
Nocturne: a scalable driving benchmark for bringing
multi-agent learning one step closer to the real world

Eugene Vinitsky⇤†
Meta AI, UC Berkeley

vinitsky.eugene@gmail.com

Nathan Lichtlé⇤
UC Berkeley

École des Ponts ParisTech
nathan.lichtle@gmail.com

Xiaomeng Yang⇤

Meta AI
yangxm@fb.com

Brandon Amos
Meta AI

bda@fb.com

Jakob Foerster
Univeristy of Oxford

jakob.foerster@eng.ox.ac.uk

Abstract

We introduce Nocturne, a new 2D driving simulator for investigating multi-agent
coordination under partial observability. The focus of Nocturne is to enable research
into inference and theory of mind in real-world multi-agent settings without the
computational overhead of computer vision and feature extraction from images.
Agents in this simulator only observe an obstructed view of the scene, mimicking
human visual sensing constraints. Unlike existing benchmarks that are bottlenecked
by rendering human-like observations directly using a camera input, Nocturne
uses efficient intersection methods to compute a vectorized set of visible features
in a C++ back-end, allowing the simulator to run at 2000+ steps-per-second.
Using open-source trajectory and map data, we construct a simulator to load and
replay arbitrary trajectories and scenes from real-world driving data. Using this
environment, we benchmark reinforcement-learning and imitation-learning agents
and demonstrate that the agents are quite far from human-level coordination ability
and deviate significantly from the expert trajectories. Code for Nocturne is available
at https://github.com/facebookresearch/nocturne.

1 Introduction

This paper presents Nocturne, a new simulator and benchmark for multi-agent driving under human-
like sensor uncertainty that is intended to aid the process of studying real-world multi-agent coordina-
tion and learning. Instead of combining the challenges of coordination with feature extraction from
images, Nocturne is a 2D simulator that generates vector representations of the set of objects and road
points that would be visible to an idealized human driver (see Fig. 1 for an example) and supports
head-tilt to acquire additional information about blind spots. In contrast to driving benchmarks that
achieve partial-observability by using a camera input, Nocturne uses efficient visibility-checking
methods and a C++ back-end to enable us to construct observations and step the dynamics of a single
agent at thousands of steps-per-second (see Appendix Sec. F for an exact analysis). This speed is
key to its use in multi-agent learning settings where frequently billions of environment interactions
are needed to learn performant agents [3, 20]. In contrast to many existing multi-agent learning
benchmarks, Nocturne is neither zero-sum nor fully-cooperative but mixed-motive, combining the
challenges of coordination and cooperation.

⇤These authors contributed equally to this work.
†Corresponding Author

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://github.com/facebookresearch/nocturne

Figure 1: A visual depiction of the obstruction model used to represent the objects that are visible to
the agents. (Left) Obstructed view with the viewing yellow agent in the center of the cone. (Right)
Original scene centered on the cone agent with an unobstructed view.

Crucially, Nocturne is not just a simulator. Instead, it is built upon open-source driving data and
features a diverse set of real-world scenes (see Fig. 2) that probe the ability of agents to safely navigate
and coordinate in complex scenes such as intersections, roundabouts, parking lots, and highways. We
use this data as a source of experts for imitation, to flexibly vary the number of controlled agents in
the scene, and as a train-test split for validating the generalization ability of a human-driver model.

The challenge we propose is to learn (or otherwise design) policies that achieve the same set of final
states as human experts (throughout this work we will call this the goal rate and the final state the
goal position) while achieving a 0% collision rate. Achieving a high goal rate alongside a negligible
collision rate is challenging for any policy design scheme (both learning and non-learning) due to
the combination of the high-dimensional state space, the partial observability of the scene, the large
number of interacting agents, and the decentralization of the policies at test time. The secondary
challenge in Nocturne is to find policies that closely mimic human behavior at the trajectory level.
Building on top of the human data we provide an evaluation scheme and off-the-shelf baseline
implementations including evaluations.

We provide a guide to the construction and rules of the benchmark as well as results on using
Nocturne to design agents and test their capabilities and human-similarity. We demonstrate that
learning effective agents in Nocturne is challenging; tuned RL and imitation learning baselines
struggle to successfully complete the highly interactive scenes. Finally, we demonstrate that the
agents achieve relatively low distance to the expert trajectories and show in Appendix Sec. B that
there does not appear to be a zero-shot coordination problem [16] at this level of agent capability.

2 Related Work

Multi-agent traffic simulation tools and benchmarks:
In terms of multi-agent driving benchmarks that require both acceleration and steering control, there
are several closely related benchmarks that differ in terms of ease of implementing multi-agent
interaction, being data-driven, 2D vs. 3D, the mechanism by which they support partial observability,
or the rate at which they can construct the partially observed state for an agent. We summarize some
of these differentiating features in Table 1.

The closest works to ours are BARK [5], SMARTS [42], and MetaDrive [22]. SMARTS [42] supports
multi-agent driving in a wide variety of interactive driving scenarios and offers a large set of default
human driving behaviors to use for testing autonomous vehicles. BARK [5], like Nocturne, is a 2D
goal-driven simulator with support for external datasets and contains a wide variety of large-scale
scenarios and multi-agent support. Finally, MetaDrive [22] also supports real-world data and multi-
agent interaction and is able to achieve 300 FPS image rendering by rendering lower fidelity images.
The main differentiating feature from these works is the support for acquiring the set of objects that
are visible without requiring the rendering of camera images; to our knowledge Nocturne is the
only available simulator that can jointly compute an agent’s visible objects and the agent’s dynamics

2

(a) A four-way stop. (b) A straight road with merging vehicles.

(c) Unprotected turns with conflicting routes. (d) A crowded parking lot.

Figure 2: Four scenes demonstrating the diversity of the navigable scenes in Nocturne. Colored
circles represent the goal position of the corresponding colored agent. Dots represent the trajectory
of the agent, with opacity increasing as time goes on. Videos of experts negotiating these scenes can
be found at nathanlct.com/research/nocturne.

step above 2000 steps-per-second (see Appendix Sec. F for exact details). Additional simulators are
summarized in Table 1.

Partially observed multi-agent benchmarks:
There are a wide variety of partially-observable multi-agent benchmarks not focused on driving.
Within the card-playing domain, Hanabi [3] is frequently used to investigate coordination under partial
observability and features between 2-5 agents. The Starcraft multi-agent benchmark (SMAC) [32],
perhaps the most ubiquitous MARL benchmark, features many agents and high-dimensional obser-
vations but does not come with human data and many algorithms now achieve perfect performance
in this challenge [40]. Melting Pot [20] features a huge diversity of many-agent mixed-motive
challenges but does not have available expert data. Finally, games such as Poker, Stratego, and
Diplomacy are frequently studied.

Open-Source Trajectory Data:
We provide a brief overview of large driving datasets that contain both map information and annotated
trajectory data for vehicles, pedestrians, and cyclists. Available trajectory data can be categorized
along the size of the dataset, the diversity of data in the dataset, the method of collection, and the
available annotations of the scene (e.g. maps, traffic lights, road object trajectories). This work uses
the Waymo Motion dataset [12] as it has a high diversity of scenes across many cities and contains
annotations for cyclists, pedestrians, and traffic lights, features that will be used in future versions
of Nocturne. However, we note that Argoverse 2 [38] and nuScenes [7] have similar features and
could have been used; nuScenes also has complete traffic light annotations instead of annotations
only for ego-observed traffic lights. The Lyft Level 5 dataset [15] appears to be the largest available
dataset and has thorough road and vehicle annotations but is drawn from a single stretch of road.
For non-egocentric datasets, the INTERACTION dataset [41] contains a diversity of scenes across

3

https://www.nathanlct.com/research/nocturne

Table 1: Comparison of representative driving simulators. State-based partial observability refers to
whether the set of visible objects can be queried. Expert data refers to whether recorded trajectory
data is available for the scenes. Baseline human models refers to whether explicit models of human
driving are available to control road objects in the scene.

Simulator Multi-agent
Support 2D/3D

State-Based
Partial

Observability

Expert
Data

Baseline
Human
Models

CARLA [11] 3D X
SUMMIT [8] X 3D X
MACAD [26] X 3D X

Highway-env [21] 2D X
Sim4CV [23] 3D

Duckietown [28] 3D
SMARTS [42] X 2D X
MADRaS [33] X 2D X

DriverGym [19] 2D X X
DeepDrive-Zero [30] X 2D

MetaDrive [22] X 3D X X
VISTA [1] X 3D X X
Nocturne X 2D X X

both cities and countries, thereby capturing a variety of driving styles and norms, but is an order of
magnitude smaller than other datasets.

3 Benchmark construction

3.1 Defining a Nocturne Scene

In the following sections, we will refer to objects that can move (vehicles, pedestrians, cyclists) as
road objects and anything that cannot move (lane lines, road edges, stop signs, etc.) as road points.
Road points are connected together to form a polyline. We will refer to the type of road polyline that
should not be crossed by vehicles as a road edge.

Nocturne scenes require a map consisting of polylines, a set of initial and final road object positions,
and optionally a set of trajectories for the road objects. Nocturne currently acquires its scenes, goals,
and expert trajectories from the Waymo Motion dataset [12] but can be easily configured to support
any dataset that represents its road features as points or polylines. The Waymo Motion dataset consists
of 487004 nine-second trajectory snippets discretized at a rate of 10 Hz with the first second intended
to be used as context and the latter eight seconds to be used for prediction.

One challenge of selecting and constructing the scenarios for Nocturne is that these trajectories are
collected by labeling the vehicles observed by a Waymo car as it drives. Consequently, we do not
have a complete birds-eye view of the scene. Hence, there are cars that may have been in the scene
that were not visible to the Waymo vehicle and therefore are not included in the dataset; for the
same reason, the expert trajectories are also incomplete and may not persist throughout the entire
duration of the rollout. In other words, the expert trajectories contain agents that unpredictably flicker
in and out of existence. Similarly, the set of traffic lights that were visible to the Waymo vehicle
may be insufficient to uniquely determine the underlying traffic light state. For this reason, this
first version of the Nocturne benchmark comes with a few restrictions: we do not use traffic lights
and we only include vehicles available at the first time-step of the scene to avoid collisions induced
by unpredictable vehicle appearances. We filter out scenes that contain traffic lights which leaves
the majority of the remaining scenes as roundabouts, unsignalized intersections, arterial roads, and
parking lots. This leaves the benchmark consisting of 134453 snippets.

4

3.2 Partial Observability Model and Collision Handling

To support the investigation of coordination under partial observability, agents in Nocturne come with
a configurable view-cone as is shown in Fig. 1. An element (road object or road point) is considered
observable if there is a single ray in the cone that intersects with that element that does not pass
through any road object on its path to the element. Stop signs are always visible if they are within
the agent view-cone even if they would be obscured on the assumption that they would be raised
at a sufficiently high level. We select the angle of the cone to be 120 degrees (approximately the
range of binocular vision) and 80 meters radius. We note that this does not perfectly mimic a human
visual model which has additional complexities such as dynamic variations in the functional field of
view [10], phenomena relating to interactions between visible objects such as crowding [6], and the
necessary ability to pay attention to objects further than 80 meters away at high speeds. Furthermore,
we currently represent our vehicles as rectangles and so this model of partial observability will be
overly pessimal and neglect situations such as the ability for a driver to sometimes see over the hood
of a car or 3-D effects like tall cars seeing over small ones.

The primary challenge in computing which road points and objects are observable is their relatively
large number: a scene contains about 30 vehicles and 4800 road edge points on average. We use a
Bounding Volume Hierarchy (BVH) to maintain the road objects and select candidates for potentially
observed vehicles. We build the BVH using approximate agglomerative clustering [14] to generate
a high-quality BVH. When computing the observed objects, we first use the BVH to select the
candidates that lie in the axis-aligned bounding box (AABB) of the conic view field. Since there are
a comparatively larger number of all types of road points (about 16000 on average), we use a 2D
range tree [4] to maintain all of the road points. When computing the observed road points, we do
a range search in the 2D range tree to select the candidates that lie in the AABB of the conic view
field. For both vehicles and road points, once we have the candidates in the conic view-field, we
perform a brute-force visibility check for the object and road points respectively by ray-casting from
the viewing agent to all the candidate vertices. Finally, these data-structures are similarly used to
accelerate collision checking.

3.3 Construction of the Partially Observable Stochastic Game

Definition of the state space

Nocturne supports two possible state representations: a rasterized image and a vectorized representa-
tion of that image. While we provide default state representations, we consider it fair game on the
benchmark to use any other representation as long as only objects that are visible under the conditions
in Sec. 3.2 are presented to the agent. Conforming to these consistent rules about visibility allows for
a fair comparison between different algorithmic approaches.

For the default vectorized representation, we adopt a fully descriptive set of features (speed, angle,
width, length, etc.) for the road objects and use the VectorNet [13] representation for the road points.
We will refer to the vehicle whose observation is being returned as the ego vehicle. Note that by
default all features that can be placed into relative coordinates are returned in relative coordinates to
the ego vehicle (e.g. speed is relative speed, heading is relative heading, etc). The agent goal is set to
be the final position, speed, and heading of the expert agent. An agent is considered to have achieved
its goal if it is within 1 meter of the final position and within 1 m

s of the final speed of the agent and
0.3 radians of the final heading when the target position tolerance is achieved. For exact observations
for the ego object, road objects, and road points, as well as the padding mechanism used to handle
variations in the number of observed objects / points / stop signs see Appendix Sec. A.

Action Space

Vehicles are driven by acceleration and steering commands that are passed to a bicycle model to update
the vehicle state. In the experiments used in this paper we use 6 discrete actions for acceleration,
21 discrete actions for steering, and 5 discrete actions for head tilt with the acceleration actions
uniformly splitting [�3, 2] m

s2 , the steering actions between [�0.7, 0.7] radians, and the head tilt
between [�1.6, 1.6] radians. For more details on the vehicle model, see Appendix Sec. D.

5

Environment Dynamics and Goals

The total length of the expert data is 9 seconds, discretized into steps of size 0.1 seconds. For the
first 1 second of the episode, all vehicles obey the expert policy. This is used to construct a history of
observations for each agent that can be used to initialize or warm up the policy. After this transitory
period, the episode continues for a fixed length of T = 80 steps. Agents are provided with a target
position and target speed that are taken from the final speed and position of the expert trajectories. If
an agent achieves their goal they receive a reward of T and are removed from the system. A vehicle
will also be removed if it collides with any road edge or object.

In addition, there is a process for selecting the set of vehicles that are controlled in the environment.
First, we only control vehicles that at some point have a speed above 0.05m

s and that are more than
0.2m from their goal; in general, these are vehicles that need to move to get to their goal. From this
set of vehicles, we remove all vehicles that are already at their goal. Next, we randomly select up to a
maximum of 20 of them and set the remainder to replay expert trajectories. This latter process for
keeping a maximum number of controlled vehicles is used in this paper due to constraints of the RL
library and is not an aspect of the benchmark.

3.4 Rules of the Benchmark

We outline here a few rules that we expect solvers to respect to ensure consistency between solutions.

– The size of the view cone is fixed to 120 degrees and a distance of 80 meters. This ensures
consistency between the level of partial-observability each controller must handle. Users
can also tilt the head of the driver by up to 90 degrees in either direction to acquire more
information.

– Only the first 1 second of the trajectory can be used as context or to warm-start a memory-
based controller; control of the vehicles must start at 1 second into the trajectory.

– A trajectory that successfully reaches the goal is only considered valid if it reaches the goal
within the 8 second time-window. All the scenes are easily solved without a time-constraint
by simply creeping forwards slowly.

– The environment comes with default rewards and observations but any amount of reward-
shaping or observation sharing at training time is valid. However, at test time only informa-
tion that is directly observable to the agent can be used as input to the policy. For example,
sharing information about other agents’ goals would be valid at train time but not at test
time.

– Adding additional map information to the agent state space beyond the information provided
by default is valid. This corresponds to humans often having knowledge about map layout
beyond what is within eyesight.

– The bounds on the action space should be respected: the acceleration should be bounded
between [�6, 6] m

s2 , the change in heading should not be faster than 40 degrees per second,
and driver head tilt should be maintained within 90 degrees in either direction. This rules
out solutions that rapidly get to their goal by using accelerations that are outside of possible
vehicle speed bounds or excessively sharp turns.

We note that these rules may make some of the scenes unsolvable. For example, real human drivers
are not randomly initialized into a scene with a maximum of 1 second of prior context; this context
may be critical to safely navigating the scene under the time constraints. Additionally, our model of
human perception is not an exact match for true human perception which can extend well beyond 80
meters under certain circumstances. It is possible that there may be missing context at this viewing
distance which is crucial for safe navigation. We view these constraints as similar to the challenge
of label noise in supervised datasets; our constraints may place an upper limit on the percentage of
goals that can be achieved but the benchmark still constitutes a valid comparison between methods as
long as the constraints are respected.

6

3.5 Unusual features of the Benchmark

For completeness, we note a few oddities of the benchmark that we believe are critical for potential
solution designers to be aware of. These challenges are often properties of labeling noise and the
egocentric view under which the data was collected.

Filtered out pedestrians, cyclists, and traffic lights

While the dataset contains scenes with traffic lights, pedestrians, and cyclists, the first set of Nocturne
environments, NocturneV1, operates solely on scenes that have been filtered to not include traffic
lights. Additionally, when constructing the environment, we remove all pedestrians and cyclists from
the scene. There is still an option to include them in the visible state, which we do for behavioral
cloning. Future versions of the benchmark will consider joint learning of pedestrians, cyclists, and
vehicles but for NocturneV1 we only consider vehicles as appropriate modeling of pedestrian and
cyclist dynamics is challenging.

Egocentric data collection

The Waymo Motion dataset that forms the basis of the first version of Nocturne is collected by driving
a sensor-equipped car and recording the trajectories of all visible vehicles. Thus, in the original data
vehicles may have trajectories that are shorter than the full 9 seconds and may only appear midway
through the trajectory or appear and disappear throughout the trajectory when they are obscured from
the view of the sensing car. Rather than suddenly teleport cars into the scene midway through an
episode, we choose to only use cars that have valid states beginning of the episode. This reduces the
total number of vehicles that might appear in the episode but does not change the feasibility of any of
the agent goals.

Infeasible goals

Roughly 3% of the vehicles in the dataset have an expert trajectory that crosses an impassible road
edge. This is due to labeling errors in the dataset where, for example, small gaps in road edges are
occasionally missed that make the road edge crossable. To ensure a benchmark where all goals are
achievable, we compute all trajectories where crossing a road edge was necessary to achieve the goal
and set these vehicles to replay their expert trajectory rather than be controlled; this corresponds to 3%
of all vehicles. Finally, 2% of vehicles in the dataset are initialized in a colliding state. This primarily
occurs in parking lot scenes where a vehicle slightly overlaps with the boundary of a parking spot
or a nearby vehicle. These vehicles are also removed. For the calculations of these statistics, see
Appendix Sec. E.

Illogical goals

Occasionally, agents may have goals that seem illogical; for example, agents may be asked to come
to a full stop in the middle of a highway. While these goals may seem odd, they are actual states
that were achieved by humans driving on the roadways. These odd goals are often a consequence of
unobserved objects such as drivers queued up that make the vehicles stop so as to avoid a collision
that was not observed by the egocentric data collection process.

4 Experiments Setup

We run a reinforcement learning and an imitation learning baseline to demonstrate that these tasks do
not appear to be easily solved even after billions of steps. We also briefly investigate whether the
policies appear to have a zero-shot coordination challenge wherein policies perform well when paired
with agents from their seed but are incompatible with policies from a different training run.

We test the following methods:

• APPO [29] trained in multi-agent mode with a shared policy i.e. every agent is controlled
by the same policy but in a decentralized fashion.

• Behavior Cloning [2, 34].

7

Figure 3: (Left) Success at getting to the specified goal on the training data as a function of number
of environment steps. "Training Files: X" means the agent was trained on X fixed scenes sampled
from the training dataset. (Middle) Percent of agents that achieved their goals. (Right) Percent of
agents that collided.

For the RL method, in addition to the fixed-bonus for achieving the goal, we add the following dense
reward to encourage the agent to make progress toward the target position, speed, and heading:

rt = 0.2⇥
✓
1� ||xt � xg||2

||x0 � xg||2

◆
+ 0.2⇥

✓
1� ||vt � vg||2

40

◆
+ 0.2⇥

✓
1� f(ht, hg)

2⇡

◆
(1)

where xt is the position at time-step t, xg is the goal position, vt is the speed at time-step t and vg
is the target speed, ht and hg are the current and target heading in world coordinates (i.e. not in a
relative frame). f(ht, hg) returns the minimum angle between ht and hg . Since coordinates are in a
relative frame and the agent cannot observe the world frame, note that f(ht, hg) is an observation
provided to the agent. The use of this dense reward, which certainly affects the form of the optimal
policy, is not a necessary component of the benchmark and here is just used to generate good policies.

All experiments are evaluated on the same 200 randomly selected scenes from the validation set
and statistics are computed over an 8 second rollout. The width in all the plots represents twice
the standard error. For more details and hyperparameters for both methods and architectures, see
Appendix Sec. A.

5 Results and Analysis

5.1 Success rate of baselines

Fig. 3 shows the performance of the agents on the training set after 3e9 steps which takes approxi-
mately two days on 1 GPU and 10 CPUs. Each line corresponds to a policy trained on a fixed subset
of the training scenes. We score our policies in two primary ways: the fraction of vehicles that
achieve their goal (goal rate) and the fraction of vehicles that collide with another vehicle or road
edge (collision rate). Note that this use of collision rate differs from its use in papers such as [18, 35]
which compute collision rate as the fraction of scenes that contain a vehicle-vehicle collision.

We investigate the effect of the size of the dataset on the train and test performance. In the right half
of Fig. 3 we can see that the inclusion of a larger training dataset decreases the performance of the
algorithms up to 1000 files as they struggle with the diversity of the data. However, the inclusion
of additional data narrows the magnitude of the train and test gap and closes it fully at 10000 files.
However, it is still possible that a divergence between train and test might re-emerge as agents become
more capable on the train set and approach a 100% goal rate.

Finally, Table 2 compares the APPO and BC agents. For the APPO agent, we include the results
for the agent trained on 10000 training files. The expert playback row refers to replay of the expert
trajectories.

5.2 Human-agent trajectory similarity

We analyze the results of our experiments with respect to how human-like the resultant policies are
using displacement error between expert and agent trajectories as our metric (i.e. L2 distance between
the agent and expert trajectories). To align with the definition used in other works [18, 35] we disable

8

Table 2: Overview of metrics across methods for an 8 second rollout.
Algorithm Collision Rate (%) Goal Rate (%) ADE (m) FDE (m)

Expert Playback 4.9 100 0 0
APPO 20.3± 0.8 71.7± 0.7 3.1± 0.2 6.1± 0.3

BC 38.2± .1 25.3± 0.1 5.6± 0.1 9.2± 0.1

Figure 4: (Left) Average displacement error (mean l2-distance between an agent and an expert at
each time-step). (Right) Final displacement error (l2-distance between an agent and an expert at the
final time-step that an expert has a valid state).

the removal of vehicles upon collision / reaching the goal. However, we note a few dissimilarities
that make comparisons with other works difficult. First, agents are provided with a goal position, a
feature that is often not available to other predictive methods. Second, our experts are stepped in
scenes that may contain pedestrians or cyclists but our agents are replayed in the same scene without
the corresponding pedestrians or cyclists. This can make the magnitude of the displacement error not
directly comparable to the values in other works; the low value of the displacement error may simply
indicate that a majority of the scenes have unique optima. Fig. 4 examines the average difference in
position between the agent and expert trajectories averaged across 5 training runs and demonstrates
that the influence of more training data on displacement error is flat after 1000 files.

5.3 Policy Failure Modes

Here we investigate the mechanisms under which our policies fail to achieve their goals and collide to
shine a light on potential avenues for improvement. The key failure modes we qualitatively observe
are failures in scenes in which agents are required to interact with another agent either by waiting
or merging. Videos of some of the failure modes can be seen at nathanlct.com/research/nocturne.
While we cannot measure interactivity directly, we measure a proxy by looking at the intersection
of the expert trajectories. We play the experts forwards, record their trajectory as polylines, and
consider a vehicle to have as many interactions as there are intersections of the vehicle’s expert
trajectory polyline with other vehicle’s expert trajectory polylines (i.e. if two vehicles’ trajectories in
time cross at a point, that’s an interaction). This captures interactions such as crossing at a four-way
stop, merges, and others but neglects interactions such as complementary left turns and also may
unintentionally pick up behaviors such as driving behind another vehicle. Close to 25% of vehicles
have at least one interaction. The collision and goal rates as a function of interactions are plotted
in Fig. 5 and demonstrate that the goal rate declines precipitously and the collision rate increases
sharply as the number of interactions increases. This suggests that our agents have learned to get to
their goals but perform poorly in settings where getting to the goal requires coordination with another
agent.

6 Conclusion

We have introduced Nocturne, a simulator and benchmark intended to aid in the study of human-like
decentralized coordination for driving systems. We present results on the applications of RL and
imitation to this system, however, there still remains work to be done to build agents that operate
with the collision and goal rate that humans achieve as well as how to learn these agents efficiently.

9

https://www.nathanlct.com/research/nocturne

Figure 5: Goal rate (left) and collision rate (right) of vehicles as a function of the number of times
that their corresponding expert trajectory intersected with another expert trajectory (intersections).
As more than 3 interactions are rare, creating noisy statistics, scenes with more than 3 interactions
are placed into the 3 interaction bin.

Given better agents, human-like rules and conventions may be emergent properties of driving safely
in these settings [25].

There is also ample remaining work to be done on new benchmarks. Due to the ego-centric data
collection, we are forced to remove vehicles once they achieve their goal (i.e. the last observed
position of the driver in the data). However, it may be possible to use generative models or other
generative mechanisms to sample new goals for the agents to continue their trajectory once they
achieve the goals set out in the data. Similarly, generative models could be used to complete the
traffic light states and enable the inclusion of the traffic light scenes.

Finally, one open question is how to use Nocturne agents as predictive models of human driving.
At the moment a Nocturne agent requires a goal to which it is driving. To use Nocturne agents for
prediction (say for an autonomous vehicle trying to predict the motion of agents in the scene), a
method for inferring goals from the 1-second context needs to be implemented. A topic for future
work is to use supervised methods to predict the goals and enable fully decentralized prediction of
Nocturne agents from egocentric observations.

7 Reproducibility and Ethical Statement

We do not release trained models as the Waymo Motion dataset restricts the release of trained models.
While the dataset contains images that have been anonymized, only trajectory data is used in this
work. The benchmark and all files needed to run it are publicly available.

8 Acknowledgements

We thank the Python community [37] for creating the core tools that enabled our work including
Hydra [39], Pytorch [27], Matplotlib [17], and numpy [24, 36]. A huge thanks to Aleksei Petrenko
for a ton of support in tuning and debugging SampleFactory [29]. Thanks to Scott Ettinger for help
in understanding some of the peculiarities of the Waymo Motion dataset [12]. Thanks to Rachit
Singh for help with some of the results analysis scripts. We would also like to thank the International
Emerging Actions project SHYSTRA (CNRS) for support of Nathan Lichtlé.

References

[1] AMINI, A., WANG, T.-H., GILITSCHENSKI, I., SCHWARTING, W., LIU, Z., HAN, S.,
KARAMAN, S., AND RUS, D. Vista 2.0: An open, data-driven simulator for multimodal sensing
and policy learning for autonomous vehicles. arXiv preprint arXiv:2111.12083 (2021).

[2] BAIN, M., AND SAMMUT, C. A framework for behavioural cloning. In Machine Intelligence
15 (1995), pp. 103–129.

10

[3] BARD, N., FOERSTER, J. N., CHANDAR, S., BURCH, N., LANCTOT, M., SONG, H. F.,
PARISOTTO, E., DUMOULIN, V., MOITRA, S., HUGHES, E., ET AL. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence 280 (2020), 103216.

[4] BENTLEY, J. L. Decomposable searching problems. Tech. rep., Carnegie-Mellon Univ
Pittsburgh PA, Dept of Computer Science, 1978.

[5] BERNHARD, J., ESTERLE, K., HART, P., AND KESSLER, T. Bark: Open behavior benchmark-
ing in multi-agent environments. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2020), IEEE, pp. 6201–6208.

[6] BOUMA, H. Interaction effects in parafoveal letter recognition. Nature 226, 5241 (1970),
177–178.

[7] CAESAR, H., BANKITI, V., LANG, A. H., VORA, S., LIONG, V. E., XU, Q., KRISHNAN, A.,
PAN, Y., BALDAN, G., AND BEIJBOM, O. nuscenes: A multimodal dataset for autonomous
driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
(2020), pp. 11621–11631.

[8] CAI, P., LEE, Y., LUO, Y., AND HSU, D. Summit: A simulator for urban driving in massive
mixed traffic. In 2020 IEEE International Conference on Robotics and Automation (ICRA)
(2020), IEEE, pp. 4023–4029.

[9] CHO, K., VAN MERRIËNBOER, B., GULCEHRE, C., BAHDANAU, D., BOUGARES, F.,
SCHWENK, H., AND BENGIO, Y. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014).

[10] CRUNDALL, D., UNDERWOOD, G., AND CHAPMAN, P. Driving experience and the functional
field of view. Perception 28, 9 (1999), 1075–1087.

[11] DOSOVITSKIY, A., ROS, G., CODEVILLA, F., LOPEZ, A., AND KOLTUN, V. Carla: An open
urban driving simulator. In Conference on robot learning (2017), PMLR, pp. 1–16.

[12] ETTINGER, S., CHENG, S., CAINE, B., LIU, C., ZHAO, H., PRADHAN, S., CHAI, Y., SAPP,
B., QI, C. R., ZHOU, Y., ET AL. Large scale interactive motion forecasting for autonomous
driving: The waymo open motion dataset. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (2021), pp. 9710–9719.

[13] GAO, J., SUN, C., ZHAO, H., SHEN, Y., ANGUELOV, D., LI, C., AND SCHMID, C. Vectornet:
Encoding hd maps and agent dynamics from vectorized representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 11525–11533.

[14] GU, Y., HE, Y., FATAHALIAN, K., AND BLELLOCH, G. Efficient bvh construction via
approximate agglomerative clustering. In Proceedings of the 5th High-Performance Graphics
Conference (2013), pp. 81–88.

[15] HOUSTON, J., ZUIDHOF, G., BERGAMINI, L., YE, Y., CHEN, L., JAIN, A., OMARI, S.,
IGLOVIKOV, V., AND ONDRUSKA, P. One thousand and one hours: Self-driving motion
prediction dataset. arXiv preprint arXiv:2006.14480 (2020).

[16] HU, H., LERER, A., PEYSAKHOVICH, A., AND FOERSTER, J. “other-play” for zero-shot
coordination. In International Conference on Machine Learning (2020), PMLR, pp. 4399–4410.

[17] HUNTER, J. D. Matplotlib: A 2d graphics environment. Computing in science & engineering
9, 03 (2007), 90–95.

[18] IGL, M., KIM, D., KUEFLER, A., MOUGIN, P., SHAH, P., SHIARLIS, K., ANGUELOV, D.,
PALATUCCI, M., WHITE, B., AND WHITESON, S. Symphony: Learning realistic and diverse
agents for autonomous driving simulation. arXiv preprint arXiv:2205.03195 (2022).

[19] KOTHARI, P., PERONE, C., BERGAMINI, L., ALAHI, A., AND ONDRUSKA, P. Drivergym:
Democratising reinforcement learning for autonomous driving. arXiv preprint arXiv:2111.06889
(2021).

[20] LEIBO, J. Z., DUEÑEZ-GUZMAN, E. A., VEZHNEVETS, A., AGAPIOU, J. P., SUNEHAG,
P., KOSTER, R., MATYAS, J., BEATTIE, C., MORDATCH, I., AND GRAEPEL, T. Scalable
evaluation of multi-agent reinforcement learning with melting pot. In International Conference
on Machine Learning (2021), PMLR, pp. 6187–6199.

[21] LEURENT, E. An environment for autonomous driving decision-making. https://github.
com/eleurent/highway-env, 2018.

11

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

[22] LI, Q., PENG, Z., XUE, Z., ZHANG, Q., AND ZHOU, B. Metadrive: Composing diverse
driving scenarios for generalizable reinforcement learning. arXiv preprint arXiv:2109.12674
(2021).

[23] MÜLLER, M., CASSER, V., LAHOUD, J., SMITH, N., AND GHANEM, B. Sim4cv: A photo-
realistic simulator for computer vision applications. International Journal of Computer Vision
126, 9 (2018), 902–919.

[24] OLIPHANT, T. E. A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.
[25] PAL, A., PHILION, J., LIAO, Y.-H., AND FIDLER, S. Emergent road rules in multi-agent

driving environments. arXiv preprint arXiv:2011.10753 (2020).
[26] PALANISAMY, P. Multi-agent connected autonomous driving using deep reinforcement learning.

In 2020 International Joint Conference on Neural Networks (IJCNN) (2020), IEEE, pp. 1–7.
[27] PASZKE, A., GROSS, S., MASSA, F., LERER, A., BRADBURY, J., CHANAN, G., KILLEEN,

T., LIN, Z., GIMELSHEIN, N., ANTIGA, L., ET AL. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems 32
(2019).

[28] PAULL, L., TANI, J., AHN, H., ALONSO-MORA, J., CARLONE, L., CAP, M., CHEN, Y. F.,
CHOI, C., DUSEK, J., FANG, Y., ET AL. Duckietown: an open, inexpensive and flexible
platform for autonomy education and research. In 2017 IEEE International Conference on
Robotics and Automation (ICRA) (2017), IEEE, pp. 1497–1504.

[29] PETRENKO, A., HUANG, Z., KUMAR, T., SUKHATME, G., AND KOLTUN, V. Sample factory:
Egocentric 3d control from pixels at 100000 fps with asynchronous reinforcement learning. In
International Conference on Machine Learning (2020), PMLR, pp. 7652–7662.

[30] QUITER, C. Deepdrive zero, 2020.
[31] RAJAMANI, R. Vehicle dynamics and control. Springer Science & Business Media, 2011.
[32] SAMVELYAN, M., RASHID, T., DE WITT, C. S., FARQUHAR, G., NARDELLI, N., RUDNER,

T. G., HUNG, C.-M., TORR, P. H., FOERSTER, J., AND WHITESON, S. The starcraft
multi-agent challenge. arXiv preprint arXiv:1902.04043 (2019).

[33] SANTARA, A., RUDRA, S., BURIDI, S. A., KAUSHIK, M., NAIK, A., KAUL, B., AND
RAVINDRAN, B. Madras: Multi agent driving simulator. Journal of Artificial Intelligence
Research 70 (2021), 1517–1555.

[34] SCHAAL, S. Learning from demonstration. Advances in neural information processing systems
9 (1996).

[35] SUO, S., REGALADO, S., CASAS, S., AND URTASUN, R. Trafficsim: Learning to simulate
realistic multi-agent behaviors. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2021), pp. 10400–10409.

[36] VAN DER WALT, S., COLBERT, S. C., AND VAROQUAUX, G. The numpy array: a structure
for efficient numerical computation. Computing in science & engineering 13, 2 (2011), 22–30.

[37] VAN ROSSUM, G., AND DRAKE JR, F. L. Python tutorial, vol. 620. Centrum voor Wiskunde
en Informatica Amsterdam, The Netherlands, 1995.

[38] WILSON, B., QI, W., AGARWAL, T., LAMBERT, J., SINGH, J., KHANDELWAL, S., PAN, B.,
KUMAR, R., HARTNETT, A., PONTES, J. K., ET AL. Argoverse 2: Next generation datasets
for self-driving perception and forecasting. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2) (2021).

[39] YADAN, O. Hydra-a framework for elegantly configuring complex applications. Github 2
(2019), 5.

[40] YU, C., VELU, A., VINITSKY, E., WANG, Y., BAYEN, A., AND WU, Y. The surprising
effectiveness of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955
(2021).

[41] ZHAN, W., SUN, L., WANG, D., SHI, H., CLAUSSE, A., NAUMANN, M., KUMMERLE,
J., KONIGSHOF, H., STILLER, C., DE LA FORTELLE, A., ET AL. Interaction dataset: An
international, adversarial and cooperative motion dataset in interactive driving scenarios with
semantic maps. arXiv preprint arXiv:1910.03088 (2019).

12

[42] ZHOU, M., LUO, J., VILLELLA, J., YANG, Y., RUSU, D., MIAO, J., ZHANG, W., ALBAN,
M., FADAKAR, I., CHEN, Z., ET AL. Smarts: Scalable multi-agent reinforcement learning
training school for autonomous driving. arXiv preprint arXiv:2010.09776 (2020).

13

	Introduction
	Related Work
	Benchmark construction
	Defining a Nocturne Scene
	Partial Observability Model and Collision Handling
	Construction of the Partially Observable Stochastic Game
	Rules of the Benchmark
	Unusual features of the Benchmark

	Experiments Setup
	Results and Analysis
	Success rate of baselines
	Human-agent trajectory similarity
	Policy Failure Modes

	Conclusion
	Reproducibility and Ethical Statement
	Acknowledgements
	Experiment Details
	Architecture and computational resources
	Hyperparameters
	State space Details
	Features

	Zero-shot coordination
	Ablation of the targets
	Vehicle Model
	Calculating Infeasible Goal Statistics
	Computing the simulator speed
	License Details and Accessibility

