
Best Policy Tracking in Gradient-based Optimization

Judith Echevarrieta1, Etor Arza2, Aritz Pérez3, Josu Ceberio1
1University of the Basque Country UPV/EHU,

{judith.echevarrieta,josu.ceberio}@ehu.eus
2Norwegian University of Science and Technology NTNU, etor.arza@ntnu.no

3Basque Center for Applied Mathematics BCAM, aperez@bcamath.org

Abstract

Policy optimization in reinforcement learning consists of optimizing an agent’s
decision-making strategy, based on experience gained through interaction with an
environment and with the goal of best solving the task determined by the environ-
ment. Gradient-based algorithms have proven effective by representing the agent’s
behaviour with stochastic neural network policies. Multiple reinforcement learning
libraries have been created to facilitate problem-solving and the development of
new algorithms. In experimental studies, these tools are often treated as black
boxes, focusing primarily on the final policy returned by the algorithm rather than
on understanding how it was chosen from the entire sequence of visited policies.
However, gradient-based algorithms suffer from high variance gradient estimates,
leading to significant oscillations in the performance of consecutive visited policies.
Under this phenomenon, selecting the best policy from the whole sequence of
visited policies becomes a critical issue, as naive choices, such as selecting the last
policy, might lead to undesired policies and inefficient learning time investment.
This project aims to investigate the relevance of this problem. To that end, we will
examine the limitations of existing approaches and will explore if new methods
can improve the selection of the best-visited policy.

1 Motivation

In Reinforcement Learning (RL), Policy Optimization (PO) consists of finding the optimal decision-
making approach to solve a task, based on the experience observed during the interaction [18].
The decision-maker is called the agent, and everything outside the agent that makes the interaction
possible is called the environment. Interaction happens continuously during learning: the agent selects
actions and the environment responds to those actions by rewarding them and presenting new states
to the agent. This interaction allows the agent to improve its way of acting.

A wide variety of heuristic algorithms have been designed to solve PO problems [2]. They iteratively
determine how the agent should update its way of acting by considering the feedback from its
interaction with the environment. These algorithms are considered RL algorithms, among which
gradient-based PO algorithms, a.k.a. Policy Gradient (PG), stand out [16, 17] for being suitable for
learning policies in environments with both discrete and continuous action spaces. PG algorithms
define the behaviour of the agent as an explicit policy, i.e., a stochastic neural network that maps
each state of the environment to a probability distribution over possible actions. The policies
allow interaction with the environment for finite periods of time that result in sequences of data
formed by states of the environment, actions of the agent and rewards of these actions provided
by the environment. Finally, the sequences resulting from the interaction are used to approximate
the gradient of the policy performance and apply stochastic gradient descent to update the policy.
Agent-environment interaction and policy update are alternated iteratively until the time available for
learning is exhausted.

XVI XVI Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (maeb 2025).

In recent years, many libraries [3, 6, 9, 11, 13, 15] have been developed, aimed at supporting research
in RL. They contain implementations of multiple RL environments and algorithms, facilitating exper-
imentation and evaluation of new proposals. Those libraries are used as a baseline to experimentally
test the performance of new algorithms [5, 14], as they ease the comparison to existing ones. They are
also used to simulate multiple tasks in continuous learning, identifying different tasks with different
environments [12]. In these cases, we observe that the RL community uses libraries in the following
way: First, an environment and an algorithm are selected from those implemented by the library.
Then, a random seed is set, and the algorithm is run in the environment for a certain time, leading to
a learning process. Finally, the policy that is returned by default is used as the learned policy.

Consequently, the use of RL libraries can be interpreted as a black-box learning process. In fact,
experimental works in the literature do not pay much attention to how the returned policy is selected
from the sequence of policies generated during learning. However, the implementations of PG
algorithms estimate the gradients of policy performance using data sequences gathered during their
interaction, which leads to high variance estimates [7, 10]. This may result in unwanted policy
updates with significant oscillations in performance. Therefore, the choice of the returned policy can
by no means be considered trivial due to the oscillations that appear during the learning process. This
project aims to analyze if it is possible to improve the best policy selection.

2 Problem Definition and Previous Work

Formally an environment is defined as a Markov Decision Process [18], a tuple E = (S,A, p, r)
where S is the state space, A is the action space, p : S ×A → ∆(S) is the state transition probability
function that defines a probability distribution p(·|s, a) with support in S for a given state-action pair
(s, a) ∈ S ×A, and r : S ×A → R is the reward function. The agent interacts with the environment
according to a probability function π : S → ∆(A), called the policy, which defines a probability
distribution π(·|s) with support in A for a given state s ∈ S.

At each step of the interaction, the agent starts from the current state of the environment s ∈ S
and chooses an action a ∼ π(·|s). Then, the environment rewards the chosen action r(s, a) and
updates the state s′ ∼ p(·|s, a). The agent-environment interaction breaks down intentionally with
a stopping criterion (e.g., a number of maximum steps), or naturally upon reaching a special state.
These states are terminal states ST ⊂ S, which are reset by a non-terminal state called initial state
from SI ⊂ S before acting, drawn from a probability distribution pI ∈ ∆(SI). A sequence formed
by the state-action pairs τ =

(
(s1, a1), ..., (sn, an)

)
generated during a n step interaction of a policy

π with an environment E is named trajectory. When the first state of a trajectory is initial s1 ∈ SI , the
last state-action pair leads to a terminal state sn+1 ∈ ST and the intermediate states are not terminal
si ∈ S \ SI for all i ∈ {2, ..., n− 1}, the trajectory is called an episode. Each trajectory is given a
reward computed from the rewards of its state-action pairs. The trayectory reward is defined as the
discounted cumulative reward that, with a slight abuse of notation, we formally denote as

r(τ) =
∑

i∈{1,...,|τ |}
γir(si, ai) (1)

where γ ∈ [0, 1] is the discount factor and |τ | is the length of τ . When τ is an episode, r(τ) is called
episodic reward, γ = 1 and |τ | is a priori unknown.

In a PO problem, the objective is to find the policy that maximizes the average episodic reward over
randomly initialized episodes [16]. Since policies are stochastic probabilistic models, in a fixed
environment starting from the same initial state, the same policy may generate different episodes.
Therefore, the performance of a policy π in an environment E is the expected episodic reward

f(π) = E
s1∼pI

E
τ∼π×p|s1

r(τ) (2)

where τ ∼ π × p|s1 denotes an episode with initial state s1, generated with the policy π and the
transition distribution p of the environment E . Consequently, the PO problem is formulated as an
optimization problem

π∗ = argmax
π∈Π

f(π) (3)

where Π is the space of all possible policies.

The PG algorithms optimize Problem (3) using stochastic gradient descent [7]. The gradient ∇f(π)
is approximated from the trajectory rewards of the finite number of trajectories generated during the

2

previous interaction of π with the environment E , and the policy is updated according to this estimate.
The agent-environment interaction and policy update are iteratively repeated until the maximum
available time tmax for learning (e.g., maximum number of iterations) is exhausted. This results in a
sequence of policies (π1, ..., πtmax

) that completely determines the learning process defined by the
environment, the PG algorithm and the random seed.

The drawback of the PG algorithms when solving a PO problem is that gradient estimators may
have a high variance [2, 7, 10]. This sometimes causes a degradation in learning, i.e., updates to
policies with an expected episodic reward significantly lower than that of previous policies. Under
the degradation phenomenon, an inappropriate selection of the returned policy from the sequence
of policies generated during learning may have undesirable consequences. We have reviewed some
state-of-the-art RL libraries [11, 13, 15], and we observe that the implementations on RL libraries
consider three simple criteria for the selection of the output policy, each one with its pros and cons:

Last visited policy. Libraries such as Stable Baselines3 [15] by default return the last policy of the
sequence of policies. Despite the simplicity of this criterion, its effectiveness is highly dependent
on the level of degradation as shown in Figure 1. This selection criterion can lead to potentially
undesirable policies under critical or catastrophic degradations, as well as to an inefficient time
investment. For instance, in the last two graphs of Figure 1 the last policy has a very similar
performance to the first one, which has been chosen randomly.

Figure 1: Learning curves with different levels of degradation for Ant environment and PPO algo-
rithms implemented in Stable Baselines3 [15], and three seeds. The curves show the evolution of
f̃(πt) for t ∈ {1, ..., tmax}, where f̃(πt) is the average episodic reward over 100 randomly initialized
episodes generated sequentially with πt, tmax = 3.2 · 106 steps and n = 2048 steps per interaction.

Best policy using training data. The best policy of the sequence of policies is returned, according to
an estimate of the expected episodic reward using the trajectories stored during learning interactions.
For example, Sample Factory [13] and RL Games [11] evaluate the updated policies with a periodic
frequency, considering the average episodic reward over a finite number of previous episodes com-
pleted during the interaction. Finally, the selected policy is the one among the evaluated ones with
the highest value of that metric. The more training episodes that are used, the more data will have
been generated by previous policies, and therefore different from the current policy. This results in a
trade-off between the number of episodes considered for the estimation and the level of representation
of these data concerning the policy to be evaluated, as shown in the left graph of Figure 2.

Figure 2: Learning curves obtained after selecting the best policy with the techniques considered in
the state-of-the-art (with −, •, ▲ and ■) or a suggested improved technique (with ×).

3

Best policy using validation data. The best policy of the sequence is returned, in terms of an
estimation from additional validation episodes generated in an independent interaction. For instance,
Stable Baselines3 allows evaluating periodically the performance of the policies in a finite number of
additional episodes to those of the training trajectories, and finally returns the policy with the highest
average episodic reward. This technique considers only data generated by the policies themselves for
evaluation, but by considering an additional interaction, it decreases the remaining time for learning.
The higher the frequency of evaluation, the less the extra overhead, but the more likely we are to
overlook a good policy. Therefore, a trade-off between validation frequency (time spent on validation)
and the probability of detecting the best policy appears, as shown in the right graph of Figure 2.

3 Hypothesis

Considering the simplicity, efficiency and effectiveness of the existing techniques, the starting
hypothesis in this work is: the development of new methods based on the combination of the good
characteristics of the existing ones could improve the tracking of the best policy among the sequence
of updated policies. If correct, this would improve the solution for the Best Policy Tracking problem

π∗
t = argmax

π∈(π1,...,πt)

f(π), for all t ≤ tmax. (4)

which is the anytime version of Problem (3). A preliminary experiment to motivate our hypothesis
is illustrated by the red curve with cross markers of the right graph in Figure 2. It is the learning
curve obtained after defining the validation frequency from changes detected in the average episodic
reward (AER) of the training trajectories generated by each policy. Therefore, although validation
takes additional time, performing it only when a change is detected in the best-updated policy seems
to potentially ensure more effective tracking of the best policy.

4 Objectives and Methodology

To validate our hypothesis, we will focus on answering the following question: how relevant is
the selection of the best policy among the sequence generated during RL process beyond existing
research?. Aligned to that, we will address two objectives described below:

Objective 1. We will start analysing the existing techniques by answering: can the validation
frequency and the number of validation episodes be improved?. For this purpose, we will first
study the similarity between policies and their performances, since the frequency may be set on the
assumption that it is not necessary to evaluate all policies because nearby policies will have similar
performances. Second, we will compare how costly it is to validate a policy in a sample of episodes
versus the time consumed in the learning interaction. With parallel execution, it may be possible
to evaluate a sufficiently large number of episodes to distinguish correctly between policies while
consuming only a small percentage of the interaction time. In this case, setting a fixed number of
validation episodes would be unnecessary.

Objective 2. We try to improve the techniques proposed in the state-of-the-art by answering: can
we combine the training and validation estimates of the expected episodic reward to obtain a better
trade-off between validation cost and policy tracking efficiency?. First, we will propose a new method
that can combine the good characteristics of the existing ones. Then, we will test the new proposal in
different environments and algorithms, and compare it with the existing methods. This comparative
experiment will allow us to assess the difficulty of designing a technique that can work well across
the many different possibilities for formulating and solving a PO problem. If the number of RL
environments and algorithms with which a single method can appropriately track the best policy is
irrelevant, the development of a new method would be senseless.

The described methodology will allow us to conclude the veracity of our hypothesis, thus if it is
indeed possible to develop new methods that better track the best policy on multiple PO problems.
If correct, the proposed method itself, which affirms the hypothesis, will serve not only to improve
existing methods, but will be more generalizable and favour early stopping in learning tasks that are
no longer interesting to invest more time in. This may have interesting applications in multi-task
learning or continuous learning [1, 12], or even in single-task learning to distinguish between less
and more promising runs differentiated by the random seed [4, 8].

4

References
[1] David Abel, André Barreto, Benjamin Van Roy, Doina Precup, Hado P van Hasselt, and Satinder

Singh. A definition of continual reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

[2] Fadi AlMahamid and Katarina Grolinger. Reinforcement learning algorithms: An overview and
classification. In 2021 IEEE Canadian Conference on Electrical and Computer Engineering
(CCECE), pages 1–7. IEEE, 2021.

[3] Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng Yang,
Gianni De Fabritiis, and Vincent Moens. Torchrl: A data-driven decision-making library for
pytorch. arXiv preprint arXiv:2306.00577, 2023.

[4] Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, and Joel Burdick.
Control regularization for reduced variance reinforcement learning. In International Conference
on Machine Learning, pages 1141–1150. PMLR, 2019.

[5] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural
information processing systems, 31, 2018.

[6] Jonas Eschmann, Dario Albani, and Giuseppe Loianno. Rltools: A fast, portable deep rein-
forcement learning library for continuous control. Journal of Machine Learning Research,
25(301):1–19, 2024.

[7] Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey of actor-
critic reinforcement learning: Standard and natural policy gradients. IEEE Transactions on
Systems, Man, and Cybernetics, part C (applications and reviews), 42(6):1291–1307, 2012.

[8] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

[9] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João GM Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18,
2022.

[10] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information
processing systems, 12, 1999.

[11] Denys Makoviichuk and Viktor Makoviychuk. rl-games: A high-performance framework for
reinforcement learning. https://github.com/Denys88/rl_games, May 2021.

[12] Mikel Malagon, Josu Ceberio, and Jose A Lozano. Self-composing policies for scalable
continual reinforcement learning. In International Conference on Machine Learning, 2024.

[13] Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav Sukhatme, and Vladlen Koltun. Sample
factory: Egocentric 3d control from pixels at 100000 fps with asynchronous reinforcement
learning. In International Conference on Machine Learning, pages 7652–7662. PMLR, 2020.

[14] Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan Achterhold, Joerg Stueckler, Michal
Rolinek, and Georg Martius. Sample-efficient cross-entropy method for real-time planning. In
Conference on Robot Learning, pages 1049–1065. PMLR, 2021.

[15] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021.

[16] John Schulman. Optimizing expectations: From deep reinforcement learning to stochastic
computation graphs. PhD thesis, UC Berkeley, 2016.

[17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[18] Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

5

https://github.com/Denys88/rl_games

	Motivation
	Problem Definition and Previous Work
	Hypothesis
	Objectives and Methodology

