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Abstract
There are a large number of text processing tasks in web applica-

tions, such as sentiment classification, summary extraction, and

question answering. Recently, fine-tuning pre-trained language

models (PLMs) to adapt to downstream text-processing tasks has

attracted much attention. However, due to the differences in data,

model, and tasks between the pre-training and fine-tuning pro-

cesses, the fine-tuning process may suffer from catastrophic for-

getting of pre-training knowledge, which may implicitly limit the

model’s performance and generalization ability. To address these

challenges, we propose a novel dual-model framework, termed as

consistency alignment (CoAi). The insight of CoAi lies in building

an auxiliary model that simulates the distribution of pre-training

knowledge in real-time according to the current task, and co-training

the task-specific model and the auxiliary model to balance the pre-

training knowledge and task-specific knowledge during fine-tuning.

Specifically, the auxiliary model is constructed on-the-fly to main-

tain the pre-training knowledge. Subsequently, CoAi simulates the

pre-training process by performing distributional exploration in

the parameter space, which is built upon our novel insight into the

transformation between data and model parameter space. However,

the objectives leveraged to construct the auxiliary model lead to the

misalignment between the pre-training and task-specific knowl-

edge. To alleviate the inconsistency, we employ an auxiliary variable

to align the prediction distribution of the task-specific and the aux-

iliary models, inspired by constrastive clustering. We validate the

effectiveness of CoAi on ten classic classification tasks and three

generation tasks, showing consistent and significant improvements

compared with state-of-the-art methods.
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1 Introduction
Text processing (text classification and text generation) plays an

important role in web applications. This task can help the system au-

tomatically organize and archive large amounts of information, and

plays an important role in search engines [33, 44], intelligent rec-

ommendations [28, 70], and question-answering systems [13]. Fine-

tuning PLMs (e.g., RoBERTa [39] and T5 [56]) to adapt to various

text processing tasks has become the mainstream approach [41, 75].

PLMs are pre-trained on large-scale text data using pre-defined

objectives, leveraging the knowledge encoded in PLMs as initial

parameters. Meanwhile, recent works have shown that slightly

fine-tuning these initialized models can bring further performance

gains [30, 51, 55, 74, 79].

Many efforts have been devoted to promoting fine-tuning meth-

ods of PLMs [14, 37, 47], aiming to achieve good adaptation to

downstream tasks. In this regard, advanced studies introduce an

auxiliary task, e.g., contrastive learning [12, 51, 55], pointing out

the further fine-tuning improvements of PLMs on specific tasks.

Meanwhile, some studies [24, 59] have shown that pre-trained mod-

els implicitly store a large amount of general knowledge in their

parameters, which is highly beneficial for the fine-tuning task of

the model. However, these models typically suffer from forget-

ting the pre-training knowledge obtained during their fine-tuning

stage [35, 43, 66], which is also known as catastrophic forgetting.

This may result in limited performance and generalization ability

during the fine-tuning process of PLMs [32, 43]. It shows that this

issue can be attributed to the misalignment between the adaptation

to task-specific knowledge and the retention of pre-training knowl-

edge [20, 32]. This is because PLMs are trained with data sampled

from a distribution differing from that of the downstream task.

To address the misalignment issue, advanced studies try to en-

hancemodel performance by reducing the forgetting of pre-training

knowledge during the fine-tuning process [43, 60, 68]. This mainly

involves integrating pre-training tasks into the fine-tuning process

of the model, aiming to achieve a balance between pre-training

knowledge and fine-tuned knowledge [7, 10, 15, 20, 32]. In this

regard, related studies [8, 15, 20] demonstrate that mixing a portion

of pre-training data with task-specific data during fine-tuning is

highly beneficial in reducing knowledge forgetting and improving

model performance. Howerver, it is difficult to obtain pre-training

data related to downstream task. Moreover, the distribution discrep-

ancy between the pre-training and task-specific data would cause

performance degeneration. To solve this probelm, LF-MLF [43] re-

gards fine-tuning as a constrained optimization problem, where the

optimization objective is to minimize forgetting, and the constraint

is to reduce fine-tuning loss. AlignDet [32] designs a pre-training

task related to downstream tasks, aligning the pre-training process

with the fine-tuning process through further pre-training. Although

the above approaches can alleviate the gap to varying degrees, they

still cannot solve the two problems: i) How to incorporate task-

related pre-training knowledge into the fine-tuning process, and
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Figure 1: The overall framework of CoAi. An auxiliary model
is constructed for PLMs by model perturbation to simulate
pre-training knowledge. Subsequently, consistency align-
ment is achieved to align the prediction distributions of PLMs
and its auxiliary model.

ii) How to solve the issue of misalignment between pre-training

knowledge and fine-tuning knowledge when fine-tuning the model.

To address these challenges, we propose a dual-model frame-

work, termed as consistency alignment (CoAi), which can effectively

retain pre-training knowledge during the task-specific fine-tuning

by aligning the prediction distribution between PLMs and its auxil-

iary model. Figure 1 provides an illustration of CoAi. Specifically,

for the first problem, CoAi simulates pre-training knowledge by per-

forming distributional exploration in the parameter space, which is

built upon our novel insight that model perturbation in the parame-

ter space can implicitly lead to data transformation in the data space.

The theoretical proof (cf., Proposition 6.1 and Theorem 3.2) demon-

strates the effectiveness of our pre-traing knowledge simulation.

In this regard, estimating a perturbation in the parameter space

enables the auxiliary model to synthesize simulated pre-training

knowledge that leads to the worst performance. Simultaneously,

we use weight regularization to prevent the auxiliary model from

deviating from the original pre-training distribution. However, the

objective used to construct the auxiliary model lead to the second

issue. Namely, the misalignment between pre-training knowledge

and task-specific knowledge. To address the challenge, inspired

by the success of contrastive clustering [63, 65], we employ an

auxiliary variable related to the task labels to align the prediction

distribution of the task-specific and the auxiliary model, deriving a

new objective function for consistency alignment.

Empirically, comprehensive experiments on the GLUE bench-

mark (classification task) and three generation tasks demonstrate

that the proposed CoAi can consistently and significantly outper-

form state-of-the-art methods. Our primary contributions are sum-

marized as follows:

• Wepropose a novel dual-model learning framework, consistency
alignment (CoAi), to mitigate the mismatch between the

adaptation to task-specific knowledge and the retention of

pre-training knowledge. CoAi achieves the goal by construct-

ing and aligning two inconsistent models.

• We realize the two inconsistent models by dynamically gen-

erating: i) an auxiliary model that performs well on pre-

training tasks but poorly on downstream tasks and ii) a task-

specific model that performs well on downstream tasks yet

poorly on pre-training tasks. These twomodels are aligned in

the representation space to balance the two types of knowl-

edge, and reduce the forgetting of pre-training knowledge.

• Comprehensive experiments on the text classification task

and text generation tasks demonstrate that CoAi can consis-

tently and significantly outperform baselines.

2 Related work
The application of text processing on the web. Text processing,
including text classification and text generation, has been widely

used in web research and applications [6, 29, 34]. For instance, email

service providers use text classification to filter out spam emails

and improve user experience [22, 67]. Websites and social media

platforms utilize sentiment analysis to measure public opinion on

specific products or topics [4, 80]. Newswebsites and blogs use topic

tags to categorize their content, making it easier for users to find

relevant articles [31, 53]. AI-driven tools can generate human-like

text for articles, blogs, or social media posts [77, 78], significantly re-

ducing the time and effort required for content creation. Therefore,

effectively improving the text processing capabilities of models is

crucial for the efficient operation of the web.

Pre-training and fine-tuning. To improve pre-training per-

formance, [64] and [15] suggest additional pre-training of PLMs in

the target domain before final fine-tuning [9, 19]. However, simply

improving the model’s representational capacity during the pre-

training phase is not sufficient to make PLMs well-suited for down-

stream tasks. Fine-tuning PLMs serves as a prevalent strategy to

enhance task-specific performance, such as text classification [41],

machine translation [75] and question answering [46]. This process

tailors the model to align more closely with human expectations,

leveraging its inherent "general knowledge" to bridge the disparity

between the model’s pre-trained capabilities and the requirements

of the downstream task [51, 55, 74]. However, during the fine-tuning

phase, it is common to use datasets that are markedly different from

those in the pre-training phase, aimed at more specialized tasks.

This transition to more task-specific data can unintentionally result

in the model forget the complex knowledge and skills acquired

during pre-training phase [2, 61].

Knowledge forgetting. To address the challenge of knowledge

forgetting during the fine-tuning stage, various strategies have

been proposed. DAPT [15] and Mix-review [20] manually selects

additional task-related data to conduct further task-specific pre-

training on PLMs. Furthermore, some studies [5, 8, 58] preserve

a selected subset of previous training instances within a small

memory buffer through sampling methods. However, obtaining

pre-training data requires a significant amount of human effort,

and automatically acquires re-training data may introduce addi-

tional noise. To automatically obtain re-training data related to a

specific task, AlignDet [32] designs a pre-training task related to

downstream tasks, aligning the pre-training process with the fine-

tuning process through further pre-training. EWC [27] employs the
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Hessian matrix to regularize parameters, effectively preserving im-

portant knowledge from prior learning phases. Through the above

analysis, it can be observed that these methods typically share a

commonality, which involves incorporating the pre-training pro-

cess during fine-tuning. In this regard, how to automatically and

accurately obtain task-related pre-training knowledge, as well as

addressing the misalignment between the pre-training process and

the fine-tuning process, remains a challenging problem that needs

to be solved.

3 Proposed method
We first introduce the conventional approach of fine-tuning PLMs

using task-specific objectives for downstream tasks. Then, we give de-

tails about constructing an auxiliary model to introduce task-related
pre-training knowledge. Finally, to mitigate the misalignment be-

tween task-specific and pre-training knowledge, we propose a novel

consistent alignment objective to align the PLM and its auxiliary

model. The overview of our method is depicted in Figure 1.

3.1 Task-specfic objective
Assuming the dataset of the downstream task used to train transformer-

based PLMs is D = {(x𝑖 , 𝑦𝑖 )} |D |
𝑖=1

, where x𝑖 ∈ X represents the 𝑖-th

sample of the text and 𝑦𝑖 ∈ Y denotes its label. Given a token se-

quence x𝑖 = {𝑡1, 𝑡2, ..., 𝑡𝑚} with𝑚 tokens 𝑡𝑖 , a PLM model PLM(·;𝜃 )
parameterized by 𝜃 is expected to output the corresponding rep-

resentations, i.e., h(x;𝜃 ) := PLM(·;𝜃 ) = [h1,h2, ...,h𝑚]. Typically,
one specific hidden state h𝑠 is used as the semantic representation

of the entire sentence, e.g., the specific hidden state h𝑠 (𝜃 ) of BERT
or RoBERTa [11, 39] is realized by the last hidden state h𝑚 . Here,

we leverage h𝑠 (𝜃 ) to highlight that the specific representation is

obtained by the parameter 𝜃 .

For text classification tasks, one widely used approach [11, 39]

to adapting PLMs to downstream tasks is adding an inner product

operation paired with a softmax activation function 𝜎 (·) to the

specific representations h𝑠 (𝜃 ). Namely, the prediction 𝑓 (h𝑠 (𝜃 );W𝑠 )
can be formalized by,

𝑓 (h𝑠 (𝜃 );W𝑠 ) = 𝜎 (W𝑠 · h𝑠 (𝜃 )), (1)

where W𝑠 denotes the classification weights learned for the down-

stream tasks. Thus, these parameters can be optimized using a

task-specific objective function,

L𝑐𝑒 (𝜃 ∪W𝑠 ;D) = 1

|D|
∑︁

(𝑥,𝑦) ∈D
ℓ𝑐𝑒 (𝑓 (h𝑠 (𝜃 ) ;W𝑠 ) , 𝑦) , (2)

where ℓ𝑐𝑒 (·, ·) is the cross-entropy loss, and |D| is the number of

training samples.

For text generation tasks, assuming the label y = {𝑡𝑚+1, 𝑡𝑚+2,

· · · , 𝑡𝑚+𝑛} is composed of 𝑛 tokens. In this context, the prediction

𝑓 (h𝑠 (𝜃 )) is generated in a self-regression manner,

𝑓 (h𝑠 (𝜃 )) = [𝑓1 (𝑡1), · · · , 𝑓𝑖 (𝑡𝑖 ), · · · , 𝑓𝑛 (𝑡𝑛)], (3)

where 𝑓𝑖 (𝑡𝑖 ) is the predicted probability that the 𝑖-th token is on

the ground-truth token 𝑡𝑖 , and the task-specific parameter W𝑠 is

usually omitted in the literature. Then, the task-specific objective

function of fine-tuning a generative model can be expressed as

follows:

ℓ𝑛𝑙𝑙 (x, y) = −log
𝑛∏
𝑖=1

𝑓𝑖 (𝑡𝑖 ) = −
𝑛∑︁
𝑖=1

log𝑓𝑖 (𝑡𝑖 ), (4)

L𝑐𝑒 (𝜃 ;D) = 1

|D|
∑︁

(x,y) ∈D
ℓ𝑛𝑙𝑙 (x, y), (5)

where ℓ𝑛𝑙𝑙 (x, y) is the negative log-likelihood loss function.

However, merely introducing the task-specific objective can cre-

ate a dilemma between task-specific adaptation and the retention

of knowledge encoded in PLMs. This is known as the catastrophic

forgetting issue. To address this challenge, we propose a novel ap-

proach to reducing the forgetting of pre-training knowledge by

introducing an auxiliary model (Sec. 3.2) and a paired consistency

alignment approach (Sec. 3.3).

3.2 Auxiliary model
To incorporate task-related pre-training knowledge into the fine-

tuning process, we propose to introduce an auxiliary model. In this

context, the introduced auxiliary model should perform well on

the pre-training task while exhibiting poor performance on down-

stream tasks. This is achieved by performing distribution explo-

ration in light of the novel insights between parameter perturbation

and data transformations.

3.2.1 Task-related pre-training knowledge synthesis. The challenge
is twofold. First, the data used in the pre-training process is unavail-

able during the fine-tuning process. Second, it is challenging to

construct a model exhibiting poor performance on the downstream

tasks while showing good performance on pre-training tasks.

To address the challenge, we propose a novel perspective built

upon the novel insights between parameter perturbation and data

transformations. Intuitively, we can find a specific distribution so

that the downstream task model shows poor generalization perfor-

mance and the pre-training model exhibits good performance. The

feasibility lies in the fact that perturbing model parameters is equal

to a transformation in the data space. Here, we first provide details

of the novel insight. Specifically, inspired by the research [1], we

formalize the L-layer transformer model as follows:

z(𝑙 ) = ℎ (𝑙 ) (𝜃 (𝑙−1)z(𝑙−1) ) for 𝑙 = 1, . . . , 𝐿, (6)

where 𝜃 (𝑙 ) is the 𝑙-th layer weight of transformer. We have the

input of model z(1) = x, and the output of model z(𝐿) = ℎ(x;𝜃 ).
Then, the model perturbation can be realized as the multiplicative
perturbation, which is defined as follows.

Definition 3.1 (Multiplicative Perturbation [54]). For a 𝐿-layer
transformer network, the 𝑙-th layer is multiplicatively perturbed if

𝜃 (𝑙 ) is changed into 𝜃 (𝑙 ) (𝐼 + 𝛼𝐴(𝑙 ) ), where 𝛼 > 0 is used to control

the perturbation strength and 𝐴(𝑙 )
represents the perturbation

matrix.

We summarize the link between the 𝑙-th layer multiplicative

perturbation and data transformation in its associated embedding

space with proofs in the appendix 6.1,.

Theorem 3.2. In the input space X ⊆ R𝑑 , given the data distribu-
tion𝐷 and an 𝐿-layer transformer network, the model’s multiplicative
perturbation is equivalent to a data transformation in the input space
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following the distribution𝐷′. Let𝛾 be the eigenvalues of𝐴(𝑙 ) , if𝛾 > 0,
𝐷 and 𝐷′ are different, and 𝜃 (𝑙 ),† = 𝜃 (𝑙 ),−1 for 𝑙 = 1, . . . , 𝐿.

Theorem 3.2 demonstrates that model perturbation can lead to

data transformation. Under the condition of non-negative eigenval-

ues, the transformed data differs from the original data.

3.2.2 Distribution-agnostic auxiliary model objective. Based on the

previous discussion, we can identify the specific distribution as

follows. Namely, we aim to identify what kinds of distribution can

reflect our goal. In this regard, we define the worst pre-training

regret (WOR) by evaluating the worst performance of the model

on the downstream task.

Definition 3.3 (Worst pre-training regret). For the classification
model ℎ(·), its worst pre-training knowledge regret is

WOR(ℎ) = sup

𝐷∈Dp

[
Lce (ℎ;𝐷) − inf

ℎ′∈H
Lce (ℎ′;𝐷)

]
,

where Dp is the set of all pre-training knowledge distributions.

By minimizing the worst-case pre-training regret, the model can

learn the upper bound of the task-related pre-training knowledge

distribution, thus achieving uniform performance over the pre-

training knowledge. Therefore, it is most advantageous for our

model to learn from synthetic pre-training knowledge with the

worst-case pre-training regret. Such a process is applicable to our

perturbation-based data transformation and can even produce new

data distributions (see Theorem 3.2). Consequently, to empirically

upper-bound theworst-case pretraining regret, one can first identify

the model perturbation that leads to large pre-training knowledge

regret and then update the model parameters after this perturbation.

This involves a max-min learning problem, namely,

LWOR (ℎ𝜃 ;Ds

𝑝 ) = WORr (ℎ𝜃 ;𝐷s

𝑝 )

= max

𝑟 : | |𝑟 | |𝑝≤𝜖

[
Lce (ℎ𝜃+𝑟 ;Ds

𝑝 ) − min

𝜃 ′
Lce (ℎ𝜃 ′+𝑟 ;𝐷s

𝑝 )
]

s.t. ∥ℎ𝜃+r − ℎ𝜃𝑝𝑟𝑒 ∥
2

2
≤ 𝛽.

(7)

where WORP (ℎ𝜃 ;𝐷s

p
) is a perturbation-based realization for the

WOR calculation, and Ds

𝑝 is the simulated pre-training knowledge.

∥ · ∥𝑝 denotes the ℓ𝑝 -norm, 𝜖 controls the strength of the pertur-

bation, 𝛽 is a hyper-parameter. We formalize the regularization

∥ℎ𝜃+r − ℎ𝜃𝑝𝑟𝑒 ∥2

2
≤ 𝛽 as the auxiliary model’s weights 𝜃 being in

proximity to the initialized pre-training weights 𝜃𝑝𝑟𝑒 . Furthermore,

we obtain the worst task-specific knowledge distribution through

model perturbation, namely the distribution boundary of the task-

specific knowledge. Assuming 𝑟 = 𝜃𝐴, additive perturbation 𝜃 + 𝑟 is
equivalent to multiplicative perturbation and is easier to implement.

Therefore, we utilize 𝜃 + 𝑟 to perturb the model. In this context, we

can generate the optimization direction through stochastic gradient

descent. By employing a first-order approximation, the perturbation

r can be calculated as follows:

r = −sign(∇𝜃 ℓ (ℎ𝜃 (x𝑖 ), 𝑦𝑖 ))

= − 𝜖∇𝜃 ℓ (ℎ𝜃 (x𝑖 ), 𝑦𝑖 )
∇𝜃 ∥ℓ (ℎ𝜃 (x𝑖 ), 𝑦𝑖 )∥2

,
(8)

where sign(·) denotes the sign operation, and ∥ · ∥2 denotes the

ℓ2-norm. Subsequently, the optimized perturbation r can be added

to the weight 𝜃 of PLMs. In this way, we find the auxiliary model

of the PLMs with parameters 𝜃 + r.

3.3 Consistency alignment objective
Themisalignment between task-specific knowledge and pre-training

knowledge distributions may lead to a decrease in model perfor-

mance. To address this issue, we alleviate it by aligning the predicted

distributions of a task-specific model and its auxiliary model. In this

context, we can minimize the KL divergence between the output

distributions of a task-specific model and its auxiliary model as

follows:

LCA

𝑖 = −E𝑝S (𝑘 |x𝑖 )
[
log 𝑝A (𝑘 |x𝑖 )

]
. (9)

where 𝑝 (𝑘 |x𝑖 ) is the posterior probability of the sample x𝑖 produced
by a neural network, and 𝑘 is the 𝑘-th class. S and A are the task-

specific and its auxiliary model, respectively.

3.3.1 Consistency alignment with auxiliary variables. To mitigate

the transfer gap between the task-specific model and the auxiliary

model, we propose to promote the ability of the auxiliary model

to model predictive distribution, relaxing assumptions about the

task-specific model. We introduce a suitable auxiliary variable to

enhance the auxiliary model’s capability to model the predictive

distribution. Specifically, the auxiliary variable is related to the

labels, which can serve as a stepping stone to guide the auxiliary

model in modeling the predictive distribution. Inspired by [63, 65],

the auxiliary variable is realized as the instance membership 𝑠𝑖 , we

reformulate the consistency alignment objective defined in Eqn. (9)

from a probabilistic perspective where the instance membership 𝑠𝑖
serves as a latent variable. By leveraging Bayes’ and the total proba-

bility laws, we arrive at a mathematical equivalence to consistency

alignment objective (up to a constant), i.e.,

ˆLCA

𝑖 = − log

𝑝A (𝑠𝑖 |x𝑖 )
𝑝A (x𝑖 |𝑠𝑖 )

− 𝜆E𝑝S (𝑘 |x𝑖 )
[
log𝑝A (x𝑖 |𝑘)

]
. (10)

where 𝜆 is a balancing parameter. The detailed derivation of Eqn. 10

can be found in appendix 6.2. In Section 3.3.2, we will elaborate on

how we effectively parameterize each term in Eqn. (10) to fit the

consistency alignment.

3.3.2 Realization. Parameterizing 𝑝A (𝑠𝑖 |x𝑖 ). Drawing inspira-
tion from [63, 65], we organize 𝑝A (𝑠𝑖 |x𝑖 ) as an instance discrimina-

tion task [17, 71, 76] where the sample x𝑖 discriminates itself from

negative candidates with the identity 𝑠𝑖 as the identifier. Since we

have access to a specific task model, it is tempting to adopt specific

features and class labels for unbiased negative sampling. Formally,

we implement this vision by formulating 𝑝A (𝑠𝑖 |x𝑖 ) as:

𝑝A (𝑠𝑖 |x𝑖 ) ≜
exp𝜙 (zS

𝑖
, zA

𝑖
)

exp𝜙 (zS
𝑖
, zA

𝑖
) +∑

𝑗 ∈N𝑖
exp𝜙 (zA

𝑖
, zS∪A

𝑗
)
, (11)

where N𝑖 =
{
𝑗 |zS𝑛 ∈ ZS

:=

{
zS

1
, · · · , zS

𝑀

}
, 𝑦 𝑗 ≠ 𝑦𝑖

}
stores the in-

dex of all the negative task-specific features of x𝑖 . The pair-wise sim-

ilaritymeasure𝜙 (·, ·) is defined by:𝜙 (zA , zS) ≜ hA◦zS/𝜏, hA =

𝑔(zA ), where projector 𝑔(·) is introduced to match feature dimen-

sions at a relatively small cost. zS
𝑖
and zA

𝑖
is the sentence represen-

tation (e.g., h𝑠 ) output by the task-specific and its auxiliary model,

respectively.
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Parameterizing 𝑝A (x𝑖 |𝑠𝑖 ). Given that 𝑝A (x𝑖 |𝑠𝑖 ) reflects the
dependence of the identification of x𝑖 on its instance membership

𝑠𝑖 , a desirable parameterization of 𝑝A (x𝑖 |𝑠𝑖 ) should serve as a regu-
larizer to avoid the auxiliary from naively maximizing 𝑝A (𝑠𝑖 |x𝑖 ) by
encoding only instance-specific information into the feature space.

With classification as the target task, a possible approach is to en-

courage the learned features to respect the underlying inter-class

data structures, which can be easily achieved by de-differentiating

the sample x𝑖 from its positive candidates. In analogy to Eqn. (11),

𝑝S (x𝑖 |𝑠𝑖 ) takes the following form:

𝑃A (x𝑖 |𝑠𝑖 ) ≜
exp𝜙 (zS

𝑖
, zA

𝑖
)

exp𝜙 (zS
𝑖
, zA

𝑖
) +∑

𝑗 ∈P𝑖 exp𝜙 (zA
𝑖
, zA

𝑗
)
, (12)

where P𝑖 =
{
𝑗 |zS

𝑗
∈ ZS, 𝑦 𝑗 = 𝑦𝑖

}
denotes the index set of all the

positive features for the sample x𝑖 . In addition, the process of pa-

rameterization 𝑝S (𝑘 |x𝑖 ) = E𝑝S (𝑘 |x𝑖 )
[
𝜇⊤
𝑘
zA
𝑖
/𝜅

]
and the parameter-

ization of the second term obtained from parameterizing 𝑝S (x𝑖 |𝑘)
can be found in Appendix 6.3. For simplicity, we set 𝜆 = 0. Thus,

benefiting from the parameterization above, we have the following

as the objective function of our proposed CA:

LCA

𝑖
(ℎ𝜃 ;D,Ds

𝑝 ) = − log

exp𝜙 (zS
𝑖
,zA
𝑖
)+∑𝑗 ∈P𝑖 exp𝜙 (zA

𝑖
,zA
𝑗
)

exp𝜙 (zS
𝑖
,zA
𝑖
)+∑𝑗 ∈N𝑖 exp𝜙 (zA

𝑖
,zA∪S
𝑗

) , (13)

Eqn. (13) presents a methodologically unified CA paradigm. Namely,

by aligning the representations of the task-specific model and its

auxiliary model through contrastive learning, a balance is achieved

between the task-specific knowledge and the task-related pre-training

knowledge.

3.4 Joint objective of CoAi
Accordingly, the final training objective L(ℎ;D,D𝑠

𝑝 ) of the pro-
posed CoAi can be formulated as follows.

L (ℎ;D,D𝑠
𝑝 ) = Lce + 𝛾1LWOR + 𝛾2LCA . (14)

where 𝛾1 and 𝛾2 stand for the hyper-parameters.

4 Experiments
In this section, we present the text classification task of the GLUE

benchmark and three text generation tasks as our evaluation task,

as well as the baselines and experiment settings. Then, we show

the experiment results and provide further analysis.

4.1 Datasets
Our experiments are conducted on text classification tasks and

text generation tasks. For text classification task, we use the pub-

licly available GLUE benchmark, which includes six tasks: question

paraphrase (QQP), Grammatical correctness (COLA), question an-

swering/entailment (QNLI), paraphrase (MRPC), textual entailment

(RTE) and sentiment analysis (SST-2). Besides, to further verify the

effectiveness of our method on multi-classification task, we con-

duct experiments on four additional public datasets, which include

IMDB [42], PHEME [85], AGNEWS [81], and HWU [38].

For the text generation task, we use three tasks: machine transla-

tion (MT), text summarization (TS), and question generation (QG)

to verify the effectiveness of the proposed method. We use the pub-

licly available WMT16 Romanian-English parallel corpus (WMT’16

RO-EN), XSum dataset [48], and SQuAD dataset [57] as evaluation

datasets for MT, TS, and QG tasks, respectively.

4.2 Baselines
For text classification tasks, We compare our method with classical

approaches, including basic fine-tuning methods BERT [11] and

RoBERTa [39], perturbation based method FreeAT [62], CAT [51],

DropAttack [50], FreeLB [84], and PGD [84], contrastive learning

SCL [14], mixture training ANNA [25], and deep representation

HIRE [72].

For text generation tasks, we compare ourmethodwith basic fine-

tuning methods T5-small model T5-MLE[56], and some classic gen-

eration task fine-tuning methods T5-SSMBA [49], T5-WordDropout

Contrastive [73], R3F. Detailed information of the baselines can be

found in Appendix 6.4.

For both text classification and text generation tasks, we use

LORA [21], a popular fine-tuning method for large language models

(LLMs), to fine-tune the PLMs to further verify our experimental

results.

4.3 Experiment setup
For text classification tasks, we apply CoAi to the fine-tuning of

two backbone PLMs, BERT-Large and RoBERTa-Large. We use

AdamW optimizer with 0.01 weight decay and a linear learning

rate scheduler. We set max sequence length to 128, the batch size

among {16, 32}, and the learning rate among {1 × 10
−5
, 2 × 10

−5
,

3 × 10
−5}. We use the exact same hyperparameter settings as the

baseline [11, 39], and further perform grid search over the hyper-

parameter 𝛾1, 𝛾2 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and for the model weight

perturbation, the weight perturbation controller 𝜖 ∈ {1 × 10
−3
,

1 × 10
−4
, 1 × 10

−5}.
For text generation tasks, we apply CoAi to the fine-tuning of

backbone PLMs T5-small. We use AdamW optimizer with 0.01

weight decay and a linear learning rate scheduler. We set the batch

size among {16, 32, 64}, and the learning rate ∈ {1 × 10
−4

, 2 × 10
−4

,

3×10
−4}. We further perform grid search over the hyper-parameter

𝛾1, 𝛾2 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and the weight perturbation con-

troller 𝜖 ∈ {1 × 10
−2
, 1 × 10

−3
, 1 × 10

−4}.
All baseline results are obtained from their original paper. For

fine-tuning of our method CoAi, we divide the dataset into training

set, validation set and test set, and use the model evaluated on the

validation set to make predictions on the test set to obtain the final

experimental results. Besides, all our experiments are run on 48 GB

A40 GPU.

4.4 Evaluation metrics.
For text classification task, following the conventional evaluation

metrics [11, 39], we use Accuracy (ACC) as the evaluation metric for

QQP, QNLI, RTE, SST-2, Matthews Correlation Coefficient (MCC)

for COLA, and Macro-F1 (F1) for MRPC, IMDB, PHEME, AGNEWS,

and HWU. For text generation task, following the conventional

evaluation metrics [30], we use n-gram BLEU and BLEU [52] as the

evaluation metric for MT and QG, and Rouge [36] and Meteor [3]

for TS.
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4.5 Results and discussion
Results on text classification tasks. Table 1 presents the perfor-
mance of our method compared to other approaches on the widely

used GLUE benchmark. Compared to conventional fine-tuning

methods, CoAi improves the average performance by 3.2% based

on the PLMs BERTLarge, with the largest improvement observed

on the COLA dataset (i.e., 7.4%). For the stronger RoBERTaLarge,

CoAi improves the performance by an average of 2.4%. On the

COLA dataset, CoAi improves the performance by 4.8% over the

RoBERTaLarge. Overall, CoAi consistently outperforms the standard

fine-tuning method for both models. Compared with other classic

perturbation-based methods, such as DropAttack, CAT, and FreeLB.

DropAttack and CAT are currently two of the strong baselines

for improving the fine-tuning capability of PLMs using adversar-

ial attacks. Our method improves performance by an average of

1.0% compared to DropAttack, and by an average of 1.2% compared

to CAT. For other perturbation-based methods such as PGD and

freeAT, our method achieve a maximum average improvement of

2.0% on RoBERTaLarge. These improvements demonstrate the effec-

tiveness of our method. In addition to the aforementioned methods,

we further compare the classic method, such as HIRE, SCL, and

ANNA. For the strong baseline HIRE, CoAi achieves average im-

provements of 1.8% , achieving substantial improvements compared

to these classical methods. The results of other comparative experi-

ments can be found in Appendix 7.

Results on text generation tasks. Table 2 illustrates the per-
formance of the proposed CoAi method across three generation

tasks: question generation (QG), machine translation (MT), and

text summarization (TS). The result reveals that CoAi exhibits im-

provements over the basic fine-tuning method T5-MLE by 4.1%,

0.72%, and 0.61% in terms of BLEU or METEOR for the QG, MT,

and TS tasks, respectively. Furthermore, CoAi surpasses the base-

lines across all three generation tasks, particularly in the question

generation task, where it has achieved significant improvement.

We further compare the performance of LORA with classic fine-

tuning methods. It can be observed that for PLMs with small pa-

rameters, the method using all parameters for fine-tuning achieves

better results than LORA on both text classification and text gen-

eration tasks, which involves fine-tuning LLMs by adding a small

number of parameters.

Ablation study. To validate the effectiveness of each part in

CoAi, we perform ablation experiments as presented in Table 3.

After removing weight regularization, CoAi exhibits an average

decrease of 0.9% and 0.9% on BERTLarge and RoBERTaLarge, re-

spectively. This phenomenon indicates the necessity of regular-

ization to prevent auxiliary models from deviating from the origi-

nal pre-training distribution. Furthermore, upon removing CA, the

model’s performance on BERTLarge and RoBERTaLarge decrease by

an average of 0.8% and 0.6%, respectively. This indicates that the

absence of CA may lead to misalignment between task-specific

knowledge and pre-training knowledge, resulting in a decrease in

model performance. Finally, after removing weight perturbation,

the model’s performance decrease by 1.5% and 0.9% on BERTLarge

and RoBERTaLarge, respectively. From these results, it can be seen

that each part of CoAi has significantly contributed to its overall

performance.

Table 1: The results of text classification tasks on the GLUE
benchmark. All baseline results unless marked (our impl)
are reported by previous research.

Model QQP QNLI MRPC RTE SST-2 COLA AVG
BERTLarge+CAT [51] 92.2 93.0 91.6 71.5 95.2 65.8 84.9

BERTLarge (Our impl) 91.4 91.5 89.5 67.3 93.7 62.1 82.6

BERTLarge + CoAi 92.4 92.7† 91.8† 73.5† 94.8 69.5† 85.8†
RoBERTaLarge + DropAttack [50] 92.5 93.8 92.6 89.9 96.7 70.3 89.3

RoBERTaLarge +CAT [51] 92.5 95.1 93.0 87.4 97.0 69.4 89.1

RoBERTaLarge + HIRE [72] 92.0 95.0 90.9 86.6 96.8 69.7 88.5

RoBERTaLarge+ANNA [25] 89.5 95.0 91.4 83.7 96.4 65.8 87.0

RoBERTaLarge+PGD [83] 92.5 94.9 90.9 87.4 96.4 69.7 88.6

RoBERTaLarge+FreeAT [62] 92.5 94.7 90.7 86.7 96.1 68.8 88.3

RoBERTaLarge + FreeLB [83] 92.6 95.0 91.4 88.1 96.8 71.1 89.2

RoBERTaLarge+SCL [14] 92.0 93.9 89.5 85.7 96.3 68.4 87.6

RoBERTaLarge +LORA 91.6 94.9 90.9 87.4 96.2 68.2 88.2

RoBERTaLarge (Our impl) 91.8 94.4 90.9 85.9 96.1 68.1 87.9

RoBERTaLarge +CoAi 93.2 95.3 93.5 89.4 97.2 72.9 90.3

Table 2: Result on the text generation tasks of question gen-
eration, machine translation, and text summarization.

(a) Question Generation - SQuAD

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU

T5-MLE [56] 41.26 30.30 23.38 18.54 21.00

T5-SSMBA [49] 41.67 30.59 23.53 18.57 21.07

T5-WordDropout 41.37 30.50 23.58 18.71 21.19

R3F 41.00 30.15 23.26 18.44 20.97

T5-MLE-contrastive [73] 41.23 30.28 23.33 18.45 20.91

T5+LORA 39.80 29.58 22.27 16.15 19.02

T5+CoAi 43.42 32.96 26.61 22.25 25.10

(b) Machine Translation - WMT’16 RO-EN

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU

T5-MLE [56] 57.76 44.45 35.12 28.21 32.43

T5-SSMBA [49] 58.23 44.87 35.50 28.48 32.81

T5-WordDropout 57.77 44.45 35.12 28.21 32.44

R3F 58.07 44.86 35.57 28.66 32.99

T5-MLE-contrastive [73] 57.64 44.12 34.74 27.79 32.03

T5+LORA 51.10 38.45 28.41 22.03 26.83

T5+CoAi 58.02 44.98 35.72 28.64 33.15

(c) Text Summarization - XSum

Method Rouge-1 Rouge-2 Rouge-L METEOR

T5-MLE [56] 36.10 14.72 29.16 15.78

T5-SSMBA [49] 36.58 14.81 29.68 15.38

T5-WordDropout 36.88 15.11 29.79 15.77

R3F 36.96 15.12 29.76 15.68

T5-MLE-contrastive [73] 36.34 14.81 29.41 15.85

T5+LORA 33.23 10.62 25.78 11.34

T5+CoAi 36.86 15.34 30.27 16.39

Consistency Alignment Performance Analysis. From Fig-

ure 2 and Figure 3, it can be observed that our method CoAi exhibits

better uniformity and alignment [69]. This indicates that CoAi can

produce a more uniform representation distribution to adapt to
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Table 3: Ablation result of CoAi on the GLUE benchmark.
“WP” represents theweight perturbation, and “CA” stands for
the consistency alignment. CoAi additionally applies weight
regularization based on both “WP” and “CA”.

Model QQP QNLI MRPC RTE SST-2 COLA AVG

BERTLarge 91.4 91.5 89.5 67.3 93.7 62.1 82.6

BERTLarge + WP 91.8 92.5 90.1 71.3 94.1 64.6 84.1

BERTLarge + WP +CA 92.3 92.2 90.3 72.1 94.5 68.0 84.9

BERTLarge + CoAi 92.4 92.7 91.8 73.5 94.8 69.5 85.8

RoBERTaLarge 91.8 94.4 90.9 85.9 96.1 68.1 87.9

RoBERTaLarge+WP 92.2 94.9 91.8 87.9 96.5 69.3 88.8

RoBERTaLarge+WP+CA 92.6 94.8 92.9 87.9 96.8 71.5 89.4

RoBERTaLarge +CoAi 93.2 95.3 93.5 89.4 97.2 72.9 90.3

Figure 2: Uniformity analysis: Representations of HWU vali-
dation set. We plot feature distributions with Gaussian ker-
nel density estimation (KDE) in R2 (the darker the color is,
the more points fall in that area.) and KDE on angles (i.e.,
arctan2(y, x) for each point (𝑥,𝑦) ∈ S1). The upper part repre-
sents the conventional fine-tuning method, while the lower
part is our method, CoAi.

Figure 3: Alignment analysis: The distribution of distance
between features of positive pairs on RTE dataset (the left is
CoAi, and the right is CoAi without consistency alignment
(CA)).

different samples. Additionally, it can be observed that through

CA, the distances between positive samples (simulated pre-training

Table 4: Knowledge retention analysis on text classification
task. We fine-tune the PLMs on task 1, obtaining the pre-
trained parameters denoted as 𝜃𝐹𝑇 , then we freeze 𝜃𝐹𝑇 and
train it on task 2. Namely, we use the PLMs fine-tuned on task
1 to make predictions on task 2, thus obtaining the results
for task2.

Model Task 1 (MRPC) Task 2 (RTE)

RoBERTaLarge+CoAi 93.5 57.8(+3.9)

RoBERTaLarge 90.9 53.9

Model Task 1 (COLA) Task 2 (RTE)

RoBERTaLarge+CoAi 72.9 57.0(+5.4)

RoBERTaLarge 68.1 51.6

Model Task 1 (COLA) Task 2 (SST-2)

RoBERTaLarge+CoAi 72.9 78.3(+3.8)

RoBERTaLarge 68.1 74.5

Table 5: Knowledge retention analysis on text generation
tasks. We randomly extract 20% of the data from the valida-
tion set and feed it into the T5model to obtain answers. These
answers are regarded as the benchmark for pre-training
knowledge. Subsequently, we compare the answers gener-
ated by T5-MLE and T5+CoAi with this benchmark answer,
and obtain the results of pre-training knowledge retention
on the text generation task.

Model SQuAD(BLEU) WMT’16 RO-EN(BLEU) XSum(METEOR)

T5-MLE 17.37 10.80 17.81

T5+CoAi 18.03 (+0.66) 14.29(+3.49) 18.53 (+0.72)

Figure 4: The t-SNE of embedding representations learned
with or without CoAi. “RoBERTa + PT" refers to the initial
pre-trained model RoBERTa. “RoBERTa + FT" refers to the
conventional fine-tuning method for RoBERTa.

knowledge representation and task-specific knowledge representa-

tion) are closer, effectively alleviating the misalignment between

task-specific knowledge and pre-training knowledge.

Knowledge retention analysis. To demonstrate that CoAi

can effectively preserve pre-training knowledge, and follow the
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Table 6: Case study of pre-training knowledge retention on SQuAD dataset. We train T5-MLE and our method, T5+CoAi, on the
Text Summarization task using the XSum dataset. Then, we use both models to make predictions on the Question Generation
task using the SQuAD dataset, thereby obtaining the final prediction results.

context Question Correct Answer T5 T5-MLE (Trained on the XSum dataset) T5+CoAi (Trained on the
XSum dataset)

The Broncos took an early lead in Super Bowl 50 and never trailed. Newton was limited

by Denver’s defense, which sacked him seven times and forced him into three turnovers,

including a fumble which they recovered for a touchdown. Denver linebacker Von

Miller was named Super Bowl MVP, recording five solo tackles, 2½ sacks, and two

forced fumbles.

How many times did the Bron-

cos cause turnovers in the

game?

three three Denver Broncos sacked

Steven Newton seven

times

The Denver Broncos were

forced into three sacks and

forced into three fumbles

CBS broadcast Super Bowl 50 in the U.S., and charged an average of 5 million for a 30-

second commercial during the game. The Super Bowl 50 halftime show was headlined

by the British rock group Coldplay with special guest performers Beyoncé and Bruno

Mars, who headlined the Super Bowl XLVII and Super Bowl XLVIII halftime shows,

respectively. It was the third-most watched U.S. broadcast ever.

What ranking does the Super

Bowl 50 halftime show have

on the list of most watched TV

broadcasts?

third third-most

watched U.S.

CBS has been the most

watched TV broadcast

ever

The third-most watched U.S.
broadcast ever

Super Bowl 50 was an American football game to determine the champion of the

National Football League (NFL) for the 2015 season. The American Football Conference

(AFC) champion Denver Broncos defeated the National Football Conference (NFC)

champion Carolina Panthers 24–10 to earn their third Super Bowl title. The game was

played on February 7, 2016, at Levi’s Stadium in the San Francisco Bay Area at Santa

Clara, California. As this was the 50th Super Bowl, the league emphasized the "golden

anniversary" with various gold-themed initiatives, as well as temporarily suspending

the tradition of naming each Super Bowl game with Roman numerals (under which the

game would have been known as "Super Bowl L"), so that the logo could prominently

feature the Arabic numerals 50.

Super Bowl 50 decided the NFL

champion for what season?

2015 2015 The NFL champion of

the National Football

League (NFL) for the

2015 season has been

announced.

The 2015 season

Super Bowl 50 was an American football game to determine the champion of the

National Football League (NFL) for the 2015 season. The American Football Conference

(AFC) champion Denver Broncos defeated the National Football Conference (NFC)

champion Carolina Panthers 24–10 to earn their third Super Bowl title. The game was

played on February 7, 2016, at Levi’s Stadium in the San Francisco Bay Area at Santa

Clara, California. As this was the 50th Super Bowl, the league emphasized the "golden

anniversary" with various gold-themed initiatives, as well as temporarily suspending

the tradition of naming each Super Bowl game with Roman numerals (under which the

game would have been known as "Super Bowl L"), so that the logo could prominently

feature the Arabic numerals 50.

What does AFC stand for? American Foot-

ball Conference

American Foot-

ball Conference

American Football Con-

ference (AFC) cham-

pion Denver Broncos

The American Football Con-
ference (AFC)

Super Bowl 50 was an American football game to determine the champion of the

National Football League (NFL) for the 2015 season. The American Football Conference

(AFC) champion Denver Broncos defeated the National Football Conference (NFC)

champion Carolina Panthers 24–10 to earn their third Super Bowl title. The game was

played on February 7, 2016, at Levi’s Stadium in the San Francisco Bay Area at Santa

Clara, California...

Where did Super Bowl 50 take

place?

Santa Clara,

California

San Francisco

Bay Area

The American Football

League (NFL) has cele-

brated its 50th anniver-

sary by naming each

Super Bowl game with

Arabic numerals.

The 50th Super Bowl has been

played at Levi’s Stadium in San
Francisco, California.

research [26, 40], we conduct the knowledge retention analysis on

text classification and text generation tasks as shown in Table 4 and

Table 5. It can be seen that the PLMs fine-tuned using CoAi shows

significant improvements of 3.9%, 5.4%, and 3.8% over the conven-

tional fine-tuning method for task 2 on text classification task. In

text generation tasks, the proposed method T5+CoAi, compared

to the traditional fine-tuning method T5-MLE, has improved by

0.66%, 3.49%, and 0.72% on the Question Generation (using SQuAD

dataset), Machine Translation (using WMT’16 RO-EN dataset), and

Text Summarization (using XSum dataset) tasks, respectively. This

phenomenon indicates that the CoAi can effectively reduce knowl-

edge forgetting.

Futhermore, we present the t-SNE visualization of the embedding

representations learned using CoAi as shown in Figure 4. We ran-

domly select some samples from both the COLA and RTE dataset,

and each sample is processed through RoBERTa + PT, RoBERTa +

FT, and CoAi (using RoBERTa as the encoder) to obtain their embed-

ding representations hCLS, which are then projected onto the t-SNE

plot. The results show that the learned embedding representations

by our model (green nodes) are closer to the initial pre-trained

representations (red nodes). Additionally, CoAi has demonstrated

outstanding performance across various downstream tasks (refer

to Table 1). This phenomenon indirectly indicates that CoAi can

strike a balance between pre-training knowledge and task-specific

knowledge, thereby achieving optimal results.

To intuitively demonstrate the proposed method CoAi can effec-

tively reduce knowledge forgetting, we conduct the experiment of

pre-training knowledge retention on SQuAD dataset as shown in

Table 6. It can be seen that compared with T5-MLE (trained on the

XSum dataset), our method T5+CoAi (trained on the XSum dataset)

is not only closer to the accurate answer in the Question Gener-

ation (using SQuAD dataset) task, but also closer to the answer

output by the unfine-tuned model T5 (which can be considered

as pre-training knowledge). Taking the 50th Super Bowl as an ex-

ample (the fifth example), it can be seen that T5-MLE (trained on

the XSum dataset) completely answer incorrectly, and our method

T5+CoAi not only answer correctly, but also effectively merge the

answer of T5 with the correct answer. This effectively proves that

the proposed method CoAi can reduce the forgetting of pre-training

knowledge, and shows good generalization ability.

5 Conclusion
In this paper, we propose a novel dual-model learning framework,

CoAi, to address the problem of catastrophic forgetting of pre-

training knowledge during the fine-tuning process of PLMs. CoAi

constructs an auxiliary model to maintain the pre-training knowl-

edge, and simulates pre-training knowledge by performing dis-

tributional exploration in the parameter space. To overcome the

misalignment between the pre-training and task-specific knowl-

edge, CoAi employs an auxiliary variable to align the prediction

distribution of the task-specific and the auxiliary models. We con-

duct extensive experiments on ten classic classification tasks and

three generation tasks, demonstrating that CoAi can significantly

improve the performance of PLMs over state-of-the-art methods.
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6 Appendices
This section provides the detailed proofs for our theoretical claims

in the main text.

6.1 Proof of Theorem 3.2
Proposition 6.1. Considering the data distribution 𝐷 and the

multiplicative perturbation of the 𝑙-th layer of a transformer network,
multiplicative perturbation is equivalent to data transformation in
the feature space. Furthermore, assuming 𝛾 is the eigenvalues of 𝐴(𝑙 ) ,
if 𝛾 > 0, the transformed data follows a new distribution 𝐷′, which is
distinct from 𝐷 .

Proof. To clearly demonstrate the derivation, we adopt the

equivalent form for our definition of the model in (6), following:

ℎ (𝑙+1) (𝑊 (𝑙 )z(𝑙 ) ) = ℎ (𝑙+1) (z(𝑙 ) ;𝑊 (𝑙 ) ). (15)

Then, we insert a multiplicative perturbation to the 𝑙-th layer of the

model through an affine transformation 𝐼 + 𝛼𝐴(𝑙 )
to the original
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features z(𝑙 ) as the expression below.

ℎ (𝑙+1)
(
z(𝑙 ) ;𝑊 (𝑙 ) (𝐼 + 𝛼𝐴(𝑙 ) )

)
=max

{(
𝑊 (𝑙 ) (𝐼 + 𝛼𝐴(𝑙 ) )

)
z(𝑙 ) , 0

}
=max

{
𝑊 (𝑙 )

(
(𝐼 + 𝛼𝐴(𝑙 ) )z(𝑙 )

)
, 0

}
=ℎ (𝑙+1)

(
(𝐼 + 𝛼𝐴(𝑙 ) )z(𝑙 ) ;𝑊 (𝑙 )

)
.

(16)

In feature spaceZ (𝑙 )
, assume that the original data are i.i.d., follow-

ing a distribution with probability density function (pdf) 𝑓𝑍 (𝑙 ) (z(𝑙 ) ),
then the pdf of the perturbed data can be expressed as 𝑓

𝑍 ′ (𝑙 ) (z′(𝑙 ) ) =

𝑓𝑍 (𝑙 ) (z(𝑙 ) )
���𝐼 + 𝛼𝐴(𝑙 )

���−1

.

We measure the discrepancy between the original feature distri-

bution and the transformed feature distribution with KL-divergence

as the equation below.

𝐷KL (𝑓𝑍 (𝑙 ) | |𝑓𝑍 ′ (𝑙 ) ) = E𝑓
𝑍 (𝑙 ) (z(𝑙 ) ) log

𝑓𝑍 (𝑙 ) (z(𝑙 ) )
𝑓
𝑍 ′ (𝑙 ) (z′(𝑙 ) )

= log

���𝐼 + 𝛼𝐴(𝑙 )
��� .

(17)

Without loss of generality, we assume 𝐾 different eigenvalues for

matrix 𝐴(𝑙 )
. Then, matrix 𝐴(𝑙 )

can be decomposed into 𝐴(𝑙 ) =

𝑇 (𝑙 ),−1 𝐽 (𝑙 )𝑇 (𝑙 )
, where 𝐽 (𝑙 ) is the Jordan matrix

𝐽 (𝜆1)
𝐽 (𝜆2)

· · ·
𝐽 (𝜆𝑘 )

· · ·
𝐽 (𝜆𝐾 )


, (18)

and 𝐽 (𝜆𝑘 ) is the 𝑘-th Jordan block (of size 𝑛𝑘 × 𝑛𝑘 ) corresponding
to the 𝑘-th eigenvalue of matrix 𝐴(𝑙 )

. The decomposition can be

summarized by

���𝐼 + 𝛼𝐴(𝑙 )
��� = ���𝑇 (𝑙 ),−1 (𝐼 + 𝛼 𝐽 (𝑙 ) )𝑇 (𝑙 )

��� = ���𝐼 + 𝛼 𝐽 (𝑙 ) ���.
Since 𝐽 (𝑙 ) is an upper triangularmatrix, then

���𝐼 + 𝛼 𝐽 (𝑙 ) ��� = ∏𝐾
𝑘=1

(𝛼𝜆𝑘+
1)𝑛𝑘 . Accordingly, if all of the eigenvalues of matrix𝐴(𝑙 )

are greater

than 0 and𝛼 > 0, we have

���𝐼 + 𝛼𝐴(𝑙 )
��� > 1 and𝐷KL (𝑓𝑍 (𝑙 ) | |𝑓𝑍 ′ (𝑙 ) ) > 0.

Therefore, the distributions 𝑓𝑍 (𝑙 ) and 𝑓𝑍 ′ (𝑙 ) are different regarding

the KL divergence. Thus we complete our proof.

Through Proposition 6.1, it can be seen that model perturbation

provides an implicit way to modify data and their distribution.

Therefore, we extend this to the multiplicative perturbation of the

model, demonstrating its capability to modify the data distribution

in the original input space.

We consider an induction proof, justifying that: the multiplica-

tive perturbation with 𝐴(𝑙 )
of any layer in 𝑙 = 1, . . . , 𝐿 can be

transformed into an equivalent multiplicative perturbation with

𝐴(𝑙−1) ∈ R𝑛𝑙−1×𝑛𝑙−1
in the (𝑙−1)-th layer. Moreover, |𝐴(𝑙−1) | > 0 if

|𝐴(𝑙 ) | > 0. Then, one can transform the multiplicative perturbation

of the model to an equivalent form in the input space. Since the

determinant of the equivalent perturbation is greater than 0, by ap-

plying Proposition 6.1, we conclude that multiplicative perturbation

can lead to data transformation in the original input space.

To find the equivalent perturbation matrix𝐴(𝑙−1)
in the (𝑙−1)-th

layer regarding the original one 𝐴(𝑙 )
in the 𝑙-th layer, we solve the

following equation:

𝑊 (𝑙 ) (𝐼 + 𝛼𝐴(𝑙 ) )ℎ (𝑙 ) (𝑊 (𝑙−1)z(𝑙−1) )

=𝑊 (𝑙 )ℎ (𝑙 ) (𝑊 (𝑙−1) (𝐼 + 𝛼𝐴(𝑙−1) )z(𝑙−1) ) .
(19)

If [z(𝑙−1) ]𝑖 ≠ 0 in each dimension, (19) can be rewritten as

𝐴(𝑙 )ℎ (𝑙 ) (𝑊 (𝑙−1)z(𝑙−1) ) = ℎ (𝑙 )
′
(𝑊 (𝑙−1)z(𝑙−1) )𝑊 (𝑙−1)𝐴(𝑙−1)z(𝑙−1) ,

(20)

by applying the Taylor Theorem for the right-hand side
1
, we solve

the equivalent formulation for (20), following,

𝐴(𝑙 )𝑊 (𝑙−1) =𝑊 (𝑙−1)𝐴(𝑙−1) . (21)

Then, the solution of 𝐴(𝑙−1)
is𝑊 (𝑙−1),†𝐴(𝑙 )𝑊 (𝑙−1)

with † being

the Moore-Penrose inverse.

We justify that the multiplicative perturbation in the 𝑙-th layer

can be transformed to that of the (𝑙 − 1)-th layer. Therefore, the

equivalent perturbation 𝐴(𝑙−1)
and the original perturbation in the

(𝑙 − 1)-th layer can formulate a joint perturbation
¯̄𝐴(𝑙−1)

, namely,

𝐼 + 𝛼 ¯̄𝐴(𝑙−1)
, with

¯̄𝐴(𝑙−1) = 𝐴(𝑙−1) +𝐴(𝑙−1) + 𝛼𝐴(𝑙−1)𝐴(𝑙−1) . (22)

Now, we justify that
¯̄𝐴(𝑙−1)

can also lead to distributional trans-

formation. If𝑊 (𝑙−1),† = 𝑊 (𝑙−1),−1
(Here, we implicitly assume

that 𝑛𝑙−1
= 𝑛𝑙−2

) and the eigenvalues of the matrix 𝐴(𝑙 )
are all

greater than 0, then we know that the eigenvalues of the matrix

𝐴(𝑙−1)
are all greater than 0. Again, we have

���𝐼 + 𝛼𝐴(𝑙−1)
��� > 1.

Then, the joint perturbation
¯̄𝐴(𝑙−1)

satisfies:���𝐼 + 𝛼 ¯̄𝐴(𝑙−1)
��� =���(𝐼 + 𝛼𝐴(𝑙−1) ) (𝐼 + 𝛼𝐴(𝑙−1) )

��� (23)

=

���𝐼 + 𝛼𝐴(𝑙−1)
��� ���𝐼 + 𝛼𝐴(𝑙−1)

��� (24)

>

���𝐼 + 𝛼𝐴(𝑙−1)
��� (25)

>1. (26)

By induction, the multiplicative perturbation of the model can

be approximated by the input transformation. By applying Proposi-

tion 6.1, we know that x and the perturbation-based transformed

counterpart follow the different data distributions. Thus we com-

plete our proof. □

6.2 Deviation of Eqn. (10)
Inspired by [63, 65], we reformulate the consistency alignment

objective defined in Eqn. (9) from a probabilistic perspective where

the instancemembership 𝑠𝑖 serves as a latent variable. By leveraging

Bayes’ and the total probability laws, 𝑝A (𝑘 |x𝑖 ) can be formalized

as follows:

𝑝A (𝑘 |x𝑖 ) =
𝑝A (𝑠𝑖 |x𝑖 )𝑝A (𝑘 |x𝑖 , 𝑠𝑖 )

𝑝A (𝑠𝑖 |x𝑖 , 𝑘)
, (27)

Combining Eqn. (27) with Eqn. (9), we can reformulate the objective

function as:

LCA

𝑖 = − log𝑝A (𝑠𝑖 |x𝑖 ) − E
𝑝S (𝑘 |x𝑖 )

[
log

𝑝A (𝑘 |x𝑖 , 𝑠𝑖 )
𝑝A (𝑠𝑖 |x𝑖 , 𝑘 )

]
, (28)

1
With the usual adjustments that the equations only hold almost everywhere in

parameter space.
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where the second term in Eqn. (28) makes the back-propagation

through the discrete entries 𝑘 and 𝑠𝑖 infeasible. Consequently, given

the facts that

𝑝A (𝑘, x𝑖 , 𝑠𝑖 ) = 𝑝A (𝑘 |x𝑖 , 𝑠𝑖 )𝑝A (x𝑖 |𝑠𝑖 )𝑝A (𝑠𝑖 ) (29)

𝑝A (𝑘, x𝑖 , 𝑠𝑖 ) = 𝑝A (𝑠𝑖 |x𝑖 , 𝑘)𝑝A (x𝑖 |𝑘)𝑝A (𝑘) (30)

we have

𝑝A (𝑘 |x𝑖 , 𝑠𝑖 )𝑝A (x𝑖 |𝑠𝑖 )𝑝A (𝑠𝑖 ) = 𝑝A (𝑠𝑖 |x𝑖 , 𝑘)𝑝A (x𝑖 |𝑘)𝑝A (𝑘)

⇔𝑝A (𝑘 |x𝑖 , 𝑠𝑖 )
𝑝A (𝑠𝑖 |x𝑖 , 𝑘)

=
𝑝A (x𝑖 |𝑘)𝑝A (𝑘)
𝑝A (x𝑖 |𝑠𝑖 )𝑝A (𝑠𝑖 )

(31)

Same as [23], we denote

𝑝A (𝑘) = |D𝑘 |/𝑀 (32)

D𝑘 =

{
(x𝑖 , 𝑦𝑖 ) | (x𝑖 , 𝑦𝑖 ) ∈ D𝑠

𝑝 , 𝑦𝑖 = 𝑘

}
. (33)

Thanks to the fact that 𝑝S (𝑘 |x𝑖 ) is fixed in the fine-tuning task, the

constant term 𝑝A (𝑠𝑖 ) can be omitted during optimization though

the true distribution 𝑝A (𝑠𝑖 ) is unknown. Consequently, we arrive
at a mathematical equivalence to consistency alignment objective

(up to a constant), i.e.,

ˆLCA

𝑖 = − log

𝑝A (𝑠𝑖 |x𝑖 )
𝑝A (x𝑖 |𝑠𝑖 )

− 𝜆E𝑝S (𝑘 |x𝑖 )
[
log𝑝A (x𝑖 |𝑘)

]
. (34)

6.3 Parameterizing 𝑝A (x𝑖 |𝑘).
Parameterizing𝑝A (x𝑖 |𝑘).This ismotivated by the fact that𝑝S (x𝑖 ) =∑𝐾
𝑘=1

𝑝A (x𝑖 |𝑘)𝑝A (𝑘).We then define 𝑝A (x𝑖 |𝑘) as a class-conditional
probability density function. Following [45], focuses on an exemplar

based on the von Mises-Fisher (vMF) distribution, i.e.,

𝑝A (x𝑖 |𝑘) ≜ 𝐶𝑑 (𝜅−1) exp (zA𝑖 ◦ 𝜇𝑘/𝜅), (35)

where 𝜅 > 0 and the class prototype 𝜇𝑘 ∈ R𝑑 denotes the mean vec-

tor of the class 𝑘 with ∥𝜇𝑘 ∥2
= 1. The normalization constant𝐶𝑑 (𝜅)

is calculated based on 𝜅 and 𝑑 :𝐶𝑑 (𝜅) = 𝜅𝑑/2−1/
[
(2𝜋)𝑑/2𝐼𝑑/2−1

(𝜅)
]

where 𝐼𝑑 denotes the modified Bessel function of the first kind and

order 𝑑 .

For a fair comparison, we formulate 𝑝S (𝑘 |x𝑖 ) in accordance with
prior works [16, 82], i.e.,

𝑝S (𝑘 |x𝑖 ) ≜
exp(eS

𝑖,𝑘
/𝜎)∑𝐾

𝑗=1
exp(eS

𝑖, 𝑗
/𝜎)

, (36)

where 𝜎 > 0 and eS
𝑖,𝑘

denotes to the logit of the 𝑘-th class for the

sample x𝑖 .
It is worth noting that E𝑝S (𝑘 |x𝑖 )

[
𝜇⊤
𝑘
zA
𝑖
/𝜅

]
is an evidence lower

bound (ELBO) on the marginal likelihood of the sample x𝑖 (up to a

constant), which can be written as

log𝑝A (x𝑖 ) = logE𝑝A (𝑘 )
[
𝑝A (x𝑖 |𝑘 )

]
= logE𝑝A (𝑘 )

[
𝐶𝑑 (𝜅−1 ) exp (zA𝑖 ◦ 𝜇𝑘/𝜅 )

]
≥ E

𝑝S (𝑘 |x𝑖 )
[
zA𝑖 ◦ 𝜇𝑘/𝜅

]
+ 𝑐𝑜𝑛𝑠𝑡 .

It can be seen that optimizing E𝑝S (𝑘 |x𝑖 )
[
𝜇⊤
𝑘
zA
𝑖
/𝜅

]
drives the deep

features to follow the pre-defined distribution. This means that the

strong distributional assumption behind Eqn. (35) can be naturally

satisfied during optimization without requiring explicit constraints.

6.4 Comparison method details
(1) Baselines of text classification task. For text classification
task, we evaluate our method by contrasting it with following

methods.

• BERT [11] and RoBERTa [39] are two basic models for

adapting downstream tasks in PLMs, among which RoBERTa

is a strong baseline.When performing classification taskwith

BERT and RoBERTa, a classifier composed of a feed-forward

layer and a softmax function is added directly on top of the

final hidden state of the initial token [CLS] output by BERT

or RoBERTa.

• FreeAT [62] is an perturbation based algorithm that elimi-

nates the cost of generating adversarial examples by reusing

the gradient information computed during the update of

model parameters.

• CAT [51] adds perturbations into the embedding layer of

PLMs, and improves the performance of PLMs on down-

stream tasks using contrastive training.

• HIRE [72] enhances the capability of pre-trained language

representations by deepening the learned representations

of transformer-based PLMs, thereby improving the model’s

performance across various natural language understanding

tasks.

• ANNA [25] introduces an expanded pre-training task and a

new neighbor-aware mechanism, achieving superior perfor-

mance in text classification tasks.

• SCL [14] is a classic method that uses supervised contrastive

learning to fine-tune PLMs. It can be employed to validate

the effectiveness of combining the CoCa algorithm with

pre-defined tasks.

• DropAttack [50] proposes a random dropped weight attack,

achieving superior performance in text classification tasks.

• FreeLB and PGD [84] are two powerful methods for gener-

ating adversarial perturbations to enhance the performance

of PLMs in downstream tasks. They serve as effective bench-

marks to validate the efficacy of our approach.

(2) Baselines of text generation task. For text generation task,

we evaluate our method by contrasting it with following methods.

• T5-MLE [56] is fine-tuned by minimize Eq. 5.

• T5-SSMBA [49] trains a T5 model by minimizing the loss

function defined in Eq. 5, and then reconstructs it using

the masked language model BERT along with generated

additional examples.

• T5-WordDropoutContrastive [73] fine-tunes the T5model

by designing a contrastive learning framework, which heuris-

tically generates counterexamples by removing the most

common words from the target sequence, thereby assigning

a higher probability to counterexamples with the maximum

margin loss compared to the true target sentences.

• R3F is a T5 model that minimizes the negative log likelihood

and symmetric KL-divergence to enforce the function to be

smooth.



Mitigating Forgetting in Adapting Pre-trained Language Models to Text Processing Tasks via Consistency AlignmentConference acronym ’XX, June 03–05, 2018, Woodstock, NY

7 Further expriments
In this section, we will conduct further experiments to validate the

effectiveness of our method.

Results of other NLP tasks. We also conduct experiments on

the other four public NLP tasks, including PHEME, IMDB, AG-

NEWS, and HWU. Table 7 summarizes the results. Our approach

outperforms fine-tuned RoBERTaLarge by an average of 1.3%. These

results further demonstrate the effectiveness of CoAi across various

NLP tasks.

Table 7: Results on other public NLP tasks.

Model PHEME IMDB AGNEWS HWU Avg

RoERTaLarge 90.0 93.4 95.3 88.1 91.7

RoERTaLarge+CoAi 92.1 93.7 95.9 90.1 93.0

DeBERTaV3 results. DeBERTaV3 is one of the top-performing

base PLMs on the GLUE benchmark currently. From Figure 8, it can

be observed that our method has shown an average improvement of

0.6% over DeBERTav3 on the GLUE benchmark. This demonstrates

that CoAi can effectively enhance the performance of various PLMs

on NLP tasks.

Table 8: The results on the GLUE benchmark using DeBER-
TaV3 as the backbone.

Model QQP QNLI MRPC RTE CoLA SST-2 Avg

DeBERTav3Large [18] 92.3 96.0 92.7 92.7 75.3 96.9 91.0

DeBERTav3Large+CoAi 93.4 95.8 93.3 93.0 76.7 97.5 91.6

Few-shot analysis. From the Figure 5, it can be seen CoAi shows

excellent performance in few shot learning tasks by effectively

leveraging limited training data. This may be due to the ability of

CoAi to effectively retain pre-training knowledge and apply it to

downstream tasks.

Figure 5: The few-shot performance on the COLA dataset
using different scales of the training set (x-axis).
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