V(X) \ {vy,1,vy2}, 2 cp, (x) 2 € [UT), L], where
I’ = 1/polylog(k), and the marginal distribution of Zpepv( X) %p is right-close.

6) For each p € [P|\'P(X), with an independent random Gaussian noise &, ~ N (0, %I),

!
Tp = E Qp 'V +
P eV p,v’ gpa
where each o, v € [0,7] is the feature noise.

Based on the definition of data distribution D, we define the training dataset Z as follows.

Definition 8. Assume the distribution D consists of samples from D,,, w.p. 1 — p and from D w.p.
w. We are given N; labeled training samples and N,, unlabeled training samples from D, where
typically N,, > N. The training dataset is denoted as Z = Z; ,, U 2y s U 2, 1, U 2y, 5, where 2,
and Z, ¢ represent the multi-view and single-view labeled data, respectively, and Z,, ,, and Z, s
represent the multi-view and single-view unlabeled data, respectively. We denote (X,y) ~ Z as a
pair (X, y) sampled uniformly at random from the empirical training dataset Z.
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Then, we introduce the smoothed ReLLU function ReLLU (Allen-Zhu & Li, 2023) in detail: for an
. _ 1 _ . _ 29 .
integer ¢ > 2 and a threshold ¢ = 57, ReLU(z) = 0if z < 0,ReLU(z) = oy if
z €0, 0] and ReLU(z) = z — (1 — %)g if z > p. This configuration ensures a linear relationship
for large z values while significantly reducing the impact of low-magnitude noises for small z values,
thereby enhancing the separation of true features from noises.

We also introduce our assumption on FixMatch’s strong augmentation .A(+), which is composed by
CutOut (DeVries & Taylor, 2017) and RandAugment (Cubuk et al., 2020). As discussed in Sec. 3.2
and Appendix K.1, we focus on its probabilistic feature removal effect.

Assumption 9. Suppose that for a given image, strong augmentation A(-) randomly removes its
semantic patches and noisy patches with probabilities mo and 1 — s, respectively. For a single-view
image, the sole semantic feature is removed with probability wo. For a multi-view image, either of the
two features, v; 1 or v; 2, is removed with probabilities w7y and (1 — 7r1) o, respectively. We define
the strong augmentation A(-) for multi-view data as follows: for p € [P),

max(€e1, €2)p, if vy 1 is in the patch x,,
A(zp) =< max(1l — €1, €2)xp,, if vy2 is in the patch x,, (10)
(1—e2)xp, otherwise (noisy patch),

where €1 and €5 are independent Bernoulli random variables, each equal to 0 with probabilities
and T, respectively.

Here we use the "max" function to ensure €; is active when es = 0, which implies that A(-) selects
one feature to remove at a time. The reason behind this assumption is that as we can observe from
Figure 1 and 2, different semantic features in a multi-view image are spatially distinct. Consequently,
the likelihood of a square patch from random CutOut and transformations from RandAugment to
remove both features is substantially lower than removing just one. To simplify our theoretical
analysis, we therefore assume that A(-) targets a single feature for removal in each instance.

Then we introduce the parameter assumption necessary to the proof. As we follow the proof
framework of Allen-Zhu & Li (2023), the assumptions on most of the parameters are similar.

Parameter Assumption 10. We assume that
e q>3and 08_2 = 1/k, where o gives the initialization magnitude.
e v < ON(%) and 1 < é(m) where ~y controls the feature noise.
* The size of single-view labeled training data N; ¢ = 6(k/p) and N; ¢ < %pq_l.
« N; > Ny, - poly(k), nT > N - poly(k), and v/d > nT - poly (k).

o The weight for unsupervised loss A\ = 1 and the confidence threshold T = 1 — ON(S%)

o The number of unlabeled data for FixMatch N. > nT' - poly (k) with n'T’ > poly(k), and
Ne,s k>

3 < N
N, — nsT’

the ratio of single-view unlabeled data

Here the first four parameter assumptions are followed from Allen-Zhu & Li (2023) for supervised
learning Phase I, and the last two parameter assumptions are specific to the unsupervised loss Eq.
(5) in learning Phase II. Define CI)Z(.Z) =2 rem] [(wz(tT), v;1)]T and <I>§t) =2 e <I>E7tl). We have the
following theorem for vanilla FixMatch under CutOut:

Theorem 11 (Peformance on FixMatch). For sufficiently large k > 0, for every m = polylog(k),
n < m, setting T' = %(k) andT' = %(k), when Parameter Assumption 10 is satisfied, with
probability at least 1 — e~ Slog? k),

* (training accuracy is perfect) for every (X,y) € Z:

Vi y: FT(x) > FTH(X) 4 Q(log k).

K3
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(T > 0,40+ 4
= Y. j

i

* (multi-view testing is good) for every i, j € [k, we have O(l) >o
Q(log k), and thus

Pr |FTH(X) > max FTTT)(X) 4+ Q(lo k} > 1 e Qog’ k)
(x,y)ezvm{y ()—#;‘a (X) + Q(logk) | =

. . o . T+T’
* (single-view testing is good) for every i € [k| and | € [2], we have <I>Z(-,l+ ) > Qlog k),
and thus

(X,y)EeD |:F15T+T’)(X> > mélx FJ_(T+T’)(X) + Q(log k)] S 1 e—Slog? k).
Y)ED, e

For Semantic-Aware FixMatch (SA-FixMatch), we denote the number of unlabeled data in this case
as N,. Then we have the following assumption on N,,.

Parameter Assumption 12. N,, = max{m 7o, (1 — 71)m2 } N..

Here 71 € (0,1) and w5 € (0, 1) are the probabilities defined in Assumption 9, where 75 is typically
small (1/poly(k)), as explained in Appendix H. From Parameter Assumption 12, we observe that the
requirement for the number of unlabeled samples in SA-FixMatch is significantly smaller compared
to that in FixMatch.

Under Parameter Assumptions 10 and 12, SA-FixMatch achieves the same performance results as
Theorem 11, but with a reduced requirement for the number of unlabeled data, decreasing from NV, to
N, . Thus, we state the following theorem regarding the performance of SA-FixMatch.

Theorem 13 (Performance on SA-FixMatch). Under Parameter Assumption 10 and 12, we can
achieve the same training and test performance as FixMatch in Theorem 11.

Our main proof of Theorem 11 and Theorem 13 for FixMatch and SA-FixMatch includes analyses on
a two-phase learning process. In Phase I, the network relies primarily on the supervised loss due to
its inability to generate highly confident pseudo-labels and the large confidence threshold 7 in Eq. (5).
According to the results in Allen-Zhu & Li (2023), partial features are learned during the supervised
learning Phase I. We review the results on supervised training in Appendix B.

Then in Phase II, the network predicts highly confident pseudo-labels for weakly-augmented samples
and uses these correct pseudo-labels to supervise the corresponding strongly-augmented samples via
consistency regularization. To theoretically analyze the learning process in Phase II, we build on the
proof framework of Allen-Zhu & Li (2023) and demonstrate how the network learns the unlearned
features while preserving the learned features during Phase II. Specifically, we present the induction
hypothesis for Phase II in Appendix C, along with gradient calculations and function approximations
for the unsupervised loss in Eq. (5) in Appendix D. We then provide a detailed proof of SA-FixMatch
in Appendix E and extend the results to FixMatch in Appendix F. Finally, we generalize our proof to
other FixMatch-like SSL methods in Appendix G.

B RESULTS ON SUPERVISED TRAINING

In this section, we first recall the results in supervised training that were derived in Allen-Zhu & Li
(2023). Before showing their main results, we first introduce some necessary notations. For every

i € [k], define <I>(fl) = Zre[m][@u(” v;)]" and &) = >ie) <I>§fl). Define

7 i,
t)
)

{ = max [<wz(t27 Ui,l>]+7
re[m] ’

Al(-t) ‘= max [(w(t) vi)]" and Al

re[m],le[2] Hr? ¢

where A; ; indicates the largest correlation between the feature vector v; ; and all neurons w; ,- (r €
[m]) from class 7. Then we define the "view lottery winning" set:

(0) (0) 2
ASL > AN (1 + )}
og”m

The intuition behind M is that if (i,1) € Mp, then the feature v, ; is likely to be learned by the
model and the feature v; 3_; is likely to be missed due to model initialization and data distribution.
M satisfies the following property (refer to the Proposition C.2. of Allen-Zhu & Li (2023)):

Mp = {(z’,l*) € k] % [2]
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Proposition 14. Suppose m < poly(k). For every i € [k], Pr[(i,1) € Mp or (i,2) € Mp] >
1—o(1).

Based on Theorem 1 of Allen-Zhu & Li (2023), after training for 7 iterations with the supervised
training loss Lgt)

LY = E(x,)~z |~ loglogit, (F", X )} ’

the training accuracy on labeled samples is perfect and LgT)

2,

approaches zero, i.e., for every (X, y) €

Vi#y: FO(X) > F7(X) + Qlog k),

and we have L( ) < Besides, it satisfies that 0. 4<I>(T) — <I>(T) < —Q(log k) for every pair

1 y(k)*
i,j € [k]. This means that at least one of <I>( 1) or <I>( ) forall i € [k] increase to a large scale of
O (log(k)), which means at least one of v; 1 and V2 for all i € [k] is learned after supervised training

for T iterations. Thus, all multi-view training data are classified correctly. For single-view training
data without the learned features, they are classified correctly by memorizing the noises in the data
during the supervised training process. Then for the test accuracy, for the multi-view data point
(X,y) ~ D,,, with the probability at least 1 — e~2(°8” %) it has

~ (1
. T
loglty(F( ) X)>1 O<52>

and

Pr |F{D(X)>maxF\ " (X) + (o k] > 1 — e 2o’ k)
(va)NDrrl|: Y ( ) J#y ( ) ( & ) -

This means that the test accuracy of multi-view data is good. However, for the single-view data

(X,y) ~ Ds, whenever (i,1*) € My, we have <I>(3 <K Wog(k) and
1 1
Pr  |F™(X)>max F(X) - —— 1
(x,yfws{ y O ( )_fjrl;g 5(X) polyloe(k) < 5 (1+o(1)),

which means that the test accuracy on single-view data is nearly 50%.

The results in Allen-Zhu & Li (2023) fully indicate the feature learning process of supervised learning.
The main reason for the imperfect performance of SL is that, due to "lottery winning", it only captures
one of the two features for each semantic class during the supervised training process. Therefore for
single-view data without this feature, it has low test accuracy.

In the following, we will consider the effect of loss Lg’) on unlabeled data for training:
LY = E(xy)z, | L, togit, (76 a(x))>7}  — log logit, (F®, A(X))|

where b = arg max; ¢ logit,(F®, a(X)), T is the confidence threshold and «, A are the weak
and strong augmentations, respectively. For the simplicity of proof, we set « to be identity mapping.
In the following, we will prove Theorem 11. By setting 7 = 1 — O(1/s?), we will show that after
we train the network F(T) combining the loss Lq(f) for another 7" = %(k) epochs, the network

can learn complete semantic features for all classes, resulting in perfect test performance on both
multi-view and single-view data.

C INDUCTION HYPOTHESIS

In this section, to prove our theorem, similar to Allen-Zhu & Li (2023), we present an induction
hypothesis for every training iteration ¢ in learning Phase II. We first show the loss function in learning
Phase II.

18
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Loss Function. Recall logit,(F, X) := % In learning Phase I, before the network
qetk) €7

learned partial features to make confident prediction, only the supervised loss Lgt) takes effect
LY = E(xy)-z, [— log logit,, (F®), X)] .

In Phase II, after we train the network F' for T = %(k) epochs using Lgt) in the Phase I, according
to the results in Appendix B, one of the features in each class is captured. Then we consider to
optimize the network F(7) using the following combination of losses:

L® =E(x.y)~z [— log logity(F(t)7 X)}
FNEX~2, [T, ogit, (0 (x))27} * — 10g10git, (F©, A(X))]

where b = arg max; ¢, logit, (F"), a(X)). Recall 7 = 1 — O(1/s%), when t > T and we use F'(*)
to classify the unlabeled data X ~ Z,,, we will get a correct pseudo-label with high probability, i.e.,
b = y, where y denotes the ground truth label of X. This means that for X ~ Z,, ,,,, with probability

at least 1 — e~ (10g” k) logity(F(t)7 X) > randfor X ~ Z, ¢, when (y,l*) € Mp and [(X) =",
with the probability at least 1 — e~ log” k) logity(F(t), X) > 7. We denote the samples in Z,, that
satisfy logit,, (F®, X) > 7 as Z, and let N,, = | Z,,|. In this way, we can further simplify the loss
as

L® =® 4 \L®

. . (11)
=E(x,y)~z [f log loglty(F(t),X)} +AEx .z, [f log logltb(F(t),A(X))} )

We introduce the following induction hypothesis:

Induction Hypothesis 15. For every | € [2], for every r € [m), for every X € Z, and i € [k],

()

9 x) = (w012 £ 6(00).

(a) Foreveryp € Py, ,(X), we have: (w;

(b) Foreveryp € P(X)\ (Py, ,(X)UP,, (X)), we have: |<w(t) z,)| < O(0p).

7,7

(c) Foreveryp € [P]\ P(X), we have |<w(t) z,)| < O(oovk).

Moreover, we have for every i € [k], everyl € [2],
(d) @) > Q(0q) and ') < O(1).

(e) for every r € [m], it holds that (w(t) vi1) > —O(0y).

7,7

Recall that CIJZ(.Z) = rem] [(w(t)

i Vi) T and @Et) =l @Efl).

The intuition behind Induction Hypothesis 15 is that training with semi-supervised loss (11) filters out
feature noises and background noises for both multi-view data and single-view data. This can be seen
in comparison with Induction Hypothesis C.3 of Allen-Zhu & Li (2023). With the help of Induction
Hypothesis 15, we can prove that the correlations between w; , and learned features in Phase I are
retained in Phase II, and the correlations between w; ,- and unlearned features will increase to a large
scale (log(k)) in the end of learning Phase IL.

D GRADIENT CALCULATIONS AND FUNCTION APPROXIMATION

Gradient Calculation. We present the gradient calculations for the cross-entropy loss
L. (F; X,y) = —loglogit, (F, A(X)) on unlabeled data X with correctly predicted pseudo-label

y. With a slight abuse of notation, we use (X, y) ~ Z, to denote unlabeled data X ~ Z, along with
its corresponding ground truth label y.

19



Under review as a conference paper at ICLR 2025

Fact 16. Given data point (X,y) ~ Z,, for everyi € [k],r € [m],

—Vou, Lu(F; X, y) = (1 — logit, (F, A(X Z ReLU' (Wi py Alxp)))A(xp), wheni=vy,
pe(P]
(12)
~Vu,, Lu(F; X,y) = ~logit,(F, A(X)) Y ReLU ((wi,, A(x,))A(z,),  wheni #y.
pE[P]
(13)

Definition 17. For each data point X, we define a value V; . ;(X) as
—_
Vird(X) =Ty, cvxy D, ReLU ((wiyr, A(w,)))A(z)-
PEPy, | (X)
Definition 18. We also define small error terms which will be frequently used:
E =00 s Epin(X) 1= O(V (Vi1 (X) + Vi a(X)))

53 = O(O’o’yk)q_l’yp 5473"1()() = O(O‘O 1)ij,l€V(X)-

Then we have the following bounds for positive gradients, i.e., when ¢ = y:

Claim 19 (positive gradients). Suppose Induction Hypothesis 15 holds at iteration t. For every
(X,y) € Zy, everyr € [m], everyl € [2], and i = y, we have

(@) (—Vu,  Lu(FD; X, y),v5,) > (V;-M(X) — O(UPP)) (1 — logit,(F®, A(X))) .

(b) (=Vu, , Lu(FW; X, y),vi1) < (Vira(X) + &1+ E3) (1 - logit,(F), A(X))).
(c) Forevery j € [k]\ {i},
=V, Lu(FD; X, ), 050)| < (€1 + E2,i.0(X) + E5 + E45(X)) (1 — logit,(F), A(X))).

We also have the following claim about the negative gradients (i.e., ¢ # y). The proof of positive and
negative gradients is identical to the proof in Allen-Zhu & Li (2023), except that in our case, we have
the augmentation operations on the data patches.

Claim 20 (negative gradients). Suppose Induction Hypothesis 15 holds at iteration t. For every
(X,y) ~ Zy, everyr € [m], everyl € [2], and i € [k] \ {y}, we have

(@) (—Vu,  L,(FY; X, y),v;1) > —logit,(F®, A(X)) (& + E + Vi (X))
(b) For every j € [K]: (=Vu, , Lu(F"; X, y),v;1) < logit,(F", A(X))O(0,P).

(c) For  every j € K]\ {3 (Vo  La(FY5 X, ), v50)
—lOgiti(F(t), .A(X)) (51 + &3 + 547j7l(X)) .

IV

Function Approximation. Let us denote Z,i(tl) (X) := L, ,evix) (§ pEPY. (X) A(zp)), we can
’ ’ Vil
easily derive the following result on function approximation.

Claim 21 (functlon approximation). Suppose Induction Hypothesis 15 holds at iteration t and
suppose s < O( —)andy < O( ), we have:

a’ok(mP)l/‘l

« foreveryt, every (X,y) € Z, and i € [k], we have

FOx Z (<1> ) x 7t )) iO(m).

o forevery (X,y) ~ D, with probability at least 1 — e~ Qog” k) jy satisfies for every i € [k],

(t) _ (t) () _
F7(X) = l% ((I)i,l X Z (X)) + O(polleg(kf)).
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Claim 22 (classification test performance). Suppose Parameter Assumption 10 holds. Assume for
Vi € [k], 3l € [2] such that &, ;> Q(log k) and ©; 3_; < m in the trained network . Then

the following statements hold with probability at least 1 — e~ Qlog? k).

* For any (X,y) ~ D which contains vy, as the main semantic feature, network F can
correctly predict the label y of X.

* Forany (X,y) ~ D only with v, 5_; as the main semantic feature, the network F would
mistakenly predict the label of X.

Proof. Based on our definition of multi-view and single-view data, for any multi-view data (X, y) ~
D, when we have ®; > Q(log k) (Vi € [k]), according to Claim 21 and Claim D.16 in Allen-Zhu &
Li (2023), we have 0.4®; — ®; < —Q(log k), which means F (X) > max;-, F;(X) + Q(log k).
For any single-view data (X, y) ~ D, with v, ; as the main semantic feature, according to Claim 21,
Fy(X) > Q(logk) and for i # y, F;(X) < O(I'). Thus, we have Fy,(X) > max;z, F;(X) +
Q(log k). In the above two cases, the network F' can correctly predict the label y of X.

For any single-view data (X,y) ~ D, with v, 3_; as the main semantic feature, according to
) and with probability at least 1 — e there exists

i ) 1 —O(los?
Claim 21, Fy,(X) < O(p) + PoRIoath) Q(log? k)
i € [k] and i # y such that F;(X) > Q(T"). This means that F}(X) < max;, F;(X)

1
" polylog(k) -
In this case, the network F' will mistakenly predict the label of X. O

E PROOF FOR SEMANTIC-AWARE FIXMATCH

Here we consider to prove the SA-FixMatch case first. SA-FixMatch replaces CutOut operation
in strong augmentation of FixMatch with SA-CutOut, which deterministically removes the learned
features in Phase I. This helps to reduce the number of unlabeled samples needed during the Phase
II training as shown in Assumption 12. Since the learned features of Phase I are deterministically
removed in SA-FixMatch, for the simplicity of theoretical analysis, we first prove the results under
SA-FixMatch and then we can easily generalize the results to FixMatch.

For theoretical proof, we assume that Grad-CAM in SA-CutOut can correctly identify the learned
feature after the first stage. In this case, the formulation of strong augmentation A(-) with SA-CutOut

for X ~ Z, and (i,1*) € Mp NV(X) (I* varies depending on i) is
0, ifpeP,, .(X), (14)

Zp, otherwise.

Ary) = {

In the following, we will begin to prove Theorem 13. We first introduce some useful claims as
consequences of the Induction Hypothesis 15.

E.1 UsEFUL CLAIMS

Based on the results from Allen-Zhu & Li (2023), at the end of learning Phase I, for (¢,1*) € Mg,
1) > Q(log k) while (I)ﬂll < 1/polylog(k). Below the first claim addresses the initial

we have @,/

growth of the correlations between w; , and the unlearned feature (@Etg_ ;») in learning Phase II,

and the second claim asserts that the correlations between w; , and the learned feature (@Etl)*) are
preserved during learning Phase II. Here we first give a naive bound on the logit function based on
function approximation result Claim 21.

Claim 23 (approximation of logits). Suppose Induction Hypothesis 15 holds at iteration t, and
suppose s < O( L) and v < O( , then

q
o’om

1
ok P77
+ for every (X,9) ~ Zypy and (i,1") € Mp: logit, (FO, A(X)) = O (ot ),

s forevery (X,y) ~ Z, s and every i € [k]: logit,(F®), A(X)) = O (£)-
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Proof. Recall Fi(t) (AX)) = X, epm) 2perp) ReLU((wir, A(2))). According to Claim 21, data

assumption 7 and data augmentation defined in (14), we have that for (X, y) ~ Z, ., and (4,1*) €
Mg (I* varies depending on 7),

(1) O v
and for ¢ € [k] \ {y}.
1

<FOAx) <o) . 044+0(———
0< i (A( ))— i,3—1 0 +O(polylog(kj)

).

Thus, combining the above results, for every (X, y) ~ 2, ,,, and (¢,*) € Mp, we have for every
i€ (k]

o(a'"
e K2

0@ _n
i (®) - e =
logit,(F'", A(X)) =0O ; .
ao1x) +k

On the other hand, for the single-view data in 5%5, as the only class-specific semantic feature is
masked after we conduct strong augmentation, only noisy unlearned features and background noises

remain. Thus, for (X,y) ~ Z, s and (4,1*) € Mp, we have for i # y,
1
0< FOAX) <0(1) and 0< FPAX) <o) . OI) +0(————) < O0(1
< FP(AX) £O(1) and 0 < FYIAX)) £ 8. - O(0) +0(ers) < O(1),
and thus we have for every ¢ € [k],

logit,(F®), A(X)) =0 (11@) :

O

Now we are ready to prove the following claim on the initial growth of @Etgf - With (4,1%) € Mp.

Claim 24 (initial growth). Suppose Induction Hypothesis 15 holds at iteration t, then for every
i € [k] with (i,1*) € M, suppose @Etg_l* < O(1), then it satisfies

! 5 (1 R T
o' —al) | +6 (E) ReLU (8 _,.).
Proof. For any w; - and v; 3= (i € [k],r € [m]), we have

(W o) = (W1, v 5-00) = ME(x yymz (Vs Ls(FO3 X, y), v35-00)]

- 77IE:(X,y)NL}u [<vw1rLu(F(t)v X, y)7 Vi,3—1* >]
For the loss term on Z;, we have
—Ex, )~z [V, , L(FP; X, ), 05 3-1+)]
:E(Xay)NZz [Hi:y(l - lOgiti(F’ X)) ZPE[P] ReLU/(<wi,Tv xp>)<xpv 'Ui,3*l*>_
I, 2, logit,; (F, X) Zpe[P] ReLU/(<wi,r, Tp)) (Tp, Viz—1+)]-

Based on the results from Allen-Zhu & Li (2023), when t > T', we have

1
E - 1 —logit, (F,X))| < d E ~z Lz, logit. (F, X)| < ,
(X, y)~2Z [( og1 y( ))] = poly(k) an (X,y) Z,[ #y 1081 l( )} poly (k)
which means
1
—E(x 1m0 w, Ly(FO: X g )] < ———
(X,y) Zz[<v i ( 3 ’y)7vv3 l >] = poly(k>7

i.e., the supervised loss is fully minimized in the first stage and contributes little in the second stage.
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Then, from Claim 19 and Claim 20, we know

(W vy 520y 2wl viz_e) + B x yymz, Ly=i(Virz—1+ (X) — O(0,,P)) (1 — logit, (FV, A(X)))

—Iyzi(&1 + &+ L,y ep(x) Virs—ie (X))logit (F1, A(X)].

Consider r = arg maxre[m}{<w§?, v; 31+ }, then as m = polylog(k), we know (w 1(2, Vi3_ix) >

= S t
Q). Recall Vipa—i+(X) = L v Lpep,, . oo RLU (), A(2,)) Alz),
according to Induction Hypothesis 15(a) and definition in (14), we have

Virg—tr(X) =T, neveey 9 ReLU ((wl!),v53-10)2 + 3(00))2

PEPy, 5. (X)

* When i = y, at least for (X, y) ~ ZM,L, we have Zpep (x)% = 1, and together
,3—1%*
with | Py, | < Cp, weknow V; . 5= > Q(1) ~ReLU/(< l(tr),vl 3-1%))-

,3—1*
* When ¢ # y and when v; 3_;« € P(X), we can use Epep x)% < 0.4 to derive that
Vi, 3—1*
V;.r?) l* < 0.4- ReLU (< 17"1)13 l*>)

Moreover, when @gf%fl* < O(1), by Claim 23, we have logit,;(F"), A(X)) < O(3). Then we can
derive that
1

(t+1) ]
k

(wify ™ viamre) 24wil) o) + B x gz, Mymi - Q1) = O) Lyl e ep(x) -
O'pP + 81 + 53)

k
Finally, recall that Pr(v; 3~ € P(X)]i # y) = £ < o(1), we have that

-ReLU (w!"), vi3-1-) — nO(

it vigmre) > il vigmre) + @ () ReLU (!}, vig10)).
Similarly, using Claim 19 and 20, we can derive:
<U)l(,tr+l), Ui,371*> < <’wl(,t727 ’07;’371*> + nE(X,y)Néu, [Hy:i(V;,r’g,l* (X) + 51 + 53)(1 - lOgltl (‘F(t)7 X))
—1,2:0(0, P)logit,(F"), X)].
With similar analyses to the upper bound, we can derive the lower bound
Wi vig—re) < il vigre) + 0 (1) RelU (), vigro)).
O

With initial growth analysis in Claim 24, similar to Claim D.11 in Allen-Zhu & Li (2023), we can
obtain the following result:

Claim 25. Define iteration threshold Ty := © ( —£ ), then for every i € [k], (i,1*) € Mp and
99
t > T + Ty, it satisfies that @f% - =0O(1).

As we stated in Claim 23, model prediction for the augmented single-view data in 2%3 are kept to
the scale of O (%), since after strong augmentation there remains only noises. Now we present the
convergence of multi-view data in Z,, ,,, from T 4 T, till the end.

Claim 26 (multi-view error till the end). Suppose that the Induction Hypothesis 15 holds for every
iteration T < t < T + T', and suppose Nowse < k2 then

nST”
T+T’ -k
Y Exyez,,[1-logit, (F AX))] <O <n) '
t=T+To
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Proof. For any w; . and v; 3= (i € [k],r € [m]), we have

(i vis 1) = (), viso10) = NE(x gz [V, La(FO5 X, 1), 05510)]

- UE(X,y)~Z"u [<vm1rLu(F(t)7 X7 y)v Vi, 3—1* >] .

For the loss term on Z;, as discussed above, we have

1
—E(X,y)NZl [<Vwi1TLs (F(t), Xa y)v Vi, 3—1* >] < poly(k) ’

Again, by Claim 19 and Claim 20, we know
(W vy 50y 2wl v 50) + ME (x 2, Ly=i(Virz—1- (X) — O(0,,P)) (1 — logit, (F ", A(X)))
—Tyi(E1+ E + 1, epx)Vira—i- (X)) logit, (FO, A(X))).

Take r = argmaxre[m]ﬂw;t,),,vi73_1*>}, then by m = polylog(k) we know <w§?,vi)3_l*> >
Q@) ) =Q1) fort > T + Ty.

i,3—1*

) ReLU'((w{"), A(x,)))A(z,) and our defini-

2,7

Recall ‘/;77‘;3—” (X) = Hvi,s—L*GV(X) Z;DEP% 5 (

tion of \A, using the Induction Hypothesis 15, we have that for (X, y) ~ Z,, ., it satisfies
. _ ReLT ((w®, 0141}z 4.5
Virg—1(X) Zpep%# . ReLU ((w;), vi3—1-)2p % 6(00)) 2p-

Since we have <w§fr),vi73_l*> > Q(1) > gand |P,,

i

3% (X)| < 0(1), for most of p € P, we

i,3—1%

have alreadly in the linear regime of ReLLU so

09 5 <Virar ()<Y

Zp.
ia_x (X) sy (X)

Thus, when (X,y) ~ 2, , and y = 4, we have V; , 5+ (X) > 0.9; when (X, y) ~ Zy 1, y # @
and v; 3+ € P(X), we have V; ;. 3_-(X) < 0.4. When (X,y) ~ ZNU,S and y = ¢, we have
Vips_-(X) > 0; when (X,y) ~ Zus y # i and v;3 1~ € P(X), we have V; 3 - (X) <
O(T') < o(1). Then we can derive that

(t+1)

<wm ,Ui,3—l*>
> (') via-) + 1B x )z, (089 T, (1~ logit,(F"), A(X)))]
= NE(x )~z [yzi(E1+ E + 041, . epx))logit; (FM, A(X))]

Nu s A i
¢ (77N> E(X,y)NZHL,S [O(Upp)ﬂy:i(l - IOglti(F(t)a A(X)))]

nNu,s .
¢ ( N, ) Eix oz, . Tyzi(€1+E + Ly, ep(x))logit,(FY, A(X))]

. 5N,
> () vig) + @ (1) By )z, (1 - logit, (FO, A(X))] -0 ("kz N) 7

where the last step is based on Claim 23 and the fact that Pr(v;; € P(X)|i # y) = < o(1). Thus,
when summing up all € [m], and telescoping from T + Tj to T' + 1", we have

n gl T'nsN,
T'4+T T+T ~ . ~ u,s
oD > ot 10 (—) > Eixyoz . {(1 - loglty(F(t),A(X)))} O P s )
k ' k2N,
t=T+T,
Then combining that @527 e < O(l) from the Induction Hypothesis 15(d), we have:

T+T’ ~
) ~(k\  ~ [ T'sN,., - [k

t=T+To n n
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Now we are ready to prove the following claim on the correlations between model kernels and the

learned feature <I>( )

;.1 1s retained during learning Phase II.

Claim 27 (learned is retained). Suppose that the Induction Hypothesis 15 holds for every iteration
T <t < THT', under Parameter Assumption 10 and 12, we have for every iteration T <t < T+T":

(i,1*) € Mp, ). > Q(log(k).

Proof. For any w; - and v; ;= (i € [k],r € [m]), we have

Y i) = (W) viae) = B pymz (Vi L (FO; X, ), v300)]
- nE(X,y)NZu [<vweru (F(t)v X, y)a Ui, 1* >]

For the loss term on Z;, as discussed in Claim 24, we have

(w

1
poly (k)

~E(x )~z (Vo Ls(FY5 X, y),v50-)] <

Again, by Claim 19 and Claim 20, we know

(W i) 2wl o) + 1B x5 My=i(Vira- (X) = O(0,P))(1 — logit, (F(®), A(X)))

7,7 1,77

—Lyzi(&1 + & + 1y, epx) Vi i» (X))logit, (F™", A(X))].

Recall V; ;. 1+(X) = L, . ev(x) Zpemi_,* (X) ReLU’(< (t) A(zp)))A(zp) and our definition of

’LT7

strong augmentation in (14), we have Vi,r,j* (X) = 0, so we have by Claim 23 that

k

(0 100) 2 vna) = O (P20 ) By s 1 - togit (O, GO - 0 (1EEE)),

Summing up all r € [m] and using m = polylog(k), we have

q

_ - P - -1 kyi—1ip
‘I’z(',tltl) Z(I)z(’fl*l) Y (W;;) E(xy~z, [1 = logit,(F", A(X))] - O <W(GO - +}i‘707 ) )> '

In the following, we separate the processinto 7' <t < T +Tpandt > Ty +T.

WhenT' <t <T 4+ Tj. Recall at the end of learning Phase I, we have <I>Z < > Q(log(k). Using

T,=6 ( WO%) and our parameter assumption 10, we have <I>Z(.’ 1 > Q(log(k) for every iteration of
T<t<T+Ty.

When T+ Ty < t < T+ T’'. By the upper bound on multi-view error in Claim 26, we know
(). > Q(log(k) for every iteration of T+ Ty < t < T + 1. O

Next, we present our last claim on individual error similar to Claim D.16 in Allen-Zhu & Li (2023).

It states that when training error on ZNWn is small enough, the model has high probability to correctly
classify any individual data.

Claim 28 (individual error). WhenE x5 [1 —logit, (F), X)] < 7 is sufficiently small,
we have for any (1,3 — 1), (4,3 1) ¢ Mp,
0401, — @) | < —Q(log(k)), @), @3, > Qlog(k)),

and therefore for every (X,y) € Z (and every (X,y) € Dw.p. 1 — 679(1"%2(’“))),

Fy(t)( )>maxE()( )+ Qlog k).
J#y
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Proof. Denote by Z  for the sample (X,y) € Z,.,, such that D opep x) % S 1+ W
: vy e

k)
where (y,1*) € Mp. For a sample (X, y) € i;m, denote by H(X) as the setof all i € [k] \ {y}
such that 3 p o (x) % 2 04—

m where (Z, l) S MF
Now, suppose 1 — logity(F(t),X) = £(X), with min(1, 5) < 2(1 — ﬁ), we have

~ FO(X)~FP (X)) <
min(1, Zie[k]\{y} e v ) < 28(X)

By Claim 21 and our definition of #(X), this implies that
. 049 o) |
mm(l’zieﬂ(x) e st Py a-ir ) < 4E(X).

If we denote by ) = E ) = [1 —logit, (F("), X)], then

(t) (t)
E(Xw)’véu,m [min(l, Zie?—[(x) 60-4¢i,3—1—¢y,3—“ ):| < 0(1/})’

1 g4e®  _e®)
B E(X,y)Néu,m [Zz‘eﬂ(x) mln(E,eO 40,5 =05, )] < O(w)

Notice that we can rewrite the LHS so that

14t e
Exy)~Zum [Zje[k] L=y Zie[k] ligp () min( o, e et Tt )] < O(),

.1 043 _a®
= Zje[k] Zie[k]]l#yE(x,ywz”u,m [Hj:y]IiEH(X)]mm(Eae Pt Raan) < O(1h),

where (j,I') € Mp. Note for every the probability for every i # j € [k], the probability of
generating a sample (X, y) € Z~;j7m withy = j and i € H(X) is at least Q(% . fc—z) This implies

040l e K
— i,3— 3.3=1) < — .
Dy ™ Gpe T S (821/)

Then, with 1 — ﬁ < min(1, 8), we have for every (X,y) € Zy.m,

e}

(t) (t)
1— IOgity<F(t), X) < min(l, SR 260.44’,i,sfl_‘1’yi3—z*)
1 E :z y

.1 g4 _e®
<k - AL SO B 3—1%
sk Zie[k]\{y} min(y, e ve)

IN

(15)
0] (%) .

52
Thus, we can see that when ¢/ < 7 is sufficiently small, we have for any i € [k] \ {y}
040 _o® 1 t t
LA < 2 = 0.40% , — @l . < —Q(log(k)).

By symmetry and non-negativity of @Ef;_l, we know for any (¢,3 — 1), (§,3 — ') ¢ M, we have:

0401, — @l | < —Q(log(k)), @), @3, > Qlog(k)). (16)

Since (16) holds for any (4,3 — 1),(j,3 — l') ¢ Mp at iteration ¢t such that
E(x yy~z, [1—logit, (F",X)] < . and from Claim D.16 in Allen-Zhu & Li (2023) we
know (16) also holds for ®; ;, ®; ; for any (i,1), (j,!') € Mp during learning Phase II, so we have

* for every (X,y) ~ Z,,, by Claim 21 we have

Fy(t) (X)>1-2,—-0( ) > 0.4max ®; + Q(log(k)) > maij(t) (X) + Q(logk).

polylog(k) 3£y J#y
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* forevery (X,y) ~ Z,, suppose v, ; is its only semantic feature, by Claim 21 we have

0 B, —O(—
FX) 2 1@y = O(mms) = Qlog(k)),
Fj(t)(X) <O) @5+ O(m) < O(1) for j #y.

Therefore, we have

t (t)
F{(X) > max F;” (X) + Q(log k).

J#y

O

Let T' + T} be the first iteration that ]E(X7y)NZ~u,m [1 — logity (F(t), X)] < 1?14’ then we know for

t > T + T (16) always holds, since the objective L®) = L + AL{Y (\ = 1) is O(1)-Lipschitz
smooth and we are using full gradient descent, which means the objective value is monotonically

)

non-increasing. Since in Phase II, Lgt is kept at a small value, Lq(f) is monotonically non-increasing.

E.2 MAIN LEMMAS TO PROVE THE INDUCTION HYPOTHESIS 15

In this section, we show lemmas that when combined together, shall prove the Induction Hypothesis 15
holds for every iteration.

E.2.1 CORRELATION GROWTH

Lemma 29. Suppose Parameter 10 holds and suppose Induction Hypothesis 15 holds for all iteration
< t starting from T'. Then, letting @Z(fl) =2 re(m] [<w(t) vi.1)]T, we have for every i € [k|,1 € [2],

1,7

(Dz(‘,tz) <O(1).

Proof. For every i € [k] and every (i,1) € Mp, after the first stage, we have @E? < O(1). In
the second stage, as in Semantic-Aware CutOut, the learned features (i,) are masked and so the
correlations between gradients and learned features are kept small. This means that CIDEtl) < 0(1)
holds true in learning Phase Il for T < ¢t < T + T". 7

Then for the unlearned feature (¢, 3 — [), we suppose ¢t > T' + T} is some iteration so that @Et?))_ 12
polylog(k). We will prove that if we continue from iteration ¢ for at most 7" iterations, we still have
@Ef?)ﬁl < O(l). Based on Claim 19, we have that

(Wi v s)

< (), vis1) + 1By )z, {Hz:y(gl + & + Virs)(1 — logit,(F®), A(X)))}

. Nu S
< v 1) + OE )z, [Timy (1~ ogit, (FO, A(X))] +0 (%) .
u

This is because that when (X, y) ~ 2, ,, we have V; ;. 3_; < O(1) and when (X, y) ~ Z, 5, we

have V; .5 < O(p). For every (X,y) ~ Z, m, when y = i, we have

1 1
FYuUx)) = e . —O(—— > _o(——— ).
7 ("4( )) - 1,3—1 ZPGPWJ,Z ZP (polylog(k‘)) - 1,3—1 (polylog(k))
Then when j # y and (j,1’) € Mp, we have

® < L
Fi7(AX)) < @55y Zpemj,g_y E O(polylog(k)

1

<049, +O0(————
)< 04550 (polylog(’f)

).
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So by (16), we have

1

1 —logit,, (F; A(X),y) < +om0g7-

Summing up over all r € [m], we have
(1) g® o (1PN
(I)i,Sf <& 4,3—1 + k2 (log k) +0 < ]CN > ’

Therefore, if we continue for 7" iterations, we still have @ngﬁl) < O(l). O

E.2.2 OFF-DIAGONAL CORRELATIONS ARE SMALL

Lemma 30. Suppose Parameter 10 holds and suppose Induction Hypothesis 15 holds for all iteration
< t starting from T'. Then,

Vi € [k],Vr € [m), Vi € K\ {i}, (), v0;0)] < O(00).

Proof. In Phase I when t < T, from Lemma D.22 in Allen-Zhu & Li (2023), we have
|<w() v < O(ao) Now we consider Phase II when ¢ > T, and denote by Rgt) =

1,77

MAaX,¢[m],je[k]\{i} \( w; T, vj1)|. According to Claim 19 and Claim 20, we have
R <R 4B s, [limi (2,00 (X) + €1+ € + E40(X))(1 — logit,(F©, X))
+nE(x )~z [lly# (&1 + E + Eu51(X)) logit, (F®), X)} .

For single-view data (X, y) ~ Z,., by Claim 23, we have logit,(F(), A(X)) = O () for every
i € [k]. In the following, we separate the processinto T <t < T+ Tpand T+ Ty <t <T+T".

When 7' < t < T + Tj. During this stage, by Claim 23 we know logit;(F®, X) = O($)
(Vi € [K]) for any (X,y) ~ Z,. We also have &,,,.(X) < O(y (@))% ) with (4,1%) €
M, and have &4 ;,(X) < O(00)? 'L, ,ev(x) by deﬁnition. Recall when T < t < T + Ty, by
Claim 24, we have ®(7). = ®{%_. + 6 (}) ReLU (®{_;.). 50 Yy, n( @3 )77 <
O(k). Also, Pr(vi3—- € P(X)|i # y) = £. Therefore, for every ' < t < T 4 Ty with
1o = é(n%) we have

)

R < R 4 0(00) + 0 (100 ) ((08™)vs + (007k)* ™' 9P + (00)*~' 7 ) < O(ov).

When T+ Ty < t < T +T'. During this stage, we have the naive bound on & ; -(X) < 7, so
again by Claim 19 and Claim 20, we have

_ _ 1S .
R < RO+ 1B s [(r+ (08 )y + (009k) 19 + (00)" 7 D) (1 — logit, (F©), X))].

Therefore, by the upper bound on multi-view error in Claim 26 and & N = < - kT, , we know R(t) <

O(oo) for T+ Ty <t <T+T'. O

E.2.3 NOISE CORRELATION IS SMALL

Lemma 31. Suppose Parameter 10 holds and suppose Induction Hypothesis 15 holds for all iteration
< t starting from T For every l € [2], for every r € [m], for every (X,y) € Z, and i € [k]:

(a) Foreveryp € Py, ,(X), we have: [(w M,fp>|_ 0(o9).

(b) Foreveryp € P(X)\ (Py, ,(X)UP,, (X)), we have: |<w(t) ) < O(00).

7,7
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(¢c) Foreveryp € [P]\ P(X), we have: |{w ”,fpﬂ < O~(007k)

Proof. Based on gradient calculation Fact 16 and |(z,,&,)| < O(o,) < 0(%1) if X' # Xorp #p,

we have that for every (X,y) ~ Z, and p € [P],ifi =y
. R .
(wl,™.6) = (), &) + O RLT ((w(f), ,))(1 ~ logit, (F, X)) + .

1,T 1T7

S

u

Else if i # y,
&¢_ N1
il &) = (W), &) - 6%

u

JReLU ((w?, z,))logit,(F, X) + —

Suppose that it satisfies that |< w; xp>| < Aforevery t < to where ty is any iteration T' < ¢y <
T+T' . WhenT <t <T+Ty, we have that

W, &) < (wf ,sp>+0(

kA4 1 To’f]
< 6(0p) + O <N_2> ﬁ’

uUQ
where the last step is because T = (:)(n%) When T + Ty <t < T + T, for multi-view data
9o

TonAs~ >+To’7
Vd

u

(X,y) ~ Z:N’u,m, based on (15) in Claim 28, we can obtain that

5A1\ (T~ Ty)
0 &) < (W ey 10 (’f ) 0)n
< ’LT7 P>—< a€p> SQNu \/&

o kAT kP AL T'n
< = + = + .
Nu08_2 s2N, Vd

For single-view data (X,y) ~ Z,.,, we have that

(t) (T+To) ~ (1 /ﬂAq 1) (1 " — 10)77
Wy < wy; . s + O = +
< o p> < ’ €p> < Nu \/g

~ kA9~ 1 T’ q—1 /
<0 S AT T
N, O’O N, Vd

When p € P, (X ), we have |(w(t) z,)| < O(1) from Induction Hypothesis 15. Then plug-

gingin A = O(1), N, > Q( = ), N, > Q ((’j—d) and N,, > nT"poly(k), we can obtain that
99

(i &) < 3(o0).

i,r

o

When p € P(X)\ (Py,,(X) U Py, (X)), we have [(w!"),z,)] < O(op) from the Induction

Hypothesis 15. Then plugging in A = O(o¢), N, > k° and N, > T"poly(k), we can obtain that
. .
[(w(5.6)| < O(o0).

i,r
When p € [P]\ P(X), we have |<wft2,a:p>| < O(ogvk) from Induction Hypothesis 15 Then
plugging in A = O(ogvk), N, > k% and N, > nT"'poly(k), we can obtain that |< N, o] <
O(O’()’)/k)

O

E.2.4 DIAGONAL CORRELATIONS ARE NEARLY NON-NEGATIVE

Lemma 32. Suppose Parameter 10 holds and suppose Induction Hypothesis 15 holds for all iteration
< t starting from T. Then,

Vie[k], Yrem], Vie[2, @ v,)>-0(0).

7,7
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Proof. From Lemma D.27 in Allen-Zhu & Li (2023), we know (w l(r), Vi) > O(oo) for every
iteration ¢ < T'. Now we consider any iteration ¢t > T so that (w (® v1) < Q(oo) We start from

27’”

this iteration to see how negative the next iterations can be. Without loss of generality, we consider
the case when <w(t ) v;.1) < —Q(0¢) holds for every t' > ¢. By Claim 19 and Claim 20,

<w§f:_1)a 1) >(w 5271}1 )+ UE(X Y)~Za [ =i(Viri(X) — O(G;DP))(I - IOgiti(F(t)vX))

— T,z (61 + & + L, ep(x) Vit (X)) logit, (F"), X)

Recall by Induction Hypothesis 15(a),

. — (®) — RelL U ((w, . v 5
Vira(X) = ZPGPW(X) ReLU ({w}'), )2 = ZpEPul ) ReLU ((w;r, vi1)zp +06(00)) 2p

Since we have assumed (w () vig) < —ﬁ(ao), so Vi »1(X) = 0, and we have

ZT"

Wi via) 2l vi0) = 1 x oz, [L=iO(0, P)(1 — logit, (F), X))

'L T l T (]7)
+ Ly (81 + E) logit,(F®), X)] .
We first consider every ¢ < T+ T,. Using Claim 23 we have logit,(F¥), X) = O (%), which

implies

(), v1) = ~O(00) — O (nZ) (614 €3) 2 ~O(00).

As for t > T+Tp, combining with Claim 26 and the fact that logit, (F(), X) < 1—logit, (F(*), X)
for i # y, we have

@ v > (W™ v,) — Ok) (E + &) > W v;,) — O (09) > —O(0).

2,7 7 ) 7 )

E.2.5 PROOF OF INDUCTION HYPOTHESIS 15

Now we are ready to prove our Induction Induction Hypothesis 15, the proof is similar to Theorem
D.2 in Allen-Zhu & Li (2023).

Lemma 33. Under Parameter Assumption 10, for any m = polylog(k) and sufficiently small
<55 o ( y our Induction Hypothesis 15 holds for all iterations t =T, T +1,...,T +T".

Proof. At iteration ¢, we first calculate

Vp e Py (X): (w),z,) = <mvﬂzp+zapv VY (i) g, (8)
vEV
Vp e [PI\NP(X): () z) = Y apor (wl),v) + (wl!),&). (19)
=

By Allen-Zhu & Li (2023) we already know Induction Hypothesis 15 holds at iteration ¢ = T
Suppose Induction Hypothesis C.3 holds for all iterations < ¢ starting from 7". We have established
several lemmas:

Lemma?29 = Vi€ [k],Vr € [m],Vl € [2] : (w ”,vzl> 0(1), (20)
Lemma 30 = Vi € [k],Vr € [m],Vj € [k ]\{z} [{(w Z(T v;1)] < O(oyp), (21
Lemma32 = Vi€ [k],Vr € [m], ¥l € [2] : (w"),v;;) > —O(00). (22)

* To prove 15(a), it suffices to plug (21), (22) into (18), use ¢, ,» € [0,7], use |V| = 2k, and
()

use [(w; ., &p)| < 6(00) from Lemma 31.
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* To prove 15(b), it suffices to plug (20), (21) into (18), use av, ,+ € [0,7], use |V| = 2k, and

use |<wl(tr)7 )| < O(00) from Lemma 31.

* To prove 15(c), it suffices to plug (20), (21) into (19), use cp, ,» € [0,7], use |V| = 2k, and
use |<w(t) )| < O(ogyk) from Lemma 31.

2,77 SP

* To prove 15(d), it suffices to note that (20) implies (IJZ(.Z) < O(l), and note that Claim 24
implies &) > (&%) > O(0y).

» To provel5(e), it suffices to invoke (22).

E.3 PROOF OF THEOREM 13

During the proof of Induction Hypothesis 15, i.e., the proofs of Lemma 29 to Lemma 32, we need
the size of N,, = |Z,| larger than n/T" - poly(k). As the probability that a sample X ~ Z, after
SA-CutOut belongs to Z,is1— m (based on our definition of SA-CutOut and threshold 7), we
set the size of unlabeled dataset N,, > nT" - poly(k) in Parameter Assumption 10. Then recall our

training objective is

LW = LU 4+ ALY = E(x )~z [~ loglogit, (F, X)] + Ey_ 5 [~ loglogit,(F", A(X))].

From Allen-Zhu & Li (2023) we know E(x )~ z, [~ log logity(F(’f)7 X)] < m at the end of
learning Phase I, and according to Claim 27 we now this continues to hold true during learning Phase
Il. ForEy s [~log logit, (F®), A(X))], since we have for every data (X,y) ~ Z, (y = b):

- if logit,(F®, A(X)) > i, then we know —loglogit,(F", A(X)) <
O (1 - logit, (F®, A(X)));

o if logity(F(t), A(X)) < 1, this cannot happen for too many tuples (X,y,t) thanks to
Claim 26, and when this happens we have a naive bound — loglogit, (F("), A(X)) €
[0,0(1)] using Claim 23.

Therefore, by Claim 26, we know when T” > %(k),

1 T+T’
T! Ltt=T+T,

1
E - |—loglogit, (F®, X)| <
(X,y)~Zy [ 0g log! y( ’ )} = poly(k)

Moreover, since we are using full gradient descent and the objective function is O(1)-Lipschitz
continuous, the objective value decreases monotonically. Specifically, this implies that

. ' . / 1
E(x yy~z, [1-1ogit, (FTHT), A(X))] <E )z [~ loglogit, (F ), A(X))] < Soy (9

for the last iteration 7" + T”, which directly implies that the training accuracy is perfect.

As for the test accuracy, from Claim 28 and Claim D.16 in Allen-Zhu & Li (2023), we have for every
i7j e [k]3

T+T’ T+T’ T+T’ T+T’ T+T’ T+T’
o) — 040 > Q(log(k)), @ T @I @l > a(log(k)).

)

This combined with the function approximation Claim 21 shows that with high probability
Fy"(X) > max;, F\"(X) + Qlogk) for every (X,y) € Dy, Dy, which implies that the
test accuracy on both multi-view data and single-view data is perfect.
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F PROOF FOR FIXMATCH

In this section, we consider proving Theorem 11 on FixMatch. In this case, the formulation of
strong augmentation A(-) is defined in (10). For (X,y) € Z, s with {(X) = [*, the feature v, ;-
is masked with the probability mo. When the patches of learned feature are masked, the left part

is pure noise. In this way, same as Claim 23, for every i € [k], logit;(F®), A(X)) = O(%), and

—_— .
Virg = Ly, ,ev(x) Eper“(X) ReLU ((w; r, xp))zp = o(m). When the patches of noises
are masked, the left part is semantic patches of feature v, ;-. Since we have already captured this
feature in learning Phase I, we have logit, (FOLAX) >1— O(<). In both above cases, by

Claim 19 and Claim 20, the training samples (X, y) € éuy s contributes little to the weight update
process.

For multi-view data (X, y) € th, when the patches of noises are masked with probability 1 — 7o,
since the learned feature v, ;~ of Phase I is still in the data, we have logity(F(t)7 AX) > 1- O(S%)
When the patches of unlearned feature v, 3_;- are masked with probability m;me or (1 — )72
(depending on the value of 3 — [*), the learned feature of Phase I is also still in the data. Thus we
also have logity(F(t), AX) >1- O(S%) In this way, the loss on all data points (X, ) € Z,.
that belongs to the above two cases keeps small (< m) and contributes negligible to the learning

of unlearned features in Phase II. Finally, when the patches of learned feature v, ;- are masked with
probability 717 or (1—m7 )7 (depending on the value of I*), the remaining patches of feature v, 5_;-
are unlearned and the approximation of initial loss on this part of samples is the same as Claim 23.
The loss on samples (X, y) ~ Z~u7m with learned features masked dominates the training objective in
learning Phase II, and the rest proof schedule is the same as the proof of SA-FixMatch. However, now
the size of data with learned features masked for class i € [k] is either 75 - NZ or (1 — 1) - N,
Thus, similar to the proof of Theorem 13 and for the simplicity of notation, the requirement on the size
of unlabeled data for FixMatch should be N, > nT” - poly(k)/ min{m 7y, (1 - )ms}. Accordingly,
we can derive that the relationship between the size of the unlabeled data in SA-FixMatch N,, and

FixMatch N, is given by N,, = max{mma, (1 — m1)ma} Ne.

G PROOF FOR FLEXMATCH, FREEMATCH, DASH, AND SOFTMATCH

Our analysis framework and theoretical results are also applicable to other FixMatch-like SSL, e.g.,
FlexMatch (Zhang et al., 2021a), FreeMatch (Wang et al., 2022b), Dash (Xu et al., 2021), and
SoftMatch (Chen et al., 2023), since the main difference is the choice of confidence threshold 7;
in unsupervised loss Eq. (5). Here we first introduce their choice of 7; and then explain how our
theoretical results in Sec. 4 can be generalized to their case.

FlexMatch (Zhang et al., 2021a) designs an adaptive class-specific threshold 7; = (;(b)7 at iteration
t, where 3;(b) € [0,1] is the model’s prediction confidence for class b (L1 normalized). FreeMatch
(Wang et al., 2022b) replaces 7 in FlexMatch with an adaptive 7, which is the average prediction
confidence of the model on unlabeled data and increases as the training progresses. SoftMatch uses
the average prediction confidence 7; of the model as the threshold and sets the sample weight as 1.0
if logit,(F), a(X,)) > 7, otherwise a smaller constant according to a Gaussian function. Dash
adopts the cross-entropy loss to design the indicator function Iy _ 1,5 104, (F(),a(X.,))<p,}» Where py
decreases as training processes. This is equivalent to a dynamically increasing threshold 7; in Eq. (5).
Below we detail how our theoretical findings apply to each of these SSL algorithms.

FlexMatch (Zhang et al., 2021a) differentiates itself from FixMatch by modifying the constant
threshold 7 to include an adaptive class-specific threshold 3;(b) for each class b. Under our multi-
view data assumption as defined in Definition 7, the data distribution for each class is the same.
Consequently, as suggested by Claim 24 and Claim D.10 in Allen-Zhu & Li (2023), all classes
progress at a similar rate during training. This uniformity over all classes allows us to standardize
B+(b) = 1, Vb € [k], thereby aligning the proof for FlexMatch with that of FixMatch.

For FreeMatch (Wang et al., 2022b) and SoftMatch (Chen et al., 2023), instead of applying a large
constant threshold 7 during the training process, they use an adaptive 7, to involve more unlabeled
data with correctly-predicted pseudo-label in the training of the network. Under our multi-view
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data assumption 7, the majority of the data in training dataset is of multi-view (with probability

1- m), so we only consider the network’s prediction confidence for multi-view data to determine

T¢. We set the adaptive threshold 7, as follows:

_ [maxxez, ,, [logit,(F®"), X)], t =Ty,
BT + (1 - ) maxxez, , [logit,(F®, X)], t> Ty,

where 3 is the momentum parameter, b = arg max; logit,(F*), X), and Ty = @(#) Here
99

(23)

we do not consider the unsupervised loss term Eq. (5) before Tj-th iteration in our analysis, since
the model is bad at generating correct pseudo-label at the initial phase of training. We use max
function here to ensure the high quality of unlabeled data involved at each training step. After
To-th iteration, according to Claim D.11 and Lemma D.22 in Allen-Zhu & Li (2023), the feature

correlations increase to Agt) = (1) for t > Ty, while the off-diagonal correlations (w; ,.,v; ;)

(i # j) keep small at the scale of O(cy). Denote ®(*) = Max;ex],e[2] @5?, recall from Claim D.9

in Allen-Zhu & Li (2023), for every X € argmaxy .z, [logit,(F®, X)] with ground truth label
y, we have Fj(t) (X) < 0.80010®) for j # 5 and Fét) (X) > 0.99999(") with probability at least

1 — e=2008” k) - Accordingly, we have Fy(t)(X) > max;, Fj(t) (X) + ©(1), which means that F'(*)
can correctly classify the unlabeled data with high probability (i.e., b = y). Therefore, when ¢t > T,
both the supervised loss Eq. (4) and unsupervised loss Eq. (5) take effect. Same as in Sec. 4, we use

<I>Z(.’tl) here to monitor the feature learning process. For (4,1) € Mp, feature v; ; is partially learned
during the first T iterations in that @g‘)) = 0(1) < Q(log(k)), while feature v; 3_; is missed in that
@57:;0_) L= O(a()) < (:)(1) Start from Ty, feature v; ; is continued to be better learned with the help

of supervised loss and unsupervised loss until <I>Z(.fl) > Q(log k), and feature v; 3_; start to be learned
with the help of unsupervised loss. We can analyze this feature learning process using a similar
approach as in Sec. E. The key intuition for the extension of the proof of FixMatch to FreeMatch
and SoftMatch is that by setting an adaptive confidence threshold, the learning process of unlearned

features begin at Tp instead of T = O(poly(k)/n) > T in FixMatch.

For Dash, it uses cross-entropy loss as the threshold indicator function rather than prediction confi-
dence Iy _ 156 10git, (F(1,a(X,))<p, }» Where p; decreases as the training progresses. Since we have

—loglogit, (FY, a(X,,)) < p; <= logit,(FV,a(X,)) > e ",

we can set p; = — log 7, and the rest of the analysis is the same as in SoftMatch and FreeMatch.

H EFFECT OF STRONG AUGMENTATION ON SUPERVISED LEARNING

In this section, we show why using strong augmentation with probabilistic feature removal effect,
such as CutOut, in supervised learning (SL) has minimal alternation to the feature learning process. In
SL, strong augmentation .A(-) is utilized at the start of training, before any feature has been effectively
learned, corresponding to Phase I of SSL. According to Assumption 9, A(-) randomly removes its
semantic patches and noisy patches with probabilities of 75 and 1 — 7, respectively. Then for a
single-view image, its only semantic feature is masked with probability 7. For a multi-view image,
one of the two features, v; 1 or v; o is masked with probabilities 7179 and (1 — 7)o, respectively.
Thus, the size of single-view data in training dataset Z is increased, as \A(-) transfers maN ,
multi-view samples to single-view.

However, m2 € (0,1) is small, since based on our data assumption in Def. 7, the number of
patches associated with certain semantic feature is constant C), while the total number of patches is
P = k2. Therefore, when we do random masking in A(-) (usually masks 1/4 of all patches), we can
approximate my as (C,,/P)®?, which is O(1/k®») based on our definition of A(-) in Eq. (10).

Consequently, strong augmentation .A(-) only slightly increases the proportion of single-view data,
and the majority of the training dataset remains multi-view, which dominates the supervised training
loss Eq. (4) since no feature has been learned. The assumptions on the number of labeled single-
view data N; s < o(k/p) and N; > N; , - poly(k) still hold after strong augmentation .A(-). Thus,
according to Allen-Zhu & Li (2023) and Appendix B, the network learns one feature per class to

33



Under review as a conference paper at ICLR 2025

correctly classify the majority multi-view data due to "view lottery winning", and memorizes the
single-view data without learned feature during the training process of SL. We also validate the
limited effect of CutOut on SL through experimental results in Appendix K.3.

I COMPARISON WITH PIONEERING WORK

While this work follows the data assumption and proof framework of Allen-Zhu & Li (2023), analysis
of the feature learning process is significantly different. Firstly, this work focuses on SSL, where
supervised loss on labeled data and unsupervised loss on unlabeled data result in rather different
feature learning processes compared with supervised distillation loss on only labeled data in Allen-
Zhu & Li (2023). Secondly, SSL uses the on-training model as an online teacher which varies along
training iterations, while the SL setting in Allen-Zhu & Li (2023) uses a well-trained and fixed model
as an offline teacher. Indeed, the online teacher in SSL setting is more challenging to analyze, as the
evolution of its performance is harder to characterize, and has a rather different learning process.

J (SA-)FIXMATCH ALGORITHM

In this section, we present the detailed algorithm framework for FixMatch (Sohn et al., 2020) and
SA-FixMatch. At iteration ¢, we first sample a batch of B labeled data X ®) from labeled dataset 2,
and a batch of ;B unlabeled data /(") from unlabeled dataset Z,,. Then, according to Algorithm 1,
we calculate the loss for current iteration, and use it for the update of the neural network model F' ),
The only difference between FixMatch and SA-FixMatch is in line 6, where FixMatch adopts CutOut
in its strong augmentation of unlabeled data .4, while SA-FixMatch adopts SA-CutOut.

Algorithm 1 (SA-)FixMatch algorithm.

1: Input: Labeled batch X = {(X;,9):i¢€ (1,...,B)}, unlabeled batch U® =
{U; :i€(1,...,uB)}, confidence threshold 7, unlabeled data ratio y, unlabeled loss weight .

2 LM = i Zil (—log logit,, (F®,a(X;))) {Cross-entropy loss for labeled data}

3: fori =1to uB do

4. v; =arg maxj{logitj (F(t), a(U;))} {Compute prediction after applying weak data augmen-

tation of U; }

5: end for

6: LY = ;%B 25:31 (_H{logitui(F(”),a(Ui))Z‘r} log logitm(F(t),A(Ui)D { Cross-entropy loss
with pseudo-label and confidence for unlabeled data}

7: return: Lgt) + AL&”

K EXPERIMENTAL DETAILS

K.1 EFFECT OF STRONG AUGMENTATION

In this section, we conduct experiments to evaluate the impact of different strong augmentation
operations employed in FixMatch (Sohn et al., 2020). We assess their effects by applying these
strong augmentations to test images and observing the resulting changes in test accuracy. To ensure a
fair comparison, we train neural networks using weakly-augmented labeled data, where the weak
augmentation consists of a random horizontal flip and a slight extension of the image around its edges
before cropping the main portion. Subsequently, we apply a single strong augmentation operation at a
time to the test dataset and record the corresponding test accuracy on the pretrained model. The pool
of strong augmentation operations from RandAugment (Cubuk et al., 2020) includes: Colorization,
Equalize, Posterize, Solarize, Rotate, Sharpness, ShearX, ShearY, TranslateX, and TranslateY. The
experimental results are summarized in Tables 5 and 6.

From Tables 5 and 6, we observe that CutOut is the strong augmentation operation with the most
significant impact on model performance. Additionally, transformations such as Solarize and Equalize
from RandAugment also have a noticeable effect on model performance. To better understand the
influence of these transformations on input images, we visualize the effects of CutOut, Solarize,
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Original CutOut ShearX | Solarize | TranslationX
80.95 38.67 78.38 52.70 80.69
Sharpness | Posterize | Equalize | Rotate Color
72.99 76.17 60.14 67.97 69.71

Table 5: Pretrained model test accuracies (%) with different strong augmentation operations for test
images on CIFAR-100.

Original CutOut ShearX | Solarize | TranslationX
86.44 62.94 85.01 78.94 84.44
Sharpness | Posterize | Equalize | Rotate Color
82.17 86.19 80.74 82.29 84.34

Table 6: Pretrained model test accuracies (%) with different strong augmentation operations for test
images on STL-10.

and Equalize on CIFAR-100 images in Figure 3. From the first and second rows of Figure 3, we
can see that both CutOut and Solarize have the potential to remove semantic features by masking
parts of the images. From the third row of Figure 3, we observe that Equalize tends to remove color
features of images while retaining shape features. In all cases, these effective strong augmentation
operations have the potential to remove partial semantic features. Therefore, in Assumption 3 for
strong augmentation A(-), we focus on its probabilistic feature removal effect.

Figure 3: Visualization of the effects of CutOut (first row), Solarize (second row), and Equalize (third
row) on CIFAR-100 images.

K.2 EFFECT OF WEAK AUGMENTATION

Since weak augmentation consists only of a random horizontal flip and a random crop with a small
padding of 4 pixels, followed by cropping the padded image back to the original size, it minimally
alters the semantic features of the image. This allows us to treat weak augmentation «(+) as an
identity mapping for our theoretical analysis in Sec. 4. In this section, we conduct experiments
by training FixMatch without weak augmentation on CIFAR-100 with 10000 labeled samples and
STL-10 with 1000 labeled samples, comparing the test performance to that of the original FixMatch.
As shown in Table 7, weak augmentation does not significantly impact the model’s performance.

K.3 COMPARISON OF CUTOUT IN SL AND FIXMATCH

Data augmentation operations like CutOut can help supervised learning (SL), but cannot improve as
much as in deep SSL with limited labeled data. On STL-10 dataset with 40 labeled data, when we
remove CutOut from SL, the test accuracy (%) does not drop a lot as shown in Table 8. In contrast,

removing CutOut from the strong augmentation .A(-) in FixMatch’s unsupervised loss Lq(f) leads to a
severe performance degradation.
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Dataset STL-10  CIFAR-100
Weak Augmentation 92.65 77.27
No Weak Augmentation  91.83 77.19

Table 7: Comparison of test accuracies (%) of FixMatch with and without weak augmentation.

Method SL FixMatch
CutOut 23.98 68.30
No CutOut 22.88 53.64

Table 8: Comparison of test accuracies (%) of SL and FixMatch with and without CutOut.

K.4 DATASET STATISTICS

For each experiment in Sec. 5, following Sohn et al. (2020); Zhang et al. (2021a); Xu et al. (2021);
Wang et al. (2022b); Chen et al. (2023), we randomly select image-label pairs from the entire training
dataset according to labeled data amount, set images from the whole training dataset without labels as
unlabeled dataset, and we use the standard test dataset. The table below details data statistics across
different datasets.

Dataset Total Training Data | Total Labeled Data in Training Data | Test Data
STL-10 105000 5000 8000
CIFAR-100 50000 50000 10000
ImageWoof 9025 9025 3929
ImageNet 1281167 1281167 50000

Table 9: Summary of Datasets.

K.5 TRAINING SETTING AND HYPER-PARAMETERS

All the experiments are conducted on four RTX 3090 GPU (24G memory). Due to limited resources,
we did not train the models for 1024 epochs with 1024 iterations per epoch (in total 22° iterations) as
in Sohn et al. (2020), but run 150 epochs with 2048 iterations per epoch (in total 307200 iterations).
According to our experimental results in Sec. 5, the test accuracy results of our training setting
approximates the results obtained by Sohn et al. (2020). For the experiments on FixMatch, our
code is based on Kim (2020); for all other experiments, our code is based on Wang et al. (2022a).
Each individual SSL experiment requires 48 to 120 hours to complete on a single RTX 3090 GPU,
depending on the model and dataset.

For CIFAR-100, STL-10, Imagewoof, and ImageNet, their input image size are respectively 32 x 32,
96 x 96, 96 x 96, 224 x 224 and their mask size in CutOut are respectively 16 x 16, 48 x 48, 48 x 48,
112 x 112. For the application of SA-CutOut, according to our theoretical analysis in Sec. 4 and
Appendix G, we only need it after partial feature already been learned to learn comprehensive features
in the dataset. Therefore, in practice, we only apply SA-CutOut to deep SSL methods in the last 32
epochs of training, and the total running time of SA-FixMatch is roughly 1.15 times of FixMatch.

For hyper-parameters, we use the same setting following FixMatch (Sohn et al., 2020). Concretely,
the optimizer for all experiments is standard stochastic gradient descent (SGD) with a momentum
of 0.9 (Sutskever et al., 2013). For all datasets, we use an initial learning rate of 0.03 with a cosine
learning rate decay schedule (Loshchilov & Hutter, 2016) as n = 19 cos (IGL[’?), where 7 is the
initial learning rate, k is the current training step and K is the total training step that is set to 307200.
We also perform an exponential moving average with the momentum of 0.999. The hyper-parameter

settings are summarized in Table 10.

36



Under review as a conference paper at ICLR 2025

Dataset CIFAR-100 STL-10 Imagewoof | ImageNet
Model WRN-28-8 | WRN-37-2 | WRN-37-2 | ResNet-50
Weight Decay le-3 Se-4 Se-4 3e-4
Batch Size 64 128
Unlabeled Data Raion p 7 1
Threshold 7 0.95 0.7
Learning Rate n 0.03
SGD Momentum 0.9
EMA Momentum 0.999
Unsupervised Loss Weight A 1

Table 10: Complete hyperparameter setting.

K.6 SAMPLES IN CIFAR-100, STL-10, IMAGEWOOF, AND IMAGENET

As we can observe from Figure 4, for images in CIFAR-100 and STL-10, the semantic subject in the
image occupies the majority of the image. On the other hand, for images in Imagewoof and ImageNet
dataset, most semantic subject only occupies less than a quarter of the image.

Figure 4: Samples from CIFAR-100, STL-10, Imagewoof, and ImageNet datasets. Samples in the
first row are from CIFAR-100, samples in the second row are from STL-10, samples in the third row
are from Imagewoof, and samples in the last row are from ImageNet.

K.7 SAME TRAINING DATASET FOR SL AND SA-FIXMATCH

With the same labeled training dataset D, SSL still outperforms SL both theoretically and empirically.
In this setting, SL uses D for supervised training, while SSL uses D as its labeled dataset and
simultaneously treats the label-ignored D as its unlabeled dataset.

Theoretically, our analysis for SA-FixMatch can be extended to this scenario where SL and SSL
share the same data. This is because SA-FixMatch assumes that the strong augmentation Ag 4 ()
deterministically removes semantic features learned during Phase I from the unlabeled images (see
Appendix E). As a result, even with the same labeled and unlabeled dataset, SA-FixMatch can
still exploit the two-phase feature learning process to learn a more comprehensive set of semantic
features compared to SL, ultimately achieving better generalization performance. This conclusion is
rigorously supported by our proof in Appendix E.

To validate this theory empirically, we conducted experiments comparing SA-FixMatch with SL
under controlled settings. Following the experimental protocols of our manuscript and FixMatch,
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we trained WRN-28-8 on CIFAR-100 with 10,000 labeled samples and WRN-37-2 on STL-10 with
1,000 labeled samples. In both cases, SL and SA-FixMatch shared the same labeled dataset D, with
SA-FixMatch treating the label-ignored D as unlabeled dataset.

The test accuracy (%) results in Table 11 demonstrate that SA-FixMatch significantly outperforms SL
even when both using the same training dataset. This not only highlights the superiority of SSL over
SL but also further validates our theoretical insights.

CIFAR-100 STL-10
SL 63.48 67.29
SA-FixMatch 68.30 79.74

Table 11: Test accuracy (%) of SL and SA-FixMatch with same training dataset.

L  EXPLANATION OF MULTI-VIEW DATA ASSUMPTION

In this section, we make more detailed explanations of our multi-view data assumption Def. 1 by
breaking it down and explain each part with specific examples from car images in ImageNet.

From Figure 1 we know that wheel and front light can be viewed as two discriminative semantic
features of car, and each can be used independently for the learning model to make correct class
prediction. In Figure 5, we give some examples of single-view data and multi-view data in car images
that contains either only one of the two features or both. Then, we use them as examples to explain
the multi-view data assumption Def. | in detail.

Figure 5: The first single-view image contains only the front light feature, while the middle two
multi-view images contain both wheel and front light features, and the last single-view image contains
only the wheel feature.

In Def. 1, the data distribution D is composed of samples from the multi-view data distribution D,,,
with probability 1 — p, and from the single-view data distribution D, with probability p= m. In
the context of car images, this implies that the majority of images are multi-view, containing both
wheel and front light features, while a small fraction of images are single-view, containing only one
of these features.

Then, Def. 1 defines (X, y) ~ D by first randomly selecting a label y € [k] uniformly, and generate
the data X as follows:

(a) A set of noisy features V' is sampled uniformly at random from {vi1,vi,2}ity, each with
probability s/k. The complete feature set of X is then defined as V(X) = V' U {vy 1,v,,2}, which
includes both the noisy features V' and the main features {v, 1, vy 2}

In the context of car images, (a) corresponds to the semantic features specific to cars (wheel and front
light) being present in car images, along with noisy features from other classes, such as houses or
trees in the background.

(b) For each v € V(X), pick C,, disjoint patches in [P] and denote them as P,(X). For a patch
p € Pu(X), we set z, = 2,v + “noises” € RY, where the coefficients z, > 0 satisfy:
(b1) For "multi-view" data (X, y) € Dy Y- ep, (x)2p € [1,0(1)] when v € {vy1,vy2} and

2 per,(x) 2 € [Q2(1),0.4] when v € V(X) \ {vy,1,vy,2}.
(b2) For "single-view" data (X,y) € D, pick a value [ € [2] randomly uniformly as the index
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of the main feature. Then }_ cp (x)2p € [1,O(1)] whenv = v 1, 37 p (v 2 € [p,O(p)]

(p=k="")whenv =10, pand Y cp )% = pomicgre When v € V(X) \ {vy1,vy,2}-

In the context of car images, (b1) indicates that multi-view data features a significant presence of
two prominent class-specific semantic features, while the proportion of noisy features in the image
is relatively small. For example, in the middle two multi-view car images shown in Figure 5, the
wheel and front light features are more prominent than the background elements, such as houses
and trees. (b2) indicates that single-view data contains only one prominent class-specific semantic
feature, with the other semantic feature and noisy features being minimal. As shown in the first and
last single-view car images in Figure 5, these images prominently display either the wheel or the
front light, while the other semantic feature and noisy background elements are scarcely present.

(¢) For each purely noisy patch p € [P] \ Uyey P, (X), we set z, = “noises”.

In the context of car images, purely noisy patches correspond to regions such as road or sky patches
that do not contain semantic information relevant to classification.

For a neural network capable of learning comprehensive semantic features after training—such as both
the wheel feature and the front light feature for car images—can accurately predict both multi-view
samples, such as the middle two images in Figure 5, and the single-view samples, such as the first
and last images in Figure 5. However, if the network only learns partial semantic features, either the
wheel or the front light feature, it will misclassify the single-view images that do not contain this
feature, either the first or the last image in Figure 5 and result in inferior generalization performance.
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