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Figure 1: Showcase of our training-free image composition method, SHINE. This gallery highlights
SHINE’s ability to seamlessly integrate subjects into complex scenes, including low-light condi-
tions, intricate shadows, and water reflections.

ABSTRACT

Image composition aims to seamlessly insert a user-specified object into a new
scene, but existing models struggle with complex lighting (e.g., accurate shad-
ows, water reflections) and diverse, high-resolution inputs. Modern text-to-image
diffusion models (e.g., SD3.5, FLUX) already encode essential physical and res-
olution priors, yet lack a framework to unleash them without resorting to latent
inversion, which often locks object poses into contextually inappropriate orienta-
tions, or brittle attention surgery. We propose SHINE, a training-free framework
for Seamless, High-fidelity Insertion with Neutralized Errors. SHINE introduces
manifold-steered anchor loss, leveraging pretrained customization adapters (e.g.,
IP-Adapter) to guide latents for faithful subject representation while preserving
background integrity. Degradation-suppression guidance and adaptive background
blending are proposed to further eliminate low-quality outputs and visible seams.
To address the lack of rigorous benchmarks, we introduce ComplexCompo, fea-
turing diverse resolutions and challenging conditions such as low lighting, strong
illumination, intricate shadows, and reflective surfaces. Experiments on Complex-
Compo and DreamEditBench show state-of-the-art performance on standard met-
rics (e.g., DINOv2) and human-aligned scores (e.g., DreamSim, ImageReward,
VisionReward). Code and benchmark will be publicly available upon publication.
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1 INTRODUCTION

Image composition, which places a user—specified object into a new scene, is a demanding image
editing task. Despite the breathtaking progress of multimodal foundation models (e.g., GPT-5 (Ope-
nAl, 2025), Gemini-2.5 (Gemini2.5, 2025), SeedEdit/Doubao (Shi et al., 2024b), and Grok-4 (gro,
2025)), these generic models still struggle with image composition. Typical failures include impre-
cise object placement, inconsistent lighting, and the subject’s identity drift (see Fig. 2). These limita-
tions indicate that, as of now, massive multimodal pre-training alone has not yet endowed them with
sufficient compositional ability for this task. A natural response has been to train specialized models.
Yet building large-scale, high-quality, multi-resolution triplet datasets (object, scene, composite) is
prohibitively costly. As a result, most composition models are fine-tuned from base models (e.g.,
FLUX.1-dev (Black Forest Labs, 2024a), FLUX.1-Fill (Black Forest Labs, 2024¢c), SDXL (Podell
et al., 2024)) on synthetic data generated via inpainting or augmentations (Chen et al., 2024c; Yang
et al., 2023; Song et al., 2023; Wang et al., 2025a; He et al., 2024).

These models, however, face two main limitations (see Fig. 6): (i) Lighting realism. They strug-
gle to achieve natural composition under complex lighting conditions, such as accurate shadow
generation or water reflections for the inserted subject. (ii) Resolution rigidity. They are tied to a
fixed resolution, necessitating downsampling or cropping when applied to varied, high-resolution
background images, which degrades generation quality. Notably, such issues are absent in the base
models, implying that the underlying physical priors are present but are not effectively exploited by
fine-tuned variants. The degradation largely stems from low-quality synthetic datasets, which inherit
flaws from inpainting models that often mis-handle shadows and reflections, producing implausible
edits, hallucinated content, or incomplete object removal (Yu et al., 2025b; Winter et al., 2025).

There have been prior training-free attempts to exploit the priors of text-to-image (T2I) models
for advancing image composition, but they fall short for two main reasons. (i) Inversion bottle-
necks. Most methods (Lu et al., 2023d; Pham et al., 2024; Yan et al., 2025; Li et al., 2024b) de-
pend on accurate image inversion (Song et al., 2021; Lu et al., 2022; Mokady et al., 2023). In
practice, inversion constrains the inserted object to the pose of its reference image, often resulting
in contextually inappropriate orientations. Moreover, inversion is less effective for classifier-free
guidance (CFG) distilled models (e.g., FLUX), where elevated inversion errors degrade identity
preservation. (ii) Fragile attention surgery. Many training-free approaches rely on attention ma-
nipulation (Lu et al., 2023d; Yan et al., 2025; Li et al., 2024b). While compatible with the joint
self-attention in Multimodal Diffusion Transformers (MMDIT) (Peebles & Xie, 2023), these meth-
ods inherit the instability and hyperparameter sensitivity (Lu et al., 2023d), limiting their robustness.

To bridge these gaps we present SHINE, a training-free framework for Seamless, High-fidelity
Insertion with Neutralized Errors (see Fig. 1). SHINE comprises three innovations: (i) Manifold-
Steered Anchor (MSA) loss, which leverages pretrained open-domain customization adapters (e.g.,
IP-Adapter (Ye et al., 2023)) to steer noisy latents toward faithfully representing the reference subject
while preserving the structural integrity of the background. (ii) Degradation-Suppression Guid-
ance (DSG) that steers sampling away from low-quality distributions. (iii) Adaptive Background
Blending (ABB) that eliminates visible seams along mask boundaries.

Existing benchmarks primarily comprise background images with a fixed resolution of 512 x 512
pixels. To evaluate performance across diverse, high-resolution, and demanding scenarios, we in-
troduce ComplexCompo, a benchmark that includes varied resolutions, both landscape and portrait
orientations, and complex conditions such as low lighting, intense illumination, intricate shadows,
and water reflections. Extensive experiments on ComplexCompo and DreamEditBench (Li et al.,
2023b) demonstrate that SHINE achieves state-of-the-art (SOTA) performance, surpassing base-
lines on standard metrics (e.g., DINOv2 (Oquab et al., 2024)) and human-aligned metrics (e.g.,
DreamSim (Fu et al., 2023), ImageReward (Xu et al., 2023), VisionReward (Xu et al., 2024)).

2 RELATED WORK

This section reviews prior work on image composition. A more comprehensive discussion, covering
image composition, general image editing, and subject-driven generation, is offered in Appendix A.
Classical image composition splits into sub-tasks (Niu et al., 2021) such as object placement (Azadi
etal., 2020; Zhang et al., 2020a), blending (Wu et al., 2019; Zhang et al., 2020b), harmonization (Cao
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Figure 2: Image composition from advanced multimodal models under three challenging conditions:
backlighting, shadows, and water surfaces. Refer to Appendix H for prompt details.

et al., 2023; Lu et al., 2023b), and shadow generation (Hong et al., 2022; Sheng et al., 2021), typ-
ically handled by separate models. Diffusion models have shifted the field toward unified frame-
works, either training-based or training-free. Training-based approaches fine-tune diffusion models
with curated datasets, adding grounding layers, controllability signals, or identity-preserving super-
vision from image or video sets (Wang et al., 2025a; Chen et al., 2024c; Yang et al., 2023; Song et al.,
2023; Lu et al., 2023c). However, they often bias model priors and struggle with complex lighting
due to the lack of large-scale real-world triplets. Training-free approaches avoid retraining by ma-
nipulating inversion and attention during inference, enabling flexible test-time adaptation (Yan et al.,
2025; Li et al., 2024b; 2023b; Lu et al., 2023d; Pham et al., 2024). Yet these methods remain fragile:
strong injections preserve identity but fix unnatural poses, while weaker ones improve realism at the
cost of fidelity, reflecting a core trade-off between identity preservation and natural composition.

3 METHOD

Image composition seeks to integrate a subject into a designated area of a background image while
preserving the integrity of the surrounding scene. This process typically requires three inputs: (1) one
or more reference images of the subject {@{"™ 3™ ... 2™}, (2) a background image «¢, and

(3) a user-provided mask M"" specifying the insertion region within the background.

Our framework is built on three core components: Manifold-Steered Anchor (MSA) loss,
Degradation-Suppression Guidance (DSG), and Adaptive Background Blending (ABB). Impor-
tantly, the design is model-agnostic and requires only standard features of modern generative mod-
els: MSA loss assumes that the base model supports either personalization finetuning or provides
access to a pretrained personalization adapter, DSG uses self-attention maps, and ABB relies on text-
image cross-attention. These mild assumptions enable seamless integration into existing pipelines
without architectural changes. We present main results with FLUX, while additional experiments
on SDXL (Podell et al., 2024), SD3.5 (Esser et al., 2024), and PixArt (Chen et al.) are provided in
Appendix E. The complete algorithm is shown in Algorithm 1.

3.1 NON-INVERSION LATENT PREPARATION

In training-free diffusion-based image composition (Lu et al., 2023d; Pham et al., 2024; Yan et al.,
2025; Li et al., 2024b), it is common to start from a noisy latent. Existing training-free frameworks
typically rely on image inversion, where the initial noisy latent is constructed by copying the inverted
latent of the subject image into a designated region of the background image’s inverted latent.

However, this copy-paste strategy constrains the inserted object to the exact pose of its reference
image, often leading to contextually inappropriate orientations in the composed result. Moreover,
inversion is suboptimal for CFG-distilled models (e.g., FLUX), as it introduces higher inversion
errors that compromise subject identity preservation.

To address these limitations, we abandon inversion and instead perform a one-step forward diffusion
to obtain the noisy latent. As illustrated in Fig. 3(a), we use a vision-language model (VLM) (Xue
et al., 2024; Chen et al., 2024d; Liu et al., 2024) to caption the subject image and leverage this
caption, along with an image inpainting model (Li et al., 2024c; Ju et al., 2024; Zhuang et al., 2024;
Black Forest Labs, 2024b), to generate the image to which the subject is attached, denoted as ™.
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Figure 3: Overview of the proposed framework. (a) The noisy latent is created by inpainting
the background with a VLM-derived object description, then adding Gaussian noise. (b) Manifold-
Steered Anchor (MSA) loss guides noisy latents toward faithfully capturing the reference subject
(red arrow), while preserving the structural integrity of the background. Concretely, it enforces that
the prediction of the optimized latent z; on the adapter-augmented model’s manifold remains close
to the prediction of the original latent z; on the base model’s manifold. (¢) Degradation-Suppression
Guidance (DSG) constructs a negative velocity pointing toward low-quality regions by blurting Qime
and, in a CFG-like manner, steers the trajectory away from this low-quality distribution.

The noisy latent is encoded in the VAE space as z™' and perturbed to timestep t < T via one-
step forward diffusion, following the flow matching formulation: z; = (1 — o¢)2™" + o€, where

e~N(0,1).

3.2 MANIFOLD-STEERED ANCHOR LOSS

The Manifold-Steered Anchor (MSA) loss is designed to optimize the noisy latent z; (from Sec. 3.1)
during the denoising process, steering it toward a reference subject while preserving the structural
integrity of the original image. The key intuition is to leverage the prior knowledge embedded in
pretrained open-domain customization adapters (or alternatively, personalized LoRAs) such as IP-
Adapter (Ye et al., 2023), PuLID (Guo et al., 2024), and InstantCharacter (Tao et al., 2025), to
intervene directly in the diffusion trajectory. Specifically, the MSA loss is defined as:

2

. )

2

H;iﬂ »CMSA(Zt) = H’Uo-s-Ao(Zn t,c, ZSUbj) - Sg[’l}t]‘
t

where ©; £ vg(Zy,, c) serves as a fixed anchor, preserving the structure of the background image
at a given noise level ¢, with 2; held constant as the original noisy latent. vg(-) denotes the velocity
predicted by the frozen T2I model €, while vg+ ag(-) represents the velocity predicted by the a T2I
model augmented with an adapter A@. z*"% is the latent of the subject image. The text prompt c is
from the VLM’s description of ™™, and sg[-] indicates the stop-gradient operation.

The MSA loss is motivated by the observation that optimizing a latent representation against a frozen
generative model implicitly projects the latent onto the model’s learned data manifold (Meng et al.,
2021; Kim et al., 2022; Graikos et al., 2022; Feng et al., 2023). The generator serves as an implicit
prior, guiding gradient descent toward the manifold’s basin of attraction.

For instance, when a generative model G/(w) is trained solely on cat images, its outputs are confined
to the cat-image manifold. Thus, approximating a dog image Z4og by solving min,, |G(w) — Zaoe |3
yields G (w™) that remains a cat image, but with structural features (e.g., pose or outline) aligned to
Tgog- The result is the projection of the dog image onto the cat manifold, not a genuine dog image.

Analogously, MSA loss is designed to achieve two goals simultaneously. (1) It seeks an optimized
noisy latent z; that remains within the manifold of the adapter-augmented model when conditioned
on the subject z*"%, (2) It encourages the adapter’s prediction on this latent 2z} to align with the base
model’s prediction on the original latent 2, i.e., Vo1 ag(2], t, ¢, 2°™) ~ vg (24, , ) (see Fig. 3(b)).



Under review as a conference paper at ICLR 2026

Normal Blur Qg Blur Kiyg  Blur Vi Blur Q¢ Blur Ky Blur Vigg

L= AN

Prompt: A dog is running on the beach. .

-

delfklkqx Low quality E Prompt: Two children ;ré playing wiTh a ball in the park.
Figure 4: Left: Robustness of FLUX. Right: Impacts of blurring different features in FLUX.

Since the velocity prediction of a T2I model on a noisy latent z; can also be interpreted as a coarse
estimate of the clean image that encodes essential structural information (Zheng et al., 2023), this
alignment preserves the spatial layout and background details inherited from the original image.

The gradient of Lysa with respect to z; is:

Jveae(z,t,c)
(9zt

The Jacobian term necessitates backpropagation through the MMDIiT, which is computationally

expensive. However, this scenario is analogous to Score Distillation Sampling (SDS) (Poole et al.),

where research shows that omitting the Jacobian term yields an effective gradient for optimization
with diffusion models. Thus, we adopt the same strategy for optimization.

Va2 Lusa(z) = 2(”0+A0(Zt7 t e,z — Sg[f’t]) . 2

3.3 DEGRADATION-SUPPRESSION GUIDANCE

MSA loss effectively facilitates the insertion of reference objects. However, due to the inherent
stochasticity of the denoising and optimization process, the results sometimes suffer from degraded
visual quality, manifesting as oversaturated colors and reduced identity consistency (see Fig. 5). To
address this, we introduce Degradation-Suppression Guidance (DSG), inspired by negative prompt-
ing (Schramowski et al., 2023), defined as:

’U;;isg = Vo+ A0 (Ztu tv C, zsubj) + ’I’](’U@+A9(Zt, t? C, ZSUbj) - vgj.gAg(zta t7 C, zsubj))v (3)

where 'Ugef g denotes a negative velocity prediction that guides the generation toward low-quality

regions. A key challenge is the design of a meaningful negative velocity prediction vg‘:g_ Ag Within
MMDiT-based architectures. In our experiments with FLUX, we observed that using nonsensical
text prompts or explicit negative prompts fails to introduce degradation. The generated images re-
main high-fidelity (Fig. 4(a)), suggesting that text-based negative prompting is ineffective for FLUX.

In our setting, the ideal negative velocity vgef Ap should target directions that preserve the semantic
content and spatial layout while lowering perceptual quality. To achieve this, we investigate whether
we can manipulate FLUX’s internal representations to construct such a targeted degradation signal.

In FLUX, both multi-stream and single-stream blocks compute joint self-attention over concatenated
text and image tokens as follows:

b = softmax ([Que, Qimel [Kises Kimg]"/v/dx) - [Visi Ving), *

where [Qx, Qimg] represents the concatenation of text and image queries, and similarly for keys
and values. To identify an effective manipulation strategy, we systematically perturb different com-
ponents in the attention mechanism (i.e., Qui, Kixi, Vixes Qimg> Kimg and Vip,) and observe their
impact on generation quality.

As shown in Fig. 4(b), our findings are as follows:
Blurring Q ¢, Kixi, or Vix has negligible impact on semantic fidelity and visual quality.

Blurring Vi, severely disrupts the output distribution, leading to unintelligible images.
Blurring K, moderately impacts quality, while the image remains visually acceptable.

b=

Blurring Qi yields pronounced degradations while preserving structural integrity, making
it the most effective lever for constructing a negative velocity.
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Figure 5: Comparison of rectangular-mask blending and Adaptive Background Blending (ABB).
Boundary regions (pink dashed boxes) are enlarged for clarity. Zoom in for details.

Algorithm 1 The Image Composition Process of SHINE.

Input: A background latent 2*¢ = VAE(z"¢), a subject latent z**” = VAE(z*"™), a inpainted
latent 2™ = VAE (Inpainting ["¢, M"", VLM(2*"%)]), a user mask M "<,
Output: The composition latent z.

1: 24, < (1 —o0y4,)2M + 0y, €, where e ~ N (0,1)

2: fort =ty,...,0do

3: // Manifold-Steered Anchor (MSA) Optimization
4: if t > 7 then

5: U  vg(21,1,0)

6: forj=1,...,kdo

7: Zi—zp—a- MBSOV, ||1)9+Ag(zt,t, c, z80) — sg[f;t]H;
8: end for

9: end if
10: // Degradation-Suppression Guidance (DSG)
11: vy, Ay — voyae(2i,t,c, 25)
12: v v 4y (v: — Vgt ag(2e, 1, €, 2°0))
13: Zi_1 < z¢ + (O't_1 - O't)’USSg
14 2%« (1—0,1)2" + 0, 1€, where e ~ N (0,1)
15: // Adaptive Background Blending (ABB)
16:  M™™ + MaxConnectedComponent (Dilate(1(A; > 7)))
17 M« 1{t > 7} M + 1{t < 7} M

18: zt_1<—M®zt_1+(1—M)®z]t)§1
19: end for
20: return z

Based on these insights, we construct the negative velocity prediction vge_f e 1n Eqn. 3 by blurring
Qimg within FLUX (see Fig. 3(c)). Moreover, we show that blurring Qin, is mathematically equiv-
alent to blurring the self-attention weights, whereas blurring Kjy,g or Vi, is not (see Appendix C
for the proof). This equivalence is consistent with the fact that attenuating self-attention activations
suppresses informative interactions and thus degrades image quality (Lu et al., 2024).

3.4 ADAPTIVE BACKGROUND BLENDING

Previous methods typically rely on the user-provided mask M "' to preserve the background during

each denoising step, blending as z; = M™ ©® z; + (1 — M™) ® z?g, but this often introduces
visible seams along mask boundaries (see the first row of Fig. 5).

To address this limitation, we propose Adaptive Background Blending (ABB), defined as
2 =MOoz + (1 - M) © 2%, M =1{t > 7} D(M™) + 1{t < 7} M", (5)

where M is the user mask, while M*"™ is derived by binarizing the cross-attention maps corre-
sponding to subject tokens. These maps can be obtained by either averaging across layers or select-
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Figure 6: Qualitative comparison of our method with multiple baselines in challenging scenarios,
drawn from our benchmark dataset. More qualitative comparisons are available in Appendix O.

ing the most informative layer via a lightweight analysis (details in Appendix D). The operator D(-)
performs dilation and extracts the largest connected component, ensuring robustness to noise.

Compared to M, M™™ is more spatially precise, particularly for elongated or irregularly shaped
objects that do not fully occupy a rectangular region. As illustrated in the second row of Fig. 5,
our method produces smoother transitions by replacing the rigid user mask with the semantically
guided mask. This refinement better preserves the surrounding scene, enabling seamless integration
between generated content and the original background. However, applying this method throughout
the denoising process may truncate object shadows or reflections. Through empirical evaluation, we
find that leveraging M during the initial denoising steps (¢ > 7) sufficiently mitigates visible
seams along mask boundaries, ensuring high-fidelity scene coherence.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmark. Current benchmarks primarily consist of background images with a fixed resolution of
512 x 512 pixels. To assess performance across diverse, high-resolution, and complex scenarios, we
introduce ComplexCompo, a benchmark built upon DreamEditBench (Li et al., 2023b). DreamEdit-
Bench includes 220 (subject, background, bounding box) pairs designed for 512 x 512 resolution.
In contrast, ComplexCompo features 300 composition pairs with varying resolutions, encompass-
ing both landscape and portrait orientations, and incorporates challenging conditions such as low
lighting, intense illumination, intricate shadows, and water reflections. The background images are
sourced from Openlmage (Kuznetsova et al., 2020). Further details are provided in Appendix G.

Metrics. Previous methods primarily adapt CLIP-I (Radford et al., 2021) and DINOv2 (Oquab et al.,
2024) to assess subject identity consistency. However, these features capture high-level semantic
information that may not fully align with human perception of finer-grained attributes. Thus, we
further incorporate instance retrieval features (IRF) from (Shao & Cui, 2022) and DreamSim (Fu
et al., 2023), which better align with human judgments. An analysis of identity consistency metrics
is provided in Appendix I. For overall image quality, we use ImageReward (IR) (Xu et al., 2023)
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Table 1: Comparison of composition performance across two benchmarks. The best result in each
column is highlighted in bold, while the second-best is underlined. Metrics shown in pink are those
specifically trained to better align with human preferences. Abbreviations: IRF= Instance Retrieval
Features; IR = ImageReward; VR = VisionReward; URE = UnifiedReward-Edit-qwen3vl1-8b.

Training ~ Base External Subject Identity Consistency Background Image Quality
-Free  Model ~ Model  CLIP-It DINOv2t IRF DreamSim| LPIPS| SSIMt IRt  VR{ HPSt URE?

Flux.1 Fill (Black Forest Labs, 2024b) x FLUX - 0.7328 0.6745 0.5754 0.5233 00166 09076  0.5577 3.5997 8.6432 21.5812
MADD (He et al., 2024) SD DINO 0.7118 0.6279  0.4333 0.5810 0.0604  0.8182 -0.2545 2.7011 1.2443 13.8148

Bench Method

ObjectStitch (Song et al., 2023) SD vIT 07567 06930 05525 05093 00190 08316 0.0791 32416 74529 19.1886
DreamCom (Lu et al., 2023c) SD LoRA 07414 06749 05597 05626 00200 0.8283 0.1873 35053 59324 19.9296
AnyDoor (Chen et al., 2024c) SD DINO 08183 07283 07714 03764 00251  0.8894 04511 33946 84867 19.0989
Dream-  UniCombine (Wang et al., 2025a) FLUX  LoRA 08058 07332 07579 03984 0.0050 09397 04565 3.6108 8.8415 21.7080
Edi-  PBE (Yangetal, 2023) SD - 07742 07040 05845  0.4985 00197 0.8287 02083 33482 83789 202137
Bench  TIGIC (Li et al., 2024b) SD - 07226 0.6718 04711 0.6108 00584 08153 -0.1332 29873 52676 17.1000
(2200 TALE (Pham et al., 2024) SD - 07329 0.6604 05007 06176 00392 0.8251 -0.1502 3.1349 63773 18.0784
TF-ICON (Lu et al., 2023d) SD 07479 06865 05179 05441 00582 08111 00816 32823 7.2643 182716

SD  LoRA,VIT 07703 0.7151 0.6147 0.5047 00140 09775 0.1744 3.1775 6.0250 15.7636
- 0.6998 0.6590  0.4438 0.6160 0.0039 09475 0.0216 3.3606 6.6689 19.5603
FLUX  Adapter 0.8086 0.7415 0.7702 0.3730 00236 0.8959 0.5709 3.6234 8.8861 22.0182

LoRA 0.8125 0.7452  0.7900 0.3577 0.0271  0.8847 0.5906 3.6161 8.8688 21.9421

DreamEdit (Li et al., 2023b)

EEdit (Yan et al., 2025)

Ours-Adapter

Ours-LoRA

Flux.1 Fill (Black Forest Labs, 2024b)
MADD (He et al., 2024)

X - 0.7108 0.6475 0.5466 0.6018 00232  0.7442 04088 3.5737 8.7376 19.7712
SD DINO 0.6780 0.5993 0.3638 0.5979 0.0781  0.5658 -0.0088 2.6582 5.9673 13.0567

ObjectStitch (Song et al., 2023) SD vIT 07608 07077 05513 04717 00388  0.6357 02482 34411 88389 18.8283

DreamCom (Lu et al., 2023c) SD LoRA 0.648 05692 02788 08192 00380  0.6342 -0.0778 3.4409 7.9884 18.6143

AnyDoor (Chen et al., 2024c) SD DINO 07982 07052 07319 04493 00299 07262 03804 33787 89760 18.3550
UniCombine (Wang et al., 2025a) FLUX  LoRA 07361 06552 05380  0.5682 00237 07077 02470 35454 8.8999 19.8529

Complex-  pBE (Yang et al., 2023) SD - 07537 06802 05189 05187 00397 06321 02139 34310 85923 18.9507
Compo  TIGIC (Li et al., 2024b) SD - 0.6913 06329 03848  0.6549 00929 06228 -0.131 28898 7.6630 16.4301
(300)  TALE (Pham et SD - 0.6816 06151 03799 06773 0059 06334 00783 3.4498 87351 18.7567
TF-ICON (Lu e SD 0.6987  0.6435 04167  0.6030 00815  0.6216 01798 34323 93258 18.2366

DreamEdit (Li et al SD  LoRA,VIT 07314 0.6722  0.5069 0.5670 00468 07201  0.1212 3.2531 8.0434 15.8934

CUCUCRRUXX XXX [ AU XXX X

EEdit (Yan et al., 2025) ’ FLUX - 0.6713 0.6153 0.3797 0.6821 0.0226 07107  0.1433  3.5009 8.7835 19.7348
Ours-Adapter FLUX Adapter 0.7721 0.7107 0.6764 0.4294 0.0404 07789 04090 3.6020 9.6485 20.7349
Ours-LoRA FLUX LoRA 0.7999 0.7384 0.7659 0.3542 0.0430 07634  0.4246 3.5951 9.8418 21.0326
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Figure 7: Qualitative ablation study comparing different variants of our framework.

and VisionReward (VR) (Xu et al., 2024), fine-grained reward models that more accurately reflect
human preferences. To more comprehensively evaluate composition quality, we further include three
UnifiedReward variants (Wang et al., 2025b;c) and HPSv3 (Ma et al., 2025b) in Appendix L. Back-
ground consistency is measured using LPIPS (Zhang et al., 2018) and SSIM (Wang et al., 2004).

Implementation Details. In our experiment, we used FLUX.1-dev, a 12B-parameter flow matching
model, as the base model, combined with InstantCharacter (Tao et al., 2025) as the adapter (Addi-
tional results on SDXL, SD3.5, and PixArt are presented in Appendix E). Our approach also supports
per-concept LoORA (Hu et al.), which requires test-time tuning (Ruiz et al., 2023) but delivers supe-
rior identity consistency compared to an open-domain adapter, making it ideal for scenarios demand-
ing precise identity preservation. The denoising schedule consists of 20 steps, with the inpainted
image perturbed to timestep 15 and denoising initiated from that point. We use Flux.1 Fill (Black
Forest Labs, 2024b) as the inpainting model and BLIP-3 (Xue et al., 2024) as the VLM. Additional
details and hyperparameters are provided in Appendix J.

4.2 EXPERIMENTAL RESULTS

We compare our method with two categories of baselines: (1) Training-based methods (6 in total):
UniCombine (Wang et al., 2025a), AnyDoor (Chen et al., 2024c), Paint by Example (PBE) (Yang
et al., 2023), ObjectStitch (Song et al., 2023), MADD (He et al., 2024), and DreamCom (Lu et al.,
2023c); (2) Training-free methods (5 in total): EEdit (Yan et al., 2025), TIGIC (Li et al., 2024b),
DreamEdit (Li et al., 2023b), TF-ICON (Lu et al., 2023d), and TALE (Pham et al., 2024).

As shown in Tab. 1, both variants of our method surpass all baselines on DreamEditBench across
human preference aligned metrics (i.e., DreamSim, IR, VR), which are the most critical indicators
of quality. For background-related metrics, all methods achieve comparable results, with differences
so small they are imperceptible to the human eye. On the more challenging ComplexCompo dataset,
which includes non-square resolutions and intricate scenes, most methods experience a notable per-
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Figure 8: Composition inherit erroneous colors if the inpainting prompt specifies an incorrect color.

Table 2: Ablation study examining the impact of key components on DreamEditBench.

Method MSA DSG ABB Subject Identity Consistency Background Image Quality
CLIP-I DINOv2 IRF  DreamSim LPIPS SSIM IR VR
Config A X X X 0.7328  0.6745  0.5754 0.5233 0.0166 0.9076 0.5577 3.5997
Config B v X X 0.7814  0.7204 0.7414 0.3951 0.0172 0.9075 0.5455 3.5952
Config C X v X 0.7528  0.6941  0.6533 0.4436 0.0178 0.9038 0.5633 3.6130
Config D X X v 0.7421  0.6814  0.6158 0.5127 0.0210 0.9010 0.5595 3.6109
Config E X v v 0.7481  0.6987  0.6647 0.4317 0.0218 0.8971 0.5850 3.6277
Config F v X v 0.8084  0.7429  0.7609 0.3756 0.0231 0.8991 0.5459 3.6023
Config G v v X 0.8077  0.7375  0.7589 0.3762 0.0182 0.9037 0.5745 3.6191
Ours-Adapter v v v 0.8086 0.7415  0.7702 0.3730 0.0236  0.8959 0.5709 3.6232

formance drop, yet our approach consistently remains the top performer. From Fig. 6, it is evident
that while AnyDoor achieves high scores on many identity metrics, the model tends to copy and
paste the subject into the scene, resulting in unnatural compositions and lower image quality scores.
In contrast, our method excels at naturally composing objects in challenging conditions (e.g., low-
light settings, water surfaces, and scenes with complex shadows). Appendix F provides user study.

4.3 ABLATION STUDY

We validate our design choices through ablation (see Tab. 2 and Fig. 7). The results highlight three
key insights. First, MSA loss notably improves subject identity consistency. Second, DSG boosts
IR and VR scores by steering denoising away from low-quality regions. Finally, ABB effectively
suppresses visible seams along mask boundaries. While this improvement is readily apparent in
visual comparisons (Figs. 5, 7), it is less well captured by quantitative metrics, since LPIPS and
SSIM primarily assess structural similarity rather than perceptual smoothness.

5 CONCLUSION

We introduced SHINE, a training-free framework for seamless and high-fidelity image composi-
tion with pretrained T2I models. SHINE integrates Manifold-Steered Anchor Loss, Degradation-
Suppression Guidance, and Adaptive Background Blending to ensure precise subject placement and
artifact-free synthesis across diverse resolutions and lighting conditions. To enable rigorous evalu-
ation, we proposed ComplexCompo, a benchmark for challenging composition scenarios. SHINE
achieves state-of-the-art results on both ComplexCompo and DreamEditBench.

Limitations. Our method reliably converges to the correct subject identity through MSA optimiza-
tion even when the inpainted subject’s appearance deviates substantially from the reference (see
Fig. 8(a)). However, when the inpainting prompt specifies an incorrect color, the final inpainted re-
sult tends to inherit and preserve this erroneous color (see Fig. 8(b)). On the other hand, the similarity
between the inserted object and the user-provided object depends on the quality of the customization
adapter used. As shown in Tab. 1, because LoRA performs test-time tuning for individual concepts, it
generates subjects that are more similar to the target than those produced by pretrained open-domain
customization adapters, resulting in higher subject identity consistency metrics in the composition.
While current customization adapters already perform well, the potential of our method will con-
tinue to improve as advancements are made in the field of open-domain customization adapters.
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ETHICS STATEMENT

Our framework provides an accessible way for people without professional artistic skills to cre-
ate image compositions. While this technology offers significant benefits, it also carries the risk of
misuse for malicious purposes, such as harassment or spreading misinformation. Additionally, our
framework relies on pretrained large-scale T2I models, which may inadvertently introduce social
and cultural biases. Therefore, using these models raises ethical concerns and requires careful con-
sideration. We therefore urge users to exercise caution and use this tool responsibly for appropriate
purposes only.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. Algorithm 1 presents
the pseudocode of our method. Details of the implementation for the main experiments are provided
in Sec. 4.1, while the hyperparameter configurations are listed in Appendix J. The source code
and the ComplexCompo dataset will be released publicly. This work adheres to the reproducibility
requirements set by ICLR.
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A RELATED WORK

A.1 IMAGE COMPOSITION

Image composition involves integrating specific objects and scenarios from user-provided photos,
often guided by text prompts. Traditionally, this process is divided into sub-tasks (Niu et al., 2021),
including object placement (Azadi et al., 2020; Chen & Kae, 2019; Lin et al., 2018; Tripathi et al.,
2019; Zhang et al., 2020a), image blending (Wu et al., 2019; Zhang et al., 2020b), image harmoniza-
tion (Cao et al., 2023; Lu et al., 2023b; Zhang et al., 2020b; Cong et al., 2020; Cun & Pun, 2020;
Jiang et al., 2021; Xue et al., 2022), and shadow generation (Hong et al., 2022; Liu et al., 2020;
Sheng et al., 2021; Zhang et al., 2019), each typically handled by distinct models and pipelines.
However, with the rise of diffusion-based generative models, recent approaches have shifted toward
unified frameworks that address all sub-tasks simultaneously. These methods are broadly classified
into training-based and training-free approaches.

Training-based methods fine-tune foundational models using datasets tailored for image composi-
tion. Early methods like Paint by Example (Yang et al., 2023) and ObjectStitch (Song et al., 2023)
use CLIP to encode subject features, ensuring high semantic similarity between inserted objects and
reference images. These approaches use image augmentation to create training datasets, enabling
effective training. GLIGEN (Li et al., 2023c¢) incorporates grounding information into new trainable
layers of a pre-trained diffusion model via a gated mechanism. ControlCom (Zhang et al., 2023a)
integrates 2-dim indicator vector to improve controllability. DreamCom (Lu et al., 2023c) and Mure-
ObjectStitch (Chen et al., 2024a) fine-tune models with small sets of reference images to preserve
subject identity. AnyDoor (Chen et al., 2024c), IMPRINT (Song et al., 2024), and E-MD3C (Pham
et al., 2025) leverage DINOV2 to enhance identity fidelity and control over shape and pose, drawing
supervision from video data. MimicBrush (Chen et al., 2024b) similarly uses video-derived super-
vision for imitative editing. In contrast, MADD (He et al., 2024), ObjectMate (Winter et al., 2025),
and OmniPaint (Yu et al., 2025b) employ image inpainting models to generate higher-quality train-
ing datasets compared to those based on image or video augmentation. Multitwine (Tarrés et al.,
2025) enables the integration of multiple objects, capturing interactions from simple positional
relationships to complex actions requiring reposing. DreamFuse (Huang et al., 2025) uses a Po-
sitional Affine mechanism to embed foreground size and position into the background, fostering
effective foreground-background interaction through shared attention. Insert Anything (Song et al.,
2025a) and UniCombine (Wang et al., 2025a) introduces a FLUX-based, multi-conditional gener-
ative framework that handles diverse condition combinations. However, these methods often bias
the generative priors of base models toward curated datasets, resulting in unnatural compositions,
such as implausible object-environment interactions (e.g., missing or unrealistic shadows and reflec-
tions). This stems from the absence of a large-scale, high-quality, multi-resolution, real-world triplet
dataset comprising an object, a scene, and the object seamlessly integrated into the scene, which is
expensive to produce.

Training-free methods, on the other hand, modify the inference process of pre-trained models to
achieve composition without additional training. Early approaches like TF-ICON (Lu et al., 2023d)
leverage accurate image inversion to lay the groundwork for composition, achieved through com-
posite self-attention map injection. TALE (Pham et al., 2024) and PrimeComposer (Wang et al.,
2024c) build on TF-ICON to enhance identity preservation and background-object style adaptation.
TIGIC (Li et al., 2024b) focuses on preserving non-target areas during composition. Thinking Out-
side the BBox (Canet Tarrés et al., 2024) enables unconstrained image compositing, unbound by
input masks. FreeCompose (Chen et al., 2024¢) employs a pipeline of object removal, image har-
monization, and semantic composition. DreamEdit (Li et al., 2023b), UniCanvas (Jin et al., 2025),
and Magic Insert (Ruiz et al., 2025) use test-time tuning to fine-tune models during inference. Add-
it (Tewel et al.) enables text-guided object insertion on FLUX, where users describe objects via text
prompts instead of reference images. EEdit (Yan et al., 2025) recently improves TF-ICON on FLUX,
introducing step-skipping to reduce time costs and spatial locality caching to minimize redundancy.
However, training-free methods rely on precise image inversion and fragile attention surgery, which
can lock inserted objects into the exact pose of the reference image, leading to awkward or contextu-
ally inappropriate orientations. Attention manipulation often causes instability and hyperparameter
sensitivity, as feature or attention map injection does not always preserve subject identity. This cre-
ates a trade-off: stronger injection preserves identity but results in unnatural poses, while lighter
injection yields more natural poses but compromises identity.

19



Under review as a conference paper at ICLR 2026

A.2 GENERAL IMAGE EDITING

Instruction-based image editing has evolved rapidly. Early systems relied on modular, two-stage
pipelines: a multimodal language model first produced textual prompts, spatial guidance, or syn-
thetic instruction—image pairs, and a separate diffusion model then executed the edit—as in In-
structEdit (Wang et al., 2023), InstructPix2Pix (Brooks et al., 2023), MagicBrush (Zhang et al.,
2023b), and BrushEdit (Li et al., 2024c). Recent work has shifted toward tightly integrated,
instruction-centric architectures. Models such as SmartEdit (Huang et al., 2024), X2I (Ma et al.,
2025a), RPG (Yang et al., 2024), AnyEdit (Yu et al., 2025a), and UltraEdit (Zhao et al., 2024)
embed routing, task-aware objectives, and fine-grained controls directly into the network, yielding
higher fidelity and more precise manipulation.

Unified generation-and-editing frameworks (e.g., OmniGen (Xiao et al., 2025), ACE (Han et al.),
ACE++ (Mao et al., 2025), Lumina-OmniLV (Pu et al., 2025), Qwen2VL-Flux (Lu, 2024), Drea-
mEngine (Chen et al., 2025), MetaQueries (Pan et al., 2025), Hidream-E1 (HiDream-ai, 2025)) treat
editing as one capability of an end-to-end vision-language model, often fusing language embed-
dings with diffusion latents to provide context-aware, pixel-level control. Efficiency has advanced
in parallel: ICEdit (Zhang et al., 2025) couples LoRA with mixture-of-experts tuning and optimized
noise initialization, while SuperEdit (Ming et al., 2025) relies on higher-quality data and contrastive
supervision to sustain performance at lower cost. Looking ahead, large foundation models such as
Gemini (Gemini2.5, 2025) and GPT-5 (OpenAl, 2025) already show strong visual reasoning and
coherent, instruction-guided image generation. Yet, despite extensive multimodal pre-training, they
still fall short on image composition: object placement remains hard to control, lighting is often
inconsistent, and subjects can drift in identity.

A.3 SUBJECT-DRIVEN GENERATION

Extensive research has explored subject-driven image generation, in which the output must not only
portray the contexts described by the text prompt but also faithfully include the specific subject
supplied by reference images. Methods in this area are divided into two categories—test-time fine-
tuning customization and zero-shot customization—according to whether extra training is needed
for each new subject. Our framework accommodates both categories, so we provide two corre-
sponding variants in the main paper.

Test-time fine-tuning methods (Gal et al., 2022; Ruiz et al., 2023) adapt a pre-trained T2I model
to a small set of reference images (typically 3 to 5 images). Although this step adds computational
cost and latency, it offers the greatest flexibility for diverse customization requirements. Such meth-
ods are commonly grouped into three subclasses: data regularization, weight regularization, and
loss regularization. In the data-regularization family, DreamBooth (Ruiz et al., 2023) limits overfit-
ting by generating superclass images with the base T2I model and training on both reference and
regularization images; Custom Diffusion (Kumari et al., 2023) improves regularization quality by
retrieving real images; and Specialist Diffusion (Lu et al., 2023a) applies extensive data augmen-
tation. Weight-regularization approaches (Gal et al., 2022; Hu et al.; Han et al., 2023; Qiu et al.,
2023) confine updates to carefully chosen parameters, such as the subject-specific text embeddings
or the singular values of weight matrices. Loss-regularization approaches, including Specialist Dif-
fusion (Lu et al., 2023a), MagiCapture (Hyung et al., 2024), and FaceChain-SuDe (Qiao et al., 2024),
introduce objective terms that respectively maximize CLIP-space similarity between generated and
reference images, disentangle identity and style via masked facial reconstruction, or encourage cor-
rect superclass classification.

Zero-shot image customization methods avoid subject-specific fine-tuning at inference time but
rely on extensive pre-training. For general subject customization, InstantBooth (Shi et al., 2024a)
adds a visual encoder that captures coarse-to-fine image features from the references; BLIP-
Diffusion (Li et al., 2024a) fine-tunes BLIP-2 (Li et al., 2023a) to extract multimodal subject repre-
sentations; ELITE (Wei et al., 2023) maps reference images into hierarchical textual tokens through
global and local networks; and Song et al. (Song et al., 2025b) enhance textual control by remov-
ing the projection of visual embeddings onto textual embeddings. For facial customization, Instan-
tID (Wang et al., 2024b) isolates facial regions from reference images to extract appearance and
structural cues. For style customization, InstantStyle (Wang et al., 2024a) identifies style-controlling
layers and injects IP-Adapter features (Ye et al., 2023) into those layers to achieve style transfer. In-
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stantCharacter (Tao et al., 2025), IP-Adapter (Ye et al., 2023), and PuLID (Guo et al., 2024) have
each released versions compatible with the FLUX model.

B VISUALIZING THE IMPACT OF ADAPTIVE BACKGROUND BLENDING

Although our loss function aims to find a new latent within the manifold learned by the adapter, en-
couraging the adapter-augmented T2I model’s predictions to closely match those of the base model
on the original noisy latent, this early-stage optimization primarily preserves structural elements
rather than fine details. Consequently, discrepancies in fine-grained features often arise between the
masked and unmasked regions. As illustrated in Fig. 9, we compare the composite images generated
using our Adaptive Background Blending (ABB) method with those produced via direct background
blending using the rectangular user mask. For clarity, we enlarge the boundary areas of each image
(highlighted in pink dashed boxes) to better reveal differences.
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w/ ABB

|

f
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20
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Figure 9: Comparison of composites from our Adaptive Background Blending (ABB) method and
direct blending with a rectangular mask. Boundary regions within pink dashed boxes are enlarged
for clarity. Please zoom in to see details.
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C EQUIVALENCE OF QUERY BLURRING AND ATTENTION WEIGHT
BLURRING

Consider a 2D Gaussian filter G applied as a convolution operation, denoted by ®. The self-attention
weights are computed as QK T, where Q, K € R™*4, with n being the sequence length and d the
embedding dimension. We explore the effect of applying a Gaussian blur to the attention weights
and its equivalence to blurring the query matrix.

C.1 BLURRING THE QUERY MATRIX
Blurring the self-attention weights QK T with a 2D Gaussian filter G can be expressed as:
G®(QK'), (6)

where ® denotes 2D convolution. Due to the linearity of convolution, there exists a Toeplitz matrix
B € R™*™ such that the convolution operation can be represented as a matrix multiplication:

G®(QK")=B(QK"). (7
Using the properties of matrix multiplication, we can rewrite this as:
B(QK") = (BQ)K". ®)
Since the convolution operation is linear, applying the Gaussian filter G to the rows of Q yields:
BQ=G®Q. )
Thus, we obtain:
G®(QK") = (G®Q)K'. (10)

This establishes that blurring the query matrix Q with G is mathematically equivalent to applying
the same blur to the self-attention weights QK ". This equivalence suggests that query blurring can
be used as a computationally efficient proxy for smoothing attention weights, potentially reducing
the need for direct manipulation of the attention matrix.

C.2 BLURRING THE KEY AND VALUE MATRICES

In contrast, applying the Gaussian blur to the key matrix K does not yield a similar equivalence.
Consider the convolution applied to K. The resulting attention weights become:

QG®K)"=Q(BK)'=QK'B". (11)
Since BT # B for a general Toeplitz matrix derived from a Gaussian filter, we have:
QK"B" #+ B(QK"). (12)

Thus, blurring the key matrix K does not produce an equivalent effect to blurring the attention
weights QK ". A similar argument applies to the value matrix V/, as the output of self-attention,
(QK ™)V, involves V in a post-multiplication step, and convolution on V' does not commute with
the attention weight computation in the same manner.

C.3 IMPLEMENTATION DETAILS OF GAUSSIAN BLURRING

For the 2D Gaussian filtering step, we adopt the implementation provided by the kornia library.
Following standard engineering practice, we set the kernel radius to » = 30, since three standard
deviations capture approximately 99.7% of the Gaussian mass. Consequently, the kernel size is
chosen as the nearest odd integer to 2r = 6¢. In all of our experiments we use o = 10 (see Tab. 5).

The procedure is applied to query embeddings by reshaping them into spatial feature maps, perform-
ing Gaussian smoothing, and then mapping them back into the sequence domain prior to attention
computation. The full workflow is given below:

22



Under review as a conference paper at ICLR 2026

Algorithm 2 Implementation Details of 2D Gaussian Blurring

Input: A query matrix Q € RB*LxD, key K, value V, spatial dimensions (H, W), Gaussian
standard deviation o.
Output: Attention output O.

// Reshape query into spatial tensor

QSP — ReShape(Q7 (B7 H7 VV7 D))

Qqp « Permute(Qsp, (0,3,1,2)) >BxDxHxW
// Construct Gaussian kernel size

k < 60

k<« k— (kmod2)+1 > Ensure odd kernel size
kernel size « (k, k)

o<« (0,0)

9: // Apply 2D Gaussian smoothing

10: Qgp < kornia filters.gaussian_blur2d(Qsp, kernel_size, o)

11: // Reshape smoothed queries back to sequence form

12: Q' < Permute(Qsp, (0,2,3,1))

13: Q' < Reshape(Q’, (B, L, D))

14: // Compute attention

15: A <+ softmax (LKT)

VD
16: O <+ AV
17: return O

A S o

<«— Maximum

Figure 10: The IoU is calculated between the mask produced from each block and the ground-truth
mask, which is obtained by segmenting the final generated images using SAM. The IoU for each
block is averaged over 100 images.

D EVALUATING CROSS-ATTENTION MAP ACCURACY VIA IoU

To identify the most accurate cross-attention maps that reflect the location of the generated object,
we first create 100 prompts containing a main subject (e.g.,““a dog is sleeping on a couch”) using
GPT-5. These prompts are then used to generate 100 images with FLUX.1-dev, employing 20 de-
noising steps. Cross-attention maps are extracted from 19 multi-stream (or double-stream) blocks
and 38 single-stream blocks across all denoising steps. The maps are averaged over the 20 steps and
subsequently normalized and binarized, resulting in a total of 57 binary masks.

To determine which of these 57 masks is the most accurate, we compute the Intersection over Union
(IoU) between each mask and a ground-truth mask obtained by segmenting the final generated im-
ages using SAM (Ravi et al., 2025). The IoU for each block is averaged over the 100 generated
images. The results are presented in Fig. 10, showing that the cross-attention maps from the last
multi-stream (or double-stream) block achieve the highest segmentation accuracy. A visualization
of the cross-attention maps from all blocks is provided in Fig. 11.

23



Under review as a conference paper at ICLR 2026

Y

p Prompt: A baby is crawling on a soft carpet
" }

Orig Double 1 Double 2 Double 3

Double 4 Double 5 Double 6 Double 7 Double 8 Double 9 Double 10 Double 11 Double 12

v

Double 13 Double 14 Double 15 Double 16 Double 17 Double 18 Double 19 Single 1  Single 2

Single 3  Single4  Single5 Single6 Single7 Single8 Single 9 Single 10 Single 11

Single 12 Single 13  Single 14 Single 15 Single 16 Single 17 Single 18 Single 19 Single 20

Single 21 Single 22  Single 23 Slngle 24 Single 25 Single 26 Single 27 Single 28 Slngle 29

Slngle 30 Single 31 Single 32 Single 33 Single 34 Single 35 Single 36 Slngle 37 Single 38

Figure 11: Visualization of cross-attention maps from different MMDIT blocks of FLUX.1-dev.

E EXPERIMENTS WITH SDXL, SD3.5, AND PIXART

Our framework introduces a novel, model-agnostic approach for enhancing generative architectures,
anchored by three synergistic components: Manifold-Steered Anchor (MSA) loss, Degradation-
Suppression Guidance (DSG), and Adaptive Background Blending (ABB). These components
are meticulously designed to leverage ubiquitous features of modern generative models, ensuring
seamless integration without requiring architectural modifications. Specifically, MSA utilizes ei-
ther LoRA-based personalization or a pretrained personalization adapter, DSG capitalizes on widely
available self-attention maps, and ABB harnesses text—image cross-attention maps, a staple in most
text-to-image pipelines. This design ensures broad applicability across diverse generative models.

In the main text, we showcase the effectiveness of our approach on Flux, a leading open-source
model. To establish its generalizability, we conduct experiments on SDXL (Podell et al., 2024),
SD3.5 (Esser et al., 2024), and PixArt (Chen et al.) across DreamEditBench and ComplexCompo.
The results are presented in Tab. 3. On DreamEditBench, our LoORA-based variant with Flux achieves
state-of-the-art performance in subject identity preservation, while delivering superior image quality.
Similarly, on ComplexCompo, the Flux-LoRA configuration excels in identity consistency and im-
age fidelity. Notably, the framework’s benefits extend beyond a single model family: both SDXL and
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PixArt-3 exhibit substantial performance gains, affirming the approach’s generality and adaptability
across diverse generative architectures.

Table 3: Comparison of compositional performance across two benchmarks with different base
models. The best result in each column is highlighted in bold, while the second-best is underlined.
Metrics shown in pink are those specifically trained to better align with human preferences. Abbre-
viations: IRF: Instance Retrieval Features; IR = ImageReward; VR = VisionReward.

Base Subject Identity Consistency Background Image Quality
Bench Method
Model  CLIP-It DINOv2+ IRF{ DreamSim] LPIPS]| SSIM{ IRt  VR?t
Flux.1 Fill FLUX 0.7328 0.6745 0.5754 0.5233 0.0166 0.9076  0.5577 3.5997

DreamEdit. Ours-Adapter ~ SDXL 07944 07334 07659  0.3761 00238 08922 05621 3.6158
Bench  Ours-Adapter ~ SD3.5 08054 07407 07699  0.3745 00234 08937 05701 3.6187
(220)  OurssLoRA  PixArt-X  0.8098 07445 07798 03612 00251  0.8875 05842 3.6198

Ours-Adapter ~ FLUX 08086 07415 07702  0.3730 00236  0.8959 05709 3.6234
Ours-LoRA ~ FLUX 08125 07452 07900  0.3577 00271  0.8847 05906 3.6161

Flux.1 Fill FLUX 0.7108 0.6475 0.5466 0.6018 0.0232  0.7442 0.4088 3.5737

Complex- ~ Ours-Adapter SDXL 0.7657 0.7084 0.6862 0.4457 0.0457  0.7612  0.3894  3.5987
Compo Ours-Adapter SD3.5 0.7701 0.7091 0.6977 0.4173 0.0401  0.7784 0.4091 3.6021
(300) Ours-LoRA PixArt->  0.7924 0.7287 0.7311 0.3603 0.0424  0.7698  0.4277 3.5988
Ours-Adapter FLUX 0.7721 0.7107 0.6764 0.4294 0.0404  0.7789  0.4090 3.6020

Ours-LoRA FLUX 0.7999 0.7384 0.7659 0.3542 0.0430  0.7634 0.4246 3.5951

F USER STUDY

We conduct a user study involving 50 participants. Each participant was asked to complete 50 rank-
ing tasks. In each task, they were shown 13 composition results generated by different methods,
along with a reference subject image.

To ensure a balanced evaluation, 25 of the tasks were randomly sampled from DreamEditBench
and the remaining 25 from ComplexCompo. Participants were asked to rank the results based on
two key criteria: (1) subject identity consistency and (2) composition realism. A lower rank (e.g.,
1st) indicates a better composition result, while a higher rank (e.g., 13th) reflects a less favorable
outcome.

We summarize the average ranking scores for each method in Tab. 4. Our method received the most
favorable rankings from the majority of participants, demonstrating its effectiveness in producing
high-quality compositions.

G BENCHMARK DETAILS

Our benchmark consists of 300 triplets, each comprising a subject image, a background image,
and a bounding box. The subject images are identical to those used in DreamEditBench (Li
et al., 2023b; Ruiz et al., 2023), while the background images are sampled from the Openlmages
dataset (Kuznetsova et al., 2020). These backgrounds exhibit a variety of aspect ratios and reso-
lutions, including landscape and portrait formats, such as 768 x 1088, 768 x 1072, 768 x 1024,
768 x 1152, 1024 x 768, 1152 x 768, 1200 x 768, 848 x 768, and 1360 x 768. The bounding boxes
are manually designed to ensure that the size and placement of the inserted subjects are contextually
appropriate and visually plausible. The benchmark will be released publicly.
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Table 4: Average ranking scores from the user study on image composition methods. Lower is better.

Method Training-Free Average Ranking (Lower is Better)
MADD b 4 12.44
ObjectStitch b 4 11.80
DreamCom X 6.66
AnyDoor b 4 4.12
UniCombine b 4 2.94
PBE b 4 4.94
TIGIC v 9.74
TALE v 9.06
TF-ICON v 8.36
DreamEdit v 6.36
EEdit v 10.76
Ours-Adapter v 2.30
Ours-LoRA v 1.52

H PROMPTS FOR PROPRIETARY FOUNDATION MODELS

To perform image composition with proprietary, general-purpose multimodal foundation models
(e.g., GPT-5 (OpenAl, 2025), Gemini 2.5 Pro (Gemini2.5, 2025), SeedEdit/Doubao (Shi et al.,
2024b), and Grok 4 (gro, 2025)), we upload three images: (1) Subject image; (2) Background image;
and (3) Mask image defining the insertion region.

We then issue a prompt of the following form (with the resolution and coordinates adjusted for each
case):

Please insert the object from the first uploaded image into the second image.
The target region for insertion is defined by the mask in the third image. For
reference, the resolution of the second image is 1152 x 768, and the bound-
ing box for placement is specified by the top-left and bottom-right coordinates:
(x1 = 550,y1 = 600,29 = 700,y> = 750). The inserted object should retain
the same identity and appearance as in the first image. The final composite should
appear realistic, natural, and physically plausible.

I SUBJECT IDENTITY METRICS ANALYSIS

In our experiments we found that widely-used subject-identity metrics such as CLIP-I (Radford
et al., 2021) and DINOvV2 (Oquab et al., 2024) correlate poorly with human preferences. Because
they focus almost exclusively on semantic similarity, they ignore appearance changes introduced
by lighting, shadows, reflections, and surrounding context. Fig. 12(b) presents several image pairs
produced by AnyDoor (left) and by our method (right); the corresponding CLIP-I (1) (Radford et al.,
2021), DINOv2 (1) (Oquab et al., 2024), IRF (1) (Shao & Cui, 2022), and DreamSim ({.) (Fu et al.,
2023) scores are shown beneath each image, with the better score highlighted in red. Although the
AnyDoor results are visibly less realistic and less consistent, they nevertheless receive higher CLIP-I
and DINOV2 scores, and in most cases higher IRF scores, demonstrating that these measures do not
faithfully capture compositional quality.

A reliable metric should recognise the same object whether it is underwater (see Fig. 12(b)[(8),
(17), (20)]), in shadow (see Fig. 12(b)[(9), (13), (19)]), partially occluded (see Fig. 12(b)[(2)]), or
situated in a low-light or back-lit scene (see Fig. 12(b)[(5), (14), (15), (16)]). Among the metrics
we evaluated, only DreamSim, which was designed to align more closely with human perception,
consistently exhibits this desired behaviour.
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(b) Comparison of Identity Consistency Metrics

Figure 12: Comparison of Subject Identity Metrics. (a) Reference subject images used for metric
calculations. (b) Image pairs generated by AnyDoor (left) and our method (right), with correspond-
ing CLIP-I (1), DINOvV2 (1), IRF (7), and DreamSim () scores displayed below each image; the
better score is highlighted in red. Despite AnyDoor’s results appearing less realistic and consistent,
they often achieve higher CLIP-I, DINOv2, and IRF scores, indicating that these metrics may not
reliably reflect compositional quality. In contrast, DreamSim provides a more reliable assessment.
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Table 5: Hyperparameters of Our Frameworks. Bin Thresh = Binarization Threshold; #iter = Number
of Iterations.

Denoising Setup Manifold-Steered Anchor Loss Degradation-Suppression Guidance Adaptive Background Blending
Variant Total steps Start  Step Range Learning Rate  #iters  Step Range Scale Blur Step Range Bin Dilation
(T—1)—=0 stepty t1 =T a k t1 =0 7 o (t1 —1) — 1 Thresh Kernel Size
Ours-Adapter 19 =0 14 14 =12 500, 750, 1000 10 14 -0 0.5 10 13—=1 0.2 3
Ours-LoRA 19—-0 13 13 =12 50, 300 2 13—=0 0.7 10 12—1 0.4 3

J  IMPLEMENTATION DETAILS

The hyperparameters used in our frameworks are summarized in Tab. 5. Under Denoising Setup,
“Total steps” refers to the full diffusion/noising schedule, which specifies a sequence of 20 values
of o, across timesteps ¢. However, our method does not begin denoising at the first timestep. As
shown in Algorithm 1, it starts at ¢ = 14 (Ours-Adapter), resulting in 15 denoising steps in total.
Under MSA loss, “Step Range” indicates the subset of denoising steps to which MSA optimization
is applied. For the adapter setting, the MSA loss is applied only to the first three denoising steps
(from ¢ = 14 to t = 12). In addition, since a LoRA is trained for a specific subject, it provides a
more tailored prior than the generic adapter, allowing it to converge in fewer steps and with lower
overall compute.

Each baseline is implemented according to the configuration settings recommended in its original
publication. The repositories utilized for each baseline are listed below:

. MADD: https://github.com/KaKituken/affordance-aware-any

. ObjectStitch: https://github.com/bcmi/ObjectStitch-Image-Composition
. DreamCom: https://github.com/bcmi/DreamCom-Image-Composition

. AnyDoor: https://github.com/ali-vilab/AnyDoor

. UniCombine: https://github.com/Xuan-World/UniCombine

. PBE: https://github.com/Fantasy-Studio/Paint-by-Example

TIGIC: https://github.com/zrealli/TIGIC

TALE: https://github.com/tkpham3105/TALE

TF-ICON: https://github.com/Shilin-LU/TF-ICON

DreamkEdit: https://github.com/DreamEditBenchTeam/DreamEdit

11. EEdit: https://github.com/yuri YanZeXuan/EEdit

R R N N N I
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K DISCUSSION ON INVERSION VS. ONE-STEP FORWARD DIFFUSION

We provide an expanded discussion of our design choice between inversion and one-step forward
diffusion to better clarify the motivation behind our approach. In training-free image editing, both
inversion and one-step forward diffusion are commonly used to obtain a noisy latent that serves as
the starting point for subsequent optimization or denoising. In our framework, we intentionally adopt
one-step forward diffusion as a practical substitute for inversion. Our method does not depend on the
initial latent to preserve object identity. Instead, the MSA loss extracts object-specific information
from the adapter/LoRA and injects it into the latent during the editing process.

This design choice is motivated by a practical observation: many modern models are distilled for
speed, making accurate inversion difficult to achieve in practice. When inversion cannot reliably
encode object identity, its benefit becomes limited. In such cases, a noisy latent that still retains
enough background structure is sufficient as a starting point. For this reason, we adopt one-step
forward diffusion as a pragmatic replacement for inversion, rather than a theoretically equivalent
alternative. It offers two advantages: (i) it avoids the accuracy limitations of inversion on distilled
models, making it more broadly applicable, and (ii) it is faster than performing an inversion.
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Table 6: Image Quality Evaluation Results using HPSv3 and UnifiedReward variants.

Bench Method

HPSvV3

UnifiedReward-2.0-qwen3v1-8b

UnifiedReward-Edit-qwen3vl-8b

UnifiedReward-Think-qwen-7b

Instruction Quality A Instruction Quality Instruction Quality

werage Average Average

Success  Overedit Natural  Artifact Success  Overedit Natural  Artifact Success  Overedit Natural  Artifact
MADD (He et al., 2024) 1.2443 142273 12.3727 16.6153 18.6807 154740 11.8091 17.8727 13.1045 12.4727 13.8148 147553 16.2128 19.1103 20.5724  17.6627
ObjectStitch (Song et al., 2023) 74529 19.9954  16.8721 21.0455 21.8864 19.9499 16.2500 21.2000 18.6545 20.6500 19.1886 20.7500 17.7614 210563 20.7676 20.0838
DreamCom (Lu et al., 2023c) 59324 18.1818 154818 23.5388 24.0502 203132 14.0727 22,5409 21.0091 22.0955 19.9296 18.5263 154737 21.6641 21.6953 19.3399
AnyDoor (Chen 2024c) 8.4867 232146 17.8128 209772 21.9361 20.9852 19.0909 20.6000 17.4182 19.2864 19.0989 21.2083 18.5694 21.9214 21.5929 20.8230
UniCombine (Wan; al.,2025a) 8.8415 224545 17.8000 23.1682 23.9000 21.8307 20.1591 22.7773 21.2500 22.6455 21.7080 23.0595 162381 21.9520 20.8400 20.5224
Dre;f\m- PBE (Yang et al., 2023) 83789 224292 17.5205 222773 232273 21.3636 18.2318 21.8182 19.5955 21.2091 202137 24.1481 17.8025 21.5786 21.9500 21.3698
Edit- TIGIC (Li et al., 2024b) 52676 17.3136  14.8045 19.0318 203636 17.8784 13.7045 19.4636 17.0864 18.1455 17.1000 17.7294 17.0000 21.0897 20.8828 19.1755
Bench TALE (Pham et al., 2024) 6.3773  19.6027 159863 204455 214773 19.3780 14.8318 21.6182 17.3227 18.5409 18.0784 21.6071 17.6548 21.0667 20.6933  20.2555
(220) TF-ICON (Lu et al., 2023d) 7.2643 204490 167538 20.8273 21.7227 19.9382 15.9045 20.1727 17.9909 19.0182 182716 20.9870 16.9870 21.2946 20.7984 20.0168
DreamEdit (Li et al., 2023b) 6.0250 19.9227  16.5409 19.2773  20.5227 19.0659 14.9273 19.1818 13.3909 155545 15.7636 20.4714 16.8143 20.3333 20.7153 19.5836
EEdit (Yan et al., 2025) 6.6689 18.3790  15.3379  22.0636 23.4818 19.8156 14.2091 222864 19.9500 21.7955 19.5603 21.1463 182561 22.0635 21.2222 20.6720
Ours-Adapter 8.8861 233727 17.0500 23.5727 23.8136 21.9523 21.3364 22.7591 21.3636 22.6136 22.0182 23.2222 18.7407 22.8448 22.0086 21.7041
Ours-LoRA 8.8688 23.4545 16.8136 23.7727 23.8500 21.9727 21.1273 227455 21.3000 22.5955 21.9421 23.7590 18.5904 22.4853 20.6765 21.3778
MADD (He et al., 2024) 59673 13.8900 11.8167 18.8633 17.1333 154258 12.6800 16.7300 12.5167 10.3000 13.0567 17.6538 15.7115 20.2867 19.5533 17.2524
ObjectStitch (Song et al., 2023) 8.8389  20.7157 13.1773  21.4200 19.4800 18.6983 17.3567 21.8500 17.1333 18.9733 18.8283 19.8304 14.6518 21.3467 19.5400 18.8394
DreamCom (Lu et al., 2023c) 7.9884 82234  9.0756 239178 234737 16.1726 59507 23.7072 223618 224375 18.6143 17.8810 15.2857 22.5000 20.9737 19.0509
AnyDoor (Chen et al., 2024c) 89760 21.7633  13.1133  20.5567 18.5300 18.4908 18.4967 21.8300 14.9267 18.1667 183550 22.6606 17.6422 21.2467 19.5333 19.8876
UniCombine (Wang et al., 2025a)  8.8999  15.6747 11.2226 23.0878 227230 18.1770 13.7399 23.4966 20.7195 21.4554 19.8529 20.3646 157500 21.9764 20.2804 19.6449
Complex-  PBE (Yang etal,, 2023) 8.5923 19.6151 13.1283 219243 20.1349 187007 16.8947 219605 17.3257 19.6217 18.9507 23.5810 14.7048 21.2039 19.6447 19.6170
Compo  TIGIC (Lietal., 2024b) 7.6630 14,6250  11.9899 212357 20.0202 169677 12,6027 19.5185 169192 16.6801 164301 167168 16.5398 21.5051 20.2862 18.2956
(300) TALE (Pham et al., 2024) 87351 16,9899  11.3826  22.7600 20.7000 17.9581 15.0100 223567 19.0333 18.6267 187567 17.8317 154455 21.9667 19.9767 18.7955
TF-ICON (Lu et al., 2023d) 9.3258  17.7047 12,6812 21.9463 20.4799 18.2030 15.1477 21.2919 18.1577 18.3490 18.2366 19.9775 167072 21.5101 19.7584 19.2380
DreamEdit (Li et al., 2023b) 8.0434 17.2600 12.0233 185669 17.2578 162770 14.7300 19.4600 13.7467 15.6367 15.8934 233964 15.6396 20.4333 19.5400 18.9805
EEdit (Yan et al., 2025) 87835 14.9500 11.2567 22.8746 21.8152 17.7241 134224 23.1485 20.2601 22.1081 19.7348 22.8058 15.6990 223498 20.5941 20.2367
Ours-Adapter 9.6485 22.6162 14.2525 22.5552 21.9064 20.3326 204582 22.6421 18.5518 21.2876 20.7349 24.0300 17.4600 22.2074 20.3913  20.9647
Ours-LoRA 9.8418 22.9532 133779 229130 21.7525 20.2492 20.8328 22.8261 19.1940 21.2776 21.0326 24.3400 17.8900 22.3838 19.9596 21.1212

EEdit also proposes an elegant strategy, termed inversion skipping, to accelerate the initialization
process. In EEdit, the initial latent is obtained via an inversion procedure involving model predic-
tions, while inversion skipping significantly reduces the number of required steps. In contrast, our
one-step forward diffusion does not perform inversion at all. The initial latent is produced by directly
sampling noise and adding it to the clean latent at a chosen timestep, without any model prediction.
This makes our initialization computationally lighter. Because FLUX-Dev is a CFG-distilled model,
its inversions are relatively imprecise, which we believe contributes to the weaker subject-identity
preservation observed in EEdit. Our method is therefore designed to avoid reliance on accurate in-
version in such distilled settings.

L ADDITIONAL IMAGE QUALITY EVALUATION USING UNIFIEDREWARD

AND HPSV3

To provide a more comprehensive assessment of composition quality, we further evaluate the meth-
ods using three variants of UnifiedReward (Wang et al., 2025b;c) (UnifiedReward-2.0-qwen3vI-8b,
UnifiedReward-Edit-qwen3vl-8b, and UnifiedReward-Think-qwen-7b), as well as HPSv3 (Ma et al.,

2025b). The results are summarized in Tab. 6.

M FURTHER ANALYSIS ON DSG IN SD3.5

‘We conduct experiments on SD3.5 by replacing our DSG mechanism with standard negative prompt-

ne

ing. Specifically, in Eqn. 3, we substitute the negative velocity v;f A With the velocity obtained
using a variety of commonly used negative prompts. The four sets of negative prompts used are:

1. distorted, deformed, glitch, artifacts

2. undefined shapes, bad anatomy, unnatural pose

3. low quality, worst quality, low resolution, blurry, out of focus

4. Al artifacts, melted objects, strange textures

The quantitative results on the DreamEditBench dataset are presented in Tab. 7.

Key Insights

These results lead to the following key conclusions:

1. Performance Sensitivity: The performance of standard negative prompting is sensitive to
the specific wording used (e.g., Prompt 2 performs better than Prompt 4). This confirms
that the effectiveness of heuristic negative prompts relies heavily on manual, often tedious,
prompt engineering.
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Table 7: Comparison of negative prompting versus DSG on SD3.5 on the DreamEditBench.

Method CLIPt DINO{ IRF{ DreamSim| LPIPS| SSIMt IR, VR?
Ours-SD3.5-Adapter (w/NP 1) 0.7934  0.7311  0.7608 0.3918 0.0331 0.8812 0.5837 3.5714
Ours-SD3.5-Adapter (W/NP2)  0.8029  0.7388  0.7679 0.3781 0.0259  0.8908 05726 3.6102
Ours-SD3.5-Adapter (w/NP3)  0.7958  0.7329  0.7623 0.3892 0.0315  0.8839 0.5814 3.5796
Ours-SD3.5-Adapter (w/ NP4) 07887  0.7281  0.7574 0.3976 0.0368  0.8765 0.5882 3.5548
Ours-SD3.5-Adapter (w/ DSG)  0.8054  0.7407  0.7699 0.3745 0.0234  0.8937 0.5701 3.6187

2. Adaptive Guidance: Standard negative prompts generate a degradation direction that is
decoupled from the specifics of the input image. In contrast, DSG constructs an image-
specific low-quality direction by blurring the attention component, making it significantly
more adaptive, stable, and effective across diverse inputs without requiring any manual
prompt tuning. DSG consistently outperforms all tested standard negative prompts across
all metrics.

This analysis confirms that DSG provides a superior, more robust, and automated mechanism for
degradation suppression compared to traditional negative prompting, even in models like SD3.5
where negative prompts are generally effective.

N RUNTIME COMPARISON

The wall-clock runtime at a 512 x 512 resolution on an HI00 GPU is summarized in the table below.
In our implementation, we applied qint§8 quantization to all FLUX-based methods to accelerate
inference and reduce GPU memory usage. Additionally, Ours-Adapter can also be run on a 24-GB
GPU by enabling CPU offloading.

Table 8: Runtime and memory usage comparison of various image composition methods at a 512 X
512 resolution.

Training  Base External Time Peak Memory
Method Free Model Model (s) (MB)
MADD (He et al., 2024) b 4 SD DINO 45.73 11708
ObjectStitch (Song et al., 2023) b 4 SD VIT 6.63 8268
DreamCom (Lu et al., 2023c) } ¢ SD LoRA 9.87 3388
AnyDoor (Chen et al., 2024c) b ¢ SD DINO 8.61 18612
UniCombine (Wang et al., 2025a) ¢ FLUX LoRA 11.98 22711
PBE (Yang et al., 2023) } ¢ SD - 3.52 10842
TIGIC (Li et al., 2024b) v SD - 10.82 21640
TALE (Pham et al., 2024) 4 SD - 8.03 23524
TF-ICON (Lu et al., 2023d) v SD - 24.55 20670
DreamEdit (Li et al., 2023b) v SD LoRA, VIT 99.83 19298
EEdit (Yan et al., 2025) v FLUX - 60.31 26546
Ours-Adapter v FLUX Adapter 38.29 32552
Ours-LoRA v FLUX LoRA 18.08 23519

O ADDITIONAL QUALITATIVE RESULTS

We offer more qualitative assessment results, including visualizations of all baselines, presented in
Figs. 13 to 18.

P LLM USAGE STATEMENT

We used large language models for text polishing and grammar correction during manuscript prepa-
ration. No LLMs were involved in the design of the method, experiments, or analysis. All content
has been carefully verified and validated by the authors.
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Figure 13: (Part 1 of 2) Qualitative comparison of our method against baselines in challenging
scenarios.
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Figure 14: (Part 2 of 2) Qualitative comparison of our method against baselines in challenging
scenarios.
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Figure 15: (Part 1 of 2) Qualitative comparison of our method against baselines in challenging
scenarios.
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Figure 16: (Part 2 of 2) Qualitative comparison of our method against baselines in challenging
scenarios.
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Figure 17: (Part 1 of 2) Qualitative comparison of our method against baselines in challenging
scenarios.
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Figure 18: (Part 2 of 2) Qualitative comparison of our method against baselines in challenging
scenarios.
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