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Abstract

Cooperative bargaining games are widely used to model resource allocation and
conflict resolution. Traditional solutions assume the mediator can access agents’
utility function values and gradients. However, there is an increasing number of
settings, such as human-AI interactions, where utility values may be inaccessible
or incomparable due to unknown, nonaffine transformations. To model such
settings, we consider that the mediator has access only to agents’ most preferred
directions—normalized utility gradients in the decision space. To this end, we
propose a cooperative bargaining algorithm where a mediator has access to only
the direction oracle of each agent. We prove that unlike popular approaches
such as the Nash and Kalai-Smorodinsky bargaining solutions, our approach is
invariant to monotonic nonaffine transformations, and that under strong convexity
and smoothness assumptions, this approach enjoys global asymptotic convergence
to Pareto stationary solutions. Moreover, we show that the bargaining solutions
found by our algorithm also satisfy the axioms of symmetry and (under slightly
stronger conditions) independence of irrelevant alternatives, which are popular
in the literature. Finally, we conduct experiments in two domains, multi-agent
formation assignment and mediated stock portfolio allocation, which validate these
theoretical results.
Project Website: https://kaugsrha.github.io/dibs-on-neurips.

1 Introduction

We consider the problem of centralized, cooperative multi-agent bargaining where a mediator has
access to only each agent’s most preferred direction to move in the decision space, and does not know
the agents’ underlying utility functions. Over the past eighty years, a variety of celebrated bargaining
solution concepts have been introduced [26]; however, most require the mediator to have access to
the explicit utility values and gradients for each agent, e.g., the Nash [19] and Kalai-Smorodinsky
[9] bargaining solutions (NBS and KSBS, respectively). Unfortunately, these existing bargaining
solutions cannot cater to an increasing number of important settings.
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An example of this is when mediators do not have access to agents’ underlying utilities (or their
gradients) in human-AI interactions. Humans or AI-based proxies (e.g., language models) may have
a clear idea of a desired bargaining outcome, but have difficulty providing a numerical value of the
utility associated to arbitrary outcomes. Even if a utility is available, they may not wish to share that
information for privacy reasons.

A separate, but equally important issue arises when agents’ utilities are not directly comparable, e.g.
because they are scaled in different and potentially nonaffine ways. Traditional bargaining solutions
like NBS and KSBS are invariant to affine transformations in agents’ utilities; however, they can
lose this invariance under nonaffine transformations [26] (such as those arising in prospect-theoretic
models [28, 30], or which are represented by neural network based AI-proxies [1]) and yield solutions
which favor one agent disproportionately. In such scenarios, despite utilities being incomparable due
to different nonaffine scalings, the notion of the agents’ most preferred directions remains intact.

Such settings motivate the need for an approach to bargaining in scenarios where the mediator only
has access to a direction oracle which provides the most preferred direction (i.e., the normalized
utility gradient) in the decision space for each agent. Inspired by this, we address the following
questions:

1. Is it possible to solve for existing bargaining solution concepts which are based on utility
values in the setting where the mediator has access to only agents’ most preferred directions,
and their utilities?
Contribution 1. We show that no algorithm with mediator access to only direction oracles
can find the Nash or Kalai-Smorodinsky bargaining solutions for all bargaining games
satisfying standard assumptions in the literature.

2. If not, can we develop a solution concept for the direction oracle setting where the mediator
effectively balances every agent’s interests, and is invariant to preference-preserving non-
affine transformations of (potentially unknown) agent utilities?
Contribution 2. We propose Direction-based Bargaining Solution (DiBS), an iterative algo-
rithm which uses only direction oracles, and reasons about every agent’s distance from their
preferred state throughout the bargaining process. We show that under standard assumptions
common in the literature, the solution found by DiBS satisfies the following axioms:
(a) Pareto stationarity (a necessary condition for Pareto optimality, and also sufficient

under slightly stronger assumptions).
(b) Invariance to strictly increasing monotonic nonaffine transformations.
(c) Symmetry, and under slightly stronger conditions, independence of irrelevant alterna-

tives.
3. Can we have convergence guarantees to reliably find bargaining solutions which employ

only direction oracles?
Contribution 3. We prove that under standard assumptions, fixed points of DiBS exist,
all its fixed points are Pareto stationary points, and that assuming that the (hidden) agent
costs (i.e., negative utilities) are strongly convex and smooth, DiBS enjoys global asymptotic
convergence guarantees to the set of its fixed points.

We note that access to the direction oracle can be easily achieved in practice by giving the mediator
access to a minimal information comparison oracle for each agent – at some state in the bargaining
process, the mediator proposes new states to every agent, who responds either “yes”, “no” or
“indifferent”, depending on whether the agent prefers the new state more than the current state.
Forming estimates of agents’ most preferred directions (i.e., normalized utility gradients) up to
arbitrary accuracy from only a (potentially noisy) comparison oracle is a well-studied problem, with
many established algorithms [6, 10, 13, 24, 25, 34]. Of course, when agents’ utilities are available,
the mediator can simply compute their normalized gradients; these will be comparable across agents
even if their utilities are scaled in different nonaffine fashions.

2 On existing bargaining solutions and related work

Notation. We denote a vector in bold (e.g., x). We denote [N ] := {1, 2, . . . , N}. For x,y ∈ Rn,
inequalities apply elementwise. For some process involving iterations of a vector x, we denote the
kth iteration as xk.
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Bargaining game with known utilities. Consider a game with N agents, the ith of which has
differentiable cost (i.e., negative utility) function ℓi(x) : Rn → R, where x ∈ S ⊂ Rn denotes the
state of the game. Each agent wants to minimize their cost, which corresponds to moving to a set of
preferred states in S, x∗,i ∈ argminx∈S ℓi(x) and we assume that x∗,i exists. The mediator must
conduct a bargaining process to output a bargaining solution state x†. Every agent is incentivized
to participate in the bargaining process by being assigned a disagreement penalty of di ∈ R in case
no bargaining solution is agreed upon. Let ℓ(x) :=

[
ℓ1(x), · · · , ℓN (x)

]
, d :=

[
d1, · · · , dN

]
, and

L = {ℓ(x)|x ∈ S}. It is assumed that S ∩ {x ∈ Rn : d > ℓ(x)} is non-empty. We denote such a
bargaining game by BS(ℓ,d), and any process finding a bargaining solution to BS(ℓ,d) must output
a solution state x† and the corresponding agent costs ℓ(x†). A detailed description of bargaining
games can be found in existing literature, cf. [18, 22, 26].

It is widely recognized that there is no one correct approach to solve a bargaining problem. Nash
proposed a set of desirable axioms (given below) that a bargaining solution should satisfy [19, 22],
showing his Nash Bargaining Solution (NBS) can be found by optimizing the product of agents’
utilities:
Axiom 1 (Weak Pareto Optimality). A state x† is weakly Pareto optimal if there does not exist a state
y ∈ S such that ℓ(x†) > ℓ(y), y ̸= x†.
Axiom 2 (Symmetry). The bargaining solution is invariant to permuting the agents’ order.
Axiom 3 (Invariance to Affine Transformations). Applying an affine transformation hi(l) = ail +
bi, l ∈ R, ai ∈ R+, b

i ∈ R to the ith agent’s cost does not change the bargaining solution state.
Axiom 4 (Independence of Irrelevant Alternatives). If a bargaining problem BS(ℓ,d) has solution
state x† ∈ S ′ with S ′ ⊂ S then the bargaining problem BS′(ℓ,d) also has solution state x†.

The following assumptions are standard in the bargaining literature, c.f., [22, 26].
Assumption 1. The state space S is convex, and the set of Pareto points lies in interior of S.
Assumption 2. The agent cost ℓi is twice-differentiable and convex.

We remark that no axiom is universally accepted in the literature. For example, a popular and
well-studied bargaining solution that does away with Axiom 4 is the Kalai-Smorodinsky bargain-
ing solution (KSBS) [9]. The KSBS satisfies Axioms 1-3 in addition to the axiom of individual
monotonicity, which states that for two bargaining problems BS(ℓ,d) and BS′(ℓ,d), if S ′ ⊆ S and
argminx∈S ℓi(x) = argminx∈S′ ℓi(x), then ℓi(x†

S) ≤ ℓi(x†
S′), where x†

S ,x
†
S′ denote the solutions

to BS(ℓ,d) and BS′(ℓ,d) respectively.

Numerous other bargaining solutions exist which relax some combination of Axioms 1-4 and satisfy
other axioms [22, 26, 29]. However, for the purposes of our discussion, it is sufficient to focus on the
NBS and KSBS to illustrate our arguments. Formally, the NBS optimizes the product of agent utilities
(negative costs), and consists of the iterates (for k ≥ 0 and some appropriate step sizes αk > 0)

xk+1 = xk − αk

N∑
i=1

∇ℓi(xk)

di − ℓi(xk)
, (NBS)

while the Kalai-Smorodinsky bargaining solution has a geometric solution to the bargaining problem,
seeking to equalize the proportional cost benefits of every agent, i.e., finding a state xKSBS such that

di − ℓi(xKSBS)

di − ℓi(x∗,i)
=

dj − ℓj(xKSBS)

dj − ℓj(x∗,j)
∀ i, j,∈ [N ] (KSBS)

A condition which is closely related to Pareto optimality, given in Axiom 1 and applicable when
agent costs are smooth, is Pareto stationarity.
Definition 1 (Pareto Stationarity). For a bargaining game as defined above, xPS ∈ S is said to be
Pareto stationary if zero is a convex combination of agents’ cost gradients at xPS, i.e., ∃ βi ≥ 0, i =

1, . . . , N, such that
∑N

i=1 β
i∇ℓi(xPS) = 0 and

∑N
i=1 β

i = 1.

Pareto stationarity is a necessary condition for Pareto optimality [15, 23], and a sufficient condition for
strong Pareto optimality (given below) when agent costs are strictly convex and twice differentiable
[8, 23]. Pareto stationarity is a first-order characterization and acts as a useful alternative to Axiom
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1, because it is often difficult to check if a point is Pareto optimal in many bargaining settings. As
such, many works addressing bargaining in challenging non-conventional settings seek to satisfy
Pareto stationarity [20, 32, 33]. Henceforth, we will also consider Pareto stationarity in the bargaining
solution we introduce. Under an additional assumption of strict convexity, any weakly Pareto optimal
point found by NBS is also strongly Pareto optimal, which is defined in the axiom below.
Axiom 5 (Strong Pareto Optimality). A state x† is strongly Pareto optimal if ∀ i ∈ [N ], ℓi(x†) >
ℓi(y) =⇒ ∃ j ∈ [N ] such that ℓj(x†) < ℓj(y).

2.1 Limitations of existing bargaining solutions

We first provide a formal definition for the direction oracle.
Definition 2 (Direction Oracle). A direction oracle for agent i, OD,i

ℓ (x), gives the most preferred
direction for agent i at a state x, given by

OD,i
ℓ (x) =

{
− ∇ℓi(x)

∥∇ℓi(x)∥2
, x ̸= x∗,i

0, x = x∗,i . (1)

Sensitivity to nonaffine scaling. Although utility-value based bargaining solutions like NBS and
KSBS are robust to affine utility transformations, they remain adversely susceptible to more general
monotonic transformations. Such nonaffine transformations may occur due to agents reporting
exaggerated scaled utilities in order to bias the bargaining solution, or unintentionally when trying
to model preferences as a numerical utility from data involving comparisons, like in reinforcement
learning from human feedback (RLHF) [11, 31]. Another source of such transformations inadver-
tently appearing is when agents have utilities which fit hand-tailored reward functions representing
preferences; this is especially common when deploying reinforcement learning in “sparse” reward
scenarios, where a crafted dense reward is used as a proxy for sparse high-level preferences [16, 27].
While such transformations corrupt utility values and change bargaining solutions, they still roughly
preserve agent preferences; bargaining solutions employing only direction oracles should remain
robust to such nonaffine monotonic transformations (this will be proved in Section 3).

Existing bargaining solutions cannot be found with direction oracles. Most bargaining solutions,
including NBS and KSBS, require the mediator to have access to agent costs/utilities. Intuitively, this is
explained by the fact that these existing bargaining solutions require reasoning about agents’ benefits
in the cost space. For example, implementing the NBS solution requires knowledge of both agent
cost values and gradients. However, when the mediator has access to only the direction oracles
OD,i

ℓ , i = 1, . . . , N , the agents’ cost values and gradient magnitudes are not available. This lack of
information makes it impossible to find points which satisfy the NBS and KSBS solution concepts
(even if they exist). This result is formalized in Proposition 1 (proof in Appendix A.1).
Proposition 1 (Inadequacy of NBS and KSBS for the direction oracle). There does not exist any
bargaining algorithm in which a mediator with access to only direction oracles OD,i

ℓ can find the
Nash or the Kalai-Smorodinsky bargaining solutions for all problems satisfying Assumptions 1-2.

Proposition 1 establishes that existing bargaining solutions require reasoning about quantities which
are inaccessible in the direction oracle setting. The proof of Proposition 1, given in Appendix A.1,
exploits the invariance of direction oracles to strictly monotonically increasing (possibly nonaffine)
transformations combined with the shortcoming of NBS and KSBS being sensitive to such nonaffine
scalings. We provide an example below to help explain Proposition 1.

Example 1. Consider a bargaining game B[0,1]([x
2, (x− 1)2], [1, 1]), for which both NBS and KSBS

lie at x = 1/2. However, for the game with the nonaffine transformation f(y) = y2 (monotonically
strictly increasing in S) applied to agent 1, B[0,1]([x

4, (x− 1)2], [1, 1]) both NBS and KSBS are not
at x = 1/2. However, in both games, the most preferred directions for agents 1 and 2 are to go
towards x = 0, and x = 1 respectively. Thus, even if an algorithm employing only direction
oracles finds NBS and KSBS for B[0,1]([x

2, (x − 1)2], [1, 1]), it will not be able to find them for
B[0,1]([x

4, (x− 1)2], [1, 1]).

Thus, there is a clear need for introducing a new solution concept for bargaining problems which (i)
can be identified by algorithms that employ only direction oracles, and (ii) is still robust to non-affine
monotonic cost transformations.
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2.2 Naive direction oracle-based bargaining can lead to unfair solutions

When the mediator has access to direction oracles, it is natural to construct a simple bargaining
procedure which utilizes the sum of normalized gradients, i.e., at state x, the mediator creates
estimates of ∇ℓi(x)/∥∇ℓi(x)∥2,∀i ∈ [N ], and for some α > 0, proceeds to the next state x+, given by

x+ = x+ α

(
N∑
i=1

OD,i
ℓ (x)

)
= x− α

(
N∑
i=1

∇ℓi(x)

∥∇ℓi(x)∥2

)
. (2)

At a glance, eq. (2) resembles a utilitarian approach to bargaining which would minimize the sum
of agents’ costs [26]; however, in fact the update rule in eq. (2) differs drastically as it weighs the
direction associated with each agent i equally. While eq. (2) corresponds to a valid bargaining
solution satisfying Pareto stationarity (see Appendix D), we argue that this simplistic bargaining
solution can lead to unfair solutions, as demonstrated by the following toy example.

Example 2. Consider again the two-agent bargaining game B[0,1]([x
2, (x − 1)2], [1, 1]). Due to

symmetry, a “fair" bargaining solution will reside at x = 1/2. Let eq. (2) be initialized at some
x0 ∈ (0, 1), x0 ̸= 1/2. Then, because ∇ℓ1(x)/∥∇ℓ1(x)∥2 = −∇ℓ2(x)/∥∇ℓ2(x)∥2, we get convergence at
x = x0, which is not a fair solution as x0 can be initialized arbitrarily in (0, 1) far away from x = 1/2.

Existing direction-oracle based bargaining algorithms give unfair solutions. There are two
existing works which attempt to conduct bargaining exclusively through directions, [7, 17]. Both
works consider the two-agent setting, and propose iterative procedures for finding mutually beneficial
directions, given the most preferred directions of both agents. However, both approaches consider
bargaining scenarios with self-interested agents—which can lead to unfair solutions in cooperative
bargaining settings; cf. Example 2, where agents never have a mutually beneficial direction. In such
a situation, both algorithms stop wherever initialized and find points which are technically Pareto
stationary, but heavily favor one agent. Further, [17] does not readily extend beyond the two-agent
case in which finding mutually beneficial directions becomes combinatorially hard, and [7] reports
a loss of mutual improvement and convergence guarantees in cases with more than two agents. A
related but orthogonal line of work pertains to flocking in multi-agent scenarios [21], we discuss the
differences between flocking and our bargaining solution in Appendix F.

3 Bargaining with Direction Oracles

It is clear that the mediator must take care when employing normalized gradients. The information
which a solution concept like eq. (2) lacks is a notion of how far a potential solution is from each
agent’s preferred state. Existing bargaining solutions approach this issue by considering values in
the cost space L, which is not accessible in the direction oracle setting. Instead, in the direction
oracle setting, one must conduct such reasoning in the state space S . Even if the mediator has access
to L, reasoning in the state space can be beneficial as the components for each agent in L can be
nonaffinely scaled, while S is shared uniformly by all agents.

A natural way to conduct such reasoning is to incorporate how far will the bargaining solution
state be from each agent’s preferred state (which is computable even in the direction oracle setting).
To this end, we propose Direction-based Bargaining Solution (DiBS): starting from some state x0,
DiBS conducts the following iterations to find a bargaining solution:

xk+1 = f(xk) := xk + αk

(
N∑
i=1

∥xk − x∗,i∥2OD,i
ℓ (xk)

)

= xk − αk

(
N∑
i=1

∥xk − x∗,i∥2
∇ℓi(xk)

∥∇ℓi(xk)∥2

)
, (DiBS)

where {αk}k≥0 are appropriate step sizes, and x∗,i ∈ argminx∈S ℓi(x) is a choice from the set
of preferred states for the ith agent and fixed for all iterations. For the sake of convenience, if
∇ℓi(x) = 0, we define ∇ℓi(x)/∥∇ℓi(x)∥2 = 0. We remark that both the quantities used by DiBS, i.e.,
∇ℓi(x)/∥∇ℓi(x)∥2 and x∗,i are available through direction oracles which are implementable in practice
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without using explicit agent costs—we elaborate upon this in Section 3.2. Note how DiBS differs from
NBS: in its iterations, NBS gives more importance to those agents who have lower cost improvements
(by scaling agent gradients with 1/di−ℓi(x)), while DiBS gives more importance to those agents who
are further away from their preferred states (by scaling agent gradients with ∥x−x∗,i∥2/∥∇ℓi(x)∥2).

Given the most preferred directions OD,i
ℓ (xk) and preferred states x∗,i of each agent, every iteration

of DiBS has linear complexity in both the number of agents and the number of state dimensions. We
remark that the most preferred states x∗,i can be efficiently calculated as a precomputation step by
the mediator (if the agent is unable to directly provide them) using existing methods [13].

3.1 Theoretical properties of Direction-based Bargaining Solution (DiBS)

To establish the legitimacy of DiBS as a bargaining solution, we will first show that it finds Pareto
stationary points. This can be seen by viewing DiBS as a dynamical system, and analyzing its fixed
points. We define these concepts below. All proofs for our results can be found in Appendix A.
Definition 3 (Fixed/Equilibrium Points). Consider a function fd : Rn → Rn and the corresponding
discrete-time dynamical system xk+1 = fd(xk). Then, x̃ is a fixed point of the dynamical system fd
if fd(x̃) = x̃. Similarly, x̃ is an equilibrium point of the continuous-time dynamical system ẋ = fc(x)
for a function fc : Rn → Rn if fc(x̃) = 0.

A dynamical system’s ability to converge depends upon the system’s stability properties. In particular,
we will be interested in global asymptotic convergence.
Definition 4 (Global Asymptotic Convergence). Consider functions fd : Rn → Rn, fc : Rn → Rn

and a set G ⊂ S. The discrete-time dynamical system xk+1 = fd(xk), k ≥ 0 has global asymptotic
convergence to G if limk→∞ x(k) ∈ G ∀ x(0) ∈ S . Similarly, the continuous-time dynamical system
ẋ(t) = fc(x(t)), t ≥ 0 has global asymptotic convergence to G if limt→∞ x(t) ∈ G ∀ x(0) ∈ S.

We begin by showing that any fixed point for DiBS is also Pareto stationary and that DiBS has global
asymptotic convergence to the (non-empty) set of its fixed points (proof in Appendix A.2).
Theorem 1 (Convergence of DiBS to Pareto Stationary Points). Direction-based Bargaining Solution
(DiBS) has the following properties:

1. Any fixed point of DiBS is also a Pareto stationary point.

2. Under Assumption 2, the iterates of DiBS are bounded in Rn.

3. Under Assumptions 1-2, a fixed point of DiBS always exists.

4. Assuming that agent costs ℓi are µi-strongly convex and that Assumptions 1-2 hold, the
continuous-time analog of DiBS,

ẋ = −h(x) := −
N∑
i=1

∥x− x∗,i∥2
∇ℓi(x)

∥∇ℓi(x)∥2

enjoys global asymptotic convergence to its equilibrium points. Further, if the agent costs are
Li-smooth, then DiBS enjoys global asymptotic convergence to the set of its (Pareto station-
ary) fixed points for stepsizes αk > 0 chosen such that

∑∞
k=0 αk = ∞ and

∑∞
k=0 α

2
k < ∞.

Theorem 1 establishes that DiBS has desirable convergence properties, and is useful for finding Pareto
stationary points when a mediator only utilizes direction oracles in a bargaining game. Now, we
show that DiBS also inherits several key axioms from the cooperative bargaining literature (proof in
Appendix A.3).
Theorem 2 (Bargaining axioms satisfied by DiBS). The Direction-based Bargaining Solution (DiBS)
satisfies the following axioms:

1. The solution found by DiBS is Pareto stationary (and strongly Pareto optimal if agent costs
are twice differentiable and strictly convex).

2. The solution found by DiBS is invariant to strictly monotonically increasing nonaffine
transformations.
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3. The solution found by DiBS satisfies the Axiom of Symmetry (Axiom 2).

4. If DiBS has only one fixed point for a problem, then the solution found by DiBS satisfies the
axiom of independence of irrelevant alternatives (Axiom 4).

Importantly, Theorem 2 establishes the invariance of DiBS to monotonic nonaffine transformations,
which is not obtained by NBS and KSBS. This invariance is particularly attractive as it allows DiBS to
be robust against transformations which can occur due to imperfect cost function modeling or agent
exaggerations, while still retaining the agents’ relative preferences between states.

3.2 Practically obtaining a direction oracle

As mentioned earlier, it is possible to implement a direction oracle given only a binary comparison
oracle, where at some state x in the bargaining game, the mediator asks every agent whether they
prefer a different state y more than the current state, and the agents reply with the minimal information
of “yes”, “no”, or “indifferent”. Formally, a comparison oracle for the ith agent who is queried at a
state x about a state y, OC,i

ℓ (x,y) is defined as

OC,i
ℓ (x,y) =


+1, if ℓi(y) < ℓi(x),

0, if ℓi(y) = ℓi(x),

−1, if ℓi(y) > ℓi(x).

(3)

What information can the comparison oracle give? Optimization solely using comparison oracles
is a well-studied problem in the single-agent setting. As a consequence, numerous algorithms exist
in the literature which can estimate the normalized negative cost gradient, i.e., the most preferred
direction, for an agent with only comparison oracles and can find the normalized gradients up to
arbitrary accuracy for smooth functions. The number of queries required to estimate the normalized
gradients up to a required accuracy is bounded, and many of the existing algorithms are also robust to
noisy binary oracle evaluations [6, 10, 13, 24, 34]. This implies that if the ith agent’s cost ℓi(x) is
inaccessible to the mediator, the mediator can use any of the above off-the-shelf algorithms employing
the minimal information comparison oracle as a practical way to estimate the agent’s most preferred
direction −∇ℓi(x)/∥∇ℓi(x)∥2 with arbitrary accuracy. Further, the mediator can use the same algorithm
to find the most preferred state x∗,i ∈ argminx∈S ℓi(x) for the agent, details of which are given in
Appendix E.

4 Experiments

We now evaluate our bargaining solution in practical problems. Our main aims are: (i) to investigate
the solution quality of DiBS, (ii) to test the invariance of DiBS to monotonic nonaffine transformations,
and (iii) to investigate the how the performance of DiBS is affected by the accuracy of normalized
gradient estimates formed via comparison oracles.

4.1 Nonconvex multi-agent formation assignment under different bargaining solutions

In this experiment, N agents, either odd or even, lie in a two-dimensional plane, and are attracted to
a center point c, while simultaneously exhibiting group-specific cohesion and repulsion behaviors.
The position of the ith agent is xi ∈ [0, 10]× [0, 10] ⊂ R2, and the game state is x = [x1, . . . ,xN ],
with S ⊂ R2N . Agents with the same parity index (odd or even) prefer to remain close, while agents
of different parities prefer greater separation. The ith agent’s preferences are modeled using a cost
function of the form

ℓi(x) = −a · e−b∥xi−c∥2 −
∑
j ̸=i

((
e−αij∥xi−xj∥2

)
−
(
e−βij∥xi−xj∥2

))
, a, b ∈ R+ (4)

where the pairwise interaction weights αij , βij ∈ R+ control group attraction and repulsion. We
emphasize that the cost functions given in eq. (4) are nonconvex due to the difference of exponentials.

Baselines. We choose N = 10 agents, all implementation details can be found in Appendix C.1.
We compare DiBS (with access to only direction oracles) against NBS and KSBS (both of which have
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(a) NBS (b) KSBS (c) DiBS (ours)

(d) NBS – scaled (e) KSBS – scaled (f) DiBS (ours) – scaled

Initial point (even agents)

Initial point (odd agents)

Center point

Final point (even agents)

Final point (odd agents)

Figure 1: Formations achieved by different bargaining solutions. While DiBS yields qualitatively
similar outcomes to NBS and KSBS in the original setting, it is also robust to monotone nonaffine
scalings. KSBS is solved in a single shot, with no iteration trajectories to plot (see Appendix C.1)

access to the full costs ℓi). We emphasize that DiBS, NBS and KSBS are different bargaining solution
concepts, and while no concept is strictly “better" than the rest, we conduct this comparison to
illustrate our motivation for developing DiBS.

DiBS leads to balanced solutions. Figure 1 (a)-(c) shows the initial and final positions of all
agents. For DiBS and NBS, we also plot the variation of agent positions across iterations. KSBS is
solved in one shot and does not have such variations available for plotting (see Appendix C.1). We
observe that all three methods—NBS, KSBS, and DiBS reach reasonable solutions which respect agents’
preferences, and balance their interests in different ways. At the solution, NBS and KSBS slightly
prioritize clustering attractive agents while DiBS slightly prioritizes minimizing agent distances from
the center, but overall all methods balance the three high-level objectives for all agents. Despite the
nonconvex costs, we observe that all methods converge for the example.

Invariance of DiBS to monotone nonaffine transformations. Figure 1 (d)-(f) show the bargaining
process when the costs given in eq. (4) for the odd agents undergo a monotone nonaffine transfor-
mation, i.e., sign(li(x))(li(x))2, which retains the agents’ relative preferences between states. As
highlighted before, such transformations may occur due to a variety of reasons, such as modeling
imperfections or exaggerated utilities. We observe that while NBS and KSBS completely change their
solutions and present skewed, unfair outcomes that favor the odd agents with exaggerated utilities,
our method DiBS still retains a fair outcome.

4.2 Mediated portfolio management through comparisons

In this experiment, we demonstrate the performance of DiBS where the direction oracle is approxi-
mated using comparisons.

Setting. A mediator allocates a shared stock investment fund across a set of n stocks based on the
preferences of a group of N investors. The mediator’s decision corresponds to a portfolio vector
x ∈ Rn, where x ≥ 0 and 1⊤x = 1. The ith investor has a cost function modeled using the
well-known Markowitz portfolio theory [14], given by ℓi(x) = x⊤Σix− λiµi⊤x, where Σi is the
covariance matrix of stock returns, µi is the vector of expected returns, and λi is the risk-reward
tradeoff coefficient.
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Figure 2: Results for the portfolio management example, showing the 1.5th, 25th, 50th, 75th, and
98.5th percentiles. DiBS offers promising performance even when the direction oracle is estimated
through comparisons. Dots represent outliers; cf. Appendix C.2 for further details.

Modeling diverse investor preferences. The expected return vector µi and covariance matrix Σi

are computed from historical stock price data [2] in an investor-specific time window. Ultimately,
each agent is assigned a personalized investment profile by randomly sampling:

• A time horizon from the following predefined investment windows: 5 days, 1 month, 3
months, 6 months, 1 year, 2 years, 5 years, or all time (8 years). All windows end on a
common date of December 31, 2023.

• A risk-reward tradeoff coefficient λi uniformly sampled from the interval [0.0, 0.1].

This initialization results in agent-specific cost functions that reflect a diverse set of investor types
and stock market views. We sample 100 scenarios in this manner. All implementation details are
given in Appendix C.2. Additional results for different numbers of investors are in Appendix B.

Baseline and metric. We compare two versions of DiBS: one which uses the direction oracle
yielding the solution x†

dir, and one which uses comparisons to approximate direction oracles via the
estimator used in Sign-OPT [6] yielding the solution x†

comp. We allow this estimator to query the
comparison oracle 1, 10, 100, 1000 and 10000 times at every iteration for every agent i. For both

versions starting at x0, we calculate the relative error for each sample scenario, defined as
∥x†

dir−x†
comp∥

∥x†
dir−x0∥

.

DiBS offers promising performance even when the direction oracle is estimated through com-
parisons. Figure 2 shows the relative errors for DiBS using comparisons vs. true direction oracles
for n = 5, 10, 20, 50 stocks and N = 10 agents. We observe that, as expected, the accuracy increases
with the number of comparisons allowed, and as the dimension of the problem (i.e., the number
of stocks) increases, the number of comparisons which is required for accurate estimation of OD,i

ℓ
increases. We remark that even when the number of comparisons allowed is significantly lower than
the number of dimensions and, therefore, there is a significant error in the direction estimates, the
median relative error of DiBS employing comparisons remains under 1, indicating improvement over
the initial state towards the solution of DiBS employing exact directions.

5 Conclusion

We consider an increasingly important class of cooperative bargaining problems, in which mediators
do not have access to agent utilities (which may be incomparable), and can instead only access
agents’ most preferred directions. These settings arise in human-AI interactions, privacy-sensitive
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applications, and multi-agent interactions with exaggerated or imperfectly-modeled utilities. We
show that no direction oracle-based algorithm can recover popular existing bargaining solutions
(NBS, KSBS) for all bargaining games that satisfy standard assumptions. Therefore, we propose a new
bargaining solution for this setting (DiBS), and show that it identifies Pareto stationary solutions, is
invariant to monotonically increasing nonaffine transformations, and satisfies the axiom of symmetry.
Under additional mild assumptions, we also show that DiBS satisfies the axiom of independence
of irrelevant alternatives, and enjoys global asymptotic convergence to Pareto stationary solutions.
Finally, we conduct experiments in two settings to validate our results and show that DiBS performs
well when direction oracles are estimated using only comparison oracles, which are straightforward
to implement in practice. Future work should investigate (i) relaxing the strong convexity assumption
which is required in the proof of global convergence, (ii) providing non-asymptotic convergence
results, and (iii) conducting experiments in large-scale learning settings.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims are covered in contributions presented in Proposition 1, Theorem 1
and Theorem 2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions are stated in the theorem/proposition statement. All proofs
are in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental details with values required for reproducing experiments are
covered in Appendix C.1 and Appendix C.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide code and executable scripts in supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We do not do any network training, but all experiment details are provided in
Appendix C.1 and Appendix C.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: These are reported via the caption of the box plot in Figure 2, and the details
in Appendix C.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Provided in Appendix C.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Existing asset is mentioned and cited appropriately in the experiments section.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our assets are the code which has instructions to use and will be included in
supplementary material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our work does not involve LLMs as any important, original or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs

A.1 Proof of Proposition 1

To prove Proposition 1, we first establish the invariance of the direction oracle presented in Equa-
tion (1) to strictly increasing monotonic (possibly nonaffine) transformations.

Proposition 2. Consider an N−agent bargaining game BS(ℓ,d) with associated direction oracles
OD,i

ℓ , i ∈ [N ]. Let gi : R → R, i ∈ [N ] be strictly monotonically increasing, possibly nonaffine
functions. Let g(ℓ)(x) = [g1(ℓ1(x)), . . . , gN (ℓN (x))]. Then, for the direction oracles OD,i

g(ℓ), i ∈ [N ]

associated with the utility transformed bargaining game BS(g(ℓ),d), we have OD,i
ℓ = OD,i

g(ℓ), i ∈
[N ].

Proof. For agent j, we have

∇g(ℓj(x)) = g′(ℓj(x))︸ ︷︷ ︸
>0

∇ℓj(x) (chain rule)

=⇒ ∇g(ℓj(x))

∥∇g(ℓj(x))∥
=

ℓj(x)

∥ℓj(x)∥
=⇒ OD,i

g(ℓ) = OD,i
ℓ ∀ i ∈ [N ]

We can now prove proposition 1 by contradiction. Assume that there exists a deterministic algorithm
A which can recover NBS or KSBS by only using direction oracles OD,i

ℓ for all bargaining games
BS(ℓ,d) satisfying Assumptions 1-2. Consider a nonaffine, strictly monotonically increasing function
g : R → R, with g′(l) > 0 ∀ l ∈ R, applied to transform only agent j’s utilities. Then, one can
construct a new bargaining game BS(ℓ̃,d), where ℓ̃ corresponds to the costs

ℓ̃i(x) =

{
ℓi(x), i ̸= j,

g(ℓj(x)), i = j.

As NBS and KSBS are not invariant to nonaffine transformations, one can choose g such that NBS
and KSBS for BS(ℓ̃,d) are different than the ones corresponding to BS(ℓ,d). However, from
Proposition 2, we have OD,i

ℓ̃
= OD,i

ℓ ∀ i ∈ [N ]. When algorithm A is used to solve the bargaining

problem BS(ℓ̃,d), A can query OD,i

ℓ̃
, i ∈ [N ]. However, because OD,i

ℓ̃
= OD,i

ℓ and A is a
deterministic algorithm, A will return the same solution as it did for BS(ℓ,d), which cannot be the
bargaining solution for BS(ℓ̃,d) because of the nonaffine transformation g. Hence, by contradiction,
there is no such A.
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A.2 Proof of Theorem 1

Proof Sketch: We first show that the iterates of DiBS are bounded, and that a fixed point of DiBS
always exists. We then show that any fixed point of DiBS is also Pareto stationary. Then we proceed
to analyze the continuous-time dynamical system corresponding to DiBS, show that it enjoys global
asymptotic converge to it’s equilbrium points (fixed points of DiBS). Finally, we show that there is a
way to choose step size such that DiBS retains these convergence properties.

1. Iterates of DiBS remain bounded. Consider a ball B in S with finite radius big enough to
contain x∗,i ∀ i ∈ [N ]. If DiBS iterates diverge, they must escape this ball. Consider the
situation when the DiBS iterates are at the boundary of this ball at some point x. Consider
the vectors

gi =
∇ℓi(x)

∥∇ℓi(x)∥2
∥x− x∗,i∥2.

Because x∗,i ∈ B, i ∈ [N ], all gi, i = 1, . . . , N point inside the ball B. Then the quantity∑N
i=1 g

i lies in the convex cone of gi’s and must also point inwards the ball B. Thus the
next DiBS iterate must lie within the ball B, can never escape this ball of finite radius and
remain in S.

2. A fixed point of DiBS always exists. Using the fact that the DiBS iterates remain bounded
in S, and the convexity of the Euclidean ball, from Brouwer’s fixed point theorem [5], we
get that a fixed point of DiBS always exists in S.

3. Fixed points of DiBS are Pareto stationary. Let x† be a fixed point of DiBS, then for some
α > 0,

x† = x† − α

N∑
i=1

∇ℓi(x†)

∥∇ℓi(x†)∥2
∥x† − x∗,i∥2

=⇒
N∑
i=1

∇ℓi(x†)

∥∇ℓi(x†)∥2
∥x† − x∗,i∥2 = 0,

which satisfies the definition of Pareto stationarity given in Definition 1 with

βi =
∥x†−x∗,i∥2/∥∇ℓi(x†)∥2∑N
i=1

∥x†−x∗,i∥2/∥∇ℓi(x†)∥2

.

4. Global asymptotic convergence of continuous-time analog of DiBS. Consider the contin-
uous time dynamics corresponding to DiBS, given by

ẋ = −h(x) := −
N∑
i=1

∇ℓi(x)

∥∇ℓi(x)∥2
∥x− x∗,i∥2.

At an equilibrium point x† of h, we have that h(x†) = 0. Now consider for the ith agent,

hi(x) :=
∇ℓi(x)

∥∇ℓi(x)∥2
∥x− x∗,i∥2

=⇒ ∇hi(x) = ∇ℓi(x)

(
∇
(
∥x− x∗,i∥2
∥∇ℓi(x)∥2

))⊤

+
∥x− x∗,i∥2
∥∇ℓi(x)∥2

Hi(x), Hi(x) := ∇2ℓi(x)

=
∇ℓi(x)(x− x∗,i)⊤

∥∇ℓi(x)∥2∥x− x∗,i∥2︸ ︷︷ ︸
:=A(x)

+
∥x− x∗,i∥2
∥∇ℓi(x)∥2

(
I − ∇ℓi(x)∇ℓi(x)⊤

∥∇ℓi(x)∥22

)
Hi(x)︸ ︷︷ ︸

:=B(x)

We will show that for all agents i, u⊤ (∇hi(x) +∇hi(x)
⊤)u < 0 ∀ u such that h(u) ̸=

0,u ∈ Rn. For any u ∥ ∇ℓi(x), we have u⊤B(x) = 0 =⇒ u⊤B(x)u = 0. For any
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u ⊥ ∇ℓi(x), we have

u⊤B(x)u =
∥x− x∗,i∥2
∥∇ℓi(x)∥2

u⊤
(
I − ∇ℓi(x)∇ℓi(x)⊤

∥∇ℓi(x)∥22

)
Hi(x)u

=
∥x− x∗,i∥2
∥∇ℓi(x)∥2

u⊤
(
I − ∇ℓi(x)∇ℓi(x)⊤

∥∇ℓi(x)∥22

)
Hi(x)

(
I − ∇ℓi(x)∇ℓi(x)⊤

∥∇ℓi(x)∥22

)
u

(u ⊥ ∇ℓi(x))

> 0 ∀ x ̸= x∗,i, (Hi ≻ µiI)

=⇒ u⊤B(x)u =

{
0, u ∥ ∇ℓi(x)

> 0 ∀ x ̸= x∗,i, u ⊥ ∇ℓi(x)
(5)

with a similar line of logic for u⊤B(x)⊤u. Now we will consider A(x). We have, for
u ⊥ ∇ℓi(x), u⊤A(x) = 0 =⇒ u⊤Au = 0. For u ∥ ∇ℓi(x), let u = γℓi(x), γ ∈ R\{0},
we have

u⊤A(x)u = γ2∥∇ℓi(x)∥(x− x∗,i)⊤∇ℓi(x) > 0 ∀ x ̸= x∗,i.

(from strong convexity assumption)

=⇒ u⊤A(x)u =

{
> 0 ∀ x ̸= x∗,i, u ∥ ∇ℓi(x)

0, u ⊥ ∇ℓi(x),
(6)

with similar logic for u⊤A(x)⊤u. Combining eq. (5) and eq. (6), we get that

−u⊤ (∇hi(x) +∇hi(x)
⊤)u > 0 ∀ u ∈ Rn \ {0,x∗,i}

=⇒ u⊤ (∇h(x) +∇h(x)⊤
)
u = −

N∑
i=1

u⊤ (∇hi(x) +∇hi(x)
⊤)u < 0 ∀ u ∈ Rn \ {0}

(7)

Now, let us make a Lyapunov function V (x) : Rn → R for h(x) given by

V (x) = h(x)⊤h(x)

=⇒ V̇ (x) = h(x)⊤
(
∇h(x) +∇h(x)⊤

)
h(x)

Further, we have V (x) → ∞ as ∥x∥ → ∞. Further from eq. (7), V̇ (x) ≤ 0, with V̇ (x) = 0
only when x is an equilibrium of h. Thus, by classical results in nonlinear systems theory,
we have that all equilibrium points of ẋ = −h(x) are local asymptotically stable, and
by LaSalle’s invariance theorem we have that the system the continuous time dynamics
ẋ = −h(x) converges globally asymptotically to the set of equilibrium points [12, Theorem
4.4].

5. DiBS retains continuous-time guarantees with correct step sizes. We have that the
mapping h(x) : Rn → R is Lh−Lipschitz for some Lh > 0. Then, using any square
summable sequence of step sizes αk > 0 such that

∑∞
k=0 αk = ∞,

∑∞
k=0 α

2
k < ∞ retains

the global convergence properties for DiBS [4, Chapter 2]. To see the Lipschitzness of h,
we have

hi(x)− hi(y)

=

∥∥∥∥ ∇ℓi(x)

∥∇ℓi(x)∥2
∥x− x∗,i∥2 −

∇ℓi(y)

∥∇ℓi(y)∥2
∥y − x∗,i∥2

∥∥∥∥
2

=

∥∥∥∥( ∇ℓi(x)

∥∇ℓi(x)∥2
− ∇ℓi(y)

∥∇ℓi(y)∥2

)
∥x− x∗,i∥2 −

∇ℓi(y)

∥∇ℓi(y)∥2
(
∥y − x∗,i∥2 − ∥x− x∗,i∥2

)∥∥∥∥
2

≤
∥∥∥∥( ∇ℓi(x)

∥∇ℓi(x)∥2
− ∇ℓi(y)

∥∇ℓi(y)∥2

)
∥x− x∗,i∥2

∥∥∥∥
2︸ ︷︷ ︸

:=I

+

∥∥∥∥ ∇ℓi(y)

∥∇ℓi(y)∥2
(
∥y − x∗,i∥2 − ∥x− x∗,i∥2

)∥∥∥∥
2︸ ︷︷ ︸

:=II
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Bounding term II, we have

II ≤
∥∥∥∥ ∇ℓi(y)

∥∇ℓi(y)∥2

∥∥∥∥
2

∥x− y∥2 = ∥x− y∥2 (reverse triangle inequality)

Now for term I, we have∥∥∥∥ ∇ℓi(x)

∥∇ℓi(x)∥2
− ∇ℓi(y)

∥∇ℓi(y)∥2

∥∥∥∥ =

∥∥∥∥∥∇ℓi(y)∥2∇ℓi(x)− ∥∇ℓi(x)∥2∇ℓi(y)

∥∇ℓi(x)∥2∥∇ℓi(y)∥2

∥∥∥∥
=

∥∥∥∥∥∥∇ℓi(y)∥2
(
∇ℓi(x)−∇ℓi(y)

)
+
(
∥∇ℓi(y)∥2 − ∥∇ℓi(x)∥2

)
∇ℓi(y)

∥∇ℓi(x)∥2∥∇ℓi(y)∥2

∥∥∥∥∥
≤ 2

∥∇ℓi(y)∥2∥∇ℓi(x)−∇ℓi(y)∥2
∥∇ℓi(x)∥2∥∇ℓi(y)∥2

= 2
∥∇ℓi(x)−∇ℓi(y)∥2

∥∇ℓi(x)∥2

Now from µi−strong convexity of ℓi(·),

∥∇ℓi(x)∥ ≥ µi∥x− x∗,i∥

=⇒ 1

∥∇ℓi(x)∥2
≤ 1

µi∥x− x∗,i∥2
Further, from Li−smoothness of ℓi(·), we have ∥∇ℓi(x)−∇ℓi(y)∥2 ≤ Li∥x− y∥. Thus,
we have

I ≤ 2Li

µi
∥x− y∥2

Combining these bounds for I and II, we get

∥hi(x)− hi(y)∥2 ≤
(
2Li

µi
+ 1

)
∥x− y∥2

Summing over all agents, we have

Lh =

N∑
i=1

(
1 +

2Li

µi

)
Thus, h is Lh−Lipschitz.

A.3 Proof of Theorem 2

1. Pareto. The fact that DiBS finds Pareto stationary solutions follows directly from Theorem 1.
Pareto stationarity is a necessary condition for Pareto optimality, and a sufficient condition
when agent costs are strictly convex and twice differentiable [15, 23].

2. Invariance. For invariance to strictly increasing monotonic functions, let a nonaffine
transformation gi : R → R, g′(l) > 0 ∀ l ∈ R be applied to ℓi(x). Let ℓ̃(x) =
[g1(ℓ1), . . . , gN (ℓN )]. Then as in the proof of Proposition 1, we have

∇ℓ̃i(x) = ∇g(ℓi(x)) = g′(ℓi(x))︸ ︷︷ ︸
>0

∇ℓi(x)

=⇒ ∇ℓ̃i(x)

∥∇ℓ̃i(x)∥2
=

∇ℓi(x)

∥∇ℓi(x)∥2
=⇒ OD,i

ℓ̃
= OD,i

ℓ ∀ i ∈ [N ].

Further, because of monotonicity, argminx g(ℓ
i(x)) = argminx ℓ

i(x) = x∗,i. Thus,
both the pieces of information used for each player by DiBS remains invariant to the
transformation for each agent. This leads to invariance of DiBS against strictly monotonic
nonaffine transformations.
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3. Symmetry. It is trivial to see that DiBS satisfies the axiom of symmetry because the DiBS
takes the input from each agent at the same state during each iteration. It is invariant to
permutations of agents.

4. Independence of Irrelevant Alternatives. We know that DiBS is globally asymptotically
convergent to the set of its fixed points from Theorem 1. This means that if there is only
a single fixed point, DiBS will have global asymptotic convergence to this point, which
satisfies Axiom 4.

B Additional experiments for mediated portfolio management

We include the results for the mediated portfolio management experiment repeated for N = 2, 3 and
5 investor agents. These experiments have similar trends as mentioned in Section 4.2. The result
plots are attached here in Figures 3, 4, 5.
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Figure 3: Repeating the Mediated Portfolio Management experiment for N = 2 agents.
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Figure 4: Repeating the Mediated Portfolio Management experiment for N = 3 agents.
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Figure 5: Repeating the Mediated Portfolio Management experiment for N = 5 agents.

C Experimental details

C.1 Multi-agent formation assignment implementation details

Parameter values. We choose c = (5, 5), a = 10 and b = 0.01. The agents were initialized in a
circle centered at c, with a radius of 3. The value of the group attraction and repulsion values used
for the experiment are

αij =

{
1 if i and j are both odd or even
0.1 otherwise

βij =

{
3 if i and j are both odd or even
0.9 otherwise.

Based on these values, agents want to maintain a distance of 0.5493 with agents of the same group
and a distance of 2.7465 with agents of the other group.

Algorithmic Details. DiBS and NBS were both run for 5000 iterations. KSBS was solved in one
shot, as it is based on a geometric argument with no iterative scheme. To solve KSBS, we minimized
the sum of loss improvements γi for each agent i, while ensuring equal loss improvements for all
agents. This was encoded in the objective

L(γ) =
N∑
i=1

γi −

∥∥∥∥∥∥γ − 1

N

N∑
j=1

γj · 1

∥∥∥∥∥∥
2

,γ = [γ1, . . . , γN ].

For NBS and KSBS, di = 0 ∀ i ∈ [N ].

C.2 Mediated portfolio management implementation details

Implementation details. We conducted 100 random initializations for each number of stocks
(5, 10, 20, 50). Every random initialization was run for 1, 10, 100, 1000, 10000 comparisons made
per agent per iteration. Real life stock data was procured sing the yfinance Python package [2]
(under the Apache license). We ensured that the simplex constraints for this example were met by
using the following strategies:

1. Projecting all agent gradients onto the simplex before performing an update.
2. Shrinking the step size by a factor of 10 if a step would cause any element in the state to

become less than zero. If the step size becomes less than 10−12, we stop the algorithm. The
initial step size was set to be 0.01.
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For terminating the algorithms, we used the termination condition of either the step size reaching
10−12, or the algorithm completing 1000 iterations.

As mentioned, the box plot was made using 100 random initializations for each number of stocks
(5, 10, 20, 50). In the box plots for Figures 2, 3, 4 and 5, outliers (dots) were chosen to be data points
that were below Q1 − 1.5(Q3 −Q1) or above Q3 + 1.5(Q3 −Q1). Here, Q1, Q3 denote the first
and third quartiles respectively.

C.3 Hardware Details

All experiments were run on a desktop with a 12th Gen Intel(R) Core(TM) i7-12700 12-core CPU.

D On naive bargaining algorithm given in Equation 2

The solution found by the iterates of the naive bargaining algorithm given in eq. (2) satisfy

1. Pareto Stationarity: This is because if its iterates converge at some point x, we have for
eq. (2) that

∑
i

∇ℓi(x)
∥∇ℓi(x)∥2

= 0, which satisfies Definition 1 with βi = 1/N .

2. Symmetry: This is trivial to see because eq. (2) is invariant to permuting the agents’ order.
3. Invariance to monotone nonaffine transformations: this follows for eq. (2) from the proof of

Proposition 1.

E Obtaining preferred states using direction oracles

In this section, we include a more in-depth discussion on how one can obtain preferred states using
only direction oracles. Recall that each agent i provides access to a direction oracle OD,i

ℓ (x) =

− ∇ℓi(x)
∥∇ℓi(x)∥2

that specify the direction of steepest descent for an agent’s objective ℓi. Despite not
observing ℓi or ∇ℓi directly, several results from the zeroth- and first-order optimization literature
show that preferred (locally optimal) states can be recovered using only such directional feedback.

A simple and widely studied approach is to perform a gradient descent-like update of the form:

xt+1 = xt + ηOD,i
ℓ (xt),

where η is a suitably chosen step size. Methods that use this update, including SIGNSGD [3] and
SIGN-OPT [6], have been shown to converge to stationary points for smooth functions. Under
Lipschitz and smoothness assumptions, these methods satisfy bounds of the form

E
[
∥∇ℓi(xT )∥2

]
= O

(√
n√
T

+
n√
Q

)
,

where n is the dimension of state x, T is the number of descent iterations, and Q the number of
sampled directional queries per iteration.

F Relation to multi-agent consensus and flocking.

At a structural level, the DiBS update may appear reminiscent of distributed consensus or flocking
dynamics [21], which also involve averaging normalized direction vectors across agents. However,
these methods assume specific inter-agent potential functions and neighborhood graphs that govern
attraction and alignment behaviors. In contrast, DiBS does not assume any specific potential function
for the agents. Each agent possesses an independent cost function ℓi(x), and the mediator aggregates
their direction oracles using dynamic weights that depend on distances to their respective preferred
states. Consequently, DiBS generalizes beyond consensus-seeking to a general cooperative bargaining
framework that aims to achieve Pareto-stationary and fair outcomes rather than spatial alignment or
agreement.
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